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Abstract

The gain-loss ratio is known to enjoy very good properties from a normative

point of view. As a confirmation, we show that the best market gain-loss ratio in

the presence of a random endowment is an acceptability index and we provide its

dual representation for general probability spaces.

However, the gain-loss ratio was designed for finite Ω, and works best in that

case. For general Ω and in most continuous time models, the best gain-loss is either

infinite or fails to be attained. In addition, it displays an odd behaviour due to

the scale invariance property, which does not seem desirable in this context. Such

weaknesses definitely prove that the (best) gain-loss is a poor performance measure.
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1 Introduction

The gain-loss ratio was introduced by Bernardo and Ledoit [3] to provide an alterna-

tive to the classic Sharpe Ratio (SR) in portfolio performance evaluation. Cochrane and

Saa-Requejo [11] call portfolios with high SR ’good deals’. These opportunities should,

informally speaking, be regarded as quasi-arbitrages and therefore should be ruled out.

Ruling out good deals, or equivalently restricting SR, produces in turn restrictions on
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pricing kernels. Restricted pricing kernels are desirable since they provide narrower lower

and upper price intervals for contingent claims in comparison to arbitrage-free price in-

tervals. This criterion is based on the assumption that a high SR is attractive, and a low

SR is not. The SR criterion works well in a Gaussian returns context, but in general it

does not since it is incompatible with no-arbitrage. In fact a positive gain with finite first

moment but infinite variance has zero SR, but it is very attractive as it is an arbitrage.

The Sharpe Ratio (SR) has another drawback: it is not monotone, and thus violates a

basic axiom in theory of choice. To remedy the afore-mentioned shortcomings of the SR,

Bernardo and Ledoit proposed as performance measure the gain-loss ratio:

α(X) =
E[X+]

E[X−]

where the expectation is taken under the historical probability measure P . The gain-loss

ratio α is well defined on non-null payoffs X as soon as X+ or X− are integrable, it has an

intuitive significance and is easy to compute. It also enjoys many properties: monotonicity

across Xs; scale invariance, that is α(cX) = α(X) for all c > 0; law invariance, as two

payoffs with the same distribution have the same α; and a classic continuity property

(Fatou property). Restricted to portfolios with positive expectation, it becomes a quasi

concave map, consistent with second order stochastic dominance, as shown by Cherny

and Madan in [10], and is thus an acceptability index in their terminology.

Let α∗ denote the best gain-loss ratio from the market, i.e. from the set X of non-

trivial, discounted, portfolio gains with finite first moment:

α∗ := sup
X∈X ,X 6=0

α(X).

In case P is already a pricing kernel, α∗ = 1 as E[X ] = E[X+ − X−] = 0 for all gains.

This gives a flavor of the main result by Bernardo and Ledoit, which is the equivalence

between

i) α∗ < +∞,

ii) existence of pricing kernels with state price density Z satisfying c ≤ Z ≤ C for some

constants C, c > 0.

That is, restrictions on the best gain-loss ratio are equivalent to the existence of special,

restricted pricing kernels bounded and bounded away from 0. Bernardo and Ledoit also

prove a duality formula for α∗,

α∗ = min
Z

ess supZ

ess inf Z

where Z varies over all the pricing kernels as in item ii) above. Though stated for a general

probability space and in a biperiodal market model, Bernardo and Ledoit’s derivation is
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correct only if Ω is finite. In fact, what they actually show is

α∗ = max
X∈X ,X 6=0

α(X) = min
Z

ess supZ

ess inf Z
,

i.e. that the best ratio is always attained. This is true only if Ω is finite.

Against this background, the present paper develops an analysis of the gain-loss ratio

for general probability spaces. The rest of the paper is organized as follows. In Section 2

we show the above equivalence i) ⇐⇒ ii) in the presence of a continuous time market for

general Ω. The duality technique employed here extends also Pinar’s treatment [16, 17].

The assumptions made on the market model are quite general, as we do not require the

underlyings process S to be neither a continuous diffusion, nor locally bounded.

The duality formula for α∗ is correctly reformulated as sup · · · = min · · · in Theorem

2.6, and a simple counterexample where the supremum α∗, though finite, is not attained

is provided in the Examples Section 2.4.

In Section 2.3 pros and cons of the best gain-loss ratio are discussed. While in discrete

time models there is a full characterization of models with finite best gain-loss ratio, in

continuous time the situation is hopeless. In most commonly used models, α∗ = +∞

as any pricing kernel is unbounded as shown in details for the Black Scholes model in

Example 2.9. Finally, in Section 3 we analyze the best gain-loss ratio α∗(B) in the

presence of a random endowment B. In Section 3.1 α∗(B) is shown to be an acceptability

index on integrable payoffs, according to the definition given by Biagini and Bion-Nadal

[5]. There we briefly highlight the difference between the notions of acceptability index as

given in [10] and [5], and we motivate the reason why the choice made by [5] is preferable

here. Then, in Section 3.2 we prove an extension of Theorem 2.6 in the presence of B and

we provide a dual representation for α∗(B). Section 3.3 concludes by pointing out other

gain-loss drawbacks when an endowment is present, which prove that the (best) gain-loss

is a poor performance measure.

2 The market best gain-loss α∗ and its dual represen-

tation

2.1 The market model

Let (Ω, (Ft)t∈[0,T ], P ) be a continuous time stochastic basis satisfying the usual assump-

tions. S is an R
d-valued semimartingale on this basis and models the (discounted) time

evolution of d underlyings up to the finite horizon T . A strategy ξ is predictable, S-

integrable process and the stochastic integral ξ · S is the corresponding gain process.

Now, some integrability condition must be imposed on S in order to ensure the presence

of strategies ξ with well defined gain-loss ratio. In some cases in fact it may happen that
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every non-null terminal gain K = ξ ·ST verifies E[K+] = E[K−] = +∞, see the Examples

Section for a simple one period model of such an extreme situation.

The following is thus the integrability assumption on S which holds throughout the

paper.

Assumption 2.1 Let S∗
T = supt≤T |St| denote the maximal functional at T . Then S∗

T ∈

L1(P ).

Note that S∗
T coincides with the running maximum at the terminal date T if S is

non-negative. This assumption is verified in many models used in practice:

• if time is discrete, with finite horizon, or equivalently: S is a pure jump process

with jumps occurring only at fixed dates t1, . . . , tn, the assumption is equivalent to

Sti ∈ L1(P ) for all ti;

• if S is a Lévy process, the assumption is equivalent to the integrability of ST only

(or of St at any fixed 0 < t ≤ T ). This is a particular case of a more general result

on moments of Lévy process, see reference [22, Section 5.25] (specifically Theorem

5.25.18).

Therefore, at least in normal market conditions Assumption 2.1 is quite reasonable.

From a strict mathematical perspective it ensures that the gains processes are true (and

not local) martingales under bounded pricing kernels. The admissible strategies we con-

sider are the linear space Ξ = {ξ | ξ is simple, predictable and bounded}, i.e. those ξ

which may be written as
∑n−1

i=1 Hi1]τi,τi+1] for some stopping times 0 ≤ τ1 < . . . < τn ≤ T

with Hi bounded and Fτi-measurable. These strategies represent the set of buy-and-hold

strategies on S over finitely many trading dates. The set of terminal admissible gains,

which are replicable at zero cost via a simple strategy, is thus the linear space

K = {K | K = ξ · ST for some ξ ∈ Ξ}.

Thanks to Assumption 2.1, K ⊆ L1(P ). Note that ξ = 1A1]s,t] and its opposite −ξ are in

Ξ for all A ∈ Fs and for all 0 ≤ s < t ≤ T , so that K = 1A(St − Ss) and −K are in K.

The best gain-loss in the above market is then

α∗ := sup
K∈K,K 6=0

α(K).

The best gain-loss α∗ is always greater or equal to 1, and it is equal to 1 if and only if P is

already a martingale measure for S. These facts can be easily proved, using the linearity

of K and the above observation: ±1A1]s,t] ∈ Ξ.
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2.2 No λ gain-loss, its dual characterization and the duality for-

mula for α∗

The market best gain-loss α∗ is the value of a non-standard optimization problem. In fact,

the gain-loss ratio α is not concave, and not even quasi concave on L1(P ). However, when

restricted to variables with non-negative expectation it becomes quasi-concave, as shown

in detail by [10]. Since the optimization can be restricted to gains with non-negative

expectations without loss of generality, in the end α∗ can be seen as the optimal value of

a quasi concave problem.

To characterize α∗ and to link it to a no-arbitrage type result, we rely on a parametric

family of auxiliary utility maximization problems with piecewise linear utility Uλ:

Uλ(x) = x+ − λx−, λ ≥ 1.

The convex conjugate of Uλ, Vλ(y) = supx(Uλ(x) − xy) is the functional indicator of the

interval [1, λ]:

Vλ(y) =

{

0 if 1 ≤ y ≤ λ

+∞ otherwise.

By mere definition of the conjugate, the Fenchel inequality holds:

Uλ(x)− xy ≤ Vλ(y) for all x, y ∈ R. (1)

Definition 2.2 Fix λ ∈ [1,+∞). Then the set of probabilities Qλ which have finite Vλ

entropy is:

Qλ := {Q probab., Q ≪ P | ∃y > 0, E[Vλ(y
dQ

dP
)] < +∞}.

Remark 2.3. The set Qλ is not empty, as Q1 = {P} and P ∈ Qλ for all λ ≥ 1. It is also

easy to check thatQλ is convex and the family (Qλ)λ≥1 is non-decreasing in the parameter.

With the usual convention c
0
= +∞ for c > 0, Qλ = {Q probab., Q ≪ P |

ess sup dQ

dP

ess inf dQ

dP

≤ λ}.

The next definition is understood as follows. The market is gain-loss free at a certain

level λ > 1 if not only there is no gain with α ≥ λ, but also λ cannot be approximated

arbitrarily well with gains in K.

Definition 2.4 For a given λ ∈ (1,+∞), the market is λ gain-loss free if α∗ < λ.

Theorem 2.6 below, first shown by Bernardo and Ledoit in a two periods setup, states

the equivalence between absence of λ gain-losses and existence of a martingale measure

whose density satisfies precise bounds.

Some notation first. Let C = {X ∈ L1 | X ≤ K for some K ∈ K} denote the set

(convex cone) of claims which are super replicable at zero cost, and consider its polar set

C0 = {Z ∈ L∞ | E[ZX ] ≤ 0 for all X ∈ C}. As C ⊇ −L1
+, C

0 ⊆ L∞
+ . C0 is a convex cone

and thus not empty as 0 ∈ C0.

5



However, C0 may be trivially {0}, i.e. its basis C0
1 = {Z ∈ C0 | E[Z] = 1} may

be empty. This may happen in common models such as the Black Scholes model, see

Remark 2.3 and Example 2.9 for a discussion and more details. The basis C0
1 however is

important for gain-loss analysis. The following Lemma in fact proves that C0
1 is the set of

bounded martingale probability densities, which in turn appear in the characterization of

the market best gain-loss in Theorem 2.6.

Lemma 2.5 Z ∈ C0
1 if and only if it is a bounded martingale density.

Proof. If Z ∈ C0
1 , it is bounded non-negative and integrates to 1, so it is a probability

density of a Q ≪ P . Moreover, ±1A(St − Ss) ∈ C, for all A ∈ Fs, s < t, so that

E[Z1A(St − Ss)] = 0, which precisely means EQ[St | Fs] = Ss. Conversely, if Q is a

martingale probability for S, with bounded density Z, then

S∗
T ∈ L1(P ) ⊆ L1(Q).

As S∗
T is Q-integrable and ξ is bounded, the integral ξ ·S has maximal functional (ξ ·S)∗T ∈

L1(Q), and is thus a martingale of class H1(Q), see [18, Chapter IV, Sect 4]). Now, if

K ∈ C by definition it can be super replicated at zero cost: K ≤ ξ ·ST for some ξ, whence

E[ZK] = EQ[K] ≤ EQ[ξ · ST ] = 0.

The above inequality implies Z ∈ C0.

Theorem 2.6 The following conditions are equivalent:

a) the market is λ gain-loss free,

b) there exists an (equivalent) martingale probability Q such that

ess sup dQ
dP

ess inf dQ
dP

< λ. (2)

In case any of the two conditions above holds, the market best gain-loss α∗ admits a dual

representation as

α∗ = min
Q∈M∞

ess sup dQ
dP

ess inf dQ
dP

(3)

in which M∞ is the set of equivalent martingale probabilities Q with densities Z ∈ C0
1

which are (bounded and) bounded away from 0, i.e. {Z ∈ C0
1 | Z > c for some c > 0}.

The equivalence will be proved by duality methods via the auxiliary utility maximiza-

tion problem

uµ := sup
K∈K

E[Uµ(K)].
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The reason is that uµ < +∞ is equivalent to α∗ ≤ µ. In fact, the functional E[Uµ(K)] =

E[K+ − µK−] is positively homogeneous so that

uµ < +∞ ⇔ uµ = 0,

and the latter condition in turn is equivalent to α∗ ≤ µ because 0 ∈ K.

Before starting the proof, recall also that the Fenchel pointwise inequality (1) gives,

for any random variable Y

Uµ(K)−KY ≤ Vµ(Y ).

Proof of Theorem 2.6. b) ⇒ a) If there exists a Q with the stated properties, its density

Z belongs to C0
1 by Lemma 2.5. Set Y = Z

ess inf Z
∈ C0 . As 1 ≤ Y ≤ ess supZ

ess inf Z
:= µ < λ,

Vµ(Y ) = 0 and thus for all K the Fenchel inequality simply reads as Uµ(K) −KY ≤ 0.

Taking expectations, E[Uµ(K)] ≤ 0 for all K ∈ K, which is in turn equivalent to uµ = 0

and to α∗ ≤ µ < λ.

a) ⇒ b) Set µ = α∗. Then uµ = 0. The existence of a Q is now a standard duality

instance. Note that Uµ is monotone, so uµ = supK∈C E[Uµ(K)]. Also, the monotone

concave functional E[Uµ(·)] is finite and thus continuous on L1 by the Extended Namioka

Theorem (see [6], [15]). Therefore the Fenchel Duality theorem applies (see e.g. [8, The-

orem I.11 ] or [4] for a survey of duality techniques in the utility maximization problem)

and gives the formula

uµ = min
Y ∈C0

E[Vµ(Y )].

In particular the infimum in the dual is attained by a Y ∗ ∈ C0. Therefore 1 ≤ Y ∗ ≤ µ =

α∗ < λ and its scaling Z∗ = Y ∗/E[Y ∗] is a martingale density with the property required

in (2).

Suppose now any of the two conditions above holds true. Then, the proof of the arrow

b) ⇒ a) actually shows

α∗ = sup
K∈K,K 6=0

E[K+]

E[K−]
≤ inf

Q∈M∞

ess supZ

ess inf Z
, (4)

and the proof of the arrow a) ⇒ b) shows that the infimum is attained by Z∗ and there

is no duality gap.

The next Corollary is essentially a slight rephrasing of the Theorem just proved. It

gives an alternative expression for the dual representation of α∗, which will be generalized

in Corollary 3.5, Section 3.

Corollary 2.7 Let λ ∈ [1,+∞) and let Qλ ∩ M be the (convex) set of martingale

measures with finite Vλ-entropy. The conditions: α∗ < +∞ and Qλ ∩ M 6= ∅ for some

λ ≥ 1 are equivalent; and in case α∗ is finite, it admits the representation:

α∗ = min{λ ≥ 1 | Qλ ∩M 6= ∅}
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In particular, α∗ = 1 iff P is already a martingale measure.

Proof. Note that M∞ = ∪λ≥1Qλ ∩ M and (Qλ ∩ M)λ≥1 is a parametric family non-

decreasing in λ with Q1 ∩M = {P} ∩M either empty or equal to {P}. The rest of the

proof is then a straightforward consequence of (the proof of) Theorem 2.6.

2.3 Pros and cons of gain-loss ratio

The requirement of gain-loss free market can thus be seen as a result à-la Fundamental

Theorem of Asset Pricing also in general probability spaces. A comprehensive survey of

No-Arbitrage concepts and results is the reference book by Delbaen and Schachermayer

[12]. Compared to those theorems, the above proof looks surprisingly easy. Of course,

there is a (twofold) reason. First, there is an integrability condition on S; secondly, and

most importantly, the assumption of λ gain-loss free market is much stronger than absence

of arbitrage (or absence of free lunch with vanishing risk).

The stronger requirement of absence of λ gain-loss arbitrage allows a straightforward

reformulation in terms of a standard utility maximization problem. This reformulation

as such is not possible for the general FTAP case. The reader is however referred to [20]

for a proof of the FTAP in discrete time based on a technique which relies in part on the

ideas of utility maximization.

In discrete time trading there is a full characterization of the models which have

finite best gain-loss ratio. On one side, the Dalang-Morton-Willinger Theorem ensures

that under No Arbitrage condition there always exists a bounded pricing kernel. Such a

kernel is not necessarily bounded away from 0. On the other side, the characterization of

arbitrage free markets which admit pricing kernels satisfying prescribed lower bounds is

provided by [21].

In continuous time there is no such a characterization, and α∗ is very likely to be infinite

in common models, see Example 2.9 for an illustration in the Black-Scholes model. And

even if it is finite, the supremum may not be attained. This is not due to our specific

assumptions, i.e. restriction to simple strategies in Ξ. In general the market best gain-loss

is intrinsically not attained, due to the nature of the functional considered. As it is scale

invariant, maximizing sequences can be selected without loss of generality of unitary L1-

norm. But the unit sphere in L1 is not (weakly) compact, unless L1 is finite dimensional

or, equivalently, unless Ω is finite. So, when Ω is infinite maximizing sequences may fail

to converge, as shown in Example 2.10 in a one period market.

Of course, an enlargement of strategies would certainly help in capturing optimizers

in some specific model. But given the intrinsic problems of gain-loss optimization, in the

end we choose to work with simple, bounded strategies, as they have a clear financial

meaning and allow for a plain mathematical treatment.
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2.4 Examples

Example 2.8. A model where no gain has well-defined gain-loss ratio. When Assumption

2.1 does not hold, gain-loss ratio criterion may lose significance. Suppose S consists of

only of one jump which occurs at time T . So, St = 0 up to time T−, while ST has the

distribution of the jump size. If the filtration is the natural one, then a strategy is simply

a real constant ξ = c and terminal wealths K are of the form K = cST . Suppose the jump

has a symmetric distribution with infinite first moment. Although this is an arbitrage

free model, if c 6= 0 both E[K+] and E[K−] are infinite.

Example 2.9. Gain-loss ratio is infinite in a Black-Scholes world. In the Black-Scholes

market model, the density of the unique pricing kernel is

Z = (ZT =) exp(−πWT −
π2T

2
)

in which WT stands for the Brownian motion at terminal date T and π = µ−r
σ

is the

market price of risk. This density is both unbounded and not bounded away from 0, so

C0 is trivial and its basis empty. Therefore, though there is no arbitrage when µ 6= r the

Black Scholes market is not gain-loss free, for any level λ: α∗ = +∞.

Not surprisingly, the idea behind the construction of explicit arbitrarily large gain-loss

ratios is playing with sets where the density Z is either very small or very large. The

former sets have a low cost if compared to the physical probability of happening, while

the latter in turn happen with small probability but have a (comparatively) high cost. We

give examples of both. Without loss of generality, suppose r = 0 and fix 1 > ǫ > 0. Let

Aǫ := {Z < ǫ}, pǫ its probability and Xǫ = 1Aǫ
, while Bǫ := {Z > 1

ǫ
}, qǫ its probability

and Yǫ = 1Bǫ
. Some calculations show that Xǫ and Yǫ are cash-or-nothing digital options

on ST = S0e
(µ− 1

2
σ2)T+σWT , either of call type with very large strike or of put type with

very small strike when ǫ goes to zero.

1. Let cǫ = E[ZXǫ] be the cost of Xǫ, which is much smaller than pǫ as cǫ < ǫpǫ < 1.

Since the market is complete Kǫ := Xǫ − cǫ is a gain. Its gain-loss ratio is then

E[K+
ǫ ]

E[K−
ǫ ]

=
(1− cǫ)pǫ
cǫ(1− pǫ)

>
1− cǫ

ǫ
>

1

ǫ
− pǫ

which tends to +∞ as ǫ ↓ 0.

2. Let bǫ = E[ZYǫ] be the cost of Yǫ. Then, 1 > bǫ >
qǫ
ǫ
. As before, Cǫ := Yǫ − bǫ and

its opposite Kǫ are gains. The gain-loss ratio of Kǫ is then

E[K+
ǫ ]

E[K−
ǫ ]

=
bǫ(1− qǫ)

(1− bǫ)qǫ
>

1− qǫ
ǫ

which also tends to +∞ as ǫ ↓ 0.
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The two items together show better why in a gain-loss free market there must be a

pricing kernel bounded above and bounded away from 0. As a final remark, the strategies

that lead to the digital terminal gains Xǫ − cǫ and Yǫ − bǫ are not bounded. However

stochastic integration theory, see e.g. the book by Karatzas and Shreve [13, Chapter

3], ensures they can be approximated arbitrarily well by simple bounded strategies with

L2 convergence of the terminal gains, so the approximating strategies are in Ξ and their

gain-loss ratio blows up.

Example 2.10 (The market best gain-loss ratio may not be attained). Let us consider

a one period model consisting of a countable collection of one-step binomial trees, with

initial uncertainty on the particular binomial fork we are in. The idea is to set the odds

and the (single) risky underlying so that the best gain-loss ratio in the n-th binomial fork

is less than the best gain-loss in the subsequent (n + 1)-th binomial fork. This prevents

the existence of an optimal solution.

Suppose then S0 = 0, the interest rate r = 0 and that the probability of being in the

n-th fork is πn > 0. If we are in the n-th fork, S1 can either go up to a constant c > 0,

independent of n, or go down to −(1 + 1
n
), with conditional probability of going up pun

(and pdn = 1 − pun is the conditional probability of going down), as summed up in the

picture below.

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

✘
✘
✘
✘
✘
✘
✘
✘
✘
✘ c

−(1 + 1
n
)

pun

S in the n-th fork 0

Since S is bounded, Assumption 2.1 is satisfied; there is no arbitrage and M∞ 6= 0. In

fact, the probability Q which gives to each fork the same probability as P and gives to S

a conditional probability of going up in the n-th fork equal to qun = 1+1/n
c+1+1/n

is a martingale

probability which has density bounded and bounded away from 0. Note that a strategy

ξ can be identified with the sequence (ξn)n of its values, chosen at the beginning of each

fork. Now, the scale invariance property implies the best gain-loss ratio α∗
n in each fork

is given by the best between a long position in the underlying and a short one:

α∗
n = max

(

cpun
(1 + 1/n)pdn

,
(1 + 1/n)pdn

cpun

)

.

If in addition the parameters (pun)n≥1, c satisfy α∗
n < α∗

n+1, then actively trading in the

n+1-th fork only, and do nothing in the other forks, is always better than trading in the

first n forks. To fix the ideas, suppose that in each fork being long in S is better than

being short, i.e. α∗
n = cpun

(1+1/n)pdn
. This is satisfied iff c ≥ (1 + 1/n)p

d
n

pun
for all n ≥ 1. Then,

the condition α∗
n < α∗

n+1, for all n, becomes

1−
1

(n+ 1)2
<

pdnp
u
n+1

punp
d
n+1

.
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A simple case when this is verified is when the conditional historical probabilities do not

depend on n. So, suppose from now on that pun = pu for all n and that c ≥ 2 pd

pu
. Then,

α∗ = lim
n→+∞

α∗
n = c

pu

pd
(5)

and for any strategy ξ such that K = ξ · S1 ∈ L1

α(K) < α∗

This is intuitive from the construction, but can be verified by (a bit tedious and thus

omitted) explicit computations with series.

As the strategies with integrable terminal gain form the largest conceivable domain

in gain-loss ratio maximization, this example also proves that the best gain-loss ratio is

intrinsically not attained. Namely, it is not a matter of strategy restrictions (boundedness

or other).

From an analytic point of view, let us see what goes wrong. Define the sequence of

strategies ξn:

ξn =

{

1 if we are initially in the n-th fork

0 otherwise.

ξn is the optimizer in the n-th fork, and (5) implies it is a maximizing sequence for α∗.

The maximizing gains kn = ξn ·S1 converge in L1 to 0, but in 0 α is not defined. By scale

invariance, the normalized version:

Kn =
kn

E[|kn|]

is still maximizing, but is not uniformly integrable and thus has no limit.

We finally remark that a Q ∈ M∞ in our model exists because the ratio of the upper

value to the lower value of S1 in each fork, (S1)
u
n/(S1)

d
n, remains bounded and bounded

away from zero when n tends to infinity. A simple modification, with e.g. (S1)
u
n = 1 and

(S1)
d
n = −2−n as in [12, Remark 6.5.2], leads to an arbitrage free market model with no

Q bounded away from zero.

3 Best gain loss with a random endowment

3.1 The best gain-loss α∗(B) is an acceptability index on L1

Suppose the investor at time T has a non-replicable random endowment B ∈ L1, B /∈ K.

If she optimizes over the market in order to reduce her exposure, the best gain-loss in the

presence of B will be

sup
K∈K

α(B +K),
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which is well defined as B+K never vanishes on K. This expression can be re-written as

supK∈K,K+B 6=0 α(B +K), which makes sense also if B = 0 or, more generally, if B ∈ K,

and in that case it coincides with α∗. From now on, the value α∗ defined in Section 2.1 is

denoted by α∗(0). So, let us define on L1 the map

α∗(B) := sup
K∈K,B+K 6=0

α(B +K).

Lemma 3.1 The map α∗ satisfies:

1. α∗ : L1 → [α∗(0),+∞];

2. non-decreasing monotonicity;

3. quasi concavity, i.e. for any B1, B2 ∈ L1 and for any c ∈ [0, 1]:

α∗(cB1 + (1− c)B2) ≥ min(α∗(B1), α
∗(B2)) (6)

4. scale invariance: α∗(B) = α∗(cB) ∀c > 0

5. continuity from below, i.e.

Bn ↑ B ⇒ α∗(Bn) ↑ α∗(B).

Proof. 1. Without loss of generality, assume B /∈ K and fix K 6= 0. For any t > 0,

tK ∈ K and by the scale invariance property of α:

α(B + tK) = α(
B

t
+K).

An application of dominated convergence gives limt↑+∞ α
(

B
t
+K

)

→ α(K) and

consequently supt>0 α(
B
t
+K) ≥ α(K). So,

α∗(B) = sup
K∈K

α(B+K) = sup
K,t>0

α(B+tK) =sup
K

(

sup
t>0

α(
B

t
+K)

)

≥ sup
K 6=0

α(K) =α∗(0).

2. Non-decreasing monotonicity is a consequence of the monotonicity of α.

3. Quasi concavity is equivalent to convexity of the upper level sets Ab := {B ∈ L1 |

α∗(B) > b} for any fixed b > α∗(0) = minB α∗(B). Pick B1, B2 ∈ Ab. By Corollary

2.7, α∗(0) ≥ 1, and since b > α∗(0) ≥ 1 we can assume that any maximizing sequence

Ki
n for α∗(Bi), i = 1, 2 satisfies α(Bi+Ki

n) > 1, or, equivalently, Bi+Ki
n has positive

expectation for all n ≥ 0 and i = 1, 2. It can be easily checked that α is quasi concave

when restricted to variables with positive expectation (we refer to [10] for a proof).

Therefore, for any fixed c ∈ [0, 1], if Wn := cB1 + (1 − c)B2 + cK1
n + (1 − c)K2

n we

have

α(Wn) ≥ min(α(B1 +K1
n), α(B2 +K2

n))

and α∗(cB1+(1−c)B2) ≥ α(Wn) for all n. Letting n → +∞, α∗(cB1+(1−c)B2) ≥

min(α∗(B1), α
∗(B2)) > b and thus cB1 + (1− c)B2 ∈ Ab.

12



4. The scale invariance property easily follows from the scale invariance of α and the

cone property of K.

5. Suppose Bn ↑ B. Select a maximizing sequence (Km)m ∈ K for α∗(B):

α(B +Km) ↑ α∗(B).

For any fixed m, Bn +Km ↑ B +Km and continuity from below of the expectation

of positive and negative part implies the existence of nm such that α(Bnm
+Km) ≥

α(B +Km)−
1
m
. By the monotonicity property of α∗:

α∗(B) ≥ lim
n

α∗(Bn) ≥ α∗(Bnm
) ≥ α(Bnm

+Km) ≥ α(B +Km)−
1

m

and, passing to the limit on m, we get α∗(B) = limn α
∗(Bn).

The above lemma shows that α∗ is an acceptability index continuous from below, in the

sense of Biagini and Bion-Nadal [5]. Acceptability indexes were axiomatically introduced

by Cherny and Madan [10], as maps β defined on bounded variables with the properties:

1. non-negativity

2. non-decreasing monotonicity

3. quasi concavity

4. scale invariance

5. continuity from above: Bn ↓ B ⇒ β(Bn) ↓ β(B).

Biagini and Bion-Nadal extend the analysis of performance measures beyond bounded

variables and in a dynamic context. In particular, here the continuity from below property

replaces continuity from above. This non-trivial point is the key to the extension of the

concept of acceptability indexes beyond bounded variables and solves the value-at 0 puzzle

for indexes. In fact, continuity from above for an index, which is +∞-valued on positive

random variables (as the gain-loss ratio α and the optimized α∗) implies the index should

be +∞-valued also at 0. This is awkward for any index, but in particular the best gain-

loss index α∗ loses meaning if we redefine it to be +∞ at 0 only for the sake of the (wrong)

continuity requirement.

3.2 The dual representation of α∗(B)

There is a natural generalization of the results in Theorem 2.6 in the presence of a claim.

First, we need an auxiliary result.
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Lemma 3.2 Fix B ∈ L1 and suppose α∗(B) > α∗(0). Then, any maximizing sequence

(Kn)n for α∗(B) is bounded in L1.

Proof. Select a maximizing sequence for α∗(B), Kn ∈ K, α(B +Kn) ↑ α∗(B). Let (cn)n

denote the corresponding sequence of L1- norms, i.e. cn = E[|Kn|]. If (cn)n were un-

bounded, by passing to a subsequence, still denoted in the same way, we could assume

cn ↑ +∞. Let kn = Kn

cn
. The scale invariance property of α would imply

α(B +Kn) =
E[(B +Kn)

+]

E[(B +Kn)−]
=

E[( B
cn

+ kn)
+]

E[( B
cn

+ kn)−]

Since B
cn

→ 0 in L1, then α∗(B) = limn α(B +Kn) = limn
E[k+n ]

E[k−n ]
, whence we would get the

contradiction α∗(B) ≤ α∗(0).

Theorem 3.3 The following conditions are equivalent:

i) α∗(B) < +∞

ii) EQ[B] ≤ 0 for some Q ∈ M∞.

If any of the two conditions i), ii) is satisfied, α∗ admits the dual representation

α∗(B) = min
Q∈M∞,EQ[B]≤0

ess supZ

ess inf Z
, (7)

which becomes

α∗(B) = min
Q∈M∞,EQ[B]=0

ess supZ

ess inf Z
(8)

when +∞ > α∗(B) > α∗(0).

Proof .i)⇒ ii) Set b = α∗(B). Then b ≥ α∗(0) ≥ 1. So,

0 = α∗(B)− b = sup
K∈K

E[Ub(B +K)]

E[(B +K)−]
.

The denominator is positive, whence the above relation implies E[Ub(B +K)] ≤ 0

for all K. Therefore supK E[Ub(B +K)] ≤ 0, with possibly strict inequality. Since

this supremum is finite, the Fenchel Duality Theorem applies, similarly to Theorem

2.6, and gives:

sup
K

E[Ub(B +K)] = min
Q∈C0

1
,y≥0

{yE[
dQ

dP
B] + E[Vb(y

dQ

dP
)]} ≤ 0.

Given the structure of Vb, any couple of minimizers y∗, Q∗ satisfies y∗ > 0 and dQ∗ =

Z∗dP ∈ Qb ∩ C0
1 = Qb ∩M ⊆ M∞, which is then not empty. So, E[Vb(y

∗ dQ∗

dP
)] +

y∗EQ∗ [B] ≤ 0 implies EQ∗ [B] ≤ 0 and ii) follows.
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ii) ⇒ i) Fix a martingale measure dQ = ZdP with the stated properties, and let y = 1
ess inf Z

,

µ = ess supZ
ess inf Z

so that 1 ≤ yZ ≤ µ. The Fenchel inequality applied to the couple

Uµ, Vµ, on B +K and yZ respectively, gives

Uµ(B +K)− (K +B)yZ ≤ Vµ(yZ) = 0 ∀K ∈ K.

Taking expectations, E[Uµ(B+K)] ≤ yEQ[B] ≤ 0 for all K, which implies α∗(B) ≤

µ.

The duality formula (7) has been implicitly proved in the above lines. In fact, with

the same notations as in the implications i) → ii), we have the relation

α∗(B) ≤
ess supZ∗

ess inf Z∗
≤ b

where the first inequality follows from the arrow ii) → i), and the second from Q∗ ∈ Qb.

But since α∗(B) = b, the inequalities are in fact equalities.

To show the representation (8), suppose by contradiction that there exists a B such

that +∞ > α∗(B) > α∗(0) and the minimum in (7) is attained at a Q∗ with EQ∗ [B] < 0.

Pick a maximizing sequence (Kn)n for α∗(B), which by Lemma 3.2 is bounded in L1-norm.

With the same notations as of the implication i) ⇒ ii) above, we have the inequality:

E[Ub(B +Kn)] ≤ y∗EQ∗ [B] < 0.

From this, dividing by E[(B +Kn)
−] and adding b to both members we derive

α(B +Kn) =
E[(B +Kn)

+]

E[(B +Kn)−]
≤ b+ y∗

EQ∗ [B]

E[(B +Kn)−]
≤ b+ y∗

EQ∗ [B]

L
< b = α∗(B)

where L is a uniform upper bound for E[(B + Kn)
−]. Letting n ↑ +∞, we get the

contradiction α∗(B) = limn α(B +Kn) < α∗(B).

Remark 3.4. The representations (7) and (8) are interesting per se. In fact, the abstract

dual representation of a quasi concave map is known (Volle, [23, Theorem 3.4]), but there

are few examples in which such a dual representation can be explicitly computed.

Note also that if the market is complete and the unique martingale measure Q∗ is in

M∞, then α∗(B) = +∞ iff EQ∗ [B] > 0, and α∗(B) is finite (and equal to α∗(0)) if and

only if EQ∗ [B] ≤ 0.

Corollary 3.5 With the convention sup ∅ = α∗(0), α∗ admits the representation

α∗(B) = sup{λ ≥ 1 | EQ[B] > 0 ∀Q ∈ Qλ ∩M}. (9)

Proof. With the usual convention inf ∅ = +∞, the proof of Theorem 3.3 shows that

α∗(B) = inf{λ | EQ[B] ≤ 0 for some Q ∈ Qλ ∩M}
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and that α∗(B) is finite iff the infimum is a minimum. As Qλ∩M is a set of probabilities

which is non-decreasing in the parameter, the right hand side of the above equation is

an interval I, either [α∗(B),+∞) when α∗(B) is finite, or empty when α∗(B) is infinite.

Since

{λ ≥ 1 | EQ[B] > 0 ∀Q ∈ Qλ ∩M}

corresponds to the interval Ic ∩ [1,+∞), its supremum coincides with α∗(B) both in the

finite and infinite cases.

Remark 3.6. A general result on acceptability indexes and performance measures is that

any such map can be represented in terms of a one-parameter, non-decreasing family of

risk measures (see [10, 5]). In [10, Theorem 1, Proposition 4] it is shown that the gain-loss

index α admits a representation in terms of the family (ρλ)λ:

ρλ(X) := sup
Q∈Qλ

EQ[−X ]

The formula (9) proves an intuitive fact: the market optimized gain-loss index α∗ admits

a representation via the risk measures (ρMλ )λ induced by (Qλ ∩M)λ≥1

ρMλ (X) := sup
Qλ∩M

EQ[−X ]

where we adopt the convention ρMλ = −∞ if Qλ∩M = ∅. The family (ρMλ )λ consists of the

so-called market modifications of the collection of risk measures ρλ(X) := supQλ
EQ[−X ].

For the concept of market modified risk measure and its relation with hedging, the reader

is referred to [9] and [1, Section 3.1.3].

3.3 Final comments

The results just found constitute the basis for a strong objection against best gain-loss

ratio as a performance criterion in the presence of an endowment. To start with, Lemma

3.1 shows that possessing a claim whatsoever can never be worse than the case B = 0

since α∗(B) ≥ α∗(0), which does not make economic sense.

Second, by Theorem 3.3 the index α∗ can be of little use in discriminating payoffs, as

α∗(B) is finite if and only if the claim belongs to ∪Q∈M∞
{B | EQ[B] ≤ 0} and we have

seen that M∞ is empty in most continuous time models.

Moreover, if there is a unique pricing kernel, say P , then α∗(B) = +∞ if E[B] > 0

or if E[B] < 0 it is optimal to take infinite risk so to off-set the negative expectation of

B and end up with α∗(B) = α∗(0) = 1, along the same lines of the proof of item 1 in

Lemma 3.1. This is also unreasonable.

From a strict mathematical viewpoint, there is quite a difference from what happens

in standard utility maximization. For example, there if P is a martingale measure and
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B = m is constant, the optimal solution is simply not to invest in the market. This is

due to risk aversion and mathematically it is a consequence of Jensen’s inequality:

E[U(m +K)] ≤ U(m+ E[K]) = U(m).

On the contrary, when m < 0, 0 = α(m) < α∗(m) = 1 = α∗(0). The scale invariance

property α∗(B) = α∗(cB) for all c > 0 implies

α∗(B) = sup
c>0

α∗(cB) = sup
c>0,K∈K

α(K + cB).

As a consequence, our optimization problem better compares with the so-called static/dynamic

utility maximization, see e.g. Ilhan et al. [14], where the optimization is made dynami-

cally in the underlyings and statically in the claim:

u(B) := sup
c>0,K∈K

E[U(K + cB)]

where only long positions are permitted in the claim so to mirror the constraint we have

for gain-loss. When P is a martingale measure and B = m < 0 the value of the static-

dynamic utility maximization verifies

U(m) < u(m) = u(0) = U(0),

and this result is exactly in the spirit of the equality α∗(m) = α∗(0) found before.

As a final remark, the scale invariance property may be questionable for performance

measures in general. In fact, α∗ can be seen as an evaluation of the whole half ray

generated by B, cB, c > 0, rather than B itself. So, it is desirable only if the (large)

investor seeks an information on the “direction of trade”, as illustrated by Cherny and

Madan [10], and it is not appropriate for small investors, e.g. if quantity matters. The

cited work [5] is entirely dedicated to the definition of a good notion of performance

measures, in an intertemporal setting.
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