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Abstract

We study the infinite horizon Linear-Quadratic problem and the asso-
ciated algebraic Riccati equations for systems with unbounded control ac-
tions. The operator-theoretic context is motivated by composite systems
of Partial Differential Equations (PDE) with boundary or point control.
Specific focus is placed on systems of coupled hyperbolic/parabolic PDE
with an overall ‘predominant’ hyperbolic character, such as, e.g., some
models for thermoelastic or fluid-structure interactions. While unbounded
control actions lead to Riccati equations with unbounded (operator) co-
efficients, unlike the parabolic case solvability of these equations becomes
a major issue, owing to the lack of sufficient regularity of the solutions to
the composite dynamics. In the present case, even the more general the-
ory appealing to estimates of the singularity displayed by the kernel which
occurs in the integral representation of the solution to the control system
fails. A novel framework which embodies possible hyperbolic components
of the dynamics has been introduced by the authors in 2005, and a full
theory of the LQ-problem on a finite time horizon has been developed.
The present paper provides the infinite time horizon theory, culminating
in well-posedness of the corresponding (algebraic) Riccati equations. New
technical challenges are encountered and new tools are needed, especially
in order to pinpoint the differentiability of the optimal solution. The
theory is illustrated by means of a boundary control problem arising in
thermoelasticity.

Introduction

Historical background and motivation. The theory of the optimal con-
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trol problem with coercive quadratic functionals for abstract linear systems
y′ = Ay + Bu—in spaces of finite or infinite dimensions—is intrinsically linked
to well-posedness of the corresponding algebraic/differential Riccati equations.
As it is well known, by solving these celebrated equations one obtains the op-
erator (a matrix, in the finite dimensional case) which occurs in the feedback
representation of the optimal control as well as in the quadratic form which
yields the optimal cost.

In an infinite dimensional setting, if B is a bounded control operator from
the control space U to the state space Y , then a complete theory of the Riccati
equations has been developed, where the analogs of all the key properties known
in the classical finite dimensional context hold true. Namely, the unique solu-
tion to the Riccati equation provides the optimal cost operator, the feedback
representation of the optimal control holds true, and the closed loop equation
yields the synthesis of the optimal control; see [10] for pioneering results in this
direction, [11], [13] and [19].

When it comes to the abstract representation of initial/boundary value prob-
lems for evolutionary Partial Differential Equations (PDE) in a bounded domain
Ω ⊂ R

n, with control action exercised on the boundary ∂Ω or pointwise in the
interior of the domain, the major technical challenges come from the unbound-
edness of the control operator B which naturally arises from the modeling of
the PDE problem. This, in turn, results in the possible unboundedness of the
gain operator B∗P which occurs in the quadratic term of the Riccati equations.
In fact, this operator may be even not densely defined. Indeed, this ‘pathology’
is shown to happen even in the case of simple hyperbolic equations with point
control; see [37], [36].

In this respect, the regularity properties of the pair (A,B) which describes
the free dynamics and the control action or, more specifically, of eAtB (where
eAt is the semigroup governing the free dynamics) are absolutely central. And
in fact, historically speaking, the first extensions of the LQ-problem theory
for systems with bounded control operator to the present setting pertained
to parabolic-like dynamics, where the underlying semigroup eAt is analytic.
(Canonical illustrations are the heat equation with boundary or point control,
as well as structurally damped plate equations, and certain thermoelastic sys-
tems.) Analyticity made it possible the full development of a theory of the
Riccati equations, with unbounded gains as well as without additional regu-
larity properties of the optimal cost operator. These results date back to the
beginning of the eighties ([25]); see [26] for a concise treatise, or, alternatively,
the extended monographs [13] and [30]. The analytic theory of Riccati equations
with non-autonomous coefficients has been developed in [3], [4], [5, 6].

In contrast, as it was pointed out already, the lower regularity exhibited by
eAtB in the case of hyperbolic-like equations with boundary/point control is
in general insufficient to guarantee the sought-after properties recorded above.
(Canonical examples are provided by PDE which display some kind of ‘wave
propagation’, even in one dimension, under unbounded control actions.) Thus,
a requirement of an appropriate smoothing effect of the observation operator is
called for, in order to establish well-posedness of the differential Riccati equa-
tions. See, again, [26], [13], [30], and the more recent [12].

The first break with analyticity and additional assumptions on the observa-
tion operator was introduced by G. Avalos in 1996 in the study of PDE models
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that arise in structural acoustics; see [7, 8]. In these problems the equation
for the acoustic waves is coupled on an interface with a parabolic-like equa-
tion describing the structural vibrations of an elastic wall and therefore the
systems under consideration comprise both hyperbolic and parabolic dynamics.
The study carried out in [8] pinpoints and establishes a fundamental (singular)
estimate for the norm of the operator eAtB in the space L(U, Y ); this is rec-
ognized as the actual mathematical property which by itself—in the absence of
analyticity—is sufficient to ensure boundedness of the gain operator. It is worth
noting that while the aforesaid ‘singular estimates’ are intrinsic to control sys-
tems whose free dynamics is governed by an analytic semigroup eAt, in the case
of general C0-semigroups these estimates correspond to suitable (non trivial)
interior regularity results for the solutions of the uncontrolled system of PDE.

This path of investigation has been followed later on, bringing about a the-
ory of the LQ-problem on both a finite and infinite time horizon, while other
significant PDE systems yielding ‘singular estimates’ have been discovered and
analyzed; see [23, 24], [28, 29], and [31] (dealing with the Bolza problem). It
turned out that the class of control systems characterized by this property—
although inspired by the model for acoustic-structure interactions studied in
[8]—covers a variety of systems of coupled hyperbolic/parabolic PDE, includ-
ing different structural acoustic models, thermoelastic plate models, composite
(sandwich) beams models, and others; see, e.g., [23], [29, Section 4], [24, Lec-
ture III, Part II], [16], [32]. (See also [14] for further applications of singular
estimates to the study of semilinear evolution equations with nonlinear bound-
ary terms.)

In fact, interactions between distinct physical phenomena widely occur in
both nature and technology. To name a few relevant ones, we just recall—
besides thermoelastic and acoustic-structure interactions—fluid-solid or magne-
toelectric interactions. The modeling of such interactions leads in a natural way
to composite systems of PDE comprising components which display different
dynamical behaviours. In a mathematical setting, such evolutionary systems
of coupled PDE can be represented in a simple form by the following abstract
system, which also takes into account the possible influence of control actions:

{

yt = A1y +B1u+ C1(y, z) y|t=0 = y0 ∈ H1

zt = A2z +B2v + C2(z, y) z|t=0 = z0 ∈ H2

,

where H1 and H2 are appropriate Hilbert spaces, A1 and A2 are infinitesimal
generators of C0-semigroups eAit on Hi, i = 1, 2, respectively, with e.g. eA1t

assumed to be analytic. The control operators Bi, i = 1, 2, are unbounded
operators acting from the control spaces Ui into Hi (or from Ui into [D(A∗

i )]
′);

the coupling between the two different dynamics may occur as well by means of
unbounded operators Ci.

It is then natural to seek the proper set of assumptions on the overall dy-
namics operator in order to fully exploit the diverse features of the components
of the system. The ultimate goal is to produce a rigorous theory which yields
the feedback synthesis of the optimal control by means of a solution to the (non-
linear) operator Riccati equation, which must be shown to be well posed. The
unboundedness of the control operator, while being a natural and prominent
feature of the problem, provides the main mathematical challenge to achieve a
proper definition of the gain operator, which may not have a sufficiently rich
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(and hence, meaningful) domain. On the other hand, the framework of control
systems characterized by singular estimates turned out to be too rigid and fail-
ing to encompass many ‘mixed’ dynamics that are of fundamental importance
in the applications.

A prime illustration of this fact is a benchmark thermoelastic plate model
studied in [16]. The distinct control-theoretic properties exhibited by its ab-
stract representation, according to different sets of mechanical/thermal bound-
ary conditions, revealed that the singular estimate which pertains to its parabolic
component (that is the equation for the temperature distribution in the plate)
does not always fully ‘propagate’ to the entire system. Under certain boundary
conditions, the coupling brings about a more involved behaviour of the (con-
trolled) coupled dynamics. More precisely, in contrast with the case of hinged
boundary conditions, when the system is supplemented with clamped (mechani-
cal) boundary conditions and is subject to Dirichlet thermal control, the coupled
dynamics precludes the validity of a singular estimate (for the norm of the oper-
ator eAtB, as a bounded operator from the control space U into the state space
Y ); see [16] and [1].

It was indeed this initial/boundary value problem for the system of ther-
moelasticity to provide our original motivation for introducing in [2] a novel
class of abstract linear control systems—which includes the one discussed above
as a very special case. This class is characterized by a suitable decomposition
of the operator eAtB = F (t) + G(t), where the only component F (t) satisfies
a singular estimate, while the component G(t) exhibits appropriate regularity
properties which account for the (predominant) hyperbolic character and the
parabolic one; see [2, Hypothesis 2.2] for full details.
The goal was then to develop a sufficiently general abstract set-up which could
encompass significant interconnected PDE systems comprising both hyperbolic
and parabolic components, and yet lacking the overall ‘parabolic-like’ character
disclosed by a singular estimate. Moreover, we aimed at developing a corre-
sponding theory of the quadratic optimal control problem which escaped re-
strictions on the observation operator in order to achieve well-posedness of the
Riccati equations, unlike the case of purely hyperbolic problems.

Thus, a theory of the LQ-problem for the class of systems described above
(and mathematically defined by Hypothesis 2.2 in [2]) in the finite time horizon
case has been developed in [2]. The major novel features of this optimal control
theory are shortly outlined below; the reader is referred to [2, Theorem 2.2] for
a complete description of the obtained results.

First of all, in contrast with previous theories the gain operator B∗P (t) is
only densely defined in the state space Y (it is bounded onD(Aǫ), with arbitrarily
small ǫ). This turns out to be sufficient to obtain well-posed Differential Riccati
equations

d

dt
(P (t)x, z)Y + (A∗P (t)x, z)Y + (P (t)Ax, z))Y − (B∗P (t)x,B∗P (t)z)U

+ (R∗Rx, z)Y = 0 for any x, z ∈ D(A).

Secondly, solvability of the corresponding quadratic optimal control problems
follows without assuming smoothing properties of the observation operator R.
More precisely, the weak requirement on R—that is the same as condition (1.8)
of Hypothesis 1.4—allows bounded operators which, roughly, just ‘maintain
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regularity’, such as the identity operator. Consequently, natural quadratic func-
tionals such as the ones which involve the integral of the physical energy of the
system are allowed for the first time.

Model-specific analyses needs to be carried out on diverse PDE problems,
in order to establish the regularity of boundary traces that is required in order
to apply the introduced abstract theory (of the LQ-problem on a finite time
interval). This has been achieved, indeed, in the case of boundary control
problems for acoustic-structure and fluid-structure interactions as well; see [15]
and [17, 18], respectively.

Present work. The purpose of this paper is to complement the LQ-theory
described above by developing a complete infinite time horizon analysis. The
task is not straightforward owing to a natural mixing of singularities occurring
in short and long time. The interplay between the long time stability for the
forward problem and the short time development of singularities for the adjoint
problem lie at the heart of the problem.

We emphasize at the outset that we establish solvability of the optimal con-
trol problem, as well as well-posedness of the corresponding Algebraic Riccati
equations, under minimal assumptions on the operators involved. More pre-
cisely, we work on the very same abstract framework set forth in the finite
time horizon case, that is the one defined by [2, Hypothesis 2.2] for the oper-
ator eAtB and the observation operator R which occurs in the cost functional
(1.3). The finite time horizon scenario is only complemented with two natural
stability requirements pertaining to the underlying semigroup eAt and the com-
ponent F (t) arising from the decomposition of eAtB; see Hypothesis 1.1 and
Hypothesis 1.4(i) in the next Section.

As a general strategy for the proof, we start with the variational approach
which has been pursued in the work of the authors of [30], since their ear-
lier studies of parabolic PDEs with boundary control; see, e.g., [25]. Accord-
ingly, the program evolves through the following steps. (a) The existence of a
unique optimal pair (û, ŷ) follows by convex optimization arguments. (b) The
Lagrange-dual multipliers method yields the optimality condition for the opti-
mal pair. Then, the optimal pair (û, ŷ) is characterized in terms of the data of
the problem. (c) An operator P is introduced, defined in terms of the optimal
state ŷ(t; y0) = Φ(t)y0; this operator is ultimately shown to satisfy the Algebraic
Riccati Equation (ARE).

However, although the general philosophy of the aforesaid approach applies
as well to the present abstract class of boundary control systems, the regularity
specific to the operator eAtB—equivalently, to the corresponding input-to-state
map L—brings about novel technical challenges in order to establish that the
ARE is well-posed. Delicate issues are encountered when we are

(i) to give a meaning to the gain operator B∗P , for which boundedness on
the state space does not hold: hence, it is sought (and in fact established)
on a dense subset; even more, when we are

(ii) to pinpoint the regularity of the map t 7→ Φ(t)B, which plays a central role
in the study of the differential properties of the optimal state semigroup
Φ(t)—that is eventually shown to be differentiable for t > 0 on D(A).

We note that D(A) is not a natural domain of the strongly perturbed evolution
Φ(t) and therefore the aforementioned differentiability is far from expected.
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This differential property is a consequence of an appropriate (time and space)
regularity result obtained for the map t 7→ Φ(t)B, which in turn hinges on the a
suitably developed operator perturbation theory applied to the original operator
eAtB : U → [D(A∗)]′.

It is important to emphasize that while the former issue (i) has its counter-
part in the finite time horizon theory for the present class of dynamics (see [2]),
(ii) requires novel developments not only with respect to previous theories of
the LQ-problem (namely, for different classes of boundary control systems, such
as the one characterized by singular estimates), but also with respect to the
finite time horizon case for the present class of dynamics. For our developments
we introduce and employ an appropriate class of weighted function spaces (see
(1.15)), whose central role will become fully apparent in Section 4.2.

Paper outline. We conclude the Introduction with a brief overview of
the paper. In Section 1 we introduce the class of linear control systems, charac-
terized by Assumptions 1.1-1.4, for which we develop the infinite time horizon
optimal control theory. The major statements of this theory are collected in
Theorem 1.5. Few remarks about the notation are given at the end of the
Section.

In Section 2 we derive a complex of regularity results which concern the
operator B∗eA

∗t, as well as the components F and G of its decomposition.
In addition, we develop a full regularity theory for the input-to-state map L
defined by (2.10) and its adjoint L∗ (Proposition 2.6, Proposition 2.7). These
results constitute the fundamental basis for the developments of the subsequent
sections.

In Section 3 we introduce the optimal cost operator P and show that the
gain operator B∗P is bounded on D(Aǫ) (Theorem 3.5). The validity of the
feedback representation of the optimal control is established here.

In Section 4 we prove well-posedness of the algebraic Riccati equations. The
technical basis for the corresponding Theorem 4.16 is found in Proposition 4.13
and its Corollary 4.14, which in turn follow from the novel result of Theo-
rem 4.12. The preliminary description of the domain D(AP ) of the optimal
state semigroup, along with the detailed information provided by Proposition 4.5
(whose proof relies on the theory of interpolation spaces), will also prove essen-
tial in showing Corollary 4.14.

In Section 5 we briefly illustrate the applicability of the obtained infinite-
time horizon theory through the analysis of a natural optimal control problem
for the thermoelastic system which motivated and initiated our former theory
of [2].

1 The mathematical problem. Main results

Let Y and U be two separable Hilbert spaces, the state and control space,
respectively. We consider, on the extrapolation space [D(A∗)]′, the abstract
control system 





y′(t) = Ay(t) +Bu(t) , t > 0

y(0) = y0 ∈ Y ,
(1.1)

under the following basic Assumptions.
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Assumption 1.1. Let Y , U separable complex Hilbert spaces.

• The closed linear operator A : D(A) ⊆ Y → Y is the infinitesimal gen-
erator of a strongly continuous semigroup {eAt}t≥0 on Y , which is expo-
nentially stable; namely, there exist constants M ≥ 1 and ω > 0 such
that

‖eAt‖L(Y ) ≤M e−ωt ∀t ≥ 0 ; (1.2)

then A−1 ∈ L(Y );

• B : U → [D(A∗)]′ is a bounded linear operator; equivalently, A−1B ∈
L(U, Y ).

To the state equation (1.1) we associate the quadratic functional

J(u) =

∫ ∞

0

(
‖Ry(t)‖2Z + ‖u(t)‖2U

)
dt , (1.3)

where Z is a third separable Hilbert space—the so called observation space
(possibly Z ≡ Y )—and at the outset the observation operator R simply satisfies

R ∈ L(Y, Z) . (1.4)

Remarks 1.2. (i) Since by Assumption 1.1 the semigroup eAt is uniformly
stable, then −A is a positive operator and the fractional powers (−A)α, α ∈
(0, 1), are well defined. In order to make the notation lighter, we shall write Aα

instead of (−A)α throughout the paper.
(ii) We note that the functional (1.3) makes sense at least for u ≡ 0. This again
in view of the exponential stability of the semigroup eAt (Assumption 1.1),
which combined with (1.4) ensures Ry(·, y0; 0) ∈ L2(0,∞;Y ).
(iii) The analysis carried out in the present paper easily extends to more general
quadratic functionals, like

J(u) =

∫ ∞

0

(
‖Ry(t)‖2Z + ‖R̃u(t)‖2U

)
dt ,

provided R̃ is a coercive operator in U . We take R̃ = I just for the sake of
simplicity and yet without loss of generality.

The optimal control problem under study is formulated in the usual way.

Problem 1.3 (The optimal control problem). Given y0 ∈ Y , seek a control
function u ∈ L2(0, T ;U) which minimizes the cost functional (1.3), where y(·) =
y(· ; y0, u) is the solution to (1.1) corresponding to the control function u(·).

Aimed to pursue the study of the infinite horizon problem for the abstract
class of boundary control systems first introduced in [2], we assume throughout
the paper that the dynamics, control and observation operators are subject to
the following conditions.

Assumptions 1.4. The operator B∗eA
∗t can be decomposed as

B∗eA
∗tx = F (t)x +G(t)x, t ≥ 0, x ∈ D(A∗) , (1.5)

where F (t) : Y → U and G(t) : D(A∗) → U , t > 0, are bounded linear operators
satisfying the following assumptions:
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(i) there exist constants γ ∈ (0, 1) and η,N > 0 such that

‖F (t)‖L(Y,U) ≤ N t−γ e−ηt ∀t > 0 ; (1.6)

(ii) there is a time T > 0 such that the operator G(·) belongs to L(Y, Lp(0, T ;U))
for all p ∈ [1,∞[;

(iii) there exist T > 0 and ǫ > 0 such that:

(a) the operator G(·)A∗−ǫ belongs to L(Y,C([0, T ];U)), and in particular

KT := sup
t∈[0,T ]

‖G(t)A∗−ǫ‖L(Y,U) <∞ ; (1.7)

(b) the operator R∗R belongs to L(D(Aǫ),D(A∗ǫ)), i.e.

‖A∗ǫR∗RA−ǫ‖L(Y ) ≤ c <∞ ; (1.8)

(c) there exists q ∈ (1, 2) such that the operator B∗eA
∗·A∗ǫ, which is de-

fined in D(A∗1+ǫ), has an extension which belongs to L(Y, Lq(0, T ;U)).

1.1 Statement of the main results

The main result of this paper is the following Theorem, which collects the most
significant statements which pertain to the solution of the optimal control prob-
lem, as well as to well-posedness of the corresponding algebraic Riccati equa-
tions.

Theorem 1.5. Consider the optimal control Problem 1.3, under the set of
Hypotheses 1.1-1.4. Then, the following statements are valid.

S1. For any y0 ∈ Y there exists a unique optimal pair (û(·), ŷ(·)) for Prob-
lem 1.3, which satisfies the following regularity properties

û ∈
⋃

2≤p<∞

Lp(0,∞;U) , ŷ ∈ Cb([0,∞);Y ) ∩
[ ⋃

2≤p<∞

Lp(0,∞;Y )
]
.

(1.9)

S2. The operator Φ(t), t ≥ 0, defined by

Φ(t)y0 := ŷ(t) = y(t, y0; û) (1.10)

is a strongly continuous semigroup on Y , t ≥ 0, which is exponentially
stable; namely,

∃M1 ≥ 1 , ω1 > 0 : ‖Φ(t)‖L(Y ) ≤M1 e
−ω1t ∀t ≥ 0 . (1.11)

S3. The operator P ∈ L(Y ) defined by

Px :=

∫ ∞

0

eA
∗tR∗RΦ(t)x dt x ∈ Y (1.12)

is the optimal cost operator: namely,

(Px, x)Y =

∫ ∞

0

(
‖Rŷ(t;x))‖2Z + ‖û(t;x)‖2U

)
dt , ∀x ∈ Y ,

which also shows that P is (self-adjoint and) non-negative.
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S4. The gain operator B∗P belongs to L(D(Aǫ), U); namely, it is just densely
defined on Y and yet it is bounded on D(Aǫ).

S5. The infinitesimal generator AP of the (optimal state) semigroup Φ(t) co-
incides with the operator A(I −A−1BB∗P ), on the domain

D(AP ) ⊂
{
x ∈ Y : x−A−1BB∗Px ∈ D(A)

}

⊂
{
x ∈ Y : ∃w-limt→0+

1

t

∫ t

0

eA(t−τ)A−1BB∗PΦ(τ)x dτ

S6. The operator eAtB, defined in U and a priori with values in [D(A∗)]′, is
such that

eδ·eA·B ∈ L(U,Lp(0,∞; [D(A∗ǫ)]′)) ∀p ∈ [1, 1/γ) (1.13)

for all δ ∈ [0, ω ∧ η); almost the very same regularity is inherited by the
operator Φ(t)B:

eδ·Φ(·)B ∈ L(U,Lp(0,∞; [D(A∗ǫ)]′)) ∀p ∈ [1, 1/γ) , (1.14)

provided δ ∈ [0, ω ∧ η) is sufficiently small.

S7. The optimal cost operator P defined in (1.12) satisfies the following addi-
tional regularity properties:

P ∈ L(D(AP ),D(A∗)) ∩ L(D(A),D(A∗
P )) ;

moreover, P is a solution to the Algebraic Riccati equation corresponding
to Problem 1.3, that is

(Px,Az)Y + (Ax, Pz)Y − (B∗Px,B∗Pz)U + (Rx,Rz)Z = 0

for any x, z ∈ D(A),

to be interpreted as

(A∗Px, z)Y + (x,A∗Pz)Y − (B∗Px,B∗Pz)U + (Rx,Rz)Z = 0

when x, z ∈ D(AP ).

S8. If x ∈ D(Aǫ), the regularity (1.9) of the optimal pair is improved as follows:

ŷ ∈ Cb([0,∞);D(Aǫ)) ∩
[ ⋃

1≤p≤∞

Lp(0,∞;D(Aǫ))
]
,

û ∈ Cb([0,∞);U) ∩
[ ⋃

1≤p≤∞

Lp(0,∞;U)
]
.

S9. The following (pointwise in time) feedback representation of the optimal
control is valid for any initial state x ∈ Y :

û(t, x) = −B∗P ŷ(t, x) for a.e. t ∈ (0,∞).
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1.2 Notation

Inner products in Hilbert spaces X (Y and U , in practice) will be denoted by
(·, ·)X throughout the paper. The subscripts will be omitted when no confusion
arises. Instead, the symbol 〈·, ·〉V will denote a duality pairing of V ′ with V ;
V = D(A∗ǫ) will occur most often.

We shall utilize Lp-spaces with weights, defined (in the usual way) as follows:

Lpg(0,∞;X) :=
{

f : (0,∞) → X , g(·) f(·) ∈ Lp(0,∞;X)
}

,

where g : (0,∞) → R is a given (weight) function. We will more specifically
utilize exponential weights such as g(t) = eδt; to simplify the notation we will
write

Lpδ(0,∞;X) :=
{

f : (0,∞) → X , eδ· f(·) ∈ Lp(0,∞;X)
}

. (1.15)

2 The input-to-state map: relevant regularity

results

We begin by providing a series of regularity results, concerning first the operator
B∗eA

∗t (or one of its components) and then the input-to-state map L defined
by (2.10) (and its adjoint L∗). These results constitute the first consequences
of the abstract Assumptions 1.4 as well as the fundamental basis for the more
challenging developments of the subsequent sections.

2.1 Preliminary results

Proposition 2.1. For each δ ∈ [0, ω ∧ η[ and p ∈ [1,∞[ the map t 7→ eδtG(t)
belongs to L(Y, Lp(0,∞;U)).

Proof. Let T > 0 be such that Hypotheses 1.4(ii) holds. By hypothesis 1.4(i),
we have

F (·) ∈ L(Y, Lp(ǫ, T/2;U)) ∀ǫ ∈]0,
T

2
] .

Hence,
∫ T

T/2

‖B∗eA
∗tx‖pU dt ≤ c‖x‖pY ∀x ∈ D(A∗) . (2.1)

Now we can write:
∫ ∞

T/2

‖eδtB∗etA
∗

x‖pU dt =

∫ ∞

T/2

eδpt‖B∗eA
∗tx‖pU dt =

=
∞∑

k=1

∫ (k+1)T/2

kT/2

eδpt‖B∗eA
∗tx‖pU dt =

=

∞∑

k=1

∫ T

T/2

eδpseδp(k−1) T
2 ‖B∗eA

∗s[eA
∗(k−1)T

2 x]‖pU ds ;
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using (2.1), we deduce for each x ∈ D(A∗)

∫ ∞

T/2

‖eδtB∗eA
∗tx‖pU dt ≤ c eδpT

∞∑

k=1

eδp(k−1) T
2 ‖eA

∗(k−1)T
2 x‖pY ≤

≤ c eδpTMp
∞∑

k=1

e−(ω−δ)pT
2
(k−1)‖x‖pY = c(p, T )‖x‖pY .

By density, this shows that the map t 7→ eδtB∗eA
∗t has a continuous extension

from Y to Lp(T/2,∞;U). On the other hand, Hypothesis 1.4(i) implies that
∫ ∞

T/2

‖eδtF (t)x‖pU dt ≤ Np

(
2

T

)γp ∫ ∞

T/2

e−(η−δ)pt‖x‖pY dt ≤ c(p, T ) ‖x‖pY ,

so that
∫ ∞

T/2

‖eδtG(t)x‖pU dt =

∫ ∞

T/2

‖eδt
[

B∗eA
∗t − F (t)

]

x‖pU dt ≤ c(p, T )‖x‖pY .

As, by Hypothesis 1.4(ii),

∫ T/2

0

‖eδtG(t)x‖pU dt ≤ eδp
T
2

∫ T/2

0

‖G(t)x‖pU dt ≤ c(p, T )‖x‖pY ,

we conclude that t 7→ eδtG(t) is continuous from Y to Lp(0,∞;U).

Proposition 2.2. For each δ ∈ [0, ω ∧ η[ the map t 7→ eδtB∗eA
∗tA∗ǫ has an

extension which belongs to L(Y, Lq(0,∞;U)).

Proof. Let T > 0 such that Hypothesis 1.4(iii)(c) holds. We can write, for each
x ∈ D(A∗ǫ),

∫ ∞

0

‖eδtB∗eA
∗tA∗ǫx‖qU dt =

∞∑

k=0

∫ (k+1)T

kT

eδqt‖B∗eA
∗tA∗ǫx‖qU dt =

=

∞∑

k=0

∫ T

0

eδq(s+kT )‖B∗eA
∗sA∗ǫeA

∗kTx‖qU ds .

As eA
∗kTx ∈ D(A∗ǫ) whenever x ∈ D(A∗ǫ), we get by Hypothesis 1.4(iii)(c)

∫ ∞

0

‖eδtB∗eA
∗tA∗ǫx‖qU ds ≤ eδqT

∞∑

k=0

eδqkT
∫ T

0

∥
∥B∗eA

∗sA∗ǫ
[
eA

∗kTx
]∥
∥
q

U
ds ≤

≤ c eδqT
∞∑

k=0

M qe−(ω−δ)qkT ‖x‖qY .

Proposition 2.3. For each δ ∈ [0, ω ∧ η[ and p ∈ [1, 1/γ[ the map t 7→
eδtG(t)f(t) belongs to Lp(0,∞;U) whenever f ∈ Lr(0,∞;D(A∗ǫ)), with

p

1− γp
< r ≤ ∞ ; (2.2)

in addition,
‖eδ·G(·)f(·)‖Lp(0,∞;U) ≤ cp‖f‖Lr(0,∞;D(A∗ǫ)) . (2.3)

The constraints assumed on the exponents p and r are sharp.
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Proof. Let f ∈ Lr(0,∞;D(A∗ǫ)) be given, initially with 1 ≤ r <∞. We take a
representative of f(t), defined for almost any t ∈ [0, T ], and derive a preliminary
estimate of ‖eδ·G(·)f(·)‖ in Lp(0, T ;U), that is

∫ T

0

‖eδtG(·)f(·)‖pU dt ≤ Kp
T

∫ T

0

eδpt‖A∗ǫf(t)‖pY dt

≤ Kp
T

( ∫ T

0

eδt pr/(r−p) dt
)(r−p)/r

‖f‖pLr(0,∞;D(A∗ǫ))

= CT ‖f‖
p
Lr(0,∞;D(A∗ǫ))

(2.4)

where we utilized first Hypothesis 1.4(iii)(a) and then we applied the Hölder
inequality with exponents r/(r − p) and r/p, taking r > p ≥ 1.

On the other hand, owing to Hypothesis 1.4(i), we immediately find the
estimate ∫ T

0

eδpt‖F (t)f(t)‖pU dt ≤ Np

∫ T

0

e−(η−δ)pt

tγp
‖f(t)‖pY . (2.5)

Thus, in order to render the integrand in the right hand side of (2.5) summable,
we take p ∈ [1, 1/γ) first, and apply once more the Hölder inequality, this time
with exponents s/p and s/(s− p), with s = pr/(r − p), thus obtaining

∫ T

0

eδpt‖F (t)f(t)‖pU dt ≤ Np
( ∫ ∞

0

e−(η−δ)st

tγs
dt
)p/s

‖f‖pLr(0,∞;D(A∗ǫ))

= Cp‖f‖
p
Lr(0,∞;D(A∗ǫ)) ,

(2.6)

We note that in (2.6) we used s/p > 1, along with sγ = prγ/(r− p) < 1, which
readily yields the lower bound in (2.2). Combining (2.6) with (2.4) we find

∫ T

0

eδpt‖B∗eA
∗tf(t)‖pU dt ≤ 2p

∫ T

0

eδpt
(
‖F (t)f(t)‖pU + ‖G(t)f(t)‖pU

)
dt

≤ C(p, T )‖f‖pLr(0,∞;D(A∗ǫ)) .

(2.7)

The obtained estimate (2.7) pertaining to the integral on (0, T ) is now used
to derive the following one on (T,∞):

∫ ∞

T

eδpt‖B∗eA
∗tf(t)‖pU dt =

∞∑

k=1

∫ (k+1)T

kT

eδpt‖B∗eA
∗tf(t)‖pU dt =

=

∞∑

k=1

eδpkT
∫ T

0

eδpτ‖B∗eA
∗τeA

∗kT f(τ + kT )‖pU dτ

≤ c(p, T )

∞∑

k=1

eδpkT ‖eA
∗kT f(·+ kT )‖pLr(0,∞;D(A∗ǫ))

≤ c(p, T )Mp
∞∑

k=1

e−(ω−δ)pkT ‖f‖pLr(0,∞;D(A∗ǫ)) . (2.8)
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Since δ < ω, the series in (2.8) is convergent, and there exists a constant Cp,
which depends only on p, such that

∫ ∞

T

eδpt‖B∗eA
∗tf(t)‖pU dt ≤ Cp‖f‖

p
Lr(0,∞;D(A∗ǫ)) . (2.9)

Assume now on p and r the constraints arisen so far during the proof, namely

1 ≤ p <
1

γ
,

p

1− γp
< r <∞ .

The same arguments used to find (2.6) provide

∫ ∞

T

eδpt‖F (t)f(t)‖pU dt ≤Mp

∫ ∞

T

t−γpe−(η−δ)pt‖f(t)‖pY dt

≤ c(p)‖f‖pLr(0,∞;D(A∗ǫ)) ,

which in view of (2.9) implies as well

∫ ∞

T

eδpt‖G(t)f(t)‖pU dt =

∫ ∞

0

eδpt‖[F (t)−B∗eA
∗t]f(t)‖pU dt

≤ c(p, T )‖f‖pLr(0,∞;D(A∗ǫ)) .

The above estimate and (2.4) finally establish (2.3).

The proof of (2.3) in the case r = +∞ is similar (even simpler), hence it is
omitted.

2.2 Regularity of the input-to-state map and its adjoint

A fundamental prerequisite for all the computations performed in the paper is a
detailed description of the regularity properties of the ‘input-to-state’ mapping,
that is the mapping L which associates to any control function u(·) the solution
to the state equation (1.1) with y0 = 0. Namely, L is defined as follows:

L : v 7→ Lv , Lv(t) :=

∫ t

0

e(t−s)ABv(s) ds

=

∫ t

0

F (t− s)∗v(s) ds+

∫ t

0

G(t− s)∗v(s) ds

= L(1)v(t) + L(2)v(t), t ≥ 0 .

(2.10)

We begin by recalling the main regularity properties of the integral operator
L(1). We note that in view of the key estimate (1.6) satisfied by the component
F (t), the proof of the statements of Proposition 2.4 below follows a pretty
standard route. In fact, it employs the same arguments used in the study of the
input-to-state map pertaining to parabolic-like dynamics or systems yielding
singular estimates; see [30] and [28].

Proposition 2.4. Let L(1) be the operator defined in (2.10). Then, the following
regularity properties hold.

(i) L(1) maps continuously L1(0,∞;U) into Lr(0,∞;Y ) for each r ∈ [1, 1γ [;
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(ii) L(1) maps continuously Lp(0,∞;U) into Lr(0,∞;Y ) for each p ∈]1, 1
1−γ [

and r ∈ [p, p
1−(1−γ)p ];

(iii) L(1) maps continuously L
1

1−γ (0,∞;U) into Lr(0,∞;Y ) for each r ∈ [ 1
1−γ ,∞[;

(iv) L(1) maps continuously Lp(0,∞;U) into Lr(0,∞;Y ) ∩ Cb([0,∞[;Y ) for

each p ∈] 1
1−γ ,∞] and r ∈ [p,∞].

Proof. First, an easy application of Hölder inequality and Tonelli Theorem
shows that L(1) maps continuously Lp(0,∞;U) into Lp(0,∞;Y ) for each p ∈
[1,∞]. Next, property (i) follows directly by Hölder inequality; property (ii) is a
consequence of [20, Theorem 383] and interpolation, and finally properties (iii)
and (iv) follow again by the Hölder inequality and interpolation.

The analysis of the operator L(2) is more tricky. It exploits the distinct
regularity properties of the component G(t) pointed out in Proposition 2.3.

Proposition 2.5. The following properties hold true:

(i) L(2) maps continuously L1(0,∞;U) into Ls(0,∞; [D(A∗ǫ)]′) for each s ∈
[1, 1/γ);

(ii) L(2) maps continuously Lp(0,∞;U) into Lr(0,∞;Y ) ∩ Cb([0,∞[;Y ) for
each p ∈ (1,∞] and r ∈ [p,∞].

Proof. (i) The proof is based on a duality argument. Let u ∈ L1(0,∞, U)
be given and let w ∈ Lr(0,∞;D(A∗ǫ)), with the summability exponent r to be
choosen appropriately later. We take the duality pairing 〈(L(2)u)(t), w(t)〉D(A∗ǫ),
integrate on (0,∞) and rewrite as follows:

∫ ∞

0

〈L(2)u(t), w(t)〉D(A∗ǫ) dt =

∫ ∞

0

〈
∫ t

0

G(t− τ)∗u(τ) dτ, w(t)
〉

D(A∗ǫ)
dt

=

∫ ∞

0

∫ ∞

τ

(
u(τ), G(t − τ)w(t)

)

U
dt dτ

=

∫ ∞

0

(
u(τ),

∫ ∞

τ

G(σ)w(σ + τ) dσ
)

U
dτ ,

which gives

∣
∣
∣

∫ ∞

0

〈L(2)u(t), w(t)〉D(A∗ǫ) dt
∣
∣
∣ ≤ ‖u‖L1(0,∞;U) sup

τ≥0

[ ∫ ∞

τ

‖G(σ)w(σ + τ)‖U dσ
]

.

(2.11)
We then proceed with the estimate of the integral on the right hand side of
(2.11). We insert the exponential weight eδt, apply the Hölder inequality first
(p′ denotes the conjugate exponent of p) and utilize the estimate (2.3) of Propo-
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sition 2.3 next, to find

∣
∣
∣

∫ ∞

0

〈L(2)u(t), w(t)〉D(A∗ǫ) dt
∣
∣
∣

≤ ‖u‖L1(0,∞;U)

(∫ ∞

0

e−δp
′σ dσ

)1/p′

sup
τ≥0

[ ∫ ∞

τ

eδpσ‖G(σ)w(σ + τ)‖pU dσ
]1/p

≤ CT ‖u‖L1(0,∞;U) sup
τ≥0

‖w‖Lr(τ,∞;D(A∗ǫ))

= CT ‖u‖L1(0,∞;U) ‖w‖Lr(0,∞;D(A∗ǫ)) .
(2.12)

Note carefully that Proposition 2.3 applies with any p ∈ [1, 1/γ) and w ∈
Lr(τ,∞;D(A∗ǫ)), provided the summability exponent r fulfils the constraint
(2.2). Therefore, (2.12) implies by duality

L(2) ∈ L(L1(0,∞;U), Ls(0,∞; [D(A∗ǫ)]′)) ,

where s is the conjugate exponent of r and the estimate

‖L(2)u‖Ls(0,∞;[D(A∗ǫ)]′)) ≤ C ‖u‖L1(0,∞;U) ,

holds with a constant C depending only on p and T . Thus, (2.2) readily implies

1 ≤ s <
p

p− (1− γp)
,

while it is elementary to check that

max
p∈[1, 1

γ
)

p

p− (1− γp)
=

1

γ
,

which confirms the constraint s ∈ [1, 1/γ) and thus completes the proof of part
(i).

(ii) For fixed p ∈]1,∞[, using Proposition 2.1 and Hypothesis 1.4(ii), we com-
pute for any ϕ ∈ C∞

0 (]0,∞[;Y ):
∣
∣
∣
∣

∫ ∞

0

(
L(2)v(t), ϕ(t)

)

Y
dt

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ ∞

0

∫ t

0

(v(s), G(t− s)ϕ(t))U dsdt

∣
∣
∣
∣
≤

≤

∫ ∞

0

∫ t

0

‖e−δ(t−·)v(·)‖Lp(0,t;U)‖e
δ·G(·)ϕ(t)‖Lp′ (0,t;U) dsdt ≤

≤ c(p)

∫ ∞

0

‖e−δ(t−·)v(·)‖Lp(0,t;U)‖ϕ(t)‖Y dt.

From here, using Hölder inequality and Tonelli Theorem, it follows easily that
∣
∣
∣
∣

∫ ∞

0

(
L(2)v(t), ϕ(t)

)

Y
dt

∣
∣
∣
∣
≤ ‖v‖Lp(0,∞;U)‖ϕ‖Lp′(0,∞;Y ),

as well as
∣
∣
∣
∣

∫ ∞

0

(
L(2)v(t), ϕ(t)

)

Y
dt

∣
∣
∣
∣
≤ ‖v‖Lp(0,∞;U)‖ϕ‖L1(0,∞;Y ),

which proves, by density, that L(2)v ∈ Lp(0,∞;U) ∩ L∞(0,∞;U). In addition,
the argument of [2, Proposition B.2] yields continuity. The result then follows
by interpolation.
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The major regularity properties of L are collected in the following Proposi-
tion.

Proposition 2.6. The operator L enjoys the following properties:

(i) L maps continuously L1(0,∞;U) into Lr(0,∞; [D(A∗ǫ)]′) for each r ∈ [1, 1
γ [;

(ii) L maps continuously Lp(0,∞;U) into Lr(0,∞;Y ) for each p ∈]1, 1
1−γ [ and

r ∈ [p, p
1−(1−γ)p ];

(iii)L maps continuously L
1

1−γ (0,∞;U) into Lr(0,∞;Y ) for each r∈[ 1
1−γ ,∞[;

(iv) L maps continuously Lp(0,∞;U) into Lr(0,∞;Y )∩Cb([0,∞[;Y ) for each
p ∈] 1

1−γ ,∞] and r ∈ [p,∞].

(v) L maps continuously Lr(0,∞;U) with r ∈ [q′,∞] into Cb([0,∞[;D(Aǫ)).

Proof. Parts (i)-(ii)-(iii)-(iv) readily follow combining the results established in
Propositions 2.4 and 2.5.

In order to prove (v), let r ≥ q′ and let u ∈ Lr(0,∞;U) be given. Then, by
Proposition 2.2, for each z ∈ D(A∗ǫ) and t ≥ 0 we have:

|(Lu(t), A∗ǫz)Y | =

∣
∣
∣
∣

∫ t

0

(u(t− s), B∗eA
∗sA∗ǫz)U ds

∣
∣
∣
∣
=

=

∣
∣
∣
∣

∫ t

0

(e−δsu(t− s), eδsB∗eA
∗sA∗ǫz)U ds

∣
∣
∣
∣
≤

≤ c‖e−δ·u(t− ·)‖Lq′ (0,t;U)‖e
δ·B∗eA

∗·A∗ǫz‖Lq(0,t;U) ≤

≤ c(q, r)‖u‖Lr(0,∞;U)‖z‖Y ,

so that Lu ∈ L∞(0,∞;D(Aǫ)). Now if t > τ ≥ 0 we also have

|(Lu(t)− Lu(τ), A∗ǫz)Y | =

=

∣
∣
∣
∣

∫ t

0

(u(t− s), B∗eA
∗sA∗ǫz)U ds−

∫ τ

0

(u(τ − s), B∗eA
∗sA∗ǫz)U ds

∣
∣
∣
∣
=

=

∣
∣
∣
∣

∫ t

τ

(e−δsu(t− s), eδsB∗eA
∗sA∗ǫz)U ds

∣
∣
∣
∣
+

+

∣
∣
∣
∣

∫ τ

0

e−δs(u(t− s)− u(τ − s), eδsB∗eA
∗sA∗ǫz)U ds

∣
∣
∣
∣
≤

≤ c(q, r)
(

‖e−δ·u(t− ·)‖Lq′ (τ,t;U) + ‖e−δ·(u(t− ·)− u(τ − ·))‖Lq′ (0,τ ;U)

)

·

·‖eδ·B∗eA
∗·A∗ǫz‖Lq(0,t;U) ≤

≤ c(q, r)
(
‖u‖Lr(0,t−τ ;U) + ‖u(·+ t− τ)− u(·)‖Lr(0,∞;U)

)
‖z‖Y ,

and the result readily follows.

We recall that the adjoint L∗ of the operator L is defined as follows:

L∗ : v 7→ L∗v , L∗v(s) =

∫ ∞

s

B∗eA
∗(t−s)v(t) dt, s ≥ 0 . (2.13)

As it is well known, the regularity analysis of L∗ is also central to the study of
the optimal control problem.

16



Proposition 2.7. For the operator L∗ defined in (2.13) the following properties
hold true.

(i) L∗ maps continuously L1(0,∞;Y ) into Lr(0,∞;U) for each r ∈ [1, 1γ [;

(ii) L∗ maps continuously Lp(0,∞;Y ) into Lr(0,∞;U) for each p ∈]1, 1
1−γ [

and r ∈ [p, p
1−(1−γ)p ];

(iii) L∗ maps continuously Lp(0,∞;Y ) into Lr(0,∞;U) for each p ∈ [ 1
1−γ ,∞[

and r ∈ [p,∞[.

(iv) L∗ maps continuously Lp(0,∞;D(A∗ǫ)) into L∞(0,∞;U) for any p ∈
] 1
1−γ ,∞];

(v) L∗ maps continuously L1(0,∞; [D(Aǫ)]′) into Lr(0,∞;U) for all r ∈ [1, q].

Proof. It follows by Proposition 2.6 by duality: indeed, we have for each p ≥ 1
∣
∣
∣
∣

∫ ∞

0

(L∗v(t), u(t))U dt

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ ∞

0

(v(t), Lu(t))U dt

∣
∣
∣
∣
≤ ‖v‖Lp(0,∞;U)‖Lu‖Lp′(0,∞;U) .

Now to prove (i) we take p = 1, so that p′ = ∞, and by Proposition 2.6(iv) we
get

∣
∣
∣

∫ ∞

0

(L∗v(t), u(t))U dt
∣
∣
∣ ≤ c ‖v‖L1(0,∞;U)‖u‖Lr′(0,∞;U) ∀r′ ∈

( 1

1− γ
,∞

]

,

which means L∗v ∈ Lr(0,∞;U) for each r ∈ [1, 1/γ).
Similarly, to prove (ii) we take p ∈ (1, 1

1−γ ), so that p′ ∈ ( 1γ ,∞): then, since

p′ = r′

1−(1−γ)r′ if and only if r′ = p′

1+(1−γ)p′ , Proposition 2.6(ii) yields

∣
∣
∣

∫ ∞

0

(L∗v(t), u(t))U dt
∣
∣
∣ ≤ ‖v‖Lp(0,∞;U)‖u‖Lr′(0,∞;U) ∀r

′∈
[ p′

1 + (1− γ)p′
, p′

]

which means L∗v ∈ Lr(0,∞;U) for each r ∈ [p, p
1−(1−γ)p ].

To prove (iii), we take p ∈ [ 1
1−γ ,∞), so that p′ ∈ (1, 1

γ ]; since again p′ =
r′

1−(1−γ)r′ if and only if r′ = p′

1+(1−γ)p′ , by Proposition 2.6(i) we obtain

∣
∣
∣

∫ ∞

0

(L∗v(t), u(t))U dt
∣
∣
∣ ≤ c‖v‖Lp(0,∞;U)‖u‖Lr′(0,∞;U) ∀r′∈

[ p′

1 + (1− γ)p′
, p′

]

,

which means L∗v ∈ Lr(0,∞;U) for each r ∈ [p, p
1−(1−γ)p ].

The assertion (iv) is the dual statement of (i) of Proposition 2.6.

Finally, (v) follows again from the assertion (v) of Proposition 2.6 by duality.
We take v ∈ L1(0,∞; [D(Aǫ)]′), which by [2, Remark A.1(ii)] means v(t) =
A∗ǫw(t), with w ∈ L1(0,∞;Y ). We then compute

∫ ∞

0

(L∗v(t), u(t))U dt =

∫ ∞

0

(A∗ǫw(t), Lu(t))Y dt =

=

∫ ∞

0

(w(t), AǫLu(t))Y dt ≤ ‖w‖L1(0,∞;Y ) ‖Lu‖Cb([0,∞[;D(Aǫ))

≤ cr‖A
∗−ǫv‖L1(0,∞;Y ) ‖u‖Lr(0,∞;U) , r ∈ [q′,∞] ,
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where in the latter estimate we used (v) of Proposition 2.6. The above shows
that L∗ maps L1(0,∞; [D(Aǫ)]′) continuously in the dual space of Lr(0,∞;U),
for any r ∈ [q′,∞], that is Lr

′

(0,∞;U) with r′ ∈ [1, q], thus concluding the
proof.

Remark 2.8. All the regularity results provided by the statements contained in
Proposition 2.6 and Proposition 2.7 may be easily extended to natural analogs
in Lpδ-spaces, if δ ∈ [0, ω ∧ η) is given, maintaining the respective summability
exponents p. The proof is omitted.

In the following Proposition we collect a couple of regularity results which—
in view of Remark 2.8—are in essence contained in assertion (v) of Proposi-
tion 2.6. However, since (2.14) below will play a crucial role in the proof of
well-posedness of the Algebraic Riccati equations, its statement is given explic-
itly, along with a distinct proof.

Proposition 2.9. For any δ ∈ [0, ω ∧ η[, the following regularity results are
valid:

R∗RL ∈ L(Lq
′

δ (0,∞;U), L∞
δ (0,∞;D(A∗ǫ))) ; (2.14a)

L∗R∗R ∈ L(L1
δ(0,∞; [D(A∗ǫ)]′), Lqδ(0,∞;U)) . (2.14b)

Proof. Let u ∈ Lq
′

δ (0,∞;U) and z ∈ D(Aǫ). We have

|(R∗RLu(t), Aǫz)Y | =
∣
∣
∣

∫ t

0

(u(σ), B∗eA
∗(t−σ)R∗RAǫz)U dσ

∣
∣
∣ ≤

≤

∫ t

0

∣
∣
∣

(
e−δ(t−σ)u(σ), eδ(t−σ)B∗eA

∗(t−σ)R∗RAǫz
)

U

∣
∣
∣ dt ≤

≤ C e−δt ‖eδ·u‖Lq′(0,∞;U) ‖e
δ·B∗eA

∗·R∗RAǫz‖Lq(0,∞;U) ≤

≤ C e−δt ‖eδ·u‖Lq′(0,∞;U) ‖z‖Y ,

where δ ∈]0, ω ∧ η[ and in the last estimate we used Proposition 2.2. Therefore,

|(eδtR∗RLu(t), Aǫz)Y | ≤ C ‖eδ·u‖Lq′(0,∞;U) ‖z‖Y ,

i.e. A∗ǫeδtR∗RLu ∈ L∞(0,∞;U) and

‖R∗RLu(·)‖L∞

δ
(0,∞;D(A∗ǫ)) ≤ c ‖u‖

Lq′

δ
(0,∞;U)

. (2.15)

The statement in (2.14b) follows from (2.14a) by duality.

3 The optimal state semigroup, the optimal cost

operator

3.1 The optimal pair

Since we are dealing with a classical linear-quadratic problem, the existence of
a unique optimal control minimizing the cost functional (1.3) follows by convex

18



optimization arguments. In addition, the Lagrange multipliers method yields
the optimality condition for the optimal pair (ŷ, û) ∈ L2(0,∞;Y )×L2(0,∞;U),
that is

û = −L∗R∗Rŷ , (3.1)

where
ŷ = eA·y0 + Lû . (3.2)

Then, owing to the regularity provided by Propositions 2.6 and 2.7, as well as
to the decay assumption on the semigroup eAt, we can appeal to a classical
bootstrap process: we set

p0 = 2, pn+1 =
pn

1− (1− γ)pn
, 0 ≤ n < N ,

where N ∈ N is the first positive integer such that pN > 1
1−γ ; such an integer

does exist because

pn+1 − pn = pn
(1 − γ)pn

1− (1− γ)pn
>

4(1− γ)

2γ − 1
> 0 .

Since û ∈ Lp0(0,∞;U), by (3.2) we know ŷ ∈ Lp1(0,∞;Y ), so that we deduce
as a first step û(·, s;x) ∈ Lr(0,∞;U) for all r < p2 as well as, by (3.1), ŷ ∈
Ls(0,∞;Y ) for all s < p3. Thus, after n steps, we get

û ∈ Lr(0,∞;U) ∀r < p2n , ŷ ∈ Ls(0,∞;Y ) ∀s < p2n+1 .

This procedure stops as soon as 2n or 2n+ 1 equals N : indeed, if N = 2n
we get at the n-th step û ∈ Lr(s, T : U) for all r < pN and ŷ ∈ Cb([0,∞[;Y ),
so that in the next step we obtain û ∈ Lp(0,∞;U) for all p <∞; if N = 2n+1
we find directly, at the (n + 1)-th step, û ∈ Lp(0,∞;U) for all p < ∞ and
ŷ ∈ Cb([0,∞[;Y ). At any step we also find the corresponding bound in terms
of ‖x‖Y . Thus, we have proved the following Proposition.

Proposition 3.1 (Statement S1. of Theorem 1.5). For any x ∈ Y there exists
a unique optimal control û(·) for problem (1.1)-(1.3). The optimal pair (ŷ, û),
which a priori belongs to L2(0,∞;Y )× L2(0,∞;U), further satisfies

ŷ ∈ Lp(0,∞;Y ) ∩Cb([0,∞);Y ) , û ∈ Lp(0,∞;Y ) ∀p ∈ [2,∞) ,

continuously with respect to x ∈ Y :

‖ŷ‖Lp(0,∞;U) ≤ cp‖x‖Y ∀p ∈ [2,∞) ; ‖ŷ‖Cb([0,∞[;Y ) ≤ c‖x‖Y , (3.3a)

‖û‖Lp(0,∞;U) ≤ cp‖x‖Y ∀p ∈ [2,∞) . (3.3b)

Let us denote by Φ(·)x the optimal state corresponding to an initial state
x ∈ Y and to the optimal control û(·):

Φ(t)x := ŷ(t) = y(t, x; û) .

The significant basic properties of the family of operators {Φ(t)}t≥0 are briefly
recorded below.

1. The estimate on the right in (3.3a) of Proposition 3.1 yields ‖Φ(t)‖L(Y ) <∞
uniformly in t ≥ 0.
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2. It is not difficult the show that ŷ(t, x) possesses the transition property

ŷ(t+ σ;x) = ŷ(σ; ŷ(t, x)) ∈ Cb([0,∞);Y ) x ∈ Y , t, σ > 0 , (3.4)

which renders Φ(t) a strongly continuous semigroup on Y ; indeed, Φ(0) = I is
readily checked, as ŷ(0, x) = x for any x ∈ Y . We just note that the proof of
(3.4) follows a standard route: it is based on the identity

ŷ(t;x) + [LL∗R∗Rŷ(·, x)](t) = eAtx , (3.5)

which follows from Lû = −LL∗R∗Rŷ (this, in turn, is a direct consequence of the
optimality condition (3.1)), combined with (3.2). (See, e.g., [30, Theorem 6.25.1,
p. 626] for an outline of the necessary steps, though in the context of min-max
game theory.)

Thus, (3.4) confirms that Φ(t) is a C0-semigroup on Y , which introduces its
infinitesimal generator, that is the linear, closed operator AP : D(AP ) ⊂ Y → Y
defined by

D(AP ) :=
{
x ∈ Y : lim

t→0+

Φ(t)x− x

t
exists in Y

}
,

APx := lim
t→0+

Φ(t)x − x

t
, x ∈ D(AP ) .

(3.6)

The domain D(AP ) is by its nature dense.

3. Since Φ(·)x ∈ L2(0,∞;Y ) and Φ(t) is a C0-semigroup, then according to
Datko’s Theorem Φ(t) = eAP t is further exponentially stable, which confirms
(1.11) .

In summary, we have the following

Proposition 3.2 (Statement S2. of Theorem 1.5). The optimal state ŷ(t, x)
defines a strongly continuos semigroup eAP t in Y , t ≥ 0, which is exponentially
stable.

A deeper insight into the additional differential properties of the optimal
state semigroup Φ(t) = eAP t—the ones which will ultimately allow us to estab-
lish well-posedness of the ARE—is given in Section 4.

3.2 The Riccati operator P

The Riccati operator P is initially introduced, as usual, explicitly in terms of
the optimal state semigroup Φ(t):

Px :=

∫ ∞

0

eA
∗tR∗RΦ(t)x dt , x ∈ Y . (3.7)

We record first the basic properties of the operator P .

Proposition 3.3. The operator P belongs to L(Y ) ∩ L(D(Aǫ),D(A∗ǫ)).

Proof. With x ∈ Y we just utilize (1.2) of Hypothesis 1.1 and the continuity
property (3.3a) of Proposition 3.1 to find

‖Px‖Y ≤

∫ ∞

0

‖eA
∗t‖L(Y )‖R

∗R‖L(Y )‖Φ(t)x‖Y dt ≤

≤

∫ ∞

0

Mce−ωt dt ‖x‖Y ≤ c′‖x‖Y .
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Next, for x ∈ D(Aǫ) we write Φ(t) = eAtx+Lû(t) and employ the assumption
(1.8) on the observation operator R, the regularity provided by (2.15) and (3.3a)
to obtain

‖Px‖D(A∗ǫ) ≤

∫ ∞

0

‖eA
∗t‖L(Y )‖R

∗R[eAtx+ Lû(t)]‖D(A∗ǫ) dt

≤

∫ ∞

0

M e−ωt‖A∗ǫR∗RA−ǫ‖L(Y )‖e
AtAǫx‖Y dt

+

∫ ∞

0

M e−ωt‖R∗RLû‖L∞(0,∞;D(A∗ǫ)) dt

≤ c
[
‖x‖D(Aǫ) + ‖û‖Lq′(0,∞;U)

]
≤ c‖x‖D(Aǫ) .

By the very definition of P in (3.7) it easily follows—using the optimality
condition (3.1)—that the optimal cost is a quadratic form on Y , that is (Px, x);
this motivates the term optimal cost operator used for P . The proof of this fact
is briefly recorded below.

We simply compute, for any x ∈ Y , the cost corresponding to the optimal
pair, that is

J(û) =

∫ ∞

0

{(
Rŷ(t, x), Rŷ(t, x)

)

Y
+
(
û(t, x), û(t, x)

)

U

}

dt

=

∫ ∞

0

(
Rŷ(t, x), Rŷ(t, x)

)

Y
dt−

∫ ∞

0

(
L∗R∗Rŷ(· , x)(t), û(t, x)

)

U
dt

=

∫ ∞

0

(
RΦ(t)x,R[eAtx+ (Lû)(t)]

)

Y
dt−

∫ ∞

0

(
RΦ(t)x,R(Lû)(t)

)

Y
dt

=

∫ ∞

0

(RΦ(t)x,ReAtx)Y dt =
(∫ ∞

0

eA
∗tR∗RΦ(t)x dt, x

)

Y
.

Owing to (3.7), the last equality shows that

J(û) ≡ (Px, x)Y ∀x ∈ Y . (3.8)

Remark 3.4. In much the same way one gets J(û) ≡ (x, Px)Y , which combined
with (3.8) shows that P is a self-adjoint operator; moreover, since J(û) ≥ 0 for
any x ∈ Y , (3.8) establishes as well that P is non-negative.

Similarly, one may show that

(Px1, x2)Y =

∫ ∞

0

{(
Rŷ(t, x1), Rŷ(t, x2)

)

Y
+
(
û(t, x1), û(t, x2)

)

U

}

dt, x1, x2 ∈ Y .

We now introduce the function p(t, x) defined by

p(t, x) :=

∫ ∞

t

eA
∗(τ−t)R∗Rŷ(τ, x) dτ t > 0 , x ∈ Y , (3.9)

which is the unique solution to the Cauchy problem
{

p′(t;x) = −A∗p(t)−R∗Rŷ(t, x)

lim
t→+∞

p(t;x) = 0 .
(3.10)
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A classical and elementary computation shows that if we rewrite P in (3.7)
as a time-dependent function, that is

Px :=

∫ ∞

t

eA
∗(τ−t)R∗RΦ(τ − t)x dt , x ∈ Y , t ≥ 0 ,

and next apply the above formula when x is replaced by Φ(t)x, namely:

PΦ(t)x :=

∫ ∞

t

eA
∗(τ−t)R∗RΦ(τ − t)Φ(t)x dt =

∫ ∞

t

eA
∗(τ−t)R∗RΦ(τ)x dt ,

then we immediately see that

PΦ(t)x ≡ p(t;x) ∀t ≥ 0 , x ∈ Y , (3.11)

which establishes a relation between the Riccati operator P and the function p.
The above formula (3.11) is the starting point in order to derive the feedback

representation of the optimal control—a property which is central to solvability
of Problem 1.3. Indeed, if we return to the optimality condition (3.1), and write
explicitly the integral operator L∗, we know that

û(t, x) = −

∫ ∞

t

B∗eA
∗(τ−t)R∗RΦ(τ)x dτ ∀x ∈ Y . (3.12)

Thus, a formal computation yields

û(t, x) = −B∗

∫ ∞

t

eA
∗(τ−t)R∗RΦ(τ)x dτ = −B∗p(t;x) , (3.13)

which combined with (3.11) would imply

û(t, x) = −B∗PΦ(t)x for any x ∈ Y and for a.e. t > 0.

However, going from (3.12) to (3.13) necessitates a deeper technical justification,
which is found in the next section.

3.3 The gain operator B
∗
P

The technical issue raised in the previous section—namely, the need for a rig-
orous justification of the first equality in (3.13)—as well as our next and major
task (that is to show that the optimal cost operator P does satisfy the algebraic
Riccati equation corresponding to the optimal control Problem 1.3), require that
we are able to give a proper meaning to the gain operator B∗P . We accomplish
this goal by introducing a linear operator, which will eventually coincide with
B∗P , that is shown to be bounded on a dense subset of Y (and yet unbounded
on Y ). The regularity result for the operator R∗RL set forth in Proposition 2.9,
along with Proposition 2.3 provide the tools.

Theorem 3.5 (Statement S4. of Theorem 1.5). Let ǫ be such that Hypothe-
sis 1.4(iii) holds true. Then, the following statements are valid.

(i) The integral

T x :=

∫ ∞

0

B∗eA
∗tR∗RΦ(t)x dt (3.14)

defines a (linear) bounded operator from D(Aǫ) into U .
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(ii) The operator B∗P , formally defined by

B∗Px := B∗

∫ ∞

0

eA
∗tR∗RΦ(t)x dt ,

coincides with T on D(Aǫ), and hence

B∗P ∈ L(D(Aǫ), U) . (3.15)

Proof. (i) Let x ∈ D(Aǫ). According to the decomposition (1.5) for B∗eA
∗t, the

integrand in (3.14) is split as follows:

B∗eA
∗tR∗RΦ(t)x = F (t)R∗RΦ(t)x+G(t)R∗ReAtx+G(t)R∗RLû(t) , (3.16)

with a further splitting due to (3.2). We will show that each summand on the
right hand side of (3.16) is a function in L1(0,∞;U).

First, the basic Hypothesis 1.4(i) combined with the regularity (3.3a) of the
optimal state readily imply

‖F (t)R∗RΦ(t)x‖U ≤ N t−γ e−ηt‖R∗R‖L(Y )‖Φ(t)x‖Y ≤ c t−γ e−ηt ‖x‖Y ,

which shows
∫ ∞

0

‖F (t)R∗RΦ(t)x‖U dt ≤ c‖x‖Y ∀x ∈ Y . (3.17)

Next, we recall Proposition 2.3 and utilize (2.3) with p = 1, f(t) = R∗ReAtx
and r = ∞, where R∗R is subject to Hypothesis 1.4(iii)(b), thus obtaining

∫ ∞

0

‖G(t)R∗ReAtx‖U dt ≤ c sup
t>0

‖R∗ReAtx‖D(A∗ǫ) ≤

≤ C ‖A∗ǫR∗RA∗−ǫ‖L(Y )‖x‖D(Aǫ) ,

so that ∫ ∞

0

‖G(t)R∗ReAtx‖U dt ≤ c‖x‖D(Aǫ) ∀x ∈ D(Aǫ) . (3.18)

Finally, for the third summand in (3.16) we apply once more Proposition 2.3,
this time with f(t) = R∗RLû(t). Notice that the membership R∗RLû(·) ∈
L∞(0,∞;D(A∗ǫ)) follows from (2.14a), in view of the regularity established in
Proposition 3.1, which provide as well the appropriate estimate. Therefore,

∫ ∞

0

‖G(t)R∗RLû(t)‖U dt ≤ c sup
t>0

‖R∗RLû(t)‖D(A∗ǫ) ≤ c‖û‖Lq′ (0,∞;U) ,

which yields, in view of (3.3b),

∫ ∞

0

‖G(t)R∗RLû(t)‖U dt ≤ c‖x‖Y ∀x ∈ Y . (3.19)

The obtained estimates (3.17), (3.18) and (3.19) show that

‖T x‖U =
∥
∥
∥

∫ ∞

0

B∗eA
∗tR∗RΦ(t)x dt

∥
∥
∥
U
≤ c ‖x‖D(Aǫ) ∀x ∈ D(Aǫ) ,
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that is T ∈ L(D(Aǫ), U).

(ii) We return to the decomposition (1.5), where by Hypotheses 1.4(i) and (iii)(a)
we know

F (t) ∈ L(Y, U), G(t) ∈ L(D(A∗ǫ), U) ,

respectively. On the other hand, we also have for t > 0

B∗eA
∗tx = [eAtB]∗x ∀x ∈ D(A∗) , (3.20)

where
[eAtB]∗ ∈ L(D(A∗ǫ), U) ;

see [2, Lemma A.2]. Thus, the operators F (t)+G(t) and [eAtB]∗ are well defined
on D(A∗ǫ) and both coincide with B∗eA

∗t on D(A∗). Hence, if x ∈ D(Aǫ) we
can write for all v ∈ U

(T x, v)U =

∫ ∞

0

([eAtB]∗R∗RΦ(t)x, v)U dt =

=

∫ ∞

0

(R∗RΦ(t)x, eAtBv)D(A∗ǫ),[D(A∗ǫ)]′ dt =

= lim
s→0+

∫ ∞

0

(eA
∗sR∗RΦ(t)x, eAtBv)D(A∗ǫ),[D(A∗ǫ)]′ dt =

= lim
s→0+

∫ ∞

0

(eA
∗tR∗RΦ(t)x, eAsBv)D(A∗ǫ),[D(A∗ǫ)]′ dt =

= lim
s→0+

(Px, eAsBv)D(A∗ǫ),[D(A∗ǫ)]′ = lim
s→0+

([eAsB]∗Px, v)U (3.21)

=: (B∗Px, v)U .

This shows that for all x ∈ D(Aǫ) the operator B∗P is uniquely defined as a
weak limit in U , and coincides with T , i.e. B∗Px = T x. By part (i), B∗P ≡
T ∈ L(D(Aǫ), U) which concludes the proof of (ii).

Remark 3.6. To give a deeper insight into the previous result, we summarize
the major steps of its proof, complemented by few additional technical remarks.
First, the operator T defined by (3.14) is shown to be a bounded operator from
D(Aǫ) in U . Next, the equivalence between (T x, v)U and the limit in (3.21)
(for any x ∈ D(Aǫ) and any v ∈ U) shows that T x coincides with the weak
limit w-lims→0+ [e

AsB]∗Px in U . Notice that the operator [eAsB]∗ is bounded
from D(A∗ǫ) in U , and yet its norm blows up, as s → 0+, like s−γ ; see [2,
Lemma A.2].

Finally, the motivation for denoting by B∗Px the aforesaid weak limit is the
following. When Px belongs to D(A∗) rather than just to D(A∗ǫ), we know
that [eAsB]∗Px = B∗eA

∗sPx → B∗Px, because eA
∗sPx → Px in D(A∗) as

s → 0+, whereas by its very definition B∗ ∈ L(D(A∗), U). We note that the
membership Px ∈ D(A∗) does hold, at least for x ∈ D(AP ), as we will see later
in Lemma 4.15.

3.4 The feedback representation of the optimal control

On the basis of the analysis carried out in the previous section, we would intend
now to derive the feedback representation of the optimal control. The obtained
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property (3.15) for the gain operator suggests that we preliminarly assume x ∈
D(Aǫ) and show the validity of the feedback formula for these smoother initial
data. In fact, with x ∈ D(Aǫ), we can exploit the additional regularity of the
optimal state, which is made clear in the following Proposition, also of intrinsic
interest; the proof is postponed to Appendix A.

Proposition 3.7 (Statement S8. of Theorem 1.5). If x ∈ D(Aǫ), the optimal
state Φ(t)x belongs to D(Aǫ) for all t ≥ 0. More precisely,

x ∈ D(Aǫ) =⇒ Φ(· )x ∈ Lp(0,∞;D(Aǫ)) ∩ Cb([0,∞);D(Aǫ)) (3.22)

for all p ∈ [1,∞], continuously with respect to x. Consequently,

x ∈ D(Aǫ) =⇒ û ∈ Cb([0,∞);U) . (3.23)

Assuming x ∈ D(Aǫ), by Proposition 3.7 we know that Φ(· )x ∈ Lp(0,∞;D(Aǫ))
and we can appeal to the same arguments used in the proof of Theorem 3.5 to
give a rigorous justification to (3.13). It is now true that (3.11), combined with
(3.13), provides the feedback representation of the optimal control, initially for
x ∈ D(Aǫ):

û(t, x) = −B∗PΦ(t)x for any x ∈ D(Aǫ) and for a.e. t > 0.

This formula is easily extended to all of x ∈ Y , as shown in the Proposition
below.

Proposition 3.8 (Statement S9. of Theorem 1.5). The (pointwise in time)
feedback representation of the optimal control

û(t, x) = −B∗PΦ(t)x , for a.e. t > 0, (3.24)

is valid for any initial state x ∈ Y .

Proof. We know that the relation (3.24) holds for a.e. t > 0 and for any x ∈
D(Aǫ). Thus, recalling the (continuous with respect to x) estimate (3.3b) for
the optimal control, we obtain

‖B∗PΦ(·)‖Lp(0,∞;U) = ‖û(·)‖Lp(0,∞;U) ≤ C‖x‖Y ∀x ∈ D(Aǫ) . (3.25)

By density, the operator B∗PΦ(·) is extended to a bounded operator from Y to
Lp(0,∞;U). Consequently,

û(t, x) = −B∗PΦ(t)x for any x ∈ Y and for a.e. t > 0.

i.e. the feedback formula (3.24) is extended as well to all x ∈ Y .

4 Towards well-posedness of the Algebraic Ric-

cati Equation

In this section we show that the optimal cost operator P introduced in Section 3
does solve the ARE (4.45) corresponding to the optimal control Problem 1.3.
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Owing to formula (3.7), this issue is strongly related to certain differential prop-
erties of the optimal state semigroup Φ(t), which are discussed in Section 4.2,
culminating with the statement of Corollary 4.14.

We will see that a major challenge arises on the operator-theoretic side, as the
mapping Λ = I +L∗R∗RL—which, like in previous theories, is an isomorphism
on L2(0,∞;U)—fails to be an isomorphism in Lq(0,∞;U) or in Lqδ(0,∞;U),
whilst it is required to admit a bounded inverse acting at least on the latter
space. A solution to this question is given by the distinct result established
with Theorem 4.12, based on Lemma 4.10.

To begin with, we provide a preliminary description of the the generator AP
of the optimal state semigroup Φ(t).

4.1 The optimal state generator AP . Basic facts

Let AP : D(AP ) ⊂ Y → Y be the (optimal state) generator defined by (3.6),
i.e. the infinitesimal generator of the strongly continuous semigroup Φ(t). With
x ∈ D(AP ), we know that

∃ lim
t→0+

(Φ(t)x− x

t
, z
)

=: (APx, z) ∀z ∈ Y ,

which—by using the representation of the optimal state Φ(t)x in terms of the
optimal control û(t, x)—is readily rewritten as follows

∃ lim
t→0+

(eAtx− x

t
+

1

t

∫ t

0

eA(t−τ)Bû(τ ;x) dτ, z
)

= (APx, z) ∀z ∈ Y .

Still with x ∈ D(AP ) and taking now z ∈ D(A∗), we find

1

t
(Φ(t)x − x, z)Y =

=
1

t
([eAt − I]A−1x,A∗z)Y +

1

t

(∫ t

0

eA(t−τ)A−1Bû(τ, x) dτ,A∗z
)

Y
,

that is, by setting w = A∗z,

1

t
(Φ(t)x − x, (A∗)−1w)Y =

=
1

t
([eAt − I]A−1x,w)Y +

1

t

(∫ t

0

eA(t−τ)A−1Bû(τ, x) dτ, w
)

Y
.

(4.1)

Thus, if we let t → 0+ in (4.1), we see that the left hand side tends to
(APx, (A

∗)−1w)Y , whilst the first summand in the right hand side converges
to (x,w)Y . As for the second summand in (4.1), we employ the feedback rep-
resentation of the optimal control (3.24) and observe that x ∈ D(AP ) yields
Φ(·)x ∈ C([0, T ],D(AP )), which implies PΦ(·)x ∈ C([0, T ],D(A∗)), since P ∈
L(D(AP ),D(A∗)) (this fact will be shown later: see statement (i) of Lemma 4.15).
Consequently, B∗PΦ(·)x ∈ C([0, T ], U) and the map

τ 7→ eAτA−1Bû(τ, x) = −eAτA−1BB∗PΦ(τ)x (4.2)
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is continuous on [0,∞) with values in Y , thereby ensuring that

∃ lim
t→0+

1

t

∫ t

0

eA(t−τ)A−1Bû(τ, x) dτ = −A−1BB∗Px , x ∈ D(AP ) .

Now in view of the remarks above, (4.1) yields for any x ∈ D(AP )

(APx, (A
∗)−1w)Y = (x,w)Y − (A−1BB∗Px,w)Y ∀w ∈ Y ,

that is
(A−1APx,w)Y = (x−A−1BB∗Px,w)Y ∀w ∈ Y ,

meaning that x−A−1BB∗Px ∈ D(A), with

APx = A(x−A−1BB∗Px) ∀x ∈ D(AP ) . (4.3)

In addition, semigroup theory provides the basic differential property

d

dt
Φ(t)x = A[I −A−1BB∗P ]Φ(t)x = Φ(t)A[I −A−1BB∗P ]x ∀x ∈ D(AP ) .

We have established Statement S5. of Theorem 1.5, which is recorded in the
following Proposition.

Proposition 4.1 (Statement S5. of Theorem 1.5). The infinitesimal generator
AP of the (optimal state) semigroup Φ(t) defined in (1.10) coincides with the
operator A(I −A−1BB∗P ), on the domain

D(AP ) ⊂
{
x ∈ Y : x−A−1BB∗Px ∈ D(A)

}
(4.4)

⊂
{
x ∈ Y : ∃w-limt→0+

1

t

∫ t

0

eA(t−τ)A−1BB∗PΦ(τ)x dτ (4.5)

Remark 4.2. We observe that for x ∈ D(AP ) the weak limit

lim
t→0+

1

t

(∫ t

0

eA(t−τ)A−1Bû(τ, x) dτ, w
)

Y
∀w ∈ Y

defines a linear operator, which we denote by Γ, that is

Γx := w-limt→0+
1

t

∫ t

0

eA(t−τ)A−1Bû(τ, x) dτ (4.6)

= − w-limt→0+
1

t

∫ t

0

eA(t−τ)A−1BB∗PΦ(τ)x dτ , (4.7)

with dense domain in Y , as D(AP ) ⊆ D(Γ). Then, in the discussion leading
to the statement of Proposition 4.1 we have shown that when x ∈ D(AP ) then
Γx = −A−1BB∗Px, i.e. Γ coincides with the operator −A−1BB∗P on D(AP ).

We note, in addition, that if x ∈ D(Aǫ), owing to (3.23) of Proposition 3.7
the map in (4.2) is continuous as well, so that the weak limit (4.6) is strong,
D(Aǫ) ⊆ D(Γ), and we find again

Γx = −A−1BB∗Px x ∈ D(Aǫ) .
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Remark 4.3. Pretty much in the same way we obtain for x ∈ D(A) the exis-
tence of the weak limit

lim
t→0+

1

t

( ∫ t

0

A−1
P eA(t−τ)Bû(τ, x) dτ, w

)

Y
∀w ∈ Y ,

which defines a linear operator, which we denote by ΓP , that is

ΓPx := w-limt→0+
1

t

∫ t

0

A−1
P eA(t−τ)Bû(τ, x) dτ

= − w-limt→0+
1

t

∫ t

0

A−1
P eA(t−τ)BB∗PΦ(τ)x dτ ,

with dense domain in Y , as D(A) ⊆ D(ΓP ). Moreover, we have

(Ax,A∗
P
−1w)Y = (x,w)Y − (ΓPx,w)Y ∀w ∈ Y ,

i.e. x− ΓPx ∈ D(AP ), with

Ax = AP (x − ΓPx) ∀x ∈ D(A) .

It is interesting to note that although an explicit representation of ΓPx for
x ∈ D(A) is missing, we will later see that the key issue is not so much to be
able to deal with ΓPx by itself, but rather to find the “right” representation
of the operator eAP tAPΓP , along with an appropriate regularity (in time and
space). Specifically, we will establish

eAP tAPΓP ≡ eAP tBB∗P : D(A) −→ [D(A∗ǫ]′ for a.e. t > 0,

a property which is central to the proof of Corollary 4.14 and then to well-
posedness of the algebraic Riccati equations.

Remark 4.4. It is important to emphasize that the statement of Proposition 4.1
cannot be improved to assert the equivalence between D(AP ) and the subset of
Y in (4.5) (which is characterized by the existence of the discussed weak limit
Γx). In fact, assuming x ∈ Y is such that Γx does exist, we only obtain that

∃ lim
t→0+

(Φ(t)x− x

t
, z
)

∀z ∈ D(A∗) ,

which is not sufficient to conclude that x ∈ D(AP ).
One may also wonder whether the inclusion in (4.4) becomes an equality,

possibly adding the restriction x ∈ D(Aǫ). However, this is not the case. In
fact, assuming x ∈ D(Aǫ), with x−A−1BB∗Px ∈ D(A), from the decomposition

(Φ(t)x− x

t
, z
)

=
(1

t

[
eAt − I

]
(x−A−1BB∗Px), z

)

+

+
(1

t

∫ t

0

eA(t−s)BB∗P [x− Φ(s)x], z
)

, t > 0 , z ∈ Y ,

we immediately see that the first summand on the right hand side converges to
A(x − A−1BB∗Px) as t → 0, while to make sure that the second summand is
infinitesimal we need z ∈ D(A∗). Thus, the same conclusion as above follows.
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Although a full characterization of D(AP ) is missing, the following Propo-
sition clarifies the relation between D(AP ) and D(Aǫ), as well as between the
domains of the corresponding adjoint operators. This result will be also em-
ployed in the proof of Corollary 4.14.

Proposition 4.5. The following inclusions are valid, provided ǫ < 1− γ:

D(AP ) ⊆ D(Aǫ) , D(A∗
P ) ⊆ D(A∗ǫ) . (4.8)

Proof. We prove first the latter inclusion in (4.8), which is in addition of central
importance in the proof of Corollary 4.14; the former can be shown using similar
arguments. The proof is based on a well known characterization of the domains
of fractional powers A∗ǫ in terms of the interpolation spaces (Y,D(A∗))ǫ,2. The
idea is to relate first D(A∗

P ) to one of the interpolation spaces (Y,D(A∗))α,∞.
These can be also described as follows:

(Y,D(A∗))α,∞ ≡
{
x ∈ Y : sup

t∈(0,1]

t−α‖eA
∗tx− x‖Y <∞

}
; (4.9)

see [35, Theorem 1.13.2].

We aim to show that D(A∗
P ) ⊂ (Y,D(A∗))α,∞, for α ∈ (ǫ, 1). Let x ∈ D(A∗

P ).
Then

[Φ(t)∗ − I]x = O(t) , t→ 0+ ,

which implies
([Φ(t)∗ − I]x, z)Y = O(t) , t→ 0+ ,

for all z ∈ Y . With x ∈ D(A∗
P ) fixed and any z ∈ Y , we rewrite

([Φ(t)∗ − I]x, z)Y = (x, [Φ(t) − I]z)Y

= (x, [eAt − I]z)Y +
(
x,

∫ t

0

eA(t−s)Bû(s, z) ds
)

Y

︸ ︷︷ ︸

T2(t)

(4.10)

and focus on the second summand T2, which in turn splits as follows:

T2(t) = (x, L(1)û(t))Y + (x, L(2)û(t))Y .

(The operators L(i)—resulting from the splitting of B∗eA
∗t—have been intro-

duced in (2.10); above, we set L(i)û(t) in place of (L(i)û(·, z))(t), i = 1, 2, just
for conciseness.) It is readily seen that

|(x, L(1)û(t))Y | ≤ ‖x‖Y

∫ t

0

C1

(t− s)γ
‖û(s, z)‖U ds

≤ C1 ‖x‖Y ‖û‖Lp(0,∞;U)

( ∫ t

0

1

(t− s)γp′
ds
)1/p′

≤ C1 t
1/p′−γ ‖x‖Y ‖z‖Y . (4.11)

To achieve the above estimate we have used Assumption 1.4(i), the Hölder in-
equality, as well as the continuity property (3.3b) established in Proposition 3.1.
Notice that by Proposition 3.1 p can be taken arbitrarily large: in particular,
here p > 1/(1 − γ) is required, in order to ensure that the exponent 1/p′ − γ
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is positive. In addition, as by assumption 1 − γ − ǫ > 0, then we may choose
p ≥ (1 − γ − ǫ)−1 so that 1/p′ − γ ≥ ǫ, and (4.12) reads as

|(x, L(1)û(t))Y | ≤ C1 t
α1 ‖x‖Y ‖z‖Y (4.12)

with α1 ≥ ǫ.
As for the summand (x, L(2)û(t))Y , by Proposition 2.5(ii) we know that

t 7→ L(2)û(t) is a continuous function on the whole half-line [0,∞), as û ∈
Lp(0,∞;U) for any finite p ≥ 1. On the other hand, since we aim here to
obtain an asympotic estimate of L(2)û(t) as t→ 0+, we may set t ≤ T . Taking
the inner product with any x ∈ Y , we find

|(L(2)û(t), x)Y | =
∣
∣
∣

∫ t

0

(
G(t− s)∗û(s), x

)

Y
ds
∣
∣
∣ ≤

∫ t

0

∣
∣(û(s), G(t− s)x)U

∣
∣ ds

(4.13)

≤ ‖û‖Lp(0,T ;U)

(∫ t

0

∥
∥G(t− s)x

∥
∥
q

U
ds
)1/q (

∫ t

0

1 ds
)1/r

(4.14)

≤ ‖û‖Lp(0,∞;U) ‖x‖Y ‖G(·)‖L(Y,Lq(0,T ;U)) t
1/r ≤ C t1/r ‖z‖Y ‖x‖Y ∀x ∈ Y ,

where to go from (4.13) to (4.14) we applied the Hölder inequality with 1/p+
1/q + 1/r = 1, and by Assumption 1.4(ii) the summability exponent q, like
p, can be chosen freely as well. Notice that this makes it possible to render
1/r = 1 − 1/p − 1/q arbitrarily close to 1. The above computations yield the
pointwise estimate

|(x, L(2)û(t))Y | ≤ C2 t
α2 ‖x‖Y ‖z‖Y (4.15)

with arbitrary α2 < 1. Thus, combining (4.12) with (4.15) we find that there
exists a constant C such that

|T2(t)| ≤ |(x, L(1)û(t))Y |+ |(x, L(2)û(t))Y |

≤ C tmin{α1,α2} ‖x‖Y ‖z‖Y = O(tα) ‖x‖Y ‖z‖Y , 0 < t ≤ T ,
(4.16)

with ǫ < α < 1.
Returning to (4.10), we have so far shown that

‖(eA
∗t − I)x‖Y = O(t) −O(tα) = O(tα) , t→ 0+ , (4.17)

which in view of (4.9) establishes the membership x ∈ (Y,D(A∗))α,∞ for all
α ∈ (ǫ, 1).

Thus, if we recall from [35, Theorem 1.3.3] the inclusions

(X,Y )α,1 ⊂ (X,Y )α,p ⊂ (X,Y )α,∞ ⊂ (X,Y )θ,1 ,

which hold for all α, θ, p such that 0 < α < θ < 1 and 1 < p < ∞, we
immediately conclude that there exists θ ∈ (ǫ, 1) such that

x ∈ (Y,D(A∗))θ,2 ≡ D(A∗θ) ;

see, e.g., [30, § 0]. Consequently, x ∈ D(A∗ǫ) which shows D(A∗
P ) ⊂ D(A∗ǫ),

thus concluding the proof.
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4.2 A distinct regularity result pertaining to eAP t

We discuss here a distinct regularity property of the optimal state semigroup
Φ(t) = etAP which will play a crucial role in the proof of well-posedness of
the Algebraic Riccati Equations (ARE) corresponding to the optimal control
problem. It is indeed the regularity result established in Proposition 4.13 below
which will make it possible to differentiate strongly the semigroup eAP t on D(A),
as needed to obtain that the optimal cost operator P does satisfy the ARE on
D(A).

Remark 4.6. The same issue, that is strong differentiability of eAP t on D(A),
was addressed as well in the study of the infinite horizon LQ-problem for abstract
control systems which yield singular estimates; see [28, Section 3.3]. In that work
the sought property was easily established in view of the following crucial fact:
Φ(t)B inherited the same singular estimate as eAtB.

To begin with, let us preliminary state the intrinsic regularity of the map
t 7→ eAtB for the class of control systems under investigation.

Lemma 4.7. Consider, for t ≥ 0, the operator eAtB, defined in U and taking
values—a priori—in [D(A∗)]′. For any δ ∈ [0, ω ∧ η[ we have

eδ·eA·B ∈ L(U,Ls(0,∞; [D(A∗ǫ)]′)) ∀s ∈ [1,
1

γ
) . (4.18)

Proof. We use a duality argument. With u ∈ U and f ∈ Lr(0,∞;D(A∗ǫ)),
1/(1− γ) < r ≤ ∞, we estimate

∣
∣
∣

∫ ∞

0

(eδteAtBu, f(t))D(A∗ǫ) dt
∣
∣
∣ =

∣
∣
∣

∫ ∞

0

(e−θtu, e(δ+θ)tB∗eA
∗tf(t))U dt

∣
∣
∣

≤
( ∫ ∞

0

e−θp
′t dt

)1/p′

‖u‖U‖e
(δ+θ)·B∗eA

∗·f(·)‖Lp(0,∞;U) (4.19)

≤ C ‖u‖U ‖f‖Lr(0,∞;D(A∗ǫ)) , (4.20)

where θ is any positive number such that δ + θ < ω ∧ η, p ∈ [1, 1/γ) is chosen
in order to fulfil the bounds

1

1− γ
≤

p

1− γp
< r

(p′ is its conjugate exponent), and we utilized Proposition 2.3 to go from (4.19)
to (4.20). Notice that Proposition 2.3 applies, since the required constraint (2.2)
is satisfied.

Thus, (4.20) shows that the map t 7→ eδteAtBu belongs to Lr
′

(0,∞; [D(A∗ǫ)]′),
r′ being the conjugate exponent of r. From r ∈ (1/(1 − γ),∞] we get r′ ∈
[1, 1/γ), and (4.18) holds true with s = r′ ∈ [1, 1/γ), as desired.

Notice carefully that the range of the summability exponent s for the validity
of (4.18) cannot be improved. In fact, owing to Proposition 2.3 the exponent r
in the obtained estimate (4.20) is subject to the constraint (2.2), which implies

1 ≤ r′ <
p

p− (1− γp)
,
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while it is readily verified that

sup
1<p< 1

γ

p

p− (1− γp)
=

1

γ
,

This confirms that (4.18) holds true if and only if s ∈ [1, 1/γ), thus concluding
the proof.

In order to pinpoint the regularity of Φ(t)B, we will employ the usual repre-
sentation of the optimal state in terms of the initial state. It follows from (3.5)
that

Φ(·)x = (I + LL∗R∗R)−1eA·x ,

which becomes
Φ(·)x =

(
I − LΛ−1L∗R∗R

)
eA·x , (4.21)

where Λ = I +L∗R∗RL is boundedly invertible on L2(0,∞;U)—an elementary
consequence of the fact that Λ is coercive on L2(0,∞;U).

Remark 4.8. We note that the representation of the inverse (I + LL∗R∗R)−1

which occurs in the formula (4.21) is easily derived by a direct (algebraic) com-
putation. The inversion of an operator of the form I + SV in a Hilbert space
setting is discussed in full detail in [30, Lemma 2A.1, p. 167].

If we take now x = Bu in (4.21) and formally rewrite the corresponding
formula, we obtain the following representation for Φ(t)Bu:

eAP tBu ≡ Φ(t)Bu = eAtBu− [LΛ−1L∗R∗ReA·Bu](t) , (4.22)

where Λ−1 is required to make sense on the space Lq(0,∞;U), or Lqδ(0,∞;U) for
some positive δ, rather than on L2(0,∞;U). Indeed, given u ∈ U , by Lemma 4.7
we know that

eA·Bu ∈ L1
δ(0,∞; [D(A∗ǫ)]′) .

Then, owing to Proposition 2.9, the application of the operator L∗R∗R∗ yields

[L∗R∗R∗eA·Bu](t) ∈ Lqδ(0,∞;U) ,

which holds for any δ ∈ [0, ω ∧ η[.
The question which then arises is the following.

Question 4.9. Is the operator Λ = I + L∗R∗RL boundedly invertible on the
function space Lqδ(0,∞;U)?

It will become clear in the proof of Theorem 4.12 below that in contrast with
previous theories Λ is not an isomorphism on Lqδ(0,∞;U) (with a fixed δ), as
we would expect. An intermediate useful result is the one given in the following
Lemma.

Lemma 4.10. The operator Λ = I + L∗R∗RL is an isomorphism in the space
L2
δ(0,∞;U), provided that δ ∈ (0, ω ∧ η) is sufficiently small.
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Proof. We seek to solve uniquely the equation

w + L∗R∗RLw = h, h ∈ L2
δ(0,∞;U). (4.23)

Let us denote by H the function space L2
δ(0,∞;U). Since H ⊆ L2(0,∞;U),

there is a unique w ∈ L2(0,∞;U) such that (4.23) holds. Multiplying (4.23) by
eδt, we get

eδtw + eδtL∗R∗RLw = eδth ,

which is equivalent to

eδtw + L∗
A−δR

∗RLA+δ(e
δtw) = eδth , (4.24)

where we denoted by LA+δ the input-to-state map for the control system y′ =
(A+ δ)y + Bv, y(0) = 0, namely

LA+δv(t) :=

∫ t

0

e(A+δ)(t−s)Bv(s) ds ;

L∗
A−δ is defined accordingly. Thus, in order to simplify the notation, let us

rewrite (4.24) as follows:

eδtw + L∗
−δR

∗RLδ(e
δtw) = eδth ∈ L2(0,∞;U) . (4.25)

We now utilize the estimate

‖L∗
−δR

∗RLδ − L∗R∗RL‖L(L2(0,∞;U)) ≤ c
δ

(η ∧ ω − δ)2
, (4.26)

which will be established in Lemma 4.11 below. The above implies that I +
L∗
−δR

∗RLδ is also invertible in L2(0,∞;U), with continuous inverse, for suffi-
ciently small δ. Hence, the equation

z + L∗
−δR

∗RLδz = eδth

has a unique solution z ∈ L2(0,∞;U). Observe now that the function e−δtz
belongs to H ⊂ L2(0,∞;U) and satisfies

e−δtz + L∗R∗RL(e−δtz) = h . (4.27)

Comparing (4.23) with the above gives, by uniqueness, e−δtz ≡ w, so that
w ∈ H . This shows that (4.23) is uniquely solvable inH . The proof is completed
once we establish the estimate (4.26). This is accomplished in the following
Lemma.

Lemma 4.11. If δ ∈ ]0, η ∧ ω[ , the estimate (4.26) holds true.

Proof. We have

L∗
−δR

∗RLδ − L∗R∗RL = [L∗
−δ − L∗]R∗RLδ + L∗R∗R[Lδ − L].

Consider now Lδ − L. It holds for each u ∈ L2(0,∞;U)

[Lδ − L]y(t) =

∫ t

0

eA(t−s)Bu(s)[eδ(t−s) − 1]ds =

=

∫ t

0

eδ(t−s)eA(t−s)Bu(s)[1 − e−δ(t−s)]ds,
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so that we can split

[Lδ − L]y(t) =

∫ t

0

eδ(t−s)F (t− s)∗u(s)[1− e−δ(t−s)]ds+

+

∫ t

0

eδ(t−s)G(t− s)∗u(s)[1− e−δ(t−s)]ds.

The first term can be estimated by
∥
∥
∥
∥

∫ t

0

eδ(t−s)F (t− s)∗u(s)[1− e−δ(t−s)]ds

∥
∥
∥
∥
Y

≤

≤ cδ

∫ t

0

(t− s)1−γe−(η−δ)(t−s)‖u(s)‖U ds,

and it is straightforward to deduce that

[
∫ ∞

0

∥
∥
∥
∥

∫ t

0

eδ(t−s)F (t− s)∗u(s)[1− e−δ(t−s)]ds

∥
∥
∥
∥

2

Y

dt

] 1
p

≤

≤ cδ

∫ t

0

σ1−γe−(η−δ)σdσ‖u‖L2(0,∞;U) ≤ C
δ

(η − δ)2−γ
‖u‖L2(0,∞;U).

The second term is estimated as follows: fix ψ ∈ L2(0,∞;U) and set α = δ+η∧ω
2 ,

β = 3δ+η∧ω
4 = δ+α

2 . Then we have

∫ ∞

0

(∫ t

0

eδ(t−s)G(t− s)∗u(s)[1− e−δ(t−s)]ds, ψ(t)

)

Y

dt =

=

∫ ∞

0

(∫ t

0

u(s), eδ(t−s)[1− e−δ(t−s)]G(t− s)ψ(t)

)

Y

dsdt =

=

∫ ∞

0

∫ t

0

e−(β−δ)(t−s)‖u(s)‖U ‖eβ(t−s)[1− e−δ(t−s)]‖G(t− s)ψ(t)‖U dsdt ≤

≤ cδ

∫ ∞

0

‖e−(β−δ)(t−·)u‖L2(0,t;U)‖(t− ·) eβ(t−·)G(t− ·)ψ(t)‖L2(0,t;U)dt ≤

≤ c
2δ

η ∧ ω − δ

∫ ∞

0

‖e−(β−δ)(t−·)u‖L2(0,t;U)‖e
α·G(·)ψ(t)‖L2(0,t;U)dt ≤

≤ c
2δ

η ∧ ω − δ

∫ ∞

0

‖e−(β−δ)(t−·)u‖L2(0,t;U)‖ψ(t)‖Y dt.

From here it is a standard matter to deduce that
∫ ∞

0

(∫ t

0

eδ(t−s)G(t− s)∗u(s)[1− e−δ(t−s)]ds, ψ(t)

)

Y

dt ≤

≤ C
δ

(η ∧ ω − δ)2
‖u‖L2(0,∞;U)‖ψ‖L2(0,∞;U) .

This shows that
∥
∥
∥
∥

∫ t

0

eδ(t−s)G(t− s)∗u(s)[1− e−δ(t−s)]ds

∥
∥
∥
∥
L2(0,∞;Y )

≤

≤ C
δ

(η ∧ ω − δ)2
‖u‖L2(0,∞;U) ,
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and summing up we obtain

‖[Lδ − L]u‖L2(0,∞;Y ) ≤ C
δ

(η ∧ ω − δ)2
‖u‖L2(0,∞;U) . (4.28)

Next, consider L∗
−δ − L∗. It holds for each y ∈ L2(0,∞;Y )

[L∗
−δ − L∗]y(t) =

∫ ∞

t

B∗eA
∗(τ−t)[e−δ(τ−t) − 1]y(τ)dτ =

=

∫ ∞

t

F (τ − t)[e−δ(τ−t) − 1]y(τ)dτ +

∫ ∞

t

G(τ − t)[e−δ(τ−t) − 1]y(τ)dτ.

From here, proceeding quite similarly to the preceding case, we get

‖[L∗
−δ − L∗]y‖L2(0,∞;U) ≤ C

δ

(η ∧ ω − δ)2
‖y‖L2(0,∞;y) . (4.29)

Finally, we can write

[L∗
−δR

∗RLδ − L∗R∗RL]u = [L∗
−δ − L∗]R∗RLδu+ L∗R∗R[Lδ − L]u

and both terms can be easily estimated by (4.28) and (4.29). The result follows.

We now utilize Lemma 4.10 to show that the operator Λ admits a bounded
inverse Λ−1 which maps Lqδ(0,∞;U) onto Lqδ−σ0

(0,∞;U), for a suitable σ0 ∈
(0, δ).

Theorem 4.12. The operator Λ = I + L∗R∗RL admits a bounded inverse

Λ−1 : Lqδ(0,∞;U) −→ Lqδ−σ0
(0,∞;U) ,

with appropriate σ0 ∈ (0, δ).

Proof. We seek to solve uniquely the equation

g + L∗R∗RLg = h , (4.30)

where h ∈ Lqδ(0,∞;U), with arbitrary δ ∈ (0, ω ∧ η). We follow an idea which
has been employed in the study of the LQ-problem for parabolic-like dynamics;
see, e.g., [30, Vol. I, Theorem 1.4.4.4, p. 40]. Since q < 2, using the action
of both the operators L and L∗, whose mapping increase the (time regularity)
summability exponents, it is readily seen that there exists an integer n0 ≥ 1 such
that (L∗R∗RL)n0h ∈ L2

δ(0,∞;U). Thus, we introduce the auxiliary equation

v + L∗R∗RLv = (L∗R∗RL)n0h ∈ L2
δ(0,∞;U) . (4.31)

Owing to Lemma 4.10, possibly choosing δ sufficiently small, (4.31) is uniquely
solvable, yielding v ∈ L2

δ(0,∞;U). Using once again that q < 2, it is easily
verified that the obtained v belongs to Lqθ(0,∞;U) for any θ < δ. In fact,

∫ ∞

0

eθqt‖v(t)‖qU dt =

∫ ∞

0

e−(δ−θ)qt ‖eδtv(t)‖qU dt (4.32)

≤
(∫ ∞

0

e−[2(δ−θ)q/(2−q)]t dt
)(2−q)/2(

∫ ∞

0

‖eδtv(t)‖2U dt
)q/2

,
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and there exists a constant C such that

‖v‖Lq
θ
(0,∞;U) ≤ C ‖v‖L2

δ
(0,∞;U) .

The function v resulting from (4.31) and the given h ∈W—for which the smaller
θ still guarantees eθ·h ∈ Lq(0,∞;U)—will eventually produce the soughtafter
solution g of equation (4.30), according to the following definition:

g =

n0−1∑

j=0

(−L∗R∗RL)jh+ v.

Indeed we have:

(I + L∗R∗RL)g =

=

n0−1∑

j=0

(−L∗R∗RL)jh+

n0−1∑

j=0

L∗R∗RL(−L∗R∗RL)jh+ v + L∗R∗RLv =

=

n0−1∑

j=0

(−L∗R∗RL)jh−

n0−1∑

j=0

(−L∗R∗RL)j+1h+ (−L∗R∗RL)n0h =

=

n0−1∑

j=0

(−L∗R∗RL)jh−

n0∑

i=1

(−L∗R∗RL)ih+ (−L∗R∗RL)n0h =

= h− (−L∗R∗RL)n0h+ (−L∗R∗RL)n0h = h ,

which concludes the proof.

We are finally able to show that the operator eAP tB substantially ‘inherits’
the regularity of eAtB, except for a constraint on the exponent of the allowed
exponential weights.

Proposition 4.13 (Statement S6. of Theorem 1.5). For t ≥ 0, the linear op-
erator eAP tB is well defined as an operator from U into D(A∗ǫ)]′ and, in fact,
provided δ ∈ (0, ω ∧ η) is sufficiently small, we have

eδ·eAP ·B ∈ L(U,Lp(0,∞; [D(A∗ǫ)]′)) ∀p ∈ [1,
1

γ
) . (4.33)

Proof. Let u ∈ U be given. We return to the representation (4.22) for eAP tBu,
and focus on its second summand. Starting from eAtBu, whose regularity is
established in Lemma 4.7, we utilize (2.14b) of Proposition 2.9 first, and invoke
Theorem 4.12 next, thus obtaining—possibly choosing θ < ω ∧ η sufficiently
small—,

Λ−1L∗R∗ReA·Bu ∈ Lqθ(0,∞;U) .

In particular, there exists β < θ such that

Λ−1L∗R∗ReA·Bu ∈ L1
β(0,∞;U) ;

consequently, Proposition 2.6(i) implies

LΛ−1L∗R∗ReA·Bu ∈ Lrβ(0,∞; [D(A∗ǫ)]′) ∀r ∈ [1,
1

γ
) . (4.34)
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Actually, the range of the summability exponent in (4.34) is larger; namely,
the membership in (4.34) holds true for all r in a suitable maximal interval
I ⊃ [1, 1/γ), which is determined by the reciprocal relation between 1/(1 − γ)
and q; see the statements (ii)–(iv) of Proposition 2.6. Even an ‘improved version’
of the regularity in (4.34), combined with the one in (4.18), yields anyhow

eAP ·Bu = eA·Bu − [LΛ−1L∗R∗ReA·Bu](·) ∈ Lpβ(0,∞; [D(A∗ǫ)]′) ∀p ∈ [1,
1

γ
) ,

for suitably small β ∈ (0, ω ∧ η), confirming (4.33).

The power of the (apparently weak) regularity result provided by Proposi-
tion 4.13 is enlightened in the following Corollary.

Corollary 4.14. The optimal state semigroup Φ(t) = eAP t is strongly differ-
entiable on D(A): more precisely, if x ∈ D(A) the map t 7→ Φ(t)x = eAP tx is
strongly differentiable for almost any t > 0, with

d

dt
eAP tx = eAP tAx − eAP tBB∗Px , for x ∈ D(A) and a.e. t > 0, (4.35)

and the equality holds true on [D(A∗ǫ)]′. In particular, the operator

d

dt
eAP t is continuous: D(A) −→ Lpδ(0,∞; [D(A∗ǫ)]′) ∀p ∈ [1,

1

γ
) (4.36)

provided δ ∈ (0, ω∧η∧ω1) is sufficiently small, and the following estimate holds
true almost everywhere in (0,∞):

∥
∥
∥A−ǫ d

dt
eAP t

∥
∥
∥
Y
≤M1e

−ω1t‖x‖D(A)

+
∥
∥A−ǫeAP tB

∥
∥
L(U,Y )

‖B∗P‖L(D(Aǫ),U) ‖x‖D(Aǫ) .

(4.37)

Proof. Let x ∈ D(A). We preliminary note that eAP tx is strongly differentiable
as an element of the dual space [D(A∗

P )]
′. In fact, if z ∈ D(A∗

P ), then z = A∗
P
−1w

with w ∈ Y and we may compute

d

dt
(eAP tx, z)[D(A∗

P
)]′,D(A∗

P
) =

d

dt
(A−1

P eAP tx,w)Y = (eAP tx,w)Y

= (eAP tx,A∗
P z)Y = (AP e

AP tx, z)[D(A∗

P
)]′,D(A∗

P
) = (x, eA

∗

P tA∗
P z)Y

= (x,A∗
P e

A∗

P tz)Y = (eAP tAPx, z)[D(A∗

P )]′,D(A∗

P )

= (eAP tA[I −A−1BB∗P ]x, z)[D(A∗

P )]′,D(A∗

P ) ,

which shows that when x ∈ D(A)

∃
d

dt
eAP tx = eAP tA[I −A−1BB∗P ]x , for a.e. t > 0, (4.38)

as an element of [D(A∗
P )]

′. In addition, since eAP tAx ∈ Y , (4.38) yields—still
for x ∈ D(A) and a.e. t > 0—,

eAP tA [A−1BB∗P ]x = eAP tAx− eAP tA[I −A−1BB∗P ]x ∈ [D(A∗
P )]

′ .
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Next, we observe that x ∈ D(A) implies x ∈ D(Aǫ) for all ǫ ∈ (0, 1), which
ensures B∗Px ∈ U in view of Theorem 3.5. Then BB∗Px ∈ [D(A∗)]′ and
also AA−1BB∗Px ∈ [D(A∗)]′, because AA−1 coincides with the identity oper-
ator on [D(A∗)]′. We now recall (4.33) from Proposition 4.13 which establishes
eAP tBB∗Px[D(A∗ǫ)]′, along with the regularity (in time) result

eδ·eAP ·BB∗Px ∈ Lp(0,∞; [D(A∗ǫ)]′) ∀p ∈ [1,
1

γ
) , (4.39)

valid for sufficiently small δ > 0. On the other hand, since the semigroup eAP t

is exponentially stable (with the estimate (1.11), we find

eδ·eAP ·Ax ∈ Ls(0,∞;Y ) ∀s ∈ [1,∞] , (4.40)

for any δ < ω1. In view of the memberships (4.39) and (4.40) we see that

eAP ·A[I−A−1BB∗P ]x = eAP ·Ax−eAP ·BB∗Px ∈ Lpδ(0,∞; [D(A∗ǫ)]′) , (4.41)

provided δ is sufficiently small.
Thus, (4.41) shows that the derivative in (4.38)—a priori taking values on

[D(A∗
P )]

′—coincides with eAP tAx− eAP tA−1BB∗Px ∈ [D(A∗ǫ)]′ for a.e. t > 0
(We recall that the inclusion [D(A∗

P )]
′ ⊃ [D(A∗ǫ)]′—which holds true provided

ǫ < 1− γ—is the dual statement of (4.8) of Proposition 4.5, whereas here ǫ can
be taken arbitrarily small.) Therefore, (4.35) actually makes sense on [D(A∗ǫ)]′

for a.e. t > 0, and the validity of (4.36) is established, provided δ is sufficiently
small.

Finally, natural estimates for each summand in the right hand side of (4.35)
produce the bound in (4.37), thus completing the proof.

4.3 Well-posedness of the ARE

We begin with the statement of a Lemma which provides boundedness of the op-
erators A∗P and A∗

PP on appropriate spaces (D(A) and D(AP ), respectively),
properties which constitute a prerequisite for well-posedness of the ARE. Al-
though the proof is fairly standard, it is given below for the reader’s convenience.

Lemma 4.15. The following statements pertain to the optimal cost operator
P .

(i) A∗P ∈ L(D(AP ), Y ), with

A∗Px = −R∗Rx− PAPx ∀x ∈ D(AP ) ; (4.42)

(ii) A∗
PP ∈ L(D(A), Y ), with

A∗
PPx = −R∗Rx− PAx ∀x ∈ D(A) . (4.43)

Proof. (i) Let x ∈ D(AP ). Write the formula (1.12) which defines the Riccati
operator, that is

Px =

∫ ∞

0

eA
∗tR∗RΦ(t)x dt ,

38



and integrate by parts in t, thus obtaining

Px =

∫ ∞

0

A∗−1A∗eA
∗tR∗RΦ(t)x dt

= A∗−1eA
∗tR∗RΦ(t)x

∣
∣
∣

t=∞

t=0
−

∫ ∞

0

A∗−1eA
∗tR∗RΦ(t)APx dt

= −A∗−1R∗Rx−A∗−1
∫ ∞

0

eA
∗tR∗RΦ(t)APx dt

= −A∗−1R∗Rx−A∗−1PAPx .

The above identity shows that P maps D(AP ) into D(A∗), and also that (4.42)
holds actually in Y , since R∗Rx − PAPx ∈ Y for any x ∈ D(AP ); the bound-
edness of A∗P immediately follows.

(ii) We write

(Px, z)Y =
( ∫ ∞

0

eA
∗tR∗ReAP tx dt, z

)

Y
=

∫ ∞

0

(
eA

∗tR∗ReAP tx, z
)

Y
dt

=

∫ ∞

0

(
x, eAP

∗tR∗ReAtz
)

Y
dt =

(

x,

∫ ∞

0

eAP
∗tR∗ReAtz dt

)

Y
= (x, P ∗z)Y .

Since we know that P = P ∗, we deduce the alternative formula

Px =

∫ ∞

0

eA
∗

P tR∗ReAtx dt , x ∈ Y . (4.44)

Thus, the proof of (4.43) follows almost precisely as in the proof of (4.42),
bringing about the equality

Px = −A∗
P
−1R∗Rx−A∗

P
−1PAx x ∈ D(A) ,

which confirms that A∗
PP is a bounded operator on D(A) with values in Y , and

hence (4.43) holds in Y .

We are finally ready to show that the optimal cost operator is a solution of
the the Algebraic Riccati equation corresponding to Problem 1.3.

Theorem 4.16 (Statement S7. of Theorem 1.5). The optimal cost operator P
defined in (1.12) satisfies the following regularity properties:

P ∈ L(D(AP ),D(A∗)) ∩ L(D(A),D(A∗
P ) .

Moreover, P is a solution to the Algebraic Riccati equation

(Px,Az)Y + (Ax, Pz)Y − (B∗Px,B∗Pz)U + (Rx,Rz)Z = 0

for any x, z ∈ D(A),
(4.45)

which reads as

(A∗Px, z)Y + (x,A∗Pz)Y − (B∗Px,B∗Pz)U + (Rx,Rz)Z = 0

when x, z ∈ D(AP ).
(4.46)
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Proof. The proof splits into two parts. First, we establish the validity of (4.45)
for x, z ∈ D(A). Beside Lemma 4.15, Corollary 4.14 will provide the crucial
tool. Next, we show the validity of (4.45) with x, z ∈ D(AP ). We will use once
again Lemma 4.15, along with the intrinsic representation (4.3) of AP in terms
of the operator Γ.

1. We recall the alternative representation (4.44) of the Riccati operator
P obtained in the previous Lemma, and for x, z ∈ Y write the inner product
(Px, z)Y as a function of t:

(Px, z)Y =

∫ ∞

0

(ReAP tx,ReAtz)Z dt =

∫ ∞

t

(ReAP (τ−t)x,ReA(τ−t)z)Z dτ.

(4.47)
Taking now x, z ∈ D(A), in view of (4.35) of Corollary 4.14, we differentiate
both sides of the obtained formula with respect to t to find

0 =
d

dt
(Px, z)Y = −(Rx,Rz)Z

−

∫ ∞

t

(
eAP (τ−t)APx,R

∗ReA(τ−t)z
)

[D(A∗ǫ)]′,D(A∗ǫ)
dτ (4.48)

−

∫ ∞

t

(
ReAP (τ−t)x,ReA(τ−t)Az

)

Z
dτ

= −(Rx,Rz)Z −

∫ ∞

t

(
eAP (τ−t)Ax,R∗ReA(τ−t)z

)

Y
dτ

+

∫ ∞

t

(
eAP (τ−t)BB∗Px,R∗ReA(τ−t)z

)

[D(A∗ǫ)]′,D(A∗ǫ)
dτ

−

∫ ∞

t

(
ReAP (τ−t)x,ReA(τ−t)Az

)

Z
dτ

= −(Rx,Rz)Z − (Ax, Pz)Y + (B∗Px,B∗Pz)U − (Px,Az)Y ,

so that

(Ax, Pz)Y + (Px,Az)Y − (B∗Px,B∗Pz)U + (Rx,Rz)Z = 0, x, z ∈ D(A) .
(4.49)

Note carefully that the integrand in (4.48) makes sense a priori as a duality
pairing on D(A∗ǫ) (which is summable because of (4.36)), whereas all the sum-
mands in (4.49) actually make sense as inner products in the spaces Y , U or Z,
since in view of Theorem 3.5 B∗P is bounded (a fortiori) on D(A). Therefore,
P solves the Algebraic Riccati Equation (4.45) on D(A).

2. We preliminarly recall that if x ∈ D(AP ), then APx = A (x + Γx),
where the operator Γ—which is defined by the equivalent weak limits (4.6) and
(4.7)—coincides on D(AP ) with −A−1BB∗P ; see Remark 4.2.

Given now x, z ∈ D(AP ), we compute

(A∗Px, z)Y + (x,A∗Pz)Y = (by Lemma 4.15)

= −(Rx,Rz)Y − (PAPx, z)Y + (x,A∗Pz)Y =

= −(Rx,Rz)Y − (PA(x + Γx), z)Y + (x,A∗Pz)Y =

= −(Rx,Rz)Y − (x + Γx,A∗Pz)Y + (x,A∗Pz)Y =

= −(Rx,Rz)Y − (Γx,A∗Pz)U . (4.50)
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On the other hand, we readily have

(Γx,A∗Pz)Y = −(A−1BB∗Px,A∗Pz)Y

= −(BB∗Px, Pz)[D(A∗)]′,D(A∗) = −(B∗Px,B∗Pz)Y ,
(4.51)

with B∗P ∈ L(D(AP ), U). Thus, inserting (4.51) in (4.50) we find that P
satisfies the Algebraic Riccati equation (4.46) for any x, z ∈ D(AP ), with B

∗P ∈
L(D(AP ), U), thus concluding the proof.

5 Illustrations

In this section we give a significant illustration of the applicability of the infinite
time horizon optimal control theory provided by Theorem 1.5. The boundary
control problem under examination is the thermoelastic plate model studied in
[16] and [1]. Recall that this specific PDE problem constituted the prime mo-
tivation for the introduction of the novel class of control systems characterized
by the abstract assumptions listed in [2, Hypotheses 2.2].

5.1 A thermoelastic plate model with boundary thermal

control

We consider a classical (linear) PDE model for the determination of displace-
ments and the temperature distribution in a thin plate; see [22, 21]. Let Ω be a
bounded domain of R2, with smooth boundary Γ. The PDE system comprises a
Kirchhoff elastic equation for the vertical displacement w(x, t) of the plate and
the heat equation for the temperature distribution θ(x, t). The plate equation
is supplemented with clamped boundary conditions, whereas a control action
on the temperature, represented by the function u(x, t), is exercised through Γ.
Thus, the PDE problem reads as follows (the constant ρ is positive, ν denotes
the unit outward normal to the curve Γ):







wtt − ρ∆wtt +∆2w +∆θ = 0 in Ω× (0,∞)

θt −∆θ −∆wt = 0 in Ω× (0,∞)

w = ∂w
∂ν = 0 on Γ× (0,∞)

θ = u on Γ× (0,∞)

w(0, ·) = w0, wt(0, ·) = w1; θ(0, ·) = θ0 in Ω .

(5.1)

With (5.1) we associate the natural quadratic functional

∫ ∞

0

∫

Ω

(
|∆w(x, t)|2+ |∇wt(x, t)|

2+ |θ(x, t)|2
)
dx dt+

∫ ∞

0

∫

Γ

|u(x, t)|2 ds dt (5.2)

to be minimized overall u ∈ L2(Γ×(0,∞)), where w solves the boundary control
problem (5.1). Note that when u ≡ 0 the functional (5.2) is nothing but the
integral over (0,∞) of the physical energy E(t) of the system.

We recall that the finite time horizon optimal control problem for the con-
trolled PDE system (5.1) was first studied in [16], and then fully solved according
to the novel abstract theory set forth in [2]. The preliminary PDE analysis car-
ried out in [16], combined with the key boundary regularity result established
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in [1, Theorem 1.1.] provided the proof.
Here we aim to complete the study of the associated optimal control problems
including the infinite time horizon case. Specifically, we will show that the
model under investigation fits as well into the abstract framework designed by
Assumptions 1.1 and 1.4, thereby ensuring the applicability of Theorem 1.5.

We already know that the boundary control problem (5.1) can be recast as
an abstract control system of the form (1.1) in the state variable y = (w,wt, θ),
with appropriate (and explicitly derived) dynamics and control operators (A,B);
see [16, § 2] for all details. A thorough analysis of the semigroup formulation of
the uncontrolled problem is provided by [27], where the predominant hyperbolic
character of the coupled PDE system (in the case ρ > 0) was first pointed out.
The state and control spaces are given by

Y = H2
0 (Ω)×H1

0 (Ω)× L2(Ω) , U = L2(Γ) ,

respectively. The plan is thus to check the complex of requirements contained
in Assumptions 1.1–1.4.

Verification of Assumption 1.1. The validity of the basic Assumption 1.1
has been already discussed in [16], yielding the explicit statements of [16, Propo-
sition 2.1.]. We recall from [16, Remark 2.2] that well-posedness of the uncon-
trolled model was proved in [27], while an easy computation provides bounded-
ness of the linear operator A−1B; see (2.23) in [16]. Instead, the exponential
stability of the underlying semigroup—by far a more challenging issue—was
established in [9].

Verification of Assumptions 1.4. We must verify that all the requirements
listed in Assumption 1.4 are fulfilled. Accordingly, we recall from [1, § 5] that
given z0 = (w0, w1, θ0) ∈ D(A∗), one has

B∗eA
∗tz0 =

∂θ

∂ν

∣
∣
∣
Γ
, (5.3)

where now θ(x, t) is the thermal component of the solution y(t) = (w(t), wt(t), θ(t))
to an initial/boundary value problem which comprises the same thermoelastic
system of (5.1), yet with homogeneous boundary conditions and with a slightly
different initial condition, that is y(0) = (w0,−w1, θ0). The change of sign
on a component of initial data is not influential, and it justifies the estimates
performed on the solution to the original PDE problem (5.1) with u ≡ 0.

For the reader’s convenience we record from [1, § 5] the essential steps of
the computations leading to the sought decomposition (1.5) of B∗eA

∗ty0, with
suitable F and G that will be shown to satisfy the series of assumptions in (1.4).
1. Notation. In the formulas below the symbol −AD denotes the (un-
bounded) linear operator which is the realization of the Laplace operator ∆
in H = L2(Ω), when supplemented with (homogeneous) Dirichlet boundary
condition, i.e.

ADw = −∆w , w ∈ D(AD) = H2(Ω) ∩H1
0 (Ω) .

It is well known that −AD is the generator of a strongly continuous semigroup
e−ADt in H , which moreover is analytic. The fractional powers AαD are well
defined for all α ∈ (0, 1), and there exist a positive constant ωL and constants
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Lα ≥ 1 such that the following estimates hold true:

‖AαDe
−ADt‖L(H) ≤ Lα

e−ωLt

tα
α ∈ [0, 1] . (5.4)

The related (positive) operator M = I + ρAD is employed in the abstract
formulation of the elastic equation and hence will occur in the computations
below. Instead, A will denote the realization of the bilaplacian ∆2 in Ω with
homogeneous clamped boundary conditions.

Finally, let D be the map which associates to any function in L2(Γ) its
harmonic extension in Ω. Classical trace theory ([34]) yields

D continuous : L2(Γ) −→ H1/2(Ω) ⊂ D(A
1/4−σ
D ) , 0 < σ <

1

4
,

which implies

A
1/4−σ
D D continuous : L2(Γ) −→ L2(Ω) , 0 < σ <

1

4
. (5.5)

In addition, the following well known result will be used throughout:

D∗ADh =
∂h

∂ν

∣
∣
∣
Γ
, h ∈ H3/2+σ(Ω) ∩H1

0 (Ω) , σ > 0 ; (5.6)

see, e.g., [30, Lemma 3.1.1, p. 181].

2. Explicit decomposition. We take the explicit expression of θ(t) and
utilize (5.6) to rewrite

∂θ

∂ν
≡ D∗ADθ(t) = D∗AD

[

e−ADtθ0 −AD

∫ t

0

e−AD(t−s)wt(s) ds
]

;

we next integrate by parts, obtaining first (since according to the clamped
boundary conditions ∂wt

∂ν = 0 on Γ):

∂θ

∂ν
= D∗ADe

−ADtθ0
︸ ︷︷ ︸

F1(t)y0

+D∗ADe
−ADtw1

︸ ︷︷ ︸

F2(t)y0

−D∗AD

∫ t

0

e−AD(t−s)wtt(s) ds

︸ ︷︷ ︸

ψ(t;y0)

.

Thus, we utilize the elastic equation wtt = −M−1Aw(s) +M−1ADθ(s) to find

ψ(t; y0) = −D∗AD

∫ t

0

e−AD(t−s)M−1Aw(s) ds

︸ ︷︷ ︸

ψ1(t;y0)

+D∗AD

∫ t

0

e−AD(t−s)M−1ADθ(s) ds

︸ ︷︷ ︸

−F3(t)y0

= D∗AD

∫ t

0

e−AD(t−s)M−1AD∆w(s) ds

︸ ︷︷ ︸

ψ11(t;y0)

−D∗AD

∫ t

0

e−AD(t−s)M−1AD∆w(s)
∣
∣
Γ
ds

︸ ︷︷ ︸

ψ12(t;y0)

−F3(t; y0)

(5.7)
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where the further splitting of ψ1(t; y0) = ψ11(t; y0) +ψ12(t; y0) is a consequence
of

M−1Aw = −M−1AD
(
∆w −D∆w|Γ

)
;

see [16, §5, formula (5.9)]. We will see that the integral ψ11(t; y0) eventually
contribute to the term F (t)y0, while it was shown in [16] that ψ12(t; y0) does
satisfy Assumption 1.4(ii) and (iii)(a); hence, ψ12(t; y0) is identified with G(t)y0.

Summarizing, we found the following decomposition:

∂θ

∂ν
=

4∑

i=1

Fi(t)y0 +G(t)y0 ,

where

F1(t)y0 = D∗ADe
−ADtθ0 , F2(t)y0 = D∗ADe

−ADtw1

F3(t)y0 = −D∗AD

∫ t

0

e−AD(t−s)M−1ADθ(s) ds ,

F4(t)y0 = D∗AD

∫ t

0

e−AD(t−s)M−1AD∆w(s) ds ,

and

G(t)y0 = D∗AD

∫ t

0

e−AD(t−s)M−1AD∆w(s)
∣
∣
Γ
ds . (5.8)

3. Estimates. We proceed to check the validity of the first among Assump-
tions 1.4 on either term Fi(t)y0, i = 1, . . . , 4. Employing the various properties
recorded above—in particular, using repeatedly the analytic estimates (5.4)—
and that

‖(w(t), wt(t), θ(t))‖Y = ‖eAt(w0,−w1, θ0)‖Y ≤Me−ωt‖y0‖Y ,
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we find

‖F1(t)y0‖ ≤ ‖D∗A
1/4−σ
D ‖L3/4+σ

e−ωLt

t3/4+σ
‖θ0‖ ≤ C1,σ t

−3/4−σe−ωLt‖y0‖ ; (5.9)

‖F2(t)y0‖ = ‖D∗A
1/2
D ‖ ‖e−ADtA

1/2
D w1‖

≤ ‖D∗A
1/4−σ
D ‖L1/4+σ

e−ωLt

t1/4+σ
‖A

1/2
D w1‖ = C2,σ t

−1/4−σe−ωLt‖w1‖1,Ω

≤ C2,σ e
−ωLtmax{t−3/4−σ, 1}‖y0‖ ; (5.10)

‖F3(t)y0‖ ≤ ‖D∗A
1/4−σ
D ‖L3/4+σ

∫ t

0

e−ωL(t−s)

(t− s)3/4+σ
‖M−1AD‖‖θ(s)‖ ds

≤ ‖D∗A
1/4−σ
D ‖L3/4+σ ‖M

−1AD‖

∫ t

0

e−ωL(t−s)

(t− s)3/4+σ
Me−ωs‖y0‖ ds

≤ C3,σ t
1/4−σe−ωt‖y0‖ , ω = min{ω, ωL} ; (5.11)

‖F4(t)y0‖ ≤ ‖D∗A
1/4−σ
D ‖L3/4+σ

∫ t

0

e−ωL(t−s)

(t− s)3/4+σ
‖M−1AD‖‖w(s)‖2,Ω ds

‖D∗A
1/4−σ
D ‖L3/4+σ

∫ t

0

e−ωL(t−s)

(t− s)3/4+σ
‖M−1AD‖Me−ωs‖y0‖ ds

≤ C4,σ t
1/4−σe−ωt‖y0‖ , ω = min{ω, ωL} . (5.12)

Thus, if σ is fixed, the bounds obtained in (5.11) and (5.12) imply that

∃C, η > 0 : ‖Fi(t)y0‖ ≤ C e−ηt‖y0‖ , i = 1, 2 . (5.13)

(We note that, more precisely, for any η < min{ω, ωL} there exists a constant
Cη > 0 such that the estimate in (5.13) holds. However, the formulation (5.13)
will suffice.)

Consequently, with a fixed σ the estimates (5.9) and (5.10) combined with
(5.13) show that Assumption 1.4(i) is satisfied with γ > 3/4 and η < min{ω, ωL}.

Finally, that the component G(t)y0 in (5.8) fulfils the requirements of As-
sumptions 1.4(ii) and (iii)(a) was proved in [16]. The more challenging As-
sumption 1.4(iii)—whose PDE counterpart is a suitable regularity result for the
boundary traces of θt—has been established in [1].

Therefore, provided the observation operatorRmeets Assumption 1.4(iii)(b),
all the hypotheses of Theorem 1.5 are satisfied; consequently, all its statements
follow. Indeed, in the present case the observation operator which occurs in
the functional (5.2) is the identity, and it is not difficult to ascertain that As-
sumption 1.4(iii)(b) holds true if ǫ is taken sufficiently small; see [16, §3] and [2,
Remark 2.5].

A Appendix

Proof of Proposition 3.7. We shall use the representation (4.21) for Φ(t)x. Let
x ∈ D(Aǫ), with ǫ given by Assumption 1.4(iii). By standard semigroup theory
we know that for any δ < ω,

eA·x ∈ Lpδ(0,∞;D(Aǫ)) ∀p ∈ [1,∞] ; (A.1)
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then, owing to Assumption 1.4(iii)(b), we obtain as well

R∗ReA·x ∈ Lpδ(0,∞;D(A∗ǫ)) ∀p ∈ [1,∞] .

In particular, R∗ReA·x ∈ Lpδ(0,∞;D(A∗ǫ)) with p > 1/(1 − γ) and Proposi-
tion 2.7(iv) establishes

L∗R∗ReA·x ∈ L∞
δ (0,∞;U) .

We now make the following Claim.

Claim A.1. The operator Λ = I + L∗R∗RL admits a bounded inverse

Λ−1 : L∞
δ (0,∞;U) −→ L∞

δ−σ0
(0,∞;U) ,

with appropriate σ0 ∈ (0, δ).

Assuming that Claim A.1 is valid, it follows that

Λ−1L∗R∗ReA·x ∈ L∞
θ (0,∞;U) for some θ < δ < ω ∧ η.

Thus, using now Proposition 2.6(v) we see that

LΛ−1L∗R∗ReA·x ∈ L∞
θ (0,∞;D(Aǫ)) ⊂ Lpβ(0,∞;D(Aǫ)) (A.2)

for any β such that 0 < β < θ and for all p ∈ [2,∞].
The regularity in (A.2), combined with the one in (A.1), shows that (3.22)

holds true. Then, using the boundedness of the gain operator B∗P on D(Aǫ) in
the feedback representation (3.24) of the optimal control, we easily obtain that
(3.22) implies (3.23), thus completing the proof.

Proof of Claim A.1. We proceed pretty much in the same way as in the proof of
Theorem 4.12. The tools which play a major role are, once more, the smoothing
properties of the operators L and L∗, as well as the inclusions Lrα(0,∞;U) ⊂
Lsβ(0,∞;U) for β ∈ (0, α) and r < s (including s = +∞).

1. We seek to solve uniquely the equation

g + L∗R∗RLg = h ∈ L∞
δ (0,∞;U) , (A.3)

with arbitrary δ ∈ (0, ω ∧ η). An elementary calculation shows that h ∈
L2
θ(0,∞;U) as well, for any 0 < θ < δ. Thus, since by Lemma 4.10 Λ is

boundedly invertible in L2
θ(0,∞;U) provided θ is taken sufficiently small, there

exists a unique function g ∈ L2
θ(0,∞;U) such that (A.3) is satisfied. We will

show that—possibly taking a smaller θ—in fact

g ∈ L∞
θ (0,∞;U) . (A.4)

2. Preliminarly, we prove that

∃n1 ∈ N : (L∗R∗RL)n1 continuous: L2
θ(0,∞;U) → L∞

θ (0,∞;U) . (A.5)

Let f ∈ L2
θ(0,∞;U). Since the successive application of the operators L and L∗

improve the (time regularity) summability exponents, there exists an integer n
such that

(L∗R∗RL)nf ∈ Lq
′

θ (0,∞;U) ,
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which in view of Proposition 2.6(v) implies eθ·L(L∗R∗RL)nf ∈ Cb([0,∞);D(Aǫ)).
Then, eθ·R∗RL(L∗R∗RL)nf ∈ Cb([0,∞);D(A∗ǫ)) and by Proposition 2.7(v)

(L∗R∗RL)n+1f = L∗R∗RL(L∗R∗RL)nf ∈ L∞
θ (0,∞;U) .

Thus, (A.5) is satisfied with n1 = n+ 1.

3. We return to (A.3) and argue as follows. The solution g of (A.3) is such that

g = h− L∗R∗RLg ; (A.6)

then, if n1 = 1 in (A.5), since h and L∗R∗RLg in (A.6) both belong to
L∞
θ (0,∞;U), we immediately obtain (A.4). The case n1 > 1 is treated as

follows.
We apply the operator L∗R∗RL∗ to both members of (A.6), thus obtaining

L∗R∗RL∗g = L∗R∗RL∗h− (L∗R∗RL∗)2g . (A.7)

Observe now that L∗R∗RL∗h ∈ L∞
θ (0,∞;U), as the given regularity of h is

maintained by the application of L∗R∗RL; if, in addition, n1 = 2 in (A.5), the
identity (A.7) yields L∗R∗RL∗g ∈ L∞

θ (0,∞;U). Using the obtained regularity
for L∗R∗RL∗g in (A.6), we find that g ∈ L∞

θ (0,∞;U), that is (A.4).
If, instead, n1 > 2, inserting (A.7) into (A.6) we find the novel identity

g = h− L∗R∗RL∗h+ (L∗R∗RL∗)2g . (A.8)

To pinpoint the regularity of the summand (L∗R∗RL∗)2g, we return to (A.7)
and apply the operator L∗R∗RL∗ to both members. Plugging the obtained
expression for (L∗R∗RL∗)2g into (A.8) yields

g =

2∑

j=0

(−1)j(L∗R∗RL∗)jh+ (L∗R∗RL∗)3g .

The iteration of this argument eventually yields

g =

n1−1∑

j=0

(−1)j(L∗R∗RL∗)jh+ (L∗R∗RL∗)n1g ,

where both summands on the right hand side belong to L∞
θ (0,∞;U), which

establishes (A.4) and concludes the proof.
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