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Abstract. This works deals with one dimensional infinite perturbation - namely line defects - in periodic media.
In optics, such defects are created to construct an (open) waveguide that concentrates light. The existence and the
computation of the eigenmodes is a crucial issue. This is related to a self-adjoint eigenvalue problem associated
to a PDE in an unbounded domain (in the directions orthogonal to the line defect), which makes both the analysis
and the computations more complex. Using a Dirichlet-to-Neumann (DtN) approach, we show that this problem is
equivalent to one set on a small neighborhood of the defect. On contrary to existing methods, this one is exact but
there is a price to be paid : the reduction of the problem leads to a nonlinear eigenvalue problem of a fixed point
nature.

Key words. Periodic media, line defect, guided waves, spectral analysis, Dirichlet-to-Neumann operator

AMS subject classifications. 78A10,78A48,47A70,35P99

1. Introduction. Periodic media play a major role in applications, in particular in op-
tics for micro and nano-technology [20, 21, 27, 38]. From the point of view of applications,
one of the main interesting features is that it can exist intervals of frequencies for which the
propagative waves cannot exist in the media. This phenomenon is due to the fact that a wave
on the media is multiply scattered by the periodic structure, which can lead, depending on the
characteristics of the media and the frequency, to possibly destructive interferences. It seems
then that an appropriate choice of the structure and the dielectric materials of the photonic
crystal can create particular band gap and then, from a practical point of view, banish some
monochromatic electromagnetic waves. Thus, the periodic media could be used to several
potential applications such as in the realization of filters, antennas and more generally, com-
ponents used in telecommunications.

Mathematically, this property is linked to the gap structure of the spectrum of the under-
lying differential operator appearing in the model. For a complete, mathematically oriented
presentation, we refer the reader to [27, 28]. Even if the necessary conditions for the existence
of band gaps are not known -except for the one dimensional case in [4] where authors state
that the absence of gaps implies that the coefficients of the media are constant-, sufficient
conditions exist. Figotin and Kuchment have given examples of high contrast medium for
which at least one band gap exists and can be characterized [13, 14]. Using asymptotic argu-
ments, Nazarov and co-workers have established that a small perturbation of an homogeneous
waveguide can open a gap in the continuous spectrum of the operator [30, 7]. Moreover, other
band gap structures have been characterized through numerical approaches in [8].

Besides, Sommerfeld and Bethe in 1933 made the conjecture that the number of gaps has
to be finite in 2D and 3D. This conjecture has been proven by Skriganov for Schrödinger
operator in 2D [40, 36] and in 3D [41, 42] - the last article goes further: if the contrast is too
small, gaps cannot exist and on suitable assumptions on the lattice, the conjecture holds for
higher dimensions. Parnovski [32] has generalized this last result provided that the potential
is sufficiently smooth and in [33] the conjecture was proven in full generality. Another proof
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828, boulevard des Maréchaux, 91762 Palaiseau Cedex
sonia.fliss@ensta-paristech.fr

1

ar
X

iv
:1

20
2.

49
28

v2
  [

m
at

h.
SP

] 
 3

0 
Ja

n 
20

13



2 S. Fliss

can be found in the book of Yu Karpeshina [24]. For Maxwell equations, it is much more
complicated. Nevertheless, there is now evidence that gaps exists. Experimentally this was
first observed by Yablonovitch et al [47]. There are also many numerical results for different
structures (see [43, 44] for references). Recently, Vorobets in [46] has proven the conjec-
ture for 2D periodic Maxwell operator (which corresponds to a 2D periodic photonic crystal
which is homogeneous in the third direction) with separable dielectric function. Moreover, if
the dielectric function is close enough to a constant, there is no gaps at all.

These media can present perturbations or defects which are introduced in the media to change
their properties. Thus, in optics, in order to produce lasers, fibers or waveguides in general,
it is necessary to have authorized frequencies inside the forbidden intervals of frequencies.
This property can be obtained, for example, introducing localized defect or line defect and
corresponds, from a mathematical point of view, to isolated eigenvalues of finite multiplicity
inside the gaps of the underlying differential operator appearing in the model.

Figotin and Klein have proven rigorously that introducing a defect in a periodic structure,
namely a perturbation of compact support, can create defect modes, which are eigenvectors
associated to eigenvalues inside a gap [10, 11, 12]. More precisely, these defect modes are
stationary waves exponentially decreasing far from the perturbation, then they seems to ”live”
around the defect which explains their name. Using asymptotic arguments, Nazarov has stud-
ied in [31] sufficient conditions for existence of eigenvalues below the essential spectrum for
elastic waveguide. Here again, it seems difficult to obtain necessary conditions for the exis-
tence of defect modes.

There are very few works in the same spirit in the mathematical literature for the case of
line defect, that means a one dimensional perturbation of the periodic medium. A first natural
question concerns the spectrum of the perturbed operator compared to the spectrum of the
perfectly periodic operator. More precisely, if a gap is in the spectrum of the perfectly peri-
odic operator, can a part of the spectrum of the perturbed one arise in this gap? Moreover, if a
part of a spectrum arises, is it of absolutely continuous or singular type? Does it corresponds
to guided modes, meaning that the waves are confined to the guide (evanescent in the periodic
media) and they are propagating along the line defect? Kuchment et Ong [29] have answered
partially to these questions for the case of homogeneous line defect. Indeed, for any gap (a, b)
of the perfectly periodic operator, they found a sufficient condition on a, b, the characteristics
of the line defect (its size and its coefficients) such that spectrum of the perturbed operator
arises in the gap. Moreover, they have shown that the associated eigenvector is confined to
the guide. However, they have not concluded on the existence or not of bound states - this
question is linked to the nature of the spectrum. Vu Hoang and Maria Radosz in [19] have
shown for waveguide in 2D periodic structures the absence of bound states. It seems then that
if the spectrum arises in the gap, it corresponds to guided modes. Let us remark that for the
particular case of a line periodic perturbation in a homogeneous media, Bonnet-BenDhia and
Starling [3] have given necessary and sufficient conditions for the existence of guided modes.

Finally, few works ([1] and the present one) characterized precisely (respectively using Green’s
function or DtN operator) the guided waves if they exist, for general line defect. These par-
ticular modes can help for the determination of the spectrum of the perturbed operator. The
advantage is that the study can be reduced to a band (bounded in the direction of the period-
icity and infinite in the other direction).
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From a numerical point of view, there exist only few methods. The most known is the Su-
percell method. It consists in making computations in a bounded domain of large size with
periodic boundary conditions, the resulting solution converging to the true solution when the
size tends to infinity. The convergence for the computation of defect modes has been shown
for 2D problems and compact perturbations in [45] and generalized to 3D problems and to
exponentially decreasing perturbations in [6]. In this case, as the localized modes are ex-
ponentially decreasing, this convergence is exponentially fast with respect to the size of the
truncated domain. In practice, this approach replaces the eigenvalue problem set in an un-
bounded domain to an approximated one set in a bounded domain. See [39] for numerical
results. The main drawback of this strategy relies on the increase of the computational cost,
especially when a mode is not well confined. We can mention also the fictitious source su-
perposition method [5] and the reflective scattering matrix method.

By adapting to eigenvalue problems the construction of Dirichlet-to-Neumann operators orig-
inally developed for scattering problems [22, 16, 15], we want to offer a rigorously justified
alternative to existing methods. Compared to the supercell method, the DtN method allows
us to reduce the numerical computation to a small neighborhood of the defect independently
from the confinement of the computed guided modes. Moreover, as the method is exact, we
improve the accuracy for non well-confined guided modes. Obviously, there is a price to be
paid : the reduction of the problem leads to a non linear eigenvalue problem, of a fixed point
nature. However, this difficulty has been already overcome for homogeneous open waveg-
uides for which the DtN approach is well known [23, 34, 35].

2. Model problem. In order to describe the medium of study, let us first consider a
two-dimensional periodic medium - the photonic crystal - characterized by a coefficient ρp
(typically the square of the refraction index of the medium) which is

• a L∞function : ∃ρ−, ρ+, 0 < ρ− ≤ ρp(x, y) ≤ ρ+;
• periodic in the two directions

∃Lx, Ly > 0, ∀n,m ∈ Z, ∀(x, y) ∈ R2 ρp(x+ nLx, y +mLy) = ρp(x, y)

where the periods Lx and Ly are not necessarily equal.We introduce a one dimensional infi-
nite perturbation - called the line defect - in the y−direction in

Ω0 = ]− a, a[× R

and characterized by a coefficient ρ0 which is
• a L∞function satisfying 0 < ρ− ≤ ρ0 ≤ ρ+;
• periodic in the y−direction

∃L0
y > 0, ∀m ∈ Z, ∀(x, y) ∈ Ω0 ρ0(x, y +mL0

y) = ρ0(x, y)

where Ly and L0
y are commensurate. Without lack of generality, we suppose Ly =

L0
y .

The propagation medium is then characterized by the function ρ defined by

ρ(x, y) = ρp(x, y) in R2 \ Ω0

ρ0(x, y) in Ω0.
(2.1)

REMARK 2.1 (Some extensions).
1. We can consider a more general medium of propagation than Ω = R2. It could consist
for example of R2 minus a periodic set of holes. The only assumption is that the periodicity
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Ω
−

Ω0 Ω+

FIG. 2.1. Domain of propagation : typically ρ = 1 in the white region, ρ = 2 in the dark grey regions and
ρ = 3 in the light grey regions.

property of Ω has to the be the same as ρ.
2. Even if the spectral properties are different, the analysis and the method can be extended
to coefficient defined by

ρ(x, y) = ρ−p (x, y) in ]−∞,−a[×R
ρ0(x, y) in Ω0

ρ+
p (x, y) in ]a,+∞[×R.

where ρ−p and ρ+
p have the same properties than ρp with the same period in the y−direction

(Ly) and not necessarily the same in the x-direction (L−x and L+
x ).

REMARK 2.2 (Some open questions). The case where the line defect has not the same
periodicity properties as the photonic crystal and the case where the line defect is not intro-
duced along one of the direction of periodicity of the photonic crystal are out of the scope of
the present paper.

The propagation model is a simple 2D space-(x = (x, y)) time harmonic scalar wave equa-
tion (corresponding for example to transverse electric (TE) mode electromagnetic wave in
two dimensions)

−4w − ρω2 w = 0, in Ω, (P)

where ω ∈ R+ is the frequency. In the rest of the article, ω2 will be considered as the spectral
parameter.

REMARK 2.3. The results developed in this article can be easily extended to more gen-
eral elliptic operator u 7→ ∇ · (µ∇u) where µ is line perturbation of a periodic function.

Using the Floquet-Bloch theory, we could show that the spectrum of the operator −4/ρ
could be deduced from the study of the guided modes. A guided mode of this problem is by
definition a solution w 6= 0 to (P) which can be written in the form

w(x, y) = v(x, y) eıβy (2.2)
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where, in full generality
• β - called the quasi period - is in ]− π/Ly, π/Ly[;
• v is periodic in the y−direction with period Ly and

v
∣∣
B
∈ H1(B) where B = R×]− Ly

2
,
Ly
2

[

We will identify in the following any periodic function in Ω to its restriction to the period B.

REMARK 2.4. In full generality, the coefficient β is in R but it is enough to consider it
only in ]− π/Ly, π/Ly[. Indeed, it is easy to see that if there exists a mode for β ∈ R,

w(x, y, t) = v(x, y) eıβy, with v Ly-periodic and ω ∈ R+,

it corresponds to a mode for β ± π/Ly of the form

w(x, y) = ṽ(x, y) eı(β±π/Ly)y with ṽ(x, y) = v(x, y)e∓ıπ/Lyy which is Ly-periodic.

Replacing the expression (2.2) in (P) we see easily that finding the guided modes corresponds

B
−

Σ̃

Γ
+
a

Γ
−

a Σ

B0 B+

FIG. 2.2. The band B - one period in the y-direction of the domain Ω represented in Figure 2.1.

to finding couples (ω2, β) such that there exists v ∈ H1(B), v 6= 0 solution of

−1

ρ
4v − 2ıβ

ρ
∇v +

β2

ρ
v = ω2v, in B

v
∣∣
Σ

= v
∣∣
Σ̃
, ∂y v

∣∣
Σ

= ∂y v
∣∣∣
Σ̃

(2.3)

where (see Figure 2.2) Σ = R×
{Ly

2

}
and Σ̃ = R×

{
− Ly

2

}
.

We can rewrite the previous problem using u(x, y) = v(x, y)eıβy and then finding the guided
modes is equivalent to finding couples (ω2, β) such that there exists u ∈ H1(B), u 6= 0
solution of

−1

ρ
4u = ω2u, in B

u |Σ = eıβ u |Σ̃ , ∂y u |Σ = eıβ ∂y u |Σ̃
(2.4)

To characterize the guided modes, there exist two different formulations : the ω−formulation
in which ω is fixed and β is looked for and the β−formulation in which β is fixed and ω is
looked for. The first one leads to a quadratic eigenvalue problem in the band B (it is obvious
with the formulation (2.3) of the problem) and the second one to an eigenvalue problem in
the band B.

The classical approach for solving this problem set in an unbounded domain is the Super-
cell Method which is based on the exponentially decreasing property of the mode in the x−
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direction (see Theorem 3.5 where we remind this result) and consists in truncating the band
B far enough. One (artificial) parameter of the method is then the position of the truncature
position. The main advantage is that this approach leads to an eigenvalue problem (for the
β-formulation) or a quadratic one (for the ω−formulation) set on a bounded domain (the trun-
cated one). The main drawback of this strategy relies on the increase of the computational
cost when a mode is not well confined.

Here we propose a novel method based on a DtN approach, which is originally developed for
scattering problems. This method offers a rigorously justified alternative to existing meth-
ods.This approach allows us to reduce the numerical computation to a small neighborhood of
the defect independently from the confinement of the computed guided mode. The main ad-
vantage is that the method is exact so we improve the accuracy for non well-confined guided
modes and could deduce the behavior of the dispersive curves - β 7→ ω(β) where (β, ω(β))
is solution of (2.3) - near the edges of the gaps. The main drawback is that the reduction of
the problem leads to a nonlinear eigenvalue problem, of a fixed point nature. To simplify the
presentation, we choose here the ω−formulation but the method extends to the other formu-
lation - which could be more adapted for dispersive media for example. ρ = ρ(ω)).

The article is organized as follows. We will remind in Section 3 the spectral properties of
the locally perturbed periodic operator involved in the study. Section 4 deals with the DtN
approach and present the non linear eigenvalue problem which has to be solved to compute
the guided modes. It is the most important and original part of the article. Section 5 is devoted
to numerical results and Section 6 to give some conclusions and perspectives.

3. Spectral theory results for the problem. We focus on the guided modes defined in
(2.4) and then reduce the problem to the following one :

For any β ∈]− π

Ly
,
π

Ly
[,

find ω2 ∈ R+, s.t. ∃u ∈ H1(B), u 6= 0, A(β)u = ω2u (Eβ)

where

A(β) = −1

ρ
4

D(A(β)) =
{
u ∈ H1(4, B), u|Σ = eıβu|Σ̃ and ∂yu|Σ = eıβ∂yu|Σ̃

}
.

with H1(4, B) = {u ∈ H1(B), ∆u ∈ L2(B)}.

The problem is then reduced to the determination of eigenvalues of the locally perturbed
periodic operator A(β), for any β ∈]− π/Ly, π/Ly[.

We introduce for the following the operator with perfectly periodic coefficients

Ap(β) = − 1

ρp
4, D (Ap(β)) = D(A(β)) (3.1)

Using [26, 10] and the Weyl’s theorem [37, Vol. IV, Theorem XIII-14], we describe in the
following proposition the essential spectrum of the operator A(β).
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PROPOSITION 3.1 (Essential spectrum of A(β)). The operator A(β) is selfadjoint in
H = L2(B, ρdxdy), positive and its essential spectrum, denoted σess(β), satisfies

σess(β) = σ (Ap(β)) = R \
⋃

1≤n≤N(β)

]an(β), bn(β)[

where Ap(β) is the operator with periodic coefficient defined by (3.1), N(β) (0 ≤ N(β) ≤
+∞) is the number of gaps and for any n, 0 ≤ an(β) < bn(β).

Proof. The operator Ap(β) is selfadjoint in L2(B, ρpdxdy) and positive, the operator
A(β) is closed in L2(B, ρpdxdy) (and obviously selfadjoint and positive in H). More-
over, (A(β) + 1)−1 − (Ap(β) + 1)−1 is compact (by the compactness of the embedding
of H1(B0) ↪→ L2(B0) where B0 = B ∩ Ω0). Using [37, Vol. IV, Theorem XIII-14], the
essential spectrum of A(β) coincide with the essential spectrum of Ap(β)

σess (β) = σess (Ap(β)) . (3.2)

Moreover, one of the main result of the Floquet-Bloch theory is (see [26] for more details)
that the spectrum of Ap(β), σ (Ap(β)) is reduced to its essential spectrum, σess (Ap(β)) and
is given by

σ (Ap(β)) = σess (Ap(β)) =
⋃

k∈]−π/Lx,π/Lx]

σ (Ap(β, k)) (3.3)

where

Ap(β, k) = − 1

ρp
4,

D (Ap(β, k)) =

u ∈ H
1(4, C),

u |x=Lx/2
= eıkLx u |x=−Lx/2 ,

∂xu |x=Lx/2
= eıkLx ∂xu |x=−Lx/2

u |y=Ly/2
= eıβLy u |y=−Ly/2 ,

∂yu |y=Ly/2
= eıβLy ∂yu |y=−Ly/2

 .

with C =]− Lx/2, Lx/2[×]− Ly/2, Ly/2[ and H1(4, C) = {u ∈ H1(C), ∆u ∈ L2(C}.

Moreover, for any k in ] − π/Lx, π/Lx], Ap(β, k) is a self-adjoint positive operator with
compact resolvent so its spectrum is purely discrete

0 < ω1(β, k) ≤ ω2(β, k) ≤ . . . ≤ ωn(β, k) < . . . with lim
n→+∞

ωn(β, k) = +∞

and we can find (en(β, k)) a corresponding family of eigenvectors which is an Hilbert basis
of L2(C).

Using the min-max principle to Ãp(β, k), we could show that the so called dispersive curve

(β, k) 7→ ωn(β, k) is continuous. (3.4)

Finally, we deduce from (3.2), (3.3) and (3.4) that

σess(β) = σ (Ap(β)) =
⋃
n∈N

ωn([−π, π[, β)
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REMARK 3.2. In Section 4.4, we will give another characterization of the essential spec-
trum with a by-product of the method.

As described in the Introduction, only sufficient conditions of existence are known and finite-
ness of the number of gaps is conjectured in the general case and proven for particular cases.
Let us suppose in the following that at least one gap exists (N(β) ≥ 1). Using the theory of
selfadjoint operators ([37]), we deduce that

PROPOSITION 3.3 (Discrete spectrum of A(β)). The spectrum of A(β) inside the gaps
consists only of isolated eigenvalues of finite multiplicity, which can accumulate only at the
edges of the gap.

One should ask if there is a way to ensure the rise of at least one eigenvalue in gaps of
A(β). Figotin and Klein have given in [10] sufficient condition on the defect (supposed ho-
mogeneous) and the gaps to introduce eigenvalues in any gaps of A(β). Using asymptotic
arguments, Nazarov and co-workers [31] have studied sufficient conditions for existence of
eigenvalue for elastic waveguides.

We are interested now, in characterizing and then computing the eigenvalues (λm(β))m,

0 ≤ λ1(β) ≤ λ2(β) ≤ . . . ≤ λM(β)(β), 0 ≤M(β) ≤ +∞

if they exist (we suppose thenM(β) ≥ 1), which are in the gaps of the essential spectrum (see
[2] -optical waveguides- and [29] -photonic crystal waveguides- for existence of eigenvalues
inside gaps) :

PROPOSITION 3.4 (Properties of each λm(β)). The dispersion curves β 7→ λm(β) are
2π/Ly-periodic, even and continuous.

Proof.
• β 7→ λm(β) is 2π/Ly-periodic : by definition

A(β + 2π/Ly) = A(β) and D (A(β + 2π/Ly)) = D (A(β)) .

• β 7→ λm(β) is even because

A(β) = A(−β) and D (A(β)) = D (A(−β)) .

and A(β) is a self-adjoint positive operator.
• The continuity with respect to β of the eigenvalues sorted in ascended order is due

to the analyticity of the operator A(β) with respect to β [25].

We deduce in particular that it is sufficient to study the dispersive curves for β ∈ [0, π/Ly].

We study now the properties of the eigenvectors associated to the eigenvalues. By defini-
tion, they are in L2(B) but we can be more precise : they decay exponentially fast far from
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the defect, with a rate depending on the distance from the eigenvalue to the edges of the gap.
It is a result based on [9] and shown in [10].

THEOREM 3.5 (Exponential decay of the eigenvectors). Let β ∈] − π/Ly, π/Ly]. For
any eigenvalue λn(β) of A(β), the associated eigenvectors ϕn(β; ·) satisfies

∀n ∈ J1,M(β)K, ∃C1, C2 > 0, ∃a > 0,∀(x, y) ∈ B, |x| < a,

|ϕn(β;x, y)| ≤ C1

dist (λn(β), σess(A(β)))
e(−C2 dist(λn(β),σess(A(β)))|x|) (3.5)

This property is exactly the one which encourages to use the Supercell method. Indeed,
this method consists in approaching the eigenvalues and the associated eigenvectors by the
ones of a truncated problem in the x−direction with periodic conditions. If the eigenvec-
tors are exponentially decreasing in the x−direction, they will satisfy almost periodic condi-
tions far enough from the perturbation and then be almost-eigenvectors for the almost-same
eigenvalues of an operator defined from the truncated domain. The main advantage of this
approach it that it leads to eigenvalue problem for a β-formulation and a quadratic one for
a ω−formulation, both of them set on a bounded domain. However, we could note several
drawbacks.

1. The essential spectrum of A(β) has to be computed initially.
2. For a fixed β, it seems important to have an estimation of the distance between the

not yet computed eigenvalue and the essential spectrum ofA(β) to choose a relevant
truncated domain.

3. The size of the truncated domain depends on β and on the distance between the
eigenvalue and the essential spectrum. If the eigenvalue approaches more and more
the essential spectrum of A(β) when β varies, the corresponding eigenvector be-
comes less and less confined (less and less exponentially decreasing) and then the
truncated domain has to be bigger and bigger. This can increase dramatically the
computational cost.

4. Because, this method is based on the exponential decay of the eigenvectors, it cannot
describe the behavior of the dispersive curves (the eigenvalues as functions of β,
β 7→ λn(β)) near the edges of the essential spectrum.

We propose now a novel method based on a DtN approach which overcome these disad-
vantages because it is an exact method (in the sense which is precised in the next section).
However, its main drawback is that it leads to a nonlinear eigenvalue problem of a fixed point
nature.

4. The non linear eigenvalue problem.

4.1. The DtN approach. Let β ∈] − π/Ly, π/Ly] and let us suppose from this point
that α2 /∈ σess(β). We want here to write an equivalent problem to the problem (Eβ) which
is set on a bounded domain.

For the sequel, it is essential to introduce functional spaces appearing naturally in the study.
Let us remind that B± = B ∩ Ω±, Σ± = Σ ∩ Ω±, Σ̃± = Σ̃ ∩ Ω± and Γ±a = {±a}×] −
Ly/2, Ly/2[ (see Figure 2.2).

We start from smooth quasi-periodic functions in B±:

C∞β (B±) =
{
u = ũ

∣∣
B± , ũ ∈ C∞(Ω±), ũ(x, y + L) = eıβLy ũ(x, y)

}
.
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Let H1
β(B±) be the closure of C∞β (B±) in H1(B±)

H1
β(B±) =

{
u ∈ H1(B±), u

∣∣
Σ± = eıβLy u

∣∣
Σ̃±

}
where in the last equation we have identified the spaces H1/2(Σ±) and H1/2(Σ̃±). As
H1
β(B±) is a closed subspace of H1(B±), we equip it with the norm of H1(B±). Let

H1
β(4, B±) be the closure of H1(4, B±) = {u ∈ H1(B±), ∆u ∈ L2(B±)}.

H1
β(4, B±) =

{
u ∈ H1(4, B±) ∩H1

β(B±),
∂u

∂y

∣∣∣
Σ±

= eıβLy
∂u

∂y

∣∣∣
Σ̃±

}
.

where in the last equation we have identified the spaces H1/2
00 (Σ±)′ and H1/2

00 (Σ̃±)′.

The space H1/2
β (Γ±a ) is defined by

H
1/2
β (Γ±a ) = γ±0

(
H1
β(B±)

)
where γ±0 ∈ L(H1(B±), H1/2(Γ±a )) is the trace map on Γ±a : ∀u ∈ H1(B±), γ±0 u = u|Γ±

a
.

H
1/2
β (Σ0) is then a dense subspace of H1/2(Σ0) and the injection from H

1/2
β (Γ±a ) onto

H1/2(Γ±a ) is continuous.

We define H−1/2
β (Γ±a ) as the dual of H1/2

β (Γ±a ).

Finally, the trace application γ±1 ∈ L(H1(4, B±), H
1/2
(a,a)(Γ

±
a )′) defined by :

∀u ∈ H1(4, B±), γ±1 u =
∂u

∂x

∣∣∣
Γ±
a

is a continuous application from H1
β(4, B±) onto H−1/2

β (Γ±a ) and we can show that

H
−1/2
β (Γ±a ) = γ1

(
H1
β(4, B±)

)
.

Let us now introduce the two half-band problems: for any β and α and for any given ϕ in
H

1/2
β (Γ±a )

Find u± ∈ H1
β(4, B±),

−4u± − ρpα2u± = 0 in B±

u|Γ±
a

= ϕ.
(P±)

THEOREM 4.1 (Well-posedness of the problem (P±)).
If α2 /∈ σess(β), the problem (P±) is well-posed in H1

β except for a countable set of frequen-
cies which depends on β.

If the periodicity cell is symmetric with respect to the axis x = 0 and if α2 /∈ σess(β),
the problem (P±) is always well-posed in H1

β .

Proof. It is enough to show the result for (P+). We introduce the following operators

AD,+(β) = − 1

ρp
4, D(AD,+(β)) =

{
u+ ∈ H1

β(B+), u+
∣∣
Γ+
a

= 0
}

AD,−(β) = − 1

ρp
4, D(AD,−(β)) =

{
u− ∈ H1

β(Ω \B+), u−
∣∣
Γ+
a

= 0
}

AD(β) = − 1

ρp
4, D(AD(β)) =

{
u ∈ H1

β(Ω), u
∣∣
Γ+
a

= 0
}
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It is easy to see that the spectrum of AD is the union of the spectrums of AD,+ and AD,−.
Moreover the resolvant of AD is a compact perturbation of the resolvant of A so AD and
A has the same essential spectrum. These two properties implies that AD,+ has its essen-
tial spectrum included in the spectrum of A but this operator may have a countable set of
eigenvalues. In conclusion, α2 /∈ σess(β), the problem (P+) is well posed if α2 is not an
eigenvalue of AD,+.

If the periodicity cell is symmetric with respect to the axis x = 0, the operator AD,+ has
no eigenvalues. Indeed, if an eigenvector exists, we could construct by antisymmetry with
respect to Γ+

a an eigenvector of A, which is not possible.

REMARK 4.2 (Robin-to-Robin operators instead of DtN operators). The countable set of
frequencies for which the half-band problems are not well-posed is introduced by our method
of construction of DtN operators. If we use Robin-to-Robin operators instead of Dirichlet-to-
Neumann operators, the problems are always well posed when the frequency α2 /∈ σess(β).
We choose to use DtN operators in the present paper to simplify the presentation of the method
(see [15, 18] for more details on Robin-to-Robin operators)

Suppose from this point that the problems (P+) and (P−) are well posed. We denote by
u+(β, α;ϕ) and u−(β, α;ϕ) the respective unique solutions.

The DtN operators Λ±(β, α) ∈ L(H
1/2
β (Γ±a ), H

−1/2
β (Γ±a )) are then defined by

∀ϕ ∈ H1/2
β (Γ±a ), Λ±(β, α)ϕ = ∓∂x u±(β, α;ϕ)

or else ∀ϕ,ψ ∈ H1/2
β (Γ±a )

< Λ±(β, α)ϕ,ψ >Γ±
a

=

∫
B±
∇u±(β, α;ϕ) · ∇u±(β, α;ψ)

− α2

∫
B±

ρpu
±(β, α;ϕ)u±(β, α;ψ) (4.1)

where < ·, · >Γ±
a

denotes the duality product between H−1/2
β (Γ±a ) and H1/2

β (Γ±a ). We have
then by definition the continuity properties of the DtN operators

PROPOSITION 4.3. For any β, the DtN operators Λ±(β, α) are continuous fromH
1/2
β (Γ±a )

onto H−1/2
β (Γ±a ) and are norm continuous with respect to α.

Proof. We introduce the operator

AD,±(β) = − 1

ρp
4, D(AD,±(β)) =

{
u± ∈ H1

β(B±), u±
∣∣
Γ±
a

= 0
}
.

We have seen in Theorem 4.1 that if α2 /∈ σess(β) and α2 /∈ σd,±(β) where σd,±(β) is the
discrete spectrum of AD,±(β) then the problem (P±) is well posed. Moreover, it exists C
independent from α such that

∀ϕ ∈ H1/2
β (Γ±a ), ‖u±(β, α;ϕ)‖H1(B±) ≤

C

dist(α2, σ±(β))
‖ϕ‖

H
1/2
β (Γ±

a )
(4.2)

and so

∀ϕ ∈ H1/2
β (Γ±a ), ‖Λ±(β, α)ϕ‖

H
−1/2
β (Γ±

a )
≤ C

dist(α2, σ±(β))
‖ϕ‖

H
1/2
β (Γ±

a )
.
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where σ±(β) is the spectrum of AD,±(β).

Let now α1 and α2 are such that each corresponding half-band problem (P±) is well posed.
For any β and any data ϕ in H1/2

β (Γ±a ), v± = u±(β, α1;ϕ)− u±(β, α2;ϕ) is solution of

−4v± − ρpα2
1v
± = ρp(α

2
2 − α2

1)u±(β, α2;ϕ) in B±

v±|Γ±
a

= 0.

That implies that it exists C independent from α1 and α2 such that

‖v‖H1
β(Ω±) ≤

C

dist(α2
1, σ±(β))

|α2
1 − α2

2|‖u±(β, α2;ϕ)‖H1
β(B±)

then using (4.2), we deduce that ∀ϕ ∈ H1/2
β (Γ±a ),

‖Λ±(β, α1)ϕ−Λ±(β, α2)ϕ‖
H

−1/2
β (Γ±

a )
≤ C

dist(α2
1, σ±(β)) dist(α2

2, σ±(β))
|α2

1−α2
2|‖ϕ‖H1/2

β (Γ±
a )
.

Besides, the definition 4.1 allows us to establish the following property which will be useful
for the proof of Lemma 4.7.

LEMMA 4.4. For any β and any α such that the problem (P±) is well posed, the DtN
operator Λ±(β, α) satisfies the Gårding’s inequality

∃C1, C(α) > 0, ∀ϕ ∈ H1/2
β (Γ±a )

< Λ±(β, α)ϕ,ϕ >Γ±
a
≥ C1‖ϕ‖2H1/2

β (Γ±
a )
− C(α)‖ϕ‖2

L2(Γ±
a )

(4.3)

where C(α) is a constant continuous with respect to α.
Proof. By definition of the DtN operator Λ±(β, α) and by continuity of the trace appli-

cation γ±0 , we have

∀ϕ ∈ H1/2
β (Γ±a ), < Λ±(β, α)ϕ,ϕ >Γ±

a
≥ C1‖ϕ‖2H1/2

β (Γ±
a )
− (α2ρ+ + 1)‖u±‖2L2(B±).

where u± = u±(β, α;ϕ). To conclude, it is sufficient to show that

∀ϕ ∈ H1/2
β (Γ±a ), ‖u±‖L2(B±) ≤ c(α)‖ϕ‖L2(Γ±

a )

with c(α) continuous with respect to α. For this, we use a duality argument. Let v± ∈
H1
β(4, B±) be the unique solution of the problem (which is well posed if the problem (P±)

is well posed)

−4v± − ρpα2v± = u± in B±

v|Γ±
a

= 0.
(4.4)

Since u± ∈ L2(B±) then v± ∈ H2(B±) (elliptic regularity) and using the well-posedness
of the problem and the continuity of the trace aplication γ±1 , we have in particular

‖∂v
±

∂x
‖L2(Γ±

a ) ≤
C

dist(α2, σ±(β))
‖u±‖L2(B±) (4.5)
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where σ±(β) is the spectrum of AD,±(β) defined in Theorem 4.1. Let us now multiply (4.4)
by u±, integrate over B± and apply Green’s formula twice, we get

‖u±‖2L2(B±) = ±
∫

Γ±
a

ϕ
∂v±

∂x

which together with (4.5) finishes the proof.

Finally, using the continuity of any eigenvector of (Eβ) and its normal derivative across the
sections Γ+

a and Γ−a , the next theorem is therefore straightforward.

THEOREM 4.5 (Problem with DtN conditions). The problem (Eβ) is equivalent to the
problem posed on B0 = B ∩ Ω0

Find ω2 /∈ σess(β), s.t. ∃u0 ∈ H1(B0), u0 6= 0

− 1

ρ
4u0 = ω2u0, in B0 (Eβ0 )

u0 satisfying the boundary conditions

+∂x u0 + Λ+(β, ω)u0 = 0, on Γ+
a

−∂x u0 + Λ−(β, ω)u0 = 0, on Γ−a ,

u0|Σ0 = eıβLyu0|Σ̃0
, ∂yu0|Σ0 = eıβLy∂yu0|Σ̃0

.

where Σ0 = Σ ∩ Ω0 and Σ̃0 = Σ̃ ∩ Ω0. These problems are equivalent in the sense that if
(ω, u) is solution of (Eβ) then (ω, u|B0

) is solution of (Eβ0 ). Conversely, if (u0, ω) is solution
of (Eβ0 ) then u defined by

u|B0
= u0

u|B± = u±(β, ω, ϕ), where ϕ = u0|Γ±
a

associated to the same value ω is solution of (Eβ). Moreover, the multiplicity of ω is the same
for the two problems.

Whereas the problem (Eβ) was linear with respect to the eigenvalue ω2 but defined on an
unbounded domain, the problem (Eβ0 ) is set on a bounded domain but non linear.

REMARK 4.6. Note that the problem (Eβ0 ) is also non linear with respect to β (whereas
the problem (Eβ) can be rewritten as a quadratic eigenvalue problem). In other words, this
difficulty would be present if we decided to fix ω and look for β.

We now introduce the solution algorithm of the non linear eigenvalue problem, explain how
to compute the DtN operators in the case where ω2 /∈ σess(β) and finally deduce another
characterization of the essential spectrum σess(β).

4.2. Solution algorithm. For α2 /∈ σess(β), we denote by A0(β, α) the operator

A0(β, α) = − 1

ρ0
4

D(A0(β, α)) =
{
u0 ∈ H1(4, B0),

+∂x u0 + Λ+(β, α)u0 = 0, on Γ+
a

−∂x u0 + Λ−(β, α)u0 = 0, on Γ−a ,

u0|Σ0 = eıβLyu0|Σ̃0
, ∂yu0|Σ0 = eıβLy∂yu0|Σ̃0

.

}
.
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The following lemma allows us to show the main properties of the operator A0(β, α) given
in Proposition 4.8

LEMMA 4.7. The operator A0(β, α) satisfies the Gårding’s inequality

∃C1, C(α) > 0, ∀u ∈ D(A0(β, α))

(A0(β, α)u, u) ≥ C1‖u‖2H1(B0) − C(α)‖u‖2L2(B0) (4.6)

where C(α) is a constant continuous with respect to α.
Proof. Using Lemma 4.4, we obtain easily that it exists c(α), constant continuous with

respect to α, such that

∀u ∈ D(A0(β, α)), (A0(β, α)u, u) ≥ ‖∇u‖2L2(B0)−c(α)
(
‖u|Γ+

a
‖2
L2(Γ+

a )
+ ‖u|Γ−

a
‖2
L2(Γ−

a )

)
.

Let s be in ]1/2, 1[. By continuity of the trace application in Hs(B0), we have

∀u ∈ Hs(B0), ‖u|Γ±
a
‖2
L2(Γ±

a )
≤ C‖u‖2Hs(B0),

and from the compactness of the embedding H1(B0) ↪→ Hs(B0), we could prove easily that

∀ε > 0, ∃Cε > 0, ∀u ∈ H1(B0), ‖u‖2Hs(B0) ≤ ε‖u‖
2
H1(B0) + Cε‖u‖2L2(B0).

Choosing ε small enough, these three relation give us the Gårding inequality.

PROPOSITION 4.8. The operator A0(β, α) is self-adjoint, has a compact resolvant and
is bounded from below.

Proof. The only difficulty is to show the self-ajointness (the Gårding inequality implies
that the operator is bounded from below).

The operator A0(β, α) is clearly symmetric. To show self-ajointness, it is sufficient to show
that it exists a real number ν such that A0(β, α) + νId is surjective. The Gårding inequality
gives us the coercivity and then the surjectivity of A0(β, α) + C(α)Id.

The spectrum of A0(β, α) is then a pure point one and consists of a sequence of eigenvalues
(µn(β, α))n of finite multiplicity tending to +∞:

µ1(β, α) ≤ µ2(β, α) ≤ . . . ≤ µn(β, α) → +∞

The explicit expression of these eigenvalues using the Min-Max principle yields some regu-
larity properties of each eigenvalue with respect to α.

THEOREM 4.9 (Characterization of the eigenvalues (µn(β, α))n). Let us fix β ∈ [0, π/Ly[
and α /∈ σess(β) and denote H0 = L2(B0, ρ0dxdy). In the following Vm is the set of sub-
spaces of dimension m of

H1
β(B0) =

{
u0 ∈ H1(B0), u0|Σ0

= eıβu0|Σ̃0

}
Then ∀m ∈ N,

µm(β, α) = inf
Vm∈Vm

sup
u0∈Vm,u0 6=0

∫
B0
|∇u0|2 + 〈Λ+(β, α)u0, u0〉Γ+

a
+ 〈Λ−(β, α)u0, u0〉Γ−

a

‖u0‖2H0
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and < ·, · >Γ±
a

denotes the duality product between H−1/2
β (Γ±a ) and H1/2

β (Γ±a ).

Moreover, the functions (β, α) 7→ µm(β, α) are continuous.
Proof. The first part of the theorem is a classical application of the min-max principle

since A0(β, α) is selfadjoint and bounded from below.

For the continuity, Lemma 4.7 gives us that for any β, it exists positive constants C1 and
C(α) which depends continuously of α such that for any α

∀u ∈ D(A0(β, α)), (A0(β, α)u, u) + C(α)‖u‖2L2(B0) ≥ C1‖u‖2H1(B0) (4.7)

Let us then consider the following Rayleigh quotients :

R(β, α;u0) =

∫
B0
|∇u0|2 + 〈Λ+(β, α)u0, u0〉Γ+

a
+ 〈Λ−(β, α)u0, u0〉Γ−

a
+ C(α)‖u0‖H1(B0)

‖u0‖2H0

.

For any β, let α1 and α2 be such that the DtN operators Λ±(β, αi; ·) are well defined. For all
u0 ∈ H1

β(B0) such that ‖u0‖H0
= 1, we have

|R(β, α1;u0)−R(β, α2;u0)| ≤ |
〈(

Λ+(β, α1)− Λ+(β, α2)
)
u0, u0

〉
Γ+
a
|

+ |
〈(

Λ−(β, α1)− Λ−(β, α2)
)
u0, u0

〉
Γ−
a
|+ |C(α1)− C(α2)|‖u‖2H1(B0).

So using Proposition 4.3 and its proof and the continuity of the trace application fromH1(B0)
onto H1/2(Γ±a ), we obtain the existence of a constant C ′ independent from α1 and α2 such
that

|R(β, α1;u0)−R(β, α2;u0)| ≤ C ′

dist(α2
1, σ+(β)) dist(α2

2, σ+(β))
|α2

1 − α2
2|‖u0‖2H1(B0)

+ |C(α1)− C(α2)|‖u0‖2H1(B0).

Taking into account finally the coercivity property (4.7), we obtain

R(β, α2;u0) ≤ R(β, α1;u0) +
C ′

dist(α2
1, σ+(β)) dist(α2

2, σ+(β))
|α2

1 − α2
2|R(β, α1;u0)

+ |C(α1)− C(α2)|R(β, α1;u0).

For all m, if we denote

∀m ∈ N, νm(β, α) = inf
Vm∈Vm

sup
u0∈Vm,u0 6=0

R(β, α;u0)

we obtain from the last inequality for all m

νm(β, α2) ≤ νm(β, α1) +
C ′

dist(α2
1, σ+(β)) dist(α2

2, σ+(β))
|α2

1 − α2
2|νm(β, α1)

+ |C(α1)− C(α2)|νm(β, α1).

By exchanging the roles of α1 and α2, we finally obtain

|νm(β, α2)− νm(β, α1)| ≤ C ′

dist(α2
1, σ+(β)) dist(α2

2, σ+(β))
|α2

1 − α2
2|max (νm(β, α1), νm(β, α2))

+ |C(α1)− C(α2)| max (νm(β, α1), νm(β, α2)) .
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We deduce the continuity of the µm(β, α), C(α) depending continuously of α.

Consequently, using Theorem 4.5, the solutions of the problem (Eβ) are obtained as explained
in the following proposition.

PROPOSITION 4.10. The solutions of the non-linear problem (Eβ) are the roots of the
equations :

ω2 /∈ σess(β) and ∃m ≥ 1, µm(β, ω) = ω2.

We then infer the iterative algorithm for the computation of the guided modes and associated
eigenvalues with two nested loops:

• the outer loop consists in a fixed point algorithm to solve the non linear equations:

µm(β, ω) = ω2, ω2 /∈ σess(β);

• each iteration of this fixed point algorithm requires the computation of the m−th
eigenvalue µm(β, α) of the operatorA0(β, α) (and possibly the derivative of µm(β, α)
with respect to α if a Newton method is used to solve the fixed point problem).

This algorithm is quite classical for the computation of guided modes in open waveguides
(see [2]). Here the novelty comes from the facts that the eigenvalues ω2 could belong to any
gap of the spectrum and that the operators Λ±(β, ω) have no analytical expression. We show
in the following section how they can be computed in practice.

4.3. Characterization of the DtN operators . As explained in [22], the construction of
the operators Λ±(β, α) is based only on the resolution of a family of cell problems and the
resolution of a stationary Ricatti equation. For the sake of clarity, we shall recall the method
for the construction of Λ+.

We will suppose again in this section that α2 /∈ σess(β) and the problem (P+) is well posed.

We shall use the division of the half-band into periodicity cells separated by vertical seg-
ments (See Figure 4.1):

B+ =

+∞⋃
n=1

Cn, Cn := C1 + ((n− 1)Lx, 0), (4.8)

The segments Γn = Γ0 + (nL, 0), with Γ0 = Γ+
a can all be identified to the leftmost one

Γ0 ∼ [−Ly/2, Ly/2] and the cells Cn can all be identified to the first cell C1 = C. By

x

y

Γ0

C1

Γ1

C2

Γ2 Γn−1

Cn

Γn

Σ̃Σ̃1 Σ̃2 Σ̃n

Σ
+

Σ
+

1 Σ
+

2 Σ
+
n

B+

FIG. 4.1. Notation in a half band
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periodicity in x, the construction of the unique solution u+(β, α, ϕ) of (P+) will be reduced
to the knowledge of a linear operator, called the propagation operator, denoted P (β, α) and
defined by

P (β, α) : H
1/2
β (Γ0)→ H

1/2
β (Γ0)

ϕ 7→ u+(β, α, ϕ)
∣∣∣
Γ1

.
(4.9)

One can show that P (β, α) for any β and α is compact (using interior elliptic regularity for
u+(β, α, ϕ)), injective (using an argument of unique continuation) and has a spectral radius
less than 1 when α2 /∈ σess(β) (because of the L2 nature of u+(β, α, ϕ)). See [22, 15] for
more details on the proof of these results.

Using the periodicity of the problem, one easily see that

∀n ∈ N, ∀ϕ ∈ H1/2
β (Γ0), u+(β, α, ϕ)

∣∣∣
Γn

= (P (β, α))
n
ϕ.

Then by linearity, we have ∀n ∈ N, ∀ϕ ∈ H1/2
β (Γ0)

u+(β, α, ϕ)
∣∣∣
Cn

= e0
(
β, α, (P (β, α))

n−1
ϕ
)

+ e1 (β, α, (P (β, α))
n
ϕ) (4.10)

where for all ϕ in H1/2
β (Γ0) e0(β, α, ϕ) and e1(β, α, ϕ) are the solutions in H1(C) to the

following elementary cell problems

−4e` − ρp α2e` = 0 in C, ` ∈ {0, 1} (4.11)

satisfying β-quasi periodic boundary conditions on Σ1 = Σ ∩ C and Σ̃1 = Σ̃ ∩ C

e`|Σ1
= eıβLy e`|Σ̃1

∂ye`|Σ1
= eıβLy∂y e`|Σ̃1

(4.12)

and Dirichlet boundary conditions on Γ0 and Γ1

e0|Γ0 = ϕ

e0|Γ1 = 0
and

e1|Γ0 = 0

e1|Γ1 = ϕ
. (4.13)

C

Γ
0

Γ
1

Σ1

Σ̃1

FIG. 4.2. The periodicity cell C

REMARK 4.11. The cell problems are well posed except for a countable set of fre-
quencies which correspond to the eigenvalues of the operator −4/ρp defined in a cell with
Dirichlet boundary conditions. This set of forbidden frequencies is a priori different from
the one introduced in Theorem 4.1 and Remark 4.2. Indeed the first one is introduced be-
cause of the Dirichlet boundary conditions set in the vertical boundaries of the cell whereas
the second one is introduced because of the Dirichlet boundary conditions set in the vertical
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boundary of the half band. Imposing Robin-type boundary conditions instead of Dirichlet in
the cell problems would solve this issue (and can be used for the characterization of DtN or
Robin-to-Robin operators). We choose here Dirichlet-type cell problems only to simplify the
presentation of the method.

Formula (4.10) shows that the computation of the solution u+ is achieved through the char-
acterization of the operator P (β, α). At this stage of the exposition, the definition of this
operator relies on u+(β, α, ϕ) which is a solution of a problem posed in an unbounded do-
main. We shall see in the following how to determine this operator by solely solving local
problems of the type (4.11, 4.12, 4.13), which is one key point of the method.

Note that the relation (4.10) ensures that u+(β, α, ϕ) is the solution of the Helmholtz equation
inside each cell Cn. To make the characterization complete, we have to add the transmission
condition across Γj (the continuity of the normal derivative of u+ accross Γj), which gives

T10(β, α)P (β, α)2 + (T00(β, α) + T11(β, α))P (β, α) + T01(β, α) = 0.

where the operators Tpq(β, α) are four corresponding local DtN operators :

T00(β)ϕ = −∂xe0(β, ϕ)
∣∣∣
Γ0

T10(β)ϕ = −∂xe1(β, ϕ)
∣∣∣
Γ0

T01(β)ϕ = −∂xe0(β, ϕ)
∣∣∣
Γ1

T10(β)ϕ = −∂xe1(β, ϕ)
∣∣∣
Γ1

(4.14)

Actually, for any β, if α2 /∈ σess(β), this equation characterizes uniquely the operator
P (β, α):

THEOREM 4.12 (Characteristic equation). Suppose that α2 /∈ σess(β) and the prob-
lem (P+) is well posed. The operator P (β, α) is then the unique compact operator of
L
(
H

1/2
β (Γ0)

)
satisfying the condition

ρ(P (β, α)) < 1 (4.15)

which solves the stationary Riccati equation:

T (β, α)X = 0, (EP (β, α))

where

T (β, α) : L
(
H

1/2
β (Γ0)

)
→ L

(
H

1/2
β (Γ0)

)
X 7→ T10(β, α)X2 + (T00(β, α) + T11(β, α))X + T01(β, α).

Proof. As explained before, the operator P (β, α) is a compact operator whose spectral
radius is strictly less than one. Moreover, the continuity of the normal derivative of the unique
solution u+(β, α;ϕ) accross each Γj , P (β, α) is solution of (EP (β, α)).

Reciprocally, let P be a compact operator with spectral radius ρ(P ) < 1 which satisfies
(EP (β, α)). The function defined by

u(ϕ)
∣∣∣
Cn

= e0
(
β, α, Pn−1 ϕ

)
+ e1 (β, α, Pn ϕ)

satisfies the helmoltz equation cell by cell, is continuous by definition and has continuous nor-
mal derivatives accross each Γj because the operator P is solution of (EP (β, α)). Moreover,
the fact that ρ(R) < 1 implies that u(ϕ) belongs to H1(B+). Indeed, the property

lim
n→+∞

‖Pn‖1/nL(H1/2(Γ))
= ρ(P )



Waveguides in periodic media 19

implies that, for some ρ∗ ∈ (ρ(P ), 1) and N large enough

∀n ≥ N, ‖Pn‖L(H1/2(Γ)) ≤ ρn∗

so that, it exists C independant of N, such that

∀n ≥ N, ‖u(ϕ)‖H1(Cn) ≤ Cρn∗‖ϕ‖H1/2
β (Γ0)

.

We have then constructed a solution inH1
β(4, B+) of (P+). By well-posedness of this prob-

lem, the solution is unique so u = u+ and then P = P (β, α).

Once P (β, α) is determined solving the stationary Ricatti equation, we build cell by cell
the solution u+ using (4.10) and finally using again (4.10) for n = 0, we see that

Λ+(β, α) = T00(β, α) + T10(β, α)P (β, α) (4.16)

4.4. Characterization of the essential spectrum. The characterization of the essential
spectrum is a by-product of the determination of the DtN operators.

Indeed, in [22], we have shown that when α2 lies in the essential spectrum σess(β), not
only the spectral radius of the propagation operator is equal to 1 but in addition this operator
is no more the unique solution of the Ricatti equation (EP (β, α)). Consequently, we can give
this characterization of the essential spectrum of A.

THEOREM 4.13. The Ricatti equation (EP (β, α)) has a unique solution whose spectral
radius is strictly less than one if and only if α2 /∈ σess(β).

Proof. In Theorem 4.12, we have already proven that if α2 /∈ σess(β), the Ricatti equa-
tion (EP (β, α)) has a unique solution whose spectral radius is strictly less than one.

For α2 ∈ σess(β), we can show that it does not exist solution of (EP (β, α)) with spectral
radius strictly less than one but solution whose spectral radius equal to one. Moreover, there
is no more uniqueness of this kind of solutions. Indeed, by definition of the essential spectrum
(see the proof of Proposition 3.1)

α2 /∈ σess(β) ⇔ ∃q,∃k0 ∈]− π/Lx, π/Lx] α2 = ωq(β, k0)

where ωq(β, k) is the q−th eigenvalue of the operatorAp(β, k) defined in the proof of Propo-
sition 3.1. Let us denote eq(β, k) a corresponding eigenvector. Using the same idea than in
the proof of Proposition 4.3, we could show that k 7→ ωq(β, k) is an even function and then

ωq(β, k0) = ωq(β,−k0) = α2

Let us denote now ϕ± = eq(β,±k0). Using the well-posedness of the cell problems, the
eigenvectors eq(β,±k0) can be expressed by

eq(β,±k0) = e0(β, α, ϕ±) + e±ık0Lx e1(β, α, ϕ±)

and, thanks to their quasi-periodicity, can be extended as H1(4, B+) function by

eq(β,±k0)
∣∣∣
Cn

= e±ı(n−1)k0Lx e0(β, α, ϕ±) + e±ınk0Lx e1(β, α, ϕ±).
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We have found then solutions of the problem (P+) with ϕ± as Dirichlet boundary condition
on Γ0. We can then construct at least three solutions of the Ricatti equation whose spectral
radius is equal to one :

P1 such that P1 ϕ
+ = eık0Lx ϕ+

P2 such that P2 ϕ
− = e−ık0Lx ϕ−

P3 such that P3 ϕ
+ = eık0Lx ϕ+ and P3 ϕ

− = e−ık0Lx ϕ−

5. Numerical results. We want to apply this approach to compute the guided modes of
the media, whose refraction index is given by (see the isovalues Figure 5.1):

∀ (x, y) ∈ [−0.5, 0.5]2,∀n, m ∈ Z∗, ρp(x+ n, y +m) = 1 + 16 exp(−x
2 + y2

0.22
)

ρ0(x, y +m) = 1
(5.1)

The period here is equal to 1.

FIG. 5.1. The lineic perturbed periodic media.

For any β ∈ [0, π/Ly] and α2 ∈ [0, 20], we determine if α2 is in σess(β) or not. If not,
we compute the Dirichlet-to-Neumann operators Λ±(β, α). The corresponding algorithm is
the following : for each β and α

1. solve the cell problems (4.11,4.12,4.13) - using a FE method or a mixed finite ele-
ment one (see [22, 15, 17] for more details) and compute the local DtN operators
T±pq(β, α) (see (4.14));

2. solve the stationary equation (4.12) using a spectral decomposition method (which
leads to a quadratic eigenvalue problem) or a modified Newton algorithm (see [22,
15, 17] for more details):

(i) If it exists a unique solution whose spectral radius is strictly less than one then
α2 /∈ σess(β), so we can determine the propagation operator P±(β, α) and
deduce the DtN operators Λ±(β, α) by (4.16).

(ii) If it exists a solution whose spectral radius is equal to one then α2 ∈ σess(β)
and we stop the computation.



Waveguides in periodic media 21

We can then, for any β and α, compute the eigenvalues µm(β, α).

We plot on Figure 5.2 the isovalue lines of the function log|µ1(β, α)−α2| for β ∈ [0, π/Ly]
and α2 ∈ [0, 20] \ σess(β).

FIG. 5.2. Isovalues of log|µ1(β, α) − α2|; β ∈ [0, π/L], α2 ∈ [0, 20]. For a fixed β, the white regions
correspond to the essential spectrum σess(β). The dispersion curves are given by the blue lines. The two black
circles correspond to guided modes represented Figure 5.3.

For a fixed β, the white regions correspond to the essential spectrum σess(β). A part of the
dispersion curves, given by the values (β, ω) for which µ1(β, ω) − ω2 = 0, are represented
by blue lines corresponding to the null isovalue of µ1(β, α) − α2. The main difference with
homogeneous open waveguides is that the function µm(β, α)− α2 may vanish several times
for a fixed β.

We want now to compute for fixed β, the eigenvalues and the corresponding guided modes.
To do so, we use the following steps :

1. Solution of the non linear eigenvalue problem : using the algorithm of the non
linear eigenvalue problem described at the end of Section 4.2, ω2 is computed so that
it exists m such that µm(β, ω) = ω2 and ω2 /∈ σess(β). Let u0 be an eigenvector of
A0(β, ω) associated to the eigenvalue µm(β, ω).

2. Construction of the guided modes in one band : by continuity arguments, the
restriction to a band B of a guided mode u is given by

u
∣∣
B0

= u0

u
∣∣
B+ = u+(β, ω, ϕ+) with ϕ+ = u0

∣∣
Γ+
a

u
∣∣
B− = u−(β, ω, ϕ−) with ϕ− = u0

∣∣
Γ−
a
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where for any given ϕ ∈ H1/2
β (Γ±a ), u±(β, ω, ϕ) is the unique solution of (P±). To

compute these solutions, we have to
• solve the cell problems (4.11,4.12,4.13) for α = ω and compute the local DtN

operators T±pq(β, ω) (see (4.14));
• solve the stationary equation (4.12). Since ω2 /∈ σess(β), it exists a unique

solution whose spectral radius is strictly less than one which is the propagation
operator P±(β, ω)

• reconstruct the solutions cell by cell using (4.10).
3. Construction of the guided modes in the whole domain : by β−quasi-periodicity,

the guided modes can be constructed ”band by band” :

∀(x, y) ∈ B, ∀q ∈ Z, u(x, y + qLy) = u(x, y)eıqβLy .

We then represent Figure 5.3 guided modes for two values of β in eight periods from each
side of the line defect. Figure 5.3(a) corresponds to the eigenvalue in the first gap of A(0.5)
with a well confined mode whereas in Figure 5.3(b) the eigenvalue belongs to the fourth gap
of A(1.9)) and the associated guided mode is not well confined.

(a) β = 0.5, ω2 = 3.465

(b) β = 1.42, ω2 = 10.46

FIG. 5.3. Two guided modes: one is well confined (left); the other not well confined (right). The couples
(β, ω2) of this guided modes are represented by black circles in Figure 5.2
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6. Conclusions. We have shown that this method is well adapted to the computation of
guided modes which are not well confined. The advantage of this method is that it is exact
independently from the confinement of the computed guided modes. It can be well adapted
for the study of the dispersive curves near the essential spectrum. In terms of computation
time, the solution of the non linear eigenvalue problem is much more costly than the one of
a linear eigenvalue problem. However, in contrast to existing methods, we do not have to
compute independently -and often using a separate code- the essential spectrum of the media:
here it is a by-product of this method.

In a forthcoming article, we will compare exactly this method with the Supercell Method
in terms of accuracy and computation time. Moreover, this DtN strategy will be applied to a
β-formulation which is more adapted for dispersive media.

Another interesting perspective concerns the study of the dispersive curves: with our charac-
terization, we could study if they can or cannot be constant with respect to β (and conclude
on the existence or not of bound state) and analyze their behavior near the essential spectrum.
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Applications, Birkhäuser Verlag, Basel, 1993.

[27] , The mathematics of photonic crystals (chapter 7), in Mathematical modeling in optical science,
vol. 22 of Frontiers in applied mathematics, SIAM, Philadelphia, 2001.

[28] , On some spectral problems of mathematical physics, in Partial differential equations and inverse
problems, vol. 362 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2004, pp. 241–276.

[29] P. KUCHMENT AND B. ONG, On guided waves in photonic crystal waveguides, in Waves in periodic and
random media (South Hadley, MA, 2002), vol. 339 of Contemp. Math., Amer. Math. Soc., Providence,
RI, 2003, pp. 105–115.

[30] S. A. NAZAROV, Opening of a gap in the continuous spectrum of a periodically perturbed waveguide, Math-
ematical Notes, 87 (2010), pp. 738–756.

[31] S. A. NAZAROV, Localized elastic fields in periodic waveguides with defects, J. Appl. Mech. Tech. Phys., 52
(2011), pp. 311–320.

[32] L. PARNOVSKI, Bethe-Sommerfeld conjecture, Ann. Henri Poincaré, 9 (2008), pp. 457–508.
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