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Abstract. We present a fast direct solver for structured linear systems based on multilevel
matrix compression. Using the recently developed interpolative decomposition of a low-rank matrix
in a recursive manner, we embed an approximation of the original matrix into a larger, but highly
structured sparse one that allows fast factorization and application of the inverse. The algorithm
extends the Martinsson/Rokhlin method developed for 2D boundary integral equations and proceeds
in two phases: a precomputation phase, consisting of matrix compression and factorization, followed
by a solution phase to apply the matrix inverse. For boundary integral equations which are not
too oscillatory, e.g., based on the Green’s functions for the Laplace or low-frequency Helmholtz
equations, both phases typically have complexity O(N) in two dimensions, where N is the number
of discretization points. In our current implementation, the corresponding costs in three dimensions
are O(N3/2) and O(N logN) for precomputation and solution, respectively. Extensive numerical
experiments show a speedup of ∼ 100 for the solution phase over modern fast multipole methods;
however, the cost of precomputation remains high. Thus, the solver is particularly suited to problems
where large numbers of iterations would be required. Such is the case with ill-conditioned linear
systems or when the same system is to be solved with multiple right-hand sides. Our algorithm is
implemented in Fortran and freely available.

Key words. fast algorithms, multilevel matrix compression, interpolative decomposition, sparse
direct solver, integral equations, fast multipole method
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1. Introduction. Many problems in computational science and engineering re-
quire the solution of large, dense linear systems. Standard direct methods based
on Gaussian elimination, of course, require O(N3) work, where N is the system size.
This quickly becomes infeasible as N increases. As a result, such systems are typically
solved iteratively, combining GMRES [41], Bi-CGSTAB [44] or some other iterative
scheme with fast algorithms to apply the system matrix, when available. For the
integral equations of classical physics, this combination has led to some of the fastest
solvers known today, with dramatically lower complexity estimates of the order O(N)
or O(N logN) [11, 33, 38, and references therein].

Despite their tremendous success, however, iterative methods still have several
significant disadvantages when compared with their direct counterparts:

(i) The number of iterations required by an iterative solver is highly sensitive
to the conditioning of the system matrix. Ill-conditioning arises, for example, in the
solution of problems near resonance (particularly in the high frequency regime), in
geometries with “close-to-touching” interactions, in multi-component physics models
with large contrasts in material properties, etc. Under these circumstances, the solu-
tion time can be far greater than expected. Direct methods, by contrast, are robust
in the sense that their solution time does not degrade with conditioning. Thus, they
are often preferred in production environments, where reliability of the solver and
predictability of the solution time are important.
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(ii) One often wishes to solve a linear system governed by a fixed matrix with
multiple right-hand sides. This occurs, for example, in scattering problems, in opti-
mization, and in the modeling of time-dependent processes in fixed geometry. Most
iterative methods are unable to effectively exploit the fact that the system matrix is
the same, and simply treat each right-hand side as a new problem. Direct methods,
on the other hand, are extremely efficient in this regard: once the system matrix has
been factored, the matrix inverse can be applied to each right-hand side at a much
lower cost.

(iii) One often wishes to solve problems when the system matrix is altered by a
low-rank modification. Standard iterative methods do a poor job of exploiting this
fact. Direct methods, on the other hand, can update the factorization of the orig-
inal matrix using the Sherman-Morrison-Woodbury formula [29] or use the existing
factorization as a preconditioner.

In this paper, we present an algorithm for the solution of structured linear sys-
tems that overcomes these deficiencies, while remaining competitive with modern fast
iterative solvers in many practical situations. The algorithm directly constructs a
compressed (“data-sparse”) representation of the system matrix inverse, assuming
only that the matrix has a block low-rank structure similar to that utilized by fast
matrix-vector product techniques like the fast multipole method (FMM) [22, 23]. Such
matrices typically arise from the discretization of integral equations, where the low-
rank structure can be understood in terms of far-field interactions between clusters of
points, but the procedure is general and makes no a priori assumptions about rank.
Our scheme is a multilevel extension of the work described in [21], which itself is based
on the fast direct multilevel method developed for 2D boundary integral equations by
Martinsson and Rokhlin [35].

While we do not seek to review the literature on fast direct solvers here, it is
worth noting that similar efforts have been (and continue to be) pursued by various
groups, most notably in the context of hierarchically semiseparable (HSS) matrices
[6, 7, 49] and H-matrices [26, 27, 28]. A short historical discussion can be found in
[21] as well as in the recent article by Gillman et al. [17]. The latter paper makes
several improvements on the algorithm of [35], and presents a simple framework for
understanding, implementing, and analyzing schemes for inverting integral equations
on curves (that is, domains parametrized by a single variable). Planar domains with
corners were treated recently in [4]. Applications to electromagnetic wave problems
were considered in [45, 47]. Finally, it should be noted that Gillman’s dissertation
[16] includes 3D experiments that also extend the Martinsson-Rokhlin formalism to
the case of integral equations on surfaces.

The present paper provides a mix of analysis, algorithmic work, and applications.
The novelty of our contribution lies:

(i) in the use of compression and auxilliary variables to embed an approximation
of the original dense matrix into a sparse matrix framework that can make use of
standard and well-developed sparse matrix technology;

(ii) in providing detailed numerical experiments in both 2D and 3D; and
(iii) in demonstrating the utility of fast direct solvers in several applications.

We believe that the scheme is substantially simpler to implement than prior schemes
and that it leads to a more stable solution process.

As in previous schemes (see, e.g., [17]), the core algorithm in our work com-
putes a compressed matrix representation using the interpolative decomposition (ID)
[10, 32, 48] via a multilevel procedure that we refer to as recursive skeletonization.
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Once obtained, the compressed representation serves as a platform for fast matrix
algebra including matrix-vector multiplication and matrix inversion. In its former
capacity, the algorithm may be viewed as a generalized or kernel-independent FMM
[19, 36, 50]; we explore this application in §6. For matrix inversion, we show how
to embed the compressed representation in an equivalent (but larger) sparse system,
much in the style of [6, 39]. We then use a state-of-the-art sparse matrix solver to do
the rest. We are grateful to David Bindel for initially suggesting an investigation of
the sparse matrix formalism and rely in this paper on the sparse direct solver software
UMFPACK [12, 13]. As in dense LU factorization, the direct solver is a two-phase pro-
cess. First, following the generation of the compressed matrix embedding, a factored
representation of the inverse is constructed. Second, in the solution phase, the matrix
inverse is applied in a rapid manner to a specified right-hand side. As expected, the
solution phase is very inexpensive, often beating a single FMM call by several orders
of magnitude. For boundary integral equations without highly oscillatory kernels,
e.g., the Green’s function for the Laplace or low-frequency Helmholtz equation, both
phases typically have complexity O(N) in 2D. In 3D, the complexities in our current
implementation are O(N3/2) and O(N logN) for precomputation (compression and
factorization) and solution, respectively.

The remainder of this paper is organized as follows. In §2, we define the ma-
trix structure of interest and review certain aspects of the ID. In §3, we review the
recursive skeletonization algorithm for matrix compression and describe the new for-
malism for embedding the compressed matrix in a sparse format. In §4, we study the
complexity of the algorithm for non-oscillatory problems, while in §5, we give error
estimates for applying a compressed matrix and its inverse. In §6, we demonstrate the
efficiency and generality of our scheme by reporting numerical results from its use as a
generalized FMM, as a direct solver, and as an accelerator for molecular electrostatics
and scattering problems. Finally, in §7, we summarize our findings and discuss future
work.

2. Preliminaries. In this section, we discuss the precise matrix structure that
makes our fast solver possible. For this, let A ∈ CN×N be a matrix whose index
vector J = (1, 2, . . . , N) is grouped into p contiguous blocks of ni elements each,
where

∑p
i=1 ni = N :

Ji =

i−1∑
j=1

nj + 1,

i−1∑
j=1

nj + 2, . . . ,

i∑
j=1

nj

 , i = 1, . . . , p.

Then the linear system Ax = b can be written in the form

p∑
j=1

Aijxj = bi, i = 1, . . . , p,

where xi,bi ∈ Cni and Aij ∈ Cni×nj . Solution of the full linear system by classical
Gaussian elimination is well-known to require O(N3) work.

Definition 2.1 (block separability). The matrix A is said to be block separable
if each off-diagonal submatrix Aij can be decomposed as the product of three low-rank
matrices:

Aij = LiSijRj , i 6= j,(2.1)
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where Li ∈ Cni×kri , Sij ∈ Ck
r
i×k

c
j , and Rj ∈ Ck

c
j×nj , with kr

i , k
c
i � ni. Note that in

(2.1), the left matrix Li depends only on the index i and the right matrix Rj depends
only on the index j.

We will see how such a factorization arises below. The term block separable was
introduced in [17], and is closely related to that of semiseparable matrices [6, 7, 49]
and H-matrices [26, 27, 28]. In [21], the term structured was used, but block separable
is somewhat more informative.

Definition 2.2 (off-diagonal block rows and columns). The ith off-diagonal
block row of A is the submatrix [Ai1 · · · Ai(i−1) Ai(i+1) · · · Aip ] consisting of the
ith block row of A with the diagonal block Aii deleted; the off-diagonal block columns
of A are defined analogously.

Clearly, the block separability condition (2.1) is equivalent to requiring that the
ith off-diagonal block row and column have rank kr

i and kc
i , respectively, for i =

1, . . . , p (see §3 for details).
When A is block separable, it can be written as

A = D + LSR,(2.2)

where

D =

 A11

. . .

App

 ∈ CN×N

is block diagonal, consisting of the diagonal blocks of A,

L =

 L1

. . .

Lp

 ∈ CN×Kr , R =

 R1

. . .

Rp

 ∈ CKc×N

are block diagonal, where Kr =
∑p
i=1 k

r
i and Kc =

∑p
i=1 k

c
i , and

S =


0 S12 · · · S1p

S21 0 · · · S2p

...
...

. . .
...

Sp1 Sp2 · · · 0

 ∈ CKr×Kc

is dense with zero diagonal blocks. It is convenient to let z = Rx and y = Sz. We
can then write the original system in the form D L

R −I
−I S

 x
y
z

 =

 b
0
0

 .(2.3)

This system is highly structured and sparse, and can be efficiently factored using
standard techniques. If we assume that each block corresponds toNi = N/p unknowns
and that the ranks kr

i = kc
i ≡ k of the off-diagonal blocks are all the same, it is

straightforward to see [17, 21] that a scheme based on (2.2) or (2.3) requires an
amount of work of the order O(p(N/p)3 + p3k3).

In many contexts (including integral equations), the notion of block separability
is applicable on a hierarchy of subdivisions of the index vector. That is to say, a
decomposition of the form (2.2) can be constructed at each level of the hierarchy.
When a matrix has this structure, much more powerful solvers can be developed, but
they will require some additional ideas (and notation).
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Fig. 2.1. An example of a tree structure imposed on the index vector (1, 2, . . . , N). At each
level of the hierarchy, a contiguous block of indices is divided into a set of children, each of which
corresponds to a contiguous subset of indices.

Fig. 2.2. Matrix rank structure. At each level of the index tree, the off-diagonal block rows
and columns (black) must have low numerical rank; the diagonal blocks (white) can in general be
full-rank.

2.1. Hierarchically structured matrices. Our treatment in this section fol-
lows that of [17]. Let J = (1, 2, . . . , N) be the index vector of a matrix A ∈ CN×N .
We assume that a tree structure τ is imposed on J which is λ + 1 levels deep. At

level l, we assume that there are pl nodes, with each such node J
(l)
i corresponding to

a contiguous subsequence of J such that{
J

(l)
1 , J

(l)
2 , . . . , J (l)

pl

}
= J.

We denote the finest level as level 1 and the coarsest level as level λ+1 (which consists

of a single block). Each node J
(l)
i at level l > 1 has a finite number of children at

level l − 1 whose concatenation yields the indices in J
(l)
i (Fig. 2.1).

The matrix A is hierarchically block separable [17] if it is block separable at each
level of the hierarchy defined by τ . In other words, it is structured in the sense of the
present paper if, on each level of τ , the off-diagonal block rows and columns are low-
rank (Fig. 2.2). Such matrices arise, for example, when discretizing integral equations
with non-oscillatory kernels (up to a specified precision).

Example 1. Consider the integral operator

φ (x) =

∫
G (x, y) ρ (y) dy(2.4)

where

G (x, y) = − 1

2π
log |x− y|(2.5)

is the Green’s function for the 2D Laplace equation, and the domain of integration is
a square B in the plane. This is a 2D volume integral operator. Suppose now that we
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discretize (2.4) on a
√
N ×

√
N grid:

φ (xi) =
1

N

∑
j 6=i

G (xi, xj) ρ (xj) .(2.6)

(This is not a high-order quadrature but that is really a separate issue.) Let us
superimpose on B a quadtree of depth λ+ 1, where B is the root node (level λ+ 1).
Level λ is obtained from level λ+ 1 by subdividing the box B into four equal squares
and reordering the points xi so that each child holds a contiguous set of indices. This
procedure is carried out until level 1 is reached, reordering the nodes at each level
so that the points contained in every node at every level correspond to a contiguous
set of indices. It is clear that, with this ordering, the matrix corresponding to (2.6)
is hierarchically block separable, since the interactions between nonadjacent boxes at
every level are low-rank to any specified precision (from standard multipole estimates
[22]). Adjacent boxes are low-rank for a more subtle reason (see §4 and Fig. 4.1).

Example 2. Suppose now that we wish to solve an interior Dirichlet problem for
the Laplace equation in a simply connected 3D domain Ω with boundary ∂Ω:

∆u = 0 in Ω, u = f on ∂Ω.(2.7)

Potential theory [24] suggests that we seek a solution in the form of a double-layer
potential

u (x) =

∫
∂Ω

∂G

∂νy
(x, y)σ (y) dy for x ∈ Ω,(2.8)

where

G (x, y) =
1

4π |x− y|
(2.9)

is the Green’s function for the 3D Laplace equation, νy is the unit outer normal at
y ∈ ∂Ω, and σ is an unknown surface density. Letting x approach the boundary, this
gives rise to the second-kind Fredholm equation

− 1

2
σ (x) +

∫
∂Ω

∂G

∂νy
(x, y)σ (y) dy = f (x) .(2.10)

Using a standard collocation scheme based on piecewise constant densities over a
triangulated surface, we enclose ∂Ω in a box B and bin sort the triangle centroids
using an octree where, as in the previous example, we reorder the nodes so that each
box in the hierarchy contains contiguous indices. It can be shown that the resulting
matrix is also hierarchically block separable (see §4 and [21]).

We turn now to a discussion of the ID, the compression algorithm that we will use
to compute low-rank approximations of off-diagonal blocks. A useful feature of the
ID is that it is able to compute the rank of a matrix on the fly, since the exact ranks
of the blocks are difficult to ascertain a priori—that is to say, the ID is rank-revealing.

2.2. Interpolative decomposition. Many decompositions exist for low-rank
matrix approximation, including the singular value decomposition, which is well-
known to be optimal [20]. Here, we consider instead the ID [10, 32, 48], which produces
a near-optimal representation that is more useful for our purposes as it permits an
efficient scheme for multilevel compression when used in a hierarchical setting.

Definition 2.3 (interpolative decomposition). Let A ∈ Cm×n be a matrix, and
‖ · ‖ the matrix 2-norm. A rank-k approximation of A in the form of an interpolative
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Fig. 3.1. One level of matrix compression, obtained by sequentially compressing the off-diagonal
block rows and columns. At each step, the matrix blocks whose row or column spaces are being
compressed are highlighted in white.

decomposition (ID) is a representation A ≈ BP , where B ∈ Cm×k, whose columns
constitute a subset of the columns of A, and P ∈ Ck×n, a subset of whose columns
makes up the k × k identity matrix, such that ‖P‖ is small and ‖A − BP‖ ∼ σk+1,
where σk+1 is the (k+1)st greatest singular value of A. We call B and P the skeleton
and projection matrices, respectively.

Clearly, the ID compresses the column space of A; to compress the row space,
simply apply the ID to AT, which produces an analogous representation A = P̃ B̃,
where P̃ ∈ Cm×k and B̃ ∈ Ck×n.

Definition 2.4 (row and column skeletons). The row indices that corrrespond
to the retained rows in the ID are called the row or incoming skeletons. The column
indices that corrrespond to the retained columns in the ID are called the column or
outgoing skeletons.

Reasonably efficient schemes for constructing an ID exist [10, 32, 48]. By com-
bining such schemes with methods for estimating the approximation error, we can
compute an ID to any relative precision ε > 0 by adaptively determining the required
rank k [32]. This is the sense in which we will use the ID.

While previous related work [21, 35] used the deterministic O(kmn) algorithm of
[10], we employ here the latest compression technology based on random sampling,
which typically requires only O(mn log k + k2n) operations [32, 48].

3. Algorithm. In this section, we first describe the “standard” ID-based fast
multilevel matrix compression algorithm (as in [17, 35]). The HSS and H-matrix
formalisms use the same underlying philosophy [6, 7, 26, 27, 28, 49]. We then describe
our new inversion scheme.

3.1. Hierarchical matrix compression. Let A ∈ CN×N be a matrix with
p× p blocks, structured in the sense of §2.1, and ε > 0 a target relative precision. We
first outline a one-level matrix compression scheme:

1. For i = 1, . . . , p, use the ID to compress the row space of the ith off-diagonal
block row to precision ε. Let Li denote the corresponding row projection matrix.

2. Similarly, for j = 1, . . . , p, use the ID to compress the column space of the
jth off-diagonal block column to precision ε. Let Rj denote the corresponding column
projection matrix.

3. Approximate the off-diagonal blocks of A by Aij ≈ LiSijRj for i 6= j, where
Sij is the submatrix of Aij defined by the row and column skeletons associated with
Li and Rj , respectively.

This yields precisely the matrix structure discussed in §2, following (2.1). The
one-level scheme is illustrated graphically in Fig. 3.1.

The multilevel algorithm is now just a simple extension based on the observation
that by ascending one level in the index tree and regrouping blocks accordingly, we
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Fig. 3.2. Multilevel matrix compression, comprising alternating steps of compression and re-
grouping via ascension of the index tree. The diagonal blocks (white and gray) are not compressed,
but are instead extracted at each level of the tree; they are shown here only to illustrate the regrouping
process.

can compress the skeleton matrix S in (2.2) in exactly the same form, leading to a
procedure that we naturally call recursive skeletonization (Fig. 3.2).

The full algorithm may be specified as follows:
1. Starting at the leaves of the tree, extract the diagonal blocks and perform

one level of compression of the off-diagonal blocks.
2. Move up one level in the tree and regroup the matrix blocks according to the

tree structure. Terminate if the new level is the root; otherwise, extract the diagonal
blocks, recompress the off-diagonal blocks, and repeat.

The result is a telescoping representation

A ≈ D(1) + L(1)
[
D(2) + L(2)

(
· · ·D(λ) + L(λ)SR(λ) · · ·

)
R(2)

]
R(1),(3.1)

where the superscript indexes the compression level l = 1, . . . , λ.
Example 3. As a demonstration of the multilevel compression technique, consider

the matrix defined by N = 8192 points uniformly distributed in the unit square, inter-
acting via the 2D Laplace Green’s function (2.5) and sorted according to a quadtree
ordering. The sequence of skeletons remaining after each level of compression to
ε = 10−3 is shown in Fig. 3.3, from which we see that compression creates a spar-
sification of the sources which, in a geometric setting, leaves skeletons along the
boundaries of each block.

3.2. Accelerated compression via proxy surfaces. The computational cost
of the algorithm described in the previous section is dominated by the fact that each
step is global: that is, compressing the row or column space for each block requires
accessing all other blocks in that row or column. If no further knowledge of the matrix
is available, this is indeed necessary. However, as noted by [10, 21, 35, 37], this global
work can often be replaced by a local one, resulting in considerable savings.

A sufficient condition for this acceleration is that the matrix correspond to eval-
uating a potential field for which some form of Green’s identities hold. It is easiest
to present the main ideas in the context of Laplace’s equation. For this, consider
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Fig. 3.3. Sparsification by recursive skeletonization. Logarithmic interactions between N =
8192 points in the unit square are compressed to relative precision ε = 10−3 using a five-level
quadtree-based scheme. At each level, the surviving skeletons are shown, colored by block index, with
the total number of skeletons remaining given by Nl for compression level l = 0, . . . , 5, where l = 0
denotes the original uncompressed system.

Fig. 3.4, which depicts a set of sources in the plane. We assume that block index i
corresponds to the sources in the central square B. The ith off-diagonal block row
then corresponds to the interactions of all points outside B with all points inside
B. We can separate this into contributions from the near neighbors of B, which are
local, and the distant sources, which lie outside the near-neighbor domain, whose
boundary is denoted by Γ. But any field induced by the distant sources induces a
harmonic function inside Γ and can therefore be replicated by a charge density on Γ
itself. Thus, rather than using the detailed structure of the distant points, the row
(incoming) skeletons for B can be extracted by considering just the combination of
the near-neighbor sources and an artifical set of charges placed on Γ, which we refer to
as a proxy surface. Likewise, the column (outgoing) skeletons for B can be determined
by considering only the near neighbors and the proxy surface. If the potential field is
correct on the proxy surface, it will be correct at all more distant points (again via
some variant of Green’s theorem).

The interaction rank between Γ and B is constant (depending on the desired
precision) from standard multipole estimates [22, 23]. In summary, the number of
points required to discretize Γ is constant, and the dimension of the matrix to compress
against for the block corresponding to B is essentially just the number of points in
the physically neighboring blocks.

Similar arguments hold for other kernels of potential theory including the heat,
Helmholtz, Yukawa, Stokes, and elasticity kernels, though care must be taken for
oscillatory problems which could require a combination of single and double layer
potentials to avoid spurious resonances in the representation for the exterior.

3.3. Compressed matrix-vector multiplication. The compressed represen-
tation (3.1) admits an obvious fast algorithm for computing the matrix-vector product
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Fig. 3.4. Accelerated compression using proxy surfaces. The field within a region B due to a
distribution of exterior sources (left) can be decomposed into neighboring and well-separated contri-
butions. By representing the latter via a proxy surface Γ (center), the matrix dimension to compress
against for the block corresponding to B (right) can be reduced to the number of neighboring points
plus a constant set of points on Γ, regardless of how many points lie beyond Γ.

y = Ax. As shown in [17], one simply applies the matrices in (3.1) from right to left.
Like the FMM, this procedure can be thought of as occurring in two passes:

1. An upward pass, corresponding to the sequential application of the column
projection matrices R(l), which hierarchically compress the input data x to the column
(outgoing) skeleton subspace.

2. A downward pass, corresponding to the sequential application of the row
projection matrices L(l), which hierarchically project onto the row (incoming) skeleton
subspace and, from there, back onto the output elements y.

3.4. Compressed matrix inversion. The representation (3.1) also permits a
fast algorithm for the direct inversion of nonsingular matrices. The one-level scheme
was discussed in §2. In the multilevel scheme, the system Sz = y in (2.3) is itself
expanded in the same form, leading to the sparse embedding

D(1) L(1)

R(1) −I
−I D(2) L(2)

R(2) . . .
. . .

. . . D(λ) L(λ)

R(λ) −I
−I S





x
y(1)

z(1)

...

...
y(λ)

z(λ)


=



b
0
0
...
...
0
0


.(3.2)

To understand the consequences of this sparse representation, it is instructive
to consider the special case in which the row and column skeleton dimensions are
identical for each block, say k, so that the total row and column skeleton dimensions
are K ≡ Kr = Kc = pk. Then, studying (2.3) first and assuming that D is invertible,
block elimination of x and y yields

(Λ + S) z = ΛRD−1b,

where Λ = (RD−1L)−1 ∈ CK×K is block diagonal. Back substitution then yields

x =
[
D−1 −D−1LΛRD−1 +D−1LΛ (Λ + S)

−1
ΛRD−1

]
b.

In other words, the matrix inverse is

A−1 ≈ D + LS−1R,(3.3)
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where

D = D−1 −D−1LΛRD−1 ∈ CN×N

and

L = D−1LΛ ∈ CN×K , R = ΛRD−1 ∈ CK×N

are all block diagonal, and

S = Λ + S ∈ CK×K

is dense. Note that S is equal to the skeleton matrix S with its diagonal blocks filled
in. Thus, (3.3) is a compressed representation of A−1 with minimal fill-in over the
original compressed representation (2.2) of A. In the multilevel setting, one carries out
the above factorization recursively, since S can now be inverted in the same manner:

A−1 ≈ D(1) + L(1)
[
D(2) + L(2)

(
· · · D(λ) + L(λ)S−1R(λ) · · ·

)
R(2)

]
R(1).(3.4)

This point of view is elaborated in [17].
In the general case, the preceding procedure may fail if D happens to be singular

and (more generally) may be numerically unstable if care is not taken to stabilize the
block elimination scheme using some sort of pivoting. Thus, rather than using the
“hand-rolled” Gaussian elimination scheme of [16, 17, 35] to compute the telescoping
inverse (3.4), we rely instead on the existence of high-quality sparse direct solver
software. More precisely, we simply supply UMFPACK with the sparse representation
(3.2) and let it compute the corresponding factorization. Numerical results show that
the performance is similar to that expected from (3.4).

4. Complexity analysis. For the sake of completeness, we briefly analyze the
complexity of the algorithm presented in §3 for a typical example: discretization of the
integral operator (2.4), where the integral kernel has smoothness properties similar
to that of the Green’s function for the Laplace equation. We follow the analysis of
[16, 17, 35] and estimate costs for the “hand-rolled” Gaussian elimination scheme.
We ignore quadrature issues and assume that we are given a matrix A acting on N
points distributed randomly in a d-dimensional domain, sorted by an orthtree that
uniformly subdivides until all block sizes are O(1). (In 1D, an orthtree is a binary
tree; in 2D, it is a quadtree; and in 3D, it is an octree.)

For each compression level l = 1, . . . , λ, with l = 1 being the finest, let pl be
the number of matrix blocks, and nl and kl the uncompressed and compressed block
dimensions, respectively, assumed equal for all blocks and identical across rows and
columns, for simplicity. We first make the following observations:

(i) The total matrix dimension is p1n1 = N , where n1 = O(1), so p1 ∼ N .
(ii) Each subdivision increases the number of blocks by a factor of roughly 2d,

so pl ∼ pl−1/2
d ∼ p1/2

d(l−1). In particular, pλ = O(1), so λ ∼ log2d N = (1/d) logN .
(iii) The total number of points at level l > 1 is equal to the total number of

skeletons at level l − 1, i.e., plnl = pl−1kl−1, so nl ∼ 2dkl−1.
Furthermore, we note that kl is on the order of the interaction rank between

two adjacent blocks at level l, which can be analyzed by recursive subdivision of
the source block to expose well-separated structures with respect to the target (Fig.
4.1). Assuming only that the interaction between a source subregion separated from
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Fig. 4.1. The interaction rank between two adjacent blocks can be calculated by recursively
subdividing the source block (white) into well-separated subblocks with respect to the target (gray),
each of which have constant rank.

a target by a distance of at least its own size is of constant rank (to a fixed precision
ε), we have

kl ∼
log

2d
nl∑

l=1

2(d−1)l ∼
{

log nl if d = 1,

n
1−1/d
l if d > 1,

where, clearly, nl ∼ (p1/pl)n1 ∼ 2d(l−1)n1, so

kl ∼
{

(l − 1) log 2 + log n1 if d = 1,

2(d−1)(l−1)n
1−1/d
1 if d > 1.

4.1. Matrix compression. From §2.2, the cost of computing a rank-k ID of
an m × n matrix is O(mn log k + k2n). We will only consider the case of proxy
compression, for which m = O(nl) for a block at level l, so the total cost is

Tcm ∼
λ∑
l=1

pl
(
n2
l log kl + k2

l nl
)
∼
{
N if d = 1,
N3(1−1/d) if d > 1.

(4.1)

4.2. Matrix-vector multiplication. The cost of applying D(l) is O(pln
2
l ),

while that of applying L(l) or R(l) is O(plklnl). Combined with the O((pλkλ)2) cost
of applying S, the total cost is

Tmv ∼
λ∑
l=1

plnl (kl + nl) + (pλkλ)
2 ∼


N if d = 1,
N logN if d = 2,
N2(1−1/d) if d > 2.

(4.2)

4.3. Matrix factorization and inverse application. We turn now to the
analysis of the cost of factorization using (3.4). At each level l, the cost of constructing
D−1 and Λ is O(pln

3
l ), after which forming D(l), L(l), and R(l) all require O(pln

2
l )

operations; at the final level, the cost of constructing and inverting S is O((pλkλ)3).
Thus, the total cost is

Tlu ∼
λ∑
l=1

pln
3
l + (pλkλ)

3
,

which has complexity (4.1).
Finally, we note that the dimensions of D(l), L(l), R(l), and S−1 are the same

as those of D(l), L(l), R(l), and S, respectively. Thus, the total cost of applying the
inverse, denoted by Tsv, has the same complexity as Tmv, namely (4.2).
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In our UMFPACK-based approach, the estimation of cost is a rather complicated
task, and we do not attempt to carry out a detailed analysis of its performance. Suffice
it to say, there is a one-to-one correspondence between the “hand-rolled” Gaussian
elimination approach and one possible elimination scheme in UMFPACK. Since that
solver is highly optimized, the asymptotic cost should be the same (or better). For
some matrices, it is possible that straight Gaussian elimination may be unstable with-
out pivoting, while UMFPACK will carry out a backward-stable scheme. This is a
distinct advantage of the sparse matrix approach although the complexity and fill-in
analysis then becomes more involved.

4.4. Storage. An important issue in direct solvers, of course, is that of storage
requirements. In the present setting the relevant matrices are the compressed sparse
representation (3.2) and the factorization computed within UMFPACK. This will
be (4.2) for the forward operator and, in the absence of pivoting, for the sparse
factorization as well. If pivoting is required, the analysis is more complex as it involves
some matrix fill-in and is postponed to future work.

5. Error analysis. We now state some simple error estimates for applying and
inverting a compressed matrix. Let A be the original matrix and Aε its compressed
representation, constructed using the algorithm of §3 such that

‖A−Aε‖
‖A‖

≤ ε

for some ε > 0. Note that this need not be the same as the specified local precision in
the ID since errors may accumulate across levels. However, as in [17], we have found
that such error propagation is mild.

Let x and b be vectors such that Ax = b. Then it is straightforward to verify
that for bε = Aεx,

‖b− bε‖
‖b‖

≤ ε ‖A‖
∥∥A−1

∥∥ = εκ (A) ,

where κ(A) is the condition number of A. Furthermore, if xε = A−1
ε b, then

‖x− xε‖
‖x‖

≤ 2εκ (A)

1− εκ (A)
.

In particular, if A is well-conditioned, e.g., A is the discretization of a second-kind
integral equation, then κ(A) = O(1), so

‖x− xε‖
‖x‖

= O (ε) .

6. Numerical examples. In this section, we investigate the efficiency and flex-
ibility of our algorithm by considering some representative examples. We begin with
timing benchmarks for the Laplace and Helmholtz kernels in 2D and 3D, using the al-
gorithm both as an FMM and as a direct solver, followed by applications in molecular
electrostatics and multiple scattering.

All matrices were blocked using quadtrees in 2D and octrees in 3D, uniformly
subdivided until all block sizes were O(1), but adaptively truncating empty boxes
during the refinement process. Only proxy compression was considered, with proxy
surfaces constructed on the boundary of the supercell enclosing the neighbors of each
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Table 6.1
Numerical results for applying the Laplace kernel in the 2D surface case at precision ε = 10−9:

N , uncompressed matrix dimension; Kr, row skeleton dimension; Kc, column skeleton dimension;
Tcm, matrix compression time (s); Tmv, matrix-vector multiplication time (s); E, relative error; M ,
required storage for compressed matrix (MB).

N Kr Kc Tcm Tmv E M
1024 94 94 6.7E−2 1.0E−3 3.1E−8 8.5E−1
2048 105 104 1.4E−1 1.0E−3 4.5E−8 1.7E+0
4096 113 114 3.1E−1 1.0E−3 1.1E−7 3.4E+0
8192 123 123 6.7E−1 3.0E−3 4.4E−7 6.4E+0

16384 133 134 1.4E+0 7.0E−3 4.0E−7 1.3E+1
32768 142 142 2.7E+0 1.4E−2 4.7E−7 2.5E+1
65536 150 149 5.4E+0 2.8E−2 9.4E−7 5.0E+1

131072 159 158 1.1E+1 5.7E−2 9.8E−7 1.0E+2

block. We discretized all proxy surfaces using a constant number of points, indepen-
dent of the matrix size N : for the Laplace equation, this constant depended only
on the compression precision ε, while for the Helmholtz equation, it depended also
on the wave frequency, chosen to be consistent with the Nyquist-Shannon sampling
theorem. Computations were performed over R instead of C, where possible. The
algorithm was implemented in Fortran, and all experiments were performed on a 2.66
GHz processor in double precision.

In many instances, we compare our results against those obtained using LA-
PACK/ATLAS [2, 46] and the FMM [9, 22, 23, 40]. All FMM timings were computed
using the open-source FMMLIB package [18], which is a fairly efficient implemen-
tation but does not include the plane-wave optimizations of [9, 23] or the diagonal
translation operators of [40].

6.1. Generalized fast multipole method. We first consider the use of recur-
sive skeletonization as a generalized FMM for the rapid computation of matrix-vector
products.

6.1.1. The Laplace equation. We considered two point distributions in the
plane: points on the unit circle and in the unit square, hereafter referred to as the
2D surface and volume cases, respectively. We assumed that the governing matrix
corresponds to the interaction of charges via the Green’s function (2.5). The surface
case is typical of layer-potential evaluation when using boundary integral equations.
Since a domain boundary in 2D can be described by a single parameter (such as
arclength), it is a 1D domain, so the expected complexities from §4 correspond to d =
1: O(N) work for both matrix compression and application. (See [17] for a detailed
discussion of the d = 1 case.) In the volume case, the dimension is d = 2, so the
expected complexities are O(N3/2) and O(N logN) for compression and application,
respectively.

For the 3D Laplace kernel (2.9), we considered surface and volume point geome-
tries on the unit sphere and within the unit cube, respectively. The corresponding
dimensions are d = 2 and d = 3. Thus, the expected complexities for the 3D surface
case are O(N3/2) and O(N logN) for compression and application, respectively, while
those for the 3D volume case are O(N2) and O(N4/3), respectively.

We present timing results for each case and compare with LAPACK/ATLAS
and the FMM for a range of N at ε = 10−9. Detailed data are provided in Tables
6.1–6.4 and plotted in Fig. 6.1. It is evident that our algorithm scales as predicted.
Its performance in 2D is particularly strong. Not only does our algorithm beat the
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Fig. 6.1. CPU times for applying the Laplace kernel in various cases using LAPACK/ATLAS
(LP), the FMM, and recursive skeletonization (RS) as a function of the matrix size N . For LP
and RS, the computation is split into two parts: precomputation (pc), for LP consisting of matrix
formation and for RS of matrix compression, and matrix-vector multiplication (mv). The precision
of the FMM and RS was set at ε = 10−9. Dotted lines indicate extrapolated data.

Table 6.2
Numerical results for applying the Laplace kernel in the 2D volume case at precision ε = 10−9;

notation as in Table 6.1.

N Kr Kc Tcm Tmv E M
1024 299 298 3.3E−1 1.0E−3 3.6E−10 2.9E+0
2048 403 405 8.9E−1 1.0E−3 3.7E−10 7.1E+0
4096 570 570 2.7E+0 5.0E−3 1.0E−09 1.8E+1
8192 795 793 6.8E+0 1.0E−2 8.8E−10 4.3E+1

16384 1092 1091 1.8E+1 2.3E−2 7.7E−10 1.0E+2
32768 1506 1505 4.4E+1 4.5E−2 1.0E−09 2.3E+2
65536 2099 2101 1.3E+2 1.1E−1 1.1E−09 5.3E+2

131072 2904 2903 3.4E+2 2.7E−1 1.1E−09 1.2E+3

O(N2) uncompressed matrix-vector product for modest N , it is faster even than the
O(N) FMM (at least after compression). In 3D, the same is true over the range of
N tested, although the increase in asymptotic complexity would eventually make the
scheme less competitive. In all cases studied, the compression time Tcm was larger
than the time to apply the FMM by one (2D surface) to two (all other cases) orders
of magnitude, while the compressed matrix-vector product time Tmv was consistently
smaller by the same amount. Thus, our algorithm also shows promise as a fast iterative
solver for problems requiring more than ∼ 10–100 iterations. Furthermore, we note
the effectiveness of compression: for N = 131072, the storage requirement for the
uncompressed matrix is 137 GB, whereas that for the compressed representations are
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Table 6.3
Numerical results for applying the Laplace kernel in the 3D surface case at precision ε = 10−9;

notation as in Table 6.1.

N Kr Kc Tcm Tmv E M
1024 967 967 5.2E−1 1.0E−3 1.0E−11 7.7E+0
2048 1531 1532 1.4E+0 4.0E−3 1.8E−10 2.2E+1
4096 2298 2295 6.1E+0 1.1E−2 1.4E−10 6.2E+1
8192 3438 3426 2.7E+1 2.9E−2 1.2E−10 1.7E+2

16384 4962 4950 8.7E+1 7.2E−2 3.0E−10 4.2E+2
32768 6974 6987 3.1E+2 1.7E−1 4.3E−10 9.9E+2
65536 9899 9925 9.2E+2 4.5E−1 7.7E−10 2.3E+3

Table 6.4
Numerical results for applying the Laplace kernel in the 3D volume case at precision ε = 10−9;

notation as in Table 6.1.

N Kr Kc Tcm Tmv E M
1024 1024 1024 5.1E−1 2.0E−3 9.3E−16 8.4E+0
2048 1969 1969 3.0E+0 6.0E−3 5.6E−12 3.2E+1
4096 3285 3287 9.7E+0 1.6E−2 6.8E−11 9.8E+1
8192 5360 5362 4.4E+1 4.8E−2 6.3E−11 3.0E+2

16384 8703 8707 2.9E+2 1.5E−1 5.7E−11 9.3E+2
32768 14015 14013 1.9E+3 5.5E−1 7.5E−11 2.9E+3

only 100 MB and 1.2 GB in the 2D surface and volume cases, respectively; at a lower
precision of ε = 10−3, these become just 40 and 180 MB. Finally, to provide some
intuition about the behavior of the algorithm as a function of precision, we report the
following timings for the 2D volume case with N = 131072: for ε = 10−3, Tcm = 41
s and Tmv = 0.09 s; for ε = 10−6, Tcm = 161 s and Tmv = 0.18 s; and for ε = 10−9,
Tcm = 339 s and Tmv = 0.27 s.

6.1.2. The Helmholtz equation. We next considered the 2D and 3D Helmholtz
kernels

G (x, y) =
ı

4
H

(1)
0 (k |x− y|)(6.1)

and

G (x, y) =
eık|x−y|

4π |x− y|
,(6.2)

respectively, where H
(1)
0 is the zeroth order Hankel function of the first kind and k

is the wavenumber. We used the same representative geometries as for the Laplace
equation. The size of each domain Ω in wavelengths was given by

ω =
k

2π
diam(Ω).

Timing results against LAPACK/ATLAS and the FMM at low frequency (ω = 10
in 2D and ω = 5 in 3D) with ε = 10−9 are shown in Fig. 6.2. In this regime, the
performance is very similar to that for the Laplace equation, as both kernels are
essentially non-oscillatory; detailed data are therefore omitted. However, as discussed
in [35], the compression efficiency deteriorates as ω increases, due to the growing
ranks of the matrix blocks. In the high-frequency regime, there is no asymptotic
gain in efficiency. Still, numerical results suggest that the algorithm remains viable
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Fig. 6.2. CPU times for applying the Helmholtz kernel in various cases at low frequency
(ω = 10 in 2D and ω = 5 in 3D) using LAPACK/ATLAS, the FMM, and recursive skeletonization
at precision ε = 10−9; notation as in Fig. 6.1.

up to ω ∼ 200 in 2D and ω ∼ 10 in 3D. In all cases, the CPU times and storage
requirements are larger than those for the Laplace equation by a factor of about two
since all computations are performed over C instead of R; in 2D, there is also the

additional expense of computing H
(1)
0 .

6.2. Recursive skeletonization as a direct solver. In this section, we study
the behavior of our algorithm as a fast direct solver. More specifically, we considered
the interior Dirichlet problem for the Laplace and Helmholtz equations in 2D and
3D, recast as a second-kind boundary integral equation using the double-layer repre-
sentation (2.8). Contour integrals in 2D were discretized using the trapezoidal rule,
while surface integrals in 3D were discretized using Gaussian quadrature on flat trian-
gles. In each case, we took as boundary data the field generated by an exterior point
source; the error was assessed by comparing the field evaluated using the numerical
solution via (2.8) against the exact field due to that source at an interior location. As
a benchmark, we also solved each system directly using LAPACK/ATLAS, as well as
iteratively using GMRES with matrix-vector products accelerated by the FMM.

6.2.1. The Laplace equation. For the Laplace equation (2.7), the Green’s
function G in (2.10) is given by (2.5) in 2D and (2.9) in 3D. As a model geometry,
we considered an ellipse with aspect ratio α = 2 (semi-major and -minor axes a = 2
and b = 1, respectively) in 2D and the unit sphere in 3D; these boundaries have
dimensions d = 1 and d = 2, respectively. Timing results are shown in Fig. 6.3, with
detailed data given in Tables 6.5 and 6.6; the precision was set to ε = 10−9 in 2D and
ε = 10−6 in 3D.
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Fig. 6.3. CPU times for solving Laplace’s equation in various cases using LAPACK/ATLAS
(LP), FMM/GMRES (FMM), and recursive skeletonization (RS) as a function of the system size
N . For LP and RS, the computation is split into two parts: precomputation (pc), for LP consisting
of matrix formation and factorization, and for RS of matrix compression and factorization; and
system solution (sv), consisting of matrix inverse application. The precision of the FMM and RS
was set at ε = 10−9 in 2D and ε = 10−6 in 3D. Dotted lines indicate extrapolated data.

Table 6.5
Numerical results for solving Laplace’s equation in 2D at precision ε = 10−9: N , uncompressed

matrix dimension; Kr, row skeleton dimension; Kc, column skeleton dimension; Tcm, matrix com-
pression time (s); Tlu, sparse matrix factorization time (s); Tsv, inverse application time (s); E,
relative error; M , required storage for compressed matrix inverse (MB).

N Kr Kc Tcm Tlu Tsv E M
1024 30 30 3.4E−2 2.5E−2 1.0E−3 9.0E−11 1.6E+0
2048 29 30 7.0E−2 5.1E−2 2.0E−3 9.0E−12 3.3E+0
4096 30 30 1.4E−1 9.8E−2 2.0E−3 8.3E−11 6.8E+0
8192 30 31 3.0E−1 2.1E−1 4.0E−3 1.6E−10 1.4E+1

16384 31 31 5.5E−1 4.5E−1 9.0E−3 5.5E−10 2.8E+1
32768 30 30 1.1E+0 8.5E−1 1.9E−2 4.9E−12 5.6E+1
65536 30 30 2.3E+0 1.8E+0 3.8E−2 1.1E−11 1.1E+2

131072 29 29 4.6E+0 3.7E+0 7.5E−2 8.5E−11 2.2E+2

In 2D, the solver has linear complexity and is exceptionally fast, handily beat-
ing the O(N3) uncompressed direct solver, but also coming very close to the O(N)
FMM/GMRES iterative solver. At N = 131072, for example, the total solution
time for the recursive skeletonization algorithm was TRS = 8.5 s, while that for
FMM/GMRES was TFMM = 6.9 s using nFMM = 7 iterations. It is worth em-
phasizing, however, that our solver is direct and possesses obvious advantages over
FMM/GMRES, as described in §1; in particular, the algorithm is relatively insensi-
tive to geometric ill-conditioning. Indeed, the direct solver edged out FMM/GMRES
even at modest aspect ratios (for N = 8192 at ε = 10−12 with α = 8: TRS = 0.76
s, TFMM = 0.98 s, nFMM = 15); for larger α, the effect was even more pronounced
(α = 512: TRS = 2.5 s, TFMM = 3.9 s, nFMM = 44). Furthermore, the compressed
inverse representation allows subsequent solves to be performed extremely rapidly; for
instance, at N = 131072, the solve time was just Tsv = 0.07 s, i.e., TFMM/Tsv ∼ 100.
Thus, our algorithm is especially efficient in regimes where Tsv dominates (see, e.g.,
[34]). Finally, we remark that although direct methods are traditionally very memory-
intensive, our algorithm appears quite manageable in this regard: at N = 131072, the
storage required for the compressed inverse was only 106 MB for ε = 10−3, 172 MB
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Table 6.6
Numerical results for solving Laplace’s equation in 3D at precision ε = 10−6; notation as in

Table 6.5.

N Kr Kc Tcm Tlu Tsv E M
720 628 669 1.3E+0 1.1E−1 1.0E−3 9.8E−5 4.6E+0

1280 890 913 4.5E+0 4.0E−1 3.0E−3 5.5E−5 1.1E+1
2880 1393 1400 2.1E+1 2.0E+0 1.2E−2 2.4E−5 5.5E+1
5120 1886 1850 5.5E+1 5.4E+0 2.7E−2 1.3E−5 1.3E+2

11520 2750 2754 1.6E+2 1.7E+1 7.2E−2 6.2E−6 3.5E+2
20480 3592 3551 3.7E+2 4.1E+1 1.5E−1 3.3E−6 6.9E+2

for ε = 10−6, and 222 MB for ε = 10−9.

In 3D, our solver has complexity O(N3/2). Hence, asymptotics dictate that it
must eventually lose. However, our results demonstrate that even up to N = 20480,
the solver remains surprisingly competitive. For example, at N = 20480, TRS = 409 s,
while TFMM = 131 s with nFMM = 3; at ε = 10−9, the difference is almost negligible:
TRS = 850 s, TFMM = 839 s, nFMM = 5. Thus, our algorithm remains a viable
alternative for medium-scale problems. It is important to note that the solve time
advantage is not lost even for large N , since the cost of each solve is only O(N logN).
In fact, the advantage is, remarkably, even more striking than in 2D: at N = 20480,
TFMM/Tsv ∼ 1000; for ε = 10−9, TFMM/Tsv ∼ 2500.

6.2.2. The Helmholtz equation. We then considered the Helmholtz equation(
∆ + k2

)
u = 0 in Ω, u = f on ∂Ω,

recast as a boundary integral equation (2.10), with Green’s function (6.1) in 2D
and (6.2) in 3D. This representation does not work for all frequencies, encountering
spurious discrete resonances for k beyond a critical value. We ignore that (well-
understood) issue here and assume that the integral equation we obtain is invertible.
The method itself does not falter in such cases, as discussed in [35].

We used the same geometries and precisions as for the Laplace equation. In 2D,
the double-layer kernel is weakly singular, so we modified the trapezoidal rule with
tenth-order endpoint corrections [30]. The frequency was set to ω = 10 in 2D and
ω = 3.18 in 3D.

Timing results are shown in Fig. 6.4. The data are very similar to that for
the Laplace equation, but with the direct solver actually beating FMM/GMRES in
2D. This is because the number of iterations required for FMM/GMRES scales as
nFMM = O(ω). Interestingly, even at moderately high frequencies, where we would
expect the direct solver to break down as discussed in §6.1, the performance drop is
more than compensated for by the increase in the number nFMM of iterations. In
short, we find that recursive skeletonization is faster than FMM/GMRES at low to
moderate frequencies, provided that the memory requirement is not excessive.

The story is much the same in 3D and the compressed solve time is again very
fast: at N = 20480, TFMM/Tsv ∼ 2000.

6.3. Molecular electrostatics. An important application area for our solver is
molecular electrostatics. A simplified model for this involves consideration of a molec-
ular surface Σ, dividing R3 into Ω1 and Ω2, denoting the molecule and the solvent,
respectively. We also suppose that the molecule has interior charges of strengths qi at
locations xi ∈ Ω1 for i = 1, . . . , n. The electrostatic potential ϕ (ignoring salt effects
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Fig. 6.4. CPU times for solving the Helmholtz equation in various cases at low frequency
(ω = 10 in 2D and ω = 3.18 in 3D) using LAPACK/ATLAS, FMM/GMRES, and recursive skele-
tonization; notation as in Fig. 6.3. The precision was set to ε = 10−9 in 2D and ε = 10−6 in
3D.

in the solvent) then satisfies the Poisson equation

−∇ · [ε (x)∇ϕ (x)] =

n∑
i=1

qiδ (x− xi) ,

where

ε (x) =

{
ε1 if x ∈ Ω1,
ε2 if x ∈ Ω2

is a piecewise constant dielectric. We decompose the solution as ϕ = ϕs + ϕp, where
ϕs is the potential due to the sources:

ϕs (x) =
1

ε1

n∑
i=1

qiG (x, xi) ,(6.3)

with G given by (2.9), and ϕp is a piecewise harmonic potential, satisfying the jump
conditions

[ϕp] = 0,

[
ε
∂ϕp
∂ν

]
= −

[
ε
∂ϕs
∂ν

]
on Σ, where ν is the unit outer normal. We can write ϕp, called the polarization
response, as a single-layer potential [24]

ϕp (x) =

∫
Σ

G (x, y)σ (y) dy,(6.4)

which yields the boundary integral equation

1

2
σ (x) + λ

∫
Σ

∂G

∂νx
(x, y)σ (y) dy = −λ∂ϕs

∂ν
(x) ,

where λ = (ε1− ε2)/(ε1 + ε2), in terms of the polarization charge σ. Once σ has been
computed, the potential at any point can be evaluated using (6.3) and (6.4).
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Fig. 6.5. Surface potential of DNA (PDB ID: 1BNA) in units of the elementary charge, com-
puted using recursive skeletonization to precision ε = 10−3. The molecular surface was discretized
using N = 19752 triangles.

We generated a molecular surface for a short segment of DNA [15, PDB ID:
1BNA] consisting of N = 19752 triangles using MSMS [42]. Strengths were assigned
to each of n = 486 heavy atoms using Amber partial charges [5] through PDB2PQR
[14]. The system was solved with ε1 = 20 and ε2 = 80 at precision ε = 10−3; the
resulting potential ϕ on Σ is shown in Fig. 6.5. The net solution time was TRS = 592
s, with an inverse application time of Tsv = 0.08 s, to be compared with TFMM = 27
s using FMM/GMRES. Thus, when sampling the electrostatic field for many charge
configurations {qi}, as is common in computational chemistry (e.g., [3]), our solver
can provide a speedup provided that the number of such configurations is greater
than ∼ 25. We remark that the evaluation of ϕ at fixed points, e.g., on Σ, via (6.3)
and (6.4) can also be accelerated using our algorithm in its capacity as a generalized
FMM; the computation time for this would be similar to Tsv.

6.4. Multiple scattering. As a final example, we show how direct solvers can
be combined with FMM-based iterative methods to great effect in the context of
a multiple scattering problem. For this, let Ωi, for i = 1, . . . , p, be a collection of
acoustic scatterers in 2D with boundaries Σi. Then, using the language of acoustics,
the pressure field satisfies

(
∆ + k2

)
u = 0 in R2 \

p⋃
i=1

Ωi.(6.5)
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Assuming that the obstacles are sound-hard, we must compute the exterior solution
that satisfies the Neumann boundary condition

∂u

∂ν
= 0 on

p⋃
i=1

Σi.

If u = ui + us, where ui is an incoming field satisfying (6.5), then the scattered field
us also satisfies (6.5) with boundary condition

∂us
∂ν

= −∂ui
∂ν

on

p⋃
i=1

Σi.

We write the scattered field as us =
∑p
i=1 us,i, where

us,i (x) =

∫
Σi

G (x, y)σi (y) dy,

where G is the single-layer kernel (6.1). Imposing the boundary condition yields the
second-kind integral equation

−1

2
σi +

p∑
j=1

Kijσj = − ∂ui
∂ν

∣∣∣∣
Σi

on Σi, i = 1, . . . , p,

where

Kijσj (x) =

∫
Σj

∂G

∂νx
(x, y)σj (y) dy for x ∈ Σi.

In operator notation, the linear system therefore has the form

p∑
i=1

Aijσj = − ∂ui
∂ν

∣∣∣∣
Σi

, Aij =

{
− 1

2I +Kii if i = j,
Kij if i 6= j.

We solve this system using FMM/GMRES with the block diagonal preconditioner

P−1 =

 A−1
11

. . .

A−1
pp

 ,
where each A−1

ii is computed using recursive skeletonization; observe that A−1
ii is

precisely the solution operator for scatterer Ωi in isolation. The question is whether
this preconditioner will significantly reduce the iteration count required, which is
typically quite high for problems of appreciable size.

As a test, we embedded two identical scatterers, each described in polar coor-
dinates by the radial function r = [2 + cos(3θ)]/6, where θ is the polar angle; each
scatterer is smooth, though somewhat complicated, and was taken to be ten wave-
lengths in size. We assumed an incoming field given by the plane wave ui = eıkx2 ,
where x = (x1, x2), and considered the scattering problem at various horizontal sepa-
ration distances δ between the centers of the scatterers. Each configuration was solved
both with and without the preconditioner P−1 to precision ε = 10−6; each scatterer
was discretized using a corrected trapezoidal rule [30] with N = 1024 points.
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Fig. 6.6. Instantaneous intensity [<(u)]2 of the pressure field in response to an incoming
vertical plane wave for various scattering geometries characterized by the separation distance δ/λ
in wavelengths between the centers of two identical scatterers.

Table 6.7
Numerical results for the multiple scattering example, consisting of six configurations with var-

ious separation distances δ/λ, relative to the wavelength, between the centers of two identical scat-
terers, solved to precision ε = 10−6: TFMM, time for FMM/GMRES solve (s); TRS, time for
preconditioned FMM/GMRES solve (s); nFMM, number of iterations required for FMM/GMRES;
nRS, number of iterations required for preconditioned FMM/GMRES; E, relative error; Tcm, matrix
compression time for scatterer (s); Tlu, sparse matrix factorization time for scatterer (s).

δ/λ TFMM TRS nFMM nRS E
30.0 7.9E+1 8.9E−1 697 8 1.3E−8
20.0 7.7E+1 1.1E+0 694 10 5.8E−9
15.0 8.0E+1 1.2E+0 695 11 6.9E−9
12.5 7.9E+1 1.3E+0 695 12 7.8E−9
11.0 7.9E+1 1.4E+0 704 14 8.7E−9
10.5 8.0E+1 1.5E+0 706 14 1.3E−8
Tcm 6.6E−1
Tlu 9.3E−2

total 4.7E+2 8.1E+0

The intensities of the resulting pressure fields are shown in Fig. 6.6, with numerical
data given in Table 6.7. It is clear that the preconditioner is highly effective: following
a precomputation time of 0.76 s to construct P−1, which is amortized over all solves,
the number of iterations required was decreased from nFMM ∼ 700 to just nRS ∼ 10
for each case. As expected, more iterations were necessary for smaller δ, though the
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difference was not too dramatic. The ratio of the total solution time required for all
solves was ∼ 60 for the unpreconditioned versus the preconditioned method.

7. Generalizations and conclusions. We have presented a multilevel matrix
compression algorithm and demonstrated its efficiency at accelerating matrix-vector
multiplication and matrix inversion in a variety of contexts. The matrix structure
required is fairly general and relies only on the assumption that the matrix have low-
rank off-diagonal blocks. As a fast direct solver for the boundary integral equations of
potential theory, we found our algorithm to be competitive with fast iterative methods
based on FMM/GMRES in both 2D and 3D, provided that the integral equation kernel
is not too oscillatory, and that the system size is not too large in 3D. In such cases,
the total solution times for both methods were very comparable. Our solver has clear
advantages, however, for problems with ill-conditioned matrices (in which case the
number of iterations required by FMM/GMRES can increase dramatically), or those
involving multiple right-hand sides (in which case the cost of matrix compression and
factorization can be amortized). The latter category includes the use of our solver
as a preconditioner for iterative methods, which we expect to be quite promising,
particularly for large-scale 3D problems with complex geometries.

A principal limitation of the approach described here is the growth in the cost
of factorization in 3D or higher, which prohibits the scheme from achieving optimal
O(N) or nearly optimal O(N logN) complexity. It is, however, straightforward to
implement and quite effective. All of the hierarchical compression-based approaches
(HSS matrices [6, 7, 49], H-matrices [26, 27, 28] and skeletonization [17, 21, 35]) are
capable of overcoming this obstacle. The development of simple and effective schemes
that curtail this growth is an active area of research, and we expect that O(N logN)
direct solvers with small pre-factors in higher dimensions will be constructed shortly,
at least for non-oscillatory problems. It is clear that all of these techniques pro-
vide improved solution times for high-frequency volume integral equations, due to
the compression afforded by Green’s theorem in moving data from the volume to the
boundary. More precisely, the cost of solving high-frequency volume wave scatter-
ing problems in 2D are O(N3/2) and O(N logN) for precomputation and solution,
respectively. For related work, see [8, 47].

Finally, although all numerical results have presently been reported for a single
processor, the algorithm is naturally parallelizable: many computations are organized
in a block sweep structure, where each block can be processed independently. This is
clearly true of the recursive skeletonization phase using proxy surfaces (with a possible
loss of O(logN) in performance since there are O(logN) levels in the hierarchy).
As for the solver phase, arguments can be made in support of both the original
“hand-rolled” Gaussian elimination approach and our framework that relies on sparse
embedding. We expect that, by making use of UMFPACK and other state-of-the-art
parallel sparse solvers (e.g., SuperLU [31], MUMPS [1], Pardiso [43], WSMP [25]),
our overall strategy will help simplify the implementation of skeletonization-based
schemes on high-performance computing platforms as well.
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