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Abstract

We show that the main results of the expected utility and dualutility theories can be derived in a unified
way from two fundamental mathematical ideas: the separation principle of convex analysis, and integral
representations of continuous linear functionals from functional analysis. Our analysis reveals the dual
character of utility functions. We also derive new integralrepresentations of dual utility models.
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1 Introduction

The theory of expected utility and the dual utility theory are two very popular and widely accepted ap-
proaches for quantification of preferences and a basis of decisions under uncertainty. These classical topics
in economics are covered in plentitude of textbooks and monographs and represent a benchmark for every
other quantitative decision theory.

The expected utility theory of von Neumann and Morgernstern[32], and to the dual utility theory of
Quiggin [25] and Yaari [33] are often compared and contrasted (see,e.g., [16]). Our objective is to show that
they have common mathematical roots and their main results can be derived in a unified way from two math-
ematical ideas: separation principles of convex analysis,and integral representation theorems for continuous
linear functionals. Our analysis follows similar lines of argument in both cases, accounting only for the dif-
ferences of the corresponding prospect spaces. Our approach reveals the dual nature of both utility functions
as continuous linear functionals on the corresponding prospect spaces. It also elucidates the mathematical
limitations of the two approaches and their boundaries. In addition to this, we obtain new representations of
dual utility.

The paper is organized as follows. We briefly review basic concepts of orders and their numerical repre-
sentation in§2. In §3, we focus on the expected utility theory in the prospect space of probability measures
on some Polish space of outcomes. In§4, we derive the dual utility theory in the prospect space of quantile
functions. Finally,§5 translates the earlier results to the prospect spaces of random variables.
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2 Numerical Representation of Preference Relations

We start our presentation from the analysis of abstract preference relations in a certain spaceX, which we
call theprospect space. We assume that apreference relationamong prospects is defined by a certaintotal
preorder, that is, a binary relationD on X, which is reflexive, transitive and complete. The corresponding
indifference relation∼ is defined in a usual way:z∼ v, if zD v andv D z. We say thatz is strictly preferred
overv and write itz⊲ v, if zD v, andv 4 z.

If X is a topological space, we call a preference relationD continuous, if for everyz∈ X the sets{v∈ X :
v D z} and{v∈X : zD v} are closed.

A functionalU : X→R is anumerical representationof the preference relationD onX, if

z⊲ v ⇐⇒ U(z)>U(v).

The following classical theorem is the theoretical foundation of the utility theory.

Theorem 2.1 Suppose the total preorderD on a topological spaceX is continuous and one of the following
conditions is satisfied:

(i) X is a separable and connected topological space; or
(ii) The topology ofX has a countable base.

Then there exists a continuous numerical representation ofD.

Remark 2.2 The assertion under (i) is due to [13,§6]. The second case (under (ii)) was announced in [6,
Thm. II] and corrected in [28, Thm. 1], but both proofs contained errors. They were corrected again in [7]; a
short and clear proof was eventually provided by [21]. For extensions and further discussion, see [3, 4].

This is the starting point of our considerations. The expected utility theory and the dual utility theory
derive properties of the numerical representationU(·) and its integral representations in specific prospect
spaces and under additional conditions on the preorderD. These conditions are associated with the operation
of forming convex combinations of prospects. In the expected utility theory, the prospects are probability
distributions, and their convex combinations correspond to lotteries. The dual utility theory uses convex
combinations of comonotonic real random variables, which translates to forming convex combinations of
quantile functions.

It is evident that convexity in some underlying vector spaceis a key property in the system of axioms of
the expected utility and dual utility models. Both theorieshave been developed using different mathematical
approaches and specialized tools. Our objective is to show that they can be deduced in a unified way from
the fundamental separation theorem of convex analysis, andfrom functional analysis results about integral
representation of continuous linear functionals in topological vector spaces.

The foundation of our approach is the separation principle for convex sets having nonempty algebraic
interiors. Thealgebraic interiorof a convex setA in a vector spaceY is defined as follows:

core(A) =
{

x∈ A : ∀(d ∈ Y ) ∃(t > 0) x+ td∈ A
}

.

The following separation theorem is due to [12] and [9]; see also [22].

Theorem 2.3 SupposeY is a vector space and A⊂ Y is a convex set. Ifcore(A) 6= /0 and x 6∈ core(A), then
there exists a linear functionalℓ onY such thatℓ(x)< ℓ(y) for all y ∈ core(A).

In the development of the expected utility theory of von Neumann and Morgenstern in§3, and of the dual
utility theory of Yaari and Quiggin in§4, we apply the same method:

• Embedding of the prospect space into an appropriate vector space;

• Representation of the set of pairs of comparable prospects by a convex set with a nonempty algebraic
interior;

• Application of the separation theorem to establish the existence of an affine numerical representation;

• Application of an appropriate integral representation theorem for continuous linear functionals to derive
the existence of utility and dual utility functions.
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3 Expected Utility Theory

3.1 The Prospect Space of Distributions

Given a Polish spaceS , equipped with itsσ -algebraB of Borel sets, we consider the setP(S ) of probabil-
ity measures onS . The theory of expected utility can be formulated in a rathergeneral way for the prospect
spaceX= P(S ).

We assume that the preference relationD satisfies two additional conditions:

Independence Axiom: For all µ , ν, andλ in P(S ) one has

µ ⊲ ν =⇒ αµ +(1−α)λ ⊲ αν +(1−α)λ , ∀α ∈ (0,1),

Archimedean Axiom: For all µ , ν, andλ in P(S ), satisfying the relationsµ ⊲ ν ⊲ λ , there existα,β ∈
(0,1) such that

αµ +(1−α)λ ⊲ ν ⊲ β µ +(1−β )λ .

These are exactly the conditions assumed in the pioneering work [32] (see also [14,§8.2,§8.3], [15, §2.2],
[17, §2.2], [20]).

Our idea is to exploit convexity in a more transparent fashion. We derive the following properties of a
preorder satisfying the independence and Archimedean axioms.

Lemma 3.1 Suppose a total preorderD on P(S ) satisfies the independence axiom. Then for everyµ ∈
P(S ) the indifference set{ν ∈ P(S ) : ν ∼ µ} is convex.

Proof. Let ν ∼ µ andλ ∼ µ . Suppose(1−α)ν +αλ ⊲ ν for someα ∈ (0,1). Then also(1−α)ν +αλ ⊲ λ .
Using the independence axiom with these two relations, we obtain contradiction as follows:

(1−α)ν +αλ = (1−α)
[

(1−α)ν +αλ
]

+α
[

(1−α)ν +αλ
]

⊲ (1−α)ν +α
[

(1−α)ν +αλ
]

⊲ (1−α)ν +αλ .

The case whenν ⊲ (1−α)ν +αλ is excluded in a similar way. We conclude that(1−α)ν +αλ ∼ µ , for
all α ∈ (0,1).

Remark 3.2 Lemma 3.1 derives the properties ofquasi-concavityandquasi-convexity, that is,quasi-linearity
of the preorderD (see,e.g., [26, § 9.2], and the references therein). The property of quasi-concavity is called
uncertainty aversionin [18, 30].

Lemma 3.3 Suppose a total preorderD onP(S ) satisfies the independence and Archimedean axioms. Then
for all µ ,ν ∈ P(S ), satisfying the relationµ ⊲ ν, and for allλ ∈ P(S ), there exists̄α > 0 such that

(1−α)µ +αλ ⊲ ν and µ ⊲ (1−α)ν +αλ , ∀α ∈ [0, ᾱ]. (1)

Proof. We focus on the left relation in (1) and consider three cases.
Case 1:ν ⊲ λ . The left relation in (1) is true for somēα1 ∈ (0,1), owing to the Archimedean axiom. If
α ∈ [0, ᾱ1] then forβ = α/ᾱ1 ∈ [0,1] the independence axiom yields

(1−α)µ +αλ = (1−β )µ +β
[

(1− ᾱ1)µ + ᾱ1λ
]

⊲ (1−β )µ +β ν ⊲ ν.

Case 2:λ ⊲ ν. Applying the independence axiom twice, we obtain

(1−α)µ +αλ ⊲ (1−α)ν +αλ ⊲ ν, ∀α ∈ [0,1).

Case 3:λ ∼ ν. By virtue of Lemma 3.1,(1−α)ν +αλ ∼ ν for all α ∈ [0,1), and the left relation in (1)
follows from the independence axiom.

This proves the left relation in (1) for allα ∈ [0, ᾱ1] with someᾱ1 > 0.
Reversing the preference relation, that is, definingν ⊲−1 µ ⇐⇒ µ ⊲ ν, the right relation in (1) follows

analogously. We infer the existence of someᾱ2 > 0, such that the right relation in (1) is true for allα ∈ [0, ᾱ2].
Settingᾱ = min{ᾱ1, ᾱ2} we obtain the assertion of the lemma.
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3.2 Affine Numerical Representation

The setP(S ) is a convex subset of the vector spaceM (S ) of signed regular finite measures onS . It
is also convenient for our derivations to consider the linear subspaceM0(S ) ⊂ M (S ) of signed regular
measuresµ such thatµ(S ) = 0.

The main theorem of this section is due to [32]. Its complicated constructive proof has been since repro-
duced in many sources (see, e.g., [17, Thm. 2.21] and the references therein), or emulated in the setting of
mixture sets(see, e.g., [14, Thm. 8.4], [15, Thm. 2, Ch. 2], [20], and the references therein). Our proof, as
indicated in the introduction, is based on the separation theorem.

Theorem 3.4 Suppose the total preorderD on P(S ) satisfies the independence and Archimedean axioms.
Then there exists a linear functional onM (S ), whose restriction toP(S ) is a numerical representation of
D.

Proof. In the spaceM0(S ), define the set

C0 = {µ −ν : µ ∈ P(S ), ν ∈ P(S ), µ ⊲ ν}.

Consider two arbitrary pointsϑ andκ in C0, that is,

ϑ = µ −ν, µ ,ν ∈ P(S ), µ ⊲ ν,
κ = λ −σ , λ ,σ ∈ P(S ), λ ⊲ σ .

For everyα ∈ (0,1), using the independence axiom twice, we obtain

αµ +(1−α)λ ⊲ αν +(1−α)λ ⊲ αν +(1−α)σ .

Therefore,αϑ +(1−α)κ ∈C0, which proves thatC0 is convex.
DefineC = {αϑ : ϑ ∈ C0, α > 0}. It is evident thatC is convex cone, that is, for allϑ ,κ ∈ C, and all

α,β > 0 we haveαϑ +βκ ∈C. Moreover,C⊂ M0.
We shall prove that the algebraic interior ofC is nonempty, and that, in fact,C = core(C). Consider any

ϑ ∈C, an arbitrary nonzero measureλ ∈ M0, and the ray

z(τ) = ϑ + τλ , τ > 0.

Our objective is to show thatz(τ) ∈ C for a sufficiently smallτ > 0. Let λ = λ+ − λ− be the Jordan
decomposition ofλ . With no loss of generality, we may assume that the directionλ is normalized so that
|λ |= λ+(S )+λ−(S ) = 2. As λ ∈ M0, we have thenλ+(S ) = λ−(S ) = 1. Letα > 0 be such that the
pointϑ0 = αϑ ∈C0. SinceC is a cone,z(τ) ∈C if and only if αz(τ) ∈C. Settingt = ατ, we reformulate our
question as follows: Doesϑ0+ tλ belong toC for sufficiently smallt > 0? Sinceϑ0 ∈C0, we can represent
it as a differenceϑ0 = µ −ν, with µ ,ν ∈ P(S ), andµ ⊲ ν. Then

ϑ0+ tλ =
[

(1− t)µ + tλ+
]

−
[

(1− t)ν + tλ−]+ tϑ0. (2)

Both expressions in brackets are probability measures fort ∈ [0,1]. By virtue of the independence axiom,

µ ⊲
1
2

µ +
1
2

ν ⊲ ν.

By Lemma 3.3, there existst0 > 0, such that for allt ∈ [0, t0] we also have

(1− t)µ + tλ+
⊲

1
2

µ +
1
2

ν ⊲ (1− t)ν + tλ−.

This proves that
[

(1− t)µ + tλ+
]

−
[

(1− t)ν + tλ−] ∈C0,
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provided thatt ∈ [0, t0]. For these values oft, the right hand side of (2) is a sum of two elements ofC. As the
setC is a convex cone, this sum is an element ofC as well. Consequently,ϑ + τλ ∈C for all τ ∈ [0, t0/α].

Summing up,C is convex,C = core(C), and 0/∈ C. By Theorem 2.3, the point 0 and the setC can be
separated strictly: there exists a linear functionalU0 onM0(S ), such that

U0(ϑ)> 0, ∀ϑ ∈C. (3)

We can extend the linear functionalU0 to the whole spaceM (S ) by choosing a measureλ ∈ P(S ) and
setting

U(µ) =U0
(

µ − µ(S )λ
)

, µ ∈ M (S ).

It is linear and coincides withU0 on M0(S ). Relation (3) is equivalent to the following statement: forall
µ ,ν ∈ P(S ) such thatµ ⊲ ν, we have

U0(µ −ν) =U(µ −ν) =U(µ)−U(ν)> 0.

It follows thatU restricted toP(S ) is the postulated affine numerical representation of the preorderD.

3.3 Integral Representation. Utility Functions

To prove the main result of this section, we assume that the spaceM (S ) is equipped with the topology of
weak convergence of measures. Recall that a sequence of measures{µn} converges weakly toµ in M (S ),
which we writeµn

w−→ µ , if

lim
n→∞

∫

S
f (z)µn(dz) =

∫

S
f (z)µ(dz), ∀ f ∈ Cb(S ),

whereCb(S ) is the set of bounded continuous real functions onS (for more details see, e.g., [2]).
We derive our next result from the classical Banach’s theorem on weakly⋆ continuous functionals. It has

been proved in the past via discrete approximations of the measures in question (see,e.g., [14,§10], [15, Ch.
3, Thm. 1–4] and [17, Thm. 2.28]).

Theorem 3.5 Suppose the total preorderD on P(S ) is continuous and satisfies the independence axiom.
Then a continuous and bounded function u: S →R exists, such that the functional

U(µ) =
∫

S
u(z) µ(dz) (4)

is a numerical representation ofD onP(S ).

Proof. The continuity of the preorderD implies the Archimedean axiom. Indeed, the sets{π ∈P(S ) : π ⊲ ν}
and{π ∈ P(S ) : µ ⊲ π} are open, and the mappingα 7→ απ +(1−α)λ , α ∈ [0,1], is continuous for any
λ ∈ P(S ).

Owing to Theorem 3.4, a linear functionalU : M (S ) → R exists, whose restriction toP(S ) is a
numerical representation ofD. We shall prove that the functionalU(·) is continuous onP(S ), that is, for
everyα the sets

A= {µ ∈ P : U(µ)≤ α} and B= {µ ∈ P : U(µ)≥ α}

are closed. SinceP is convex andU(·) is linear, the setU(P) is convex. Therefore, for everyα one of three
cases may occur:

(i) U(µ)< α for all µ ∈ P;
(ii) U(µ)> α for all µ ∈ P;
(iii) α ∈U(P).
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In cases (i) and (ii) there is nothing to prove. In case (iii),let ν ∈ P be such thatU(ν) = α. SinceU(·) is a
numerical representation of the preorder, we have

A= {µ ∈ P : ν D µ} and B= {µ ∈ P : µ D ν}.
Both sets are closed due to the continuity of the preorderD.

Now, we can prove continuity on the whole spaceM (S ). Supposeµn
w−→ µ , butU(µn) does not converge

toU(µ). Then an infinite setK andε > 0 exist such that|U(µk)−U(µ)|> ε for all k∈K . AsU(·) is linear,
with no loss of generality we may assume thatµ ∈ P. Consider the Jordan decompositionµk = µ+

k − µ−
k .

By the Prohorov theorem [24], the sequence{µk} is uniformly tight, and so are{µ+
k } and{µ−

k }. They are,
therefore, weakly compact. Letν be the weak limit of a convergent subsequence{µ+

k }k∈K1, whereK1 ⊆K .
Then the subsequence{µ−

k }k∈K1 also has a weak limit:λ = ν−µ . The measuresµ+
k /µ+

k (S ) are probability
measures, andµ+

k (S )→ ν(S )≥ 1. Consequently,

U
(

µ+
k

)

= µ+
k (S )U

(

µ+
k

µ+
k (S )

)

k∈K1−−−→ ν(S )U

(

ν
ν(S )

)

=U(ν).

Similarly, µ−
k (S )

k∈K1−−−→ ν(S ) and

U
(

µ−
k

)

= µ−
k (S )U

(

µ−
k

µ−
k (S )

)

, if µ−
k (S )> 0.

If µ−
k (S ) > 0 infinitely often, then the limit ofU

(

µ−
k

)

on this sub-subsequence equalsU(λ ). If µ−
k = 0

infinitely often, thenλ = 0. In any case,U(µ−
k )→U(λ ), whenk∈ K1. It follows that

U(µk) =U(µ+
k )−U(µ−

k )
k∈K1−−−→U(ν)−U(λ ) =U(µ),

which contradicts our assumption. Therefore, the functionalU(·) is continuous onM (S ). Owing to Theo-
rem 5.11 in the Appendix,U(·) has the form (4), whereu : S →R is continuous and bounded.

Formula (4) is referred to as theexpected utility representation, andu(·) is called theutility function.
The utility function in Theorem 3.5 is bounded. If we restrict the space of measures to measures satisfying

additional integrability conditions, we obtain representations in which unbounded utility functions may occur.
Our construction is similar to the construction leading to [17, Thm. 2.30] with the difference that we work
with the space of signed measures onS , rather than with the set of probability measures.

Let ψ : S → [1,∞) be a continuousgauge function, and letC ψ
b (S ) be the set of functionsf : S →R,

such thatf/ψ ∈ Cb(S ). We can define the spaceM ψ(S ) of regular signed measuresµ , such that
∣

∣

∣

∫

S
f (z) µ(dz)

∣

∣

∣
< ∞, ∀ f ∈ C

ψ
b (S ).

Similarly to the topology of weak convergence, we say that a sequence of measuresµn ∈M (S ) is convergent
ψ-weakly toµ ∈ M (S ) if

lim
n→∞

∫

S
f (z)µn(dz) =

∫

S
f (z)µ(dz), ∀ f ∈ C ψ

b (S ).

All continuity statements will be now made with respect to this topology. We use the symbolPψ(S ) to
denote the set of probability measures inM ψ (S ).

We can now recover the result of [17, Th. 2.30].

Theorem 3.6 Suppose the total preorderD onPψ (S ) is continuous and satisfies the independence axiom.
Then a function u∈ C

ψ
b (S ) exists such that the functional

U(µ) =
∫

S
u(z) µ(dz) (5)

is a numerical representation ofD onPψ(S ).

Proof. The proof is identical to the proof of Theorem 3.5, except that we need to invoke Theorem 5.12 from
the Appendix.
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3.4 Monotonicity and Risk Aversion

SupposeS is a separable Banach lattice with a partial order relation≥. In a lattice structure, it makes sense
to speak about monotonicity of a preference relation. In this section, the symbolδz denotes a unit atomic
measure concentrated onz∈ S .

Definition 3.7 A preorderD on P(S ) is monotonicwith respect to the partial order≥ on S , if for all
z,v∈ S the implication z≥ v =⇒ δz D δv is true.

We can derive monotonicity of utility functions from the monotonicity of the order.

Theorem 3.8 Suppose the total preorderD on P(S ) is monotonic, continuous, and satisfies the indepen-
dence axiom. Then a nondecreasing, continuous, and boundedfunction u: S → R exists, such that the
functional(4) is a numerical representation ofD onP(S ).

Proof. In view of Theorem 3.5, it is sufficient to verify that the function u(·) in (4) is nodecreasing with
respect to the partial order≥. To this end, we considerz,v ∈ S such thatz≥ v. By monotonicity of the
order,u(z) =U(δz)≥U(δv) = u(v).

We now focus on the case, when the gauge function isψp(z) = 1+ ‖z‖p, wherep≥ 1. Then for every
µ ∈Pψp(S ) and for everyσ -subalgebraG of B the conditional expectationEµ|G : S →S is well-defined,
as aG -measurable function satisfying the equation

∫

G
Eµ|G (z) µ(dz) =

∫

G
z µ(dz), G∈ G

(cf. [23, §2.1]). The conditional expectationEµ|G induces a probability measure on(S ,B) as follows

µG (A) = µ
{

E −1
µ|G (A)

}

, A∈ B.

Definition 3.9 A preference relationD on Pψp(S ) is risk-averse, if µG D µ , for everyµ ∈ Pψp(S ) and
everyσ -subalgebraG of B.

By choosingG = {S , /0}, we observe that Definition 3.9 implies thatδEµ D µ , whereEµ =
∫

S z µ(dz) is
the expected value.

Theorem 3.10 Suppose a total preorderD on Pψp(S ) is continuous, risk-averse, and satisfies the inde-
pendence axiom. Then a concave function u∈ C

ψp
b (S ) exists such that the functional(5) is a numerical

representation ofD onPψ(S ).

Proof. In view of Theorem 3.6, we only need to prove the concavity ofu(·). Due to risk aversion, for every
µ ∈ Pψp(S ), we obtainδEµ D µ . Consequently,

u

(

∫

S
z µ(dz)

)

≥
∫

S
u(z) µ(dz).

This is Jensen’s inequality, which is equivalent to the concavity of u(·).

Remark 3.11 It is clear from the proof that the concavity ofu(·) could have been obtained by simply assum-
ing thatδEµ D µ . The concavity ofu(·) would imply risk aversion in the sense of Definition 3.9, by virtue of
Jensen’s inequality for conditional expectations. Therefore, Definition 3.9 and the requirement thatδEµ D µ
are equivalent within the framework of the expected utilitytheory. Nonetheless, we prefer to leave Definition
3.9 in its full form, because we shall use the concept of risk aversion in connection with other axioms, where
such equivalence cannot be derived.
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4 Dual Utility Theory

4.1 The Prospect Space of Quantile Functions

The dual utility theory is formulated in much more restrictive setting: for the probability distributions on
the real line. With every probability distributionµ ∈ P(R) we associate the distribution function:Fµ(t)

△
=

µ
(

(−∞, t]
)

. It is nondecreasing and right-continuous. We can, therefore, define its inverse

F−1
µ (p) △

= inf {t ∈R : Fµ(t)≥ p}, p∈ (0,1). (6)

By definition,F−1
µ (p) is the smallestp-quantile ofµ . We callF−1

µ (·) thequantile functionassociated with
the probability measureµ . Every quantile function is nondecreasing and left-continuous on the open interval
(0,1). On the other hand, every nondecreasing and left-continuous functionΦ(·) on (0,1) uniquely defines
the following distribution function:

Fµ(t) = Φ−1(t) △
= sup{p∈ (0,1) : Φ(p)≤ t},

which corresponds to a certain probability measureµ ∈ P(R).
The setQ of all nondecreasing and left-continuous functions on the interval (0,1) will be our prospect

space.It is evident thatQ is a convex cone in the vector spaceL0(0,1) of all Lebesgue measurable functions
on the interval(0,1).

We assume that the preference relationD onQ is a total preorder and satisfies two additional conditions:

Dual Independence Axiom: For all Φ, Ψ , andϒ in Q one has

Φ ⊲Ψ =⇒ αΦ +(1−α)ϒ ⊲ αΨ +(1−α)ϒ , ∀α ∈ (0,1),

Dual Archimedean Axiom: For allΦ, Ψ , andϒ in Q, satisfying the relationsΦ ⊲Ψ ⊲ϒ , there existα,β ∈
(0,1) such that

αΦ +(1−α)ϒ ⊲Ψ ⊲ β Φ +(1−β )ϒ .

In [33], the dual utility theory considered the space of uniformly bounded random variables on an implic-
itly assumed atomless probability space. The operation of forming convex combinations was considered for
comonotonic random variables only. This corresponds to forming convex combinations of quantile functions,
and in this way our system of axioms is a subset of the axioms ofthe dual utility theory. We discuss this issue
in §5.2.

Similarly to Lemmas 3.1 and 3.3, we derive the following properties of a preorder satisfying the dual
axioms.

Lemma 4.1 Suppose a total preorderD onQ satisfies the dual independence axiom. Then for everyΦ ∈ Q
the indifference set{Ψ ∈ Q : Ψ ∼ Φ} is convex.

Lemma 4.2 Suppose a total preorderD onQ satisfies the dual independence and Archimedean axioms. Then
for all Φ,Ψ ∈ Q, satisfying the relationΦ ⊲Ψ , and for allϒ ∈ Q, there exists̄α > 0 such that

(1−α)Φ +αϒ ⊲Ψ and Φ ⊲ (1−α)Ψ +αϒ , ∀α ∈ [0, ᾱ]. (7)

4.2 Affine Numerical Representation

This section corresponds to $ 3.2 and it contains the proof ofexistence of an affine utility functional repre-
senting a total preorder, which satisfies the dual independence and Archimedean axioms. To the best of our
knowledge, this result is new in its formulation and derivation.
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It is convenient for our derivations to consider the linear span ofQ defined as follows:

lin(Q) =

{ k

∑
i=1

αiΦi : αi ∈R, Φi ∈ Q, i = 1, . . . ,k, k∈N
}

= Q−Q,

whereQ−Q is the Minkowski sum of the setsQ and−Q. The relation follows from the fact thatQ is a
convex cone.

Theorem 4.3 If a total preorderD on Q satisfies the dual independence and Archimedean axioms, then a
linear functional onlin(Q) exists, whose restriction toQ is a numerical representation ofD.

Proof. Define in the space lin(Q) the set

C= {Φ −Ψ : Φ ∈ Q,Ψ ∈ Q, Φ ⊲Ψ}.

Exactly as in the proof of Theorem 3.4, we can prove thatC is convex. We shall prove that it is a cone.
SupposeΦ ⊲Ψ and letα > 0. If α ∈ (0,1), then the independence axiom implies that

αΦ = αΦ +(1−α)0⊲ αΨ +(1−α)0= αΨ .

Considerα > 1, and supposeαΨ D αΦ. If αΨ ⊲ αΦ, then, owing to the independence axiom, we obtain a
contradiction:Ψ = 1

α (αΨ ) ⊲
1
α (αΦ) = Φ. Consider the case whenαΨ ∼ αΦ. By virtue of Lemma 4.1 and

the independence axiom, for anyβ ∈ (0,1/α) we obtain a contradiction in the following way:

αΨ ∼ β (αΦ)+ (1−β )(αΨ) = (β α)Φ +(1−β α)
[(1−β )α

1−β α
Ψ
]

⊲ (β α)Ψ +(1−β )(αΨ) = αΨ .

Therefore,αΦ ⊲ αΨ for all α > 0. We conclude that for everyα > 0 the elementα(Φ −Ψ) ∈ C. Conse-
quently,C is a convex cone.

To prove that the algebraic interior ofC is nonempty, and that in factC= core(C), we repeat the argument
from the proof of Theorem 3.4. Consider anyΓ ∈ C, a functionϒ ∈ lin(Q), and the rayZ(τ) = Γ + τϒ ,
whereτ > 0. By the definition of lin(Q), we can representϒ =ϒ+−ϒ−, with ϒ+,ϒ− ∈ Q.

SinceΓ ∈C, we can represent it as a differenceΓ = Φ −Ψ , with Φ,Ψ ∈ Q, andΦ ⊲Ψ . Then

Γ + tϒ =
[

(1− t)Φ + tϒ+
]

−
[

(1− t)Ψ + tϒ−]+ tΓ . (8)

Both expressions in brackets are elements ofQ. By the dual independence axiom,

Φ ⊲
1
2

Φ +
1
2

Ψ ⊲Ψ .

By Lemma 4.2, there existst0 > 0, such that for allt ∈ [0, t0] we also have

(1− t)Φ + tϒ+
⊲

1
2

Φ +
1
2

Ψ ⊲ (1− t)Ψ + tϒ−.

This proves that
[

(1− t)Φ + tϒ+
]

−
[

(1− t)Ψ + tϒ−] ∈C,

provided thatt ∈ [0, t0]. Thus relation (8) implies that for everyt ∈ [0, t0] the pointΓ + tϒ is a sum of two
elements ofC. Since the setC is a convex cone, this point is also an element ofC.

As C is convex,C = core(C), and 0/∈C, the assumptions of Theorem 2.3 are satisfied. Therefore, 0 and
C can be separated strictly: there exists a linear functionalU on lin(Q), such thatU(Γ ) > 0, for all Γ ∈C.
Thus,

U(Φ)−U(Ψ)> 0, if Φ ⊲Ψ ,

as required.
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4.3 Integral Representation with Rank Dependent Utility Functions

In order to derive an integral representation of the numerical representationU(·) of the preorderD, we need
stronger conditions, than those of Theorem 4.3. Two issues are important in this respect:

• Continuity ofU(·) on an appropriate complete topological vector space containing the setQ of quantile
functions; and

• Integral representation of a continuous linear functionalon this space.

The first issue cannot be easily resolved in a way similar to the proof of Theorem 3.5. Even if we assume
continuity of the preorderD (in some topology), we can prove continuity ofU(·) onQ, but there is no general
way to derive from this the continuity ofU(·) on some complete topological vector space containingQ. That
is why, we adopt a different approach and derive continuity from monotonicity.

Consider the algebraΣ of all sets obtained by finite unions and intersections of intervals of the form(a,b]
in (0,1], where 0< a< b≤ 1. We define the spaceB

(

(0,1],Σ
)

of all bounded functions on(0,1] that can be
obtained asuniform limitsof sequences of simple functions. Recall that asimple functionis a function of the
following form:

f (p) =
n

∑
i=1

αi1Ai (p), p∈ (0,1], (9)

whereαi ∈R for i = 1, . . . ,n, andAi , i = 1, . . . ,n, are disjoint elements of the fieldΣ . In the formula above,
1A(·) denotes the characteristic function of a setA.

The spaceB
(

(0,1],Σ
)

, equipped with the supremum norm:

‖Φ‖= sup
0<p≤1

Φ(p),

is a Banach space. The reader may consult [11, Ch. III] for information about integration with respect to a
finitely additive measure and spaces of bounded functions.

From now on, we shall consider onlycompactly supported distributions, and the prospect spaceQb of
all bounded, nondecreasing, and left-continuous functions on(0,1].1 The setQb is contained inB

(

(0,1],Σ
)

.
Indeed, every monotonic function may have only countably many jumps, their sizes are summable due to the
boundedness of the function, and owing to left-continuity it can be represented as a uniform limit of simple
functions.

For two functionsΦ andΨ in B
(

(0,1],Σ
)

, we writeΦ ≥Ψ , if Φ(p) ≥Ψ(p) for all p∈ (0,1).

Definition 4.4 A preorderD on Qb is monotonicwith respect to the partial order≥, if for all Φ,Ψ ∈ Qb,
the implicationΦ ≥Ψ =⇒ Φ DΨ is true.

Theorem 4.5 If a total preorderD on Qb is continuous, monotonic, and satisfies the dual independence
axiom, then a linear continuous functional on B

(

(0,1],Σ
)

exists, whose restriction toQb is a numerical
representation ofD.

Proof. Since the continuity axiom implies the Archimedean axiom, Theorem 4.3 implies the existence of a
linear functionalU : lin(Qb)→R whose restriction toQb is a numerical representation ofD. The continuity
axiom implies the continuity of the functionalU(·) on Qb. We shall extendU(·) to a continuous functional
on the entire spaceB

(

(0,1],Σ
)

.
Every simple function can be expressed as

Φ =
n

∑
i=1

zi1(pi ,pi+1] = ∑
zi<0

|zi |
(

1(pi+1,1]−1(pi,1]
)

+ ∑
zi>0

zi
(

1(pi ,1]−1(pi+1,1]
)

.

with 0= p1 < p2 < · · · < pn+1 = 1, and thus is an element of lin(Qb). Consequently, the linear functional
U(·) is well-defined on the space of simple functions. Moreover, rearranging terms, we see thatΦ is a
difference of two simple functions inQb.

1Bounded nondecreasing functions on(0,1) can be extended to(0,1] by assigning their left limits as their values at 1.
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Since the preorderD is monotonic, the linear functionalU(·) is monotonic onQb. We shall prove that it
is also monotonic on the set of simple functions inB

(

(0,1],Σ
)

. Let Φ andΨ are two simple functions, and
let Φ ≥Ψ . ThenΦ = Φ1−Φ2, Ψ =Ψ1−Ψ2, whereΦ1,Φ2,Ψ1,Ψ2 ∈ Qb, and

Φ1+Ψ2 ≥ Φ2+Ψ1.

As both sides are elements ofQb andU(·) is nondecreasing inQb and linear, regrouping the terms we obtain

U(Φ)−U(Ψ) =U(Φ1−Φ2−Ψ1+Ψ2) =U(Φ1+Ψ2)−U(Φ2+Ψ1)≥ 0.

This proves the monotonicity ofU(·) on the subspace of simple functions.
For any functionΓ ∈ B

(

(0,1],Σ
)

, we construct two sequences of simple functions:{Φn} and{Ψn} such
thatΦn ≤ Γ ≤Ψn, for n= 1,2, . . . , and

Γ = lim
n→∞

Φn = lim
n→∞

Ψn.

The sequence{U(Φn)} is bounded from above byU(Ψk) for anyk, due to the monotonicity ofU(·). Similarly,
the sequence{U(Ψn)} is bounded from below byU(Φk) for anyk. Moreover,

0≤U(Ψn)−U(Φn) =U(Ψn−Φn)

≤U
(

‖Ψn−Φn‖1(0,1]
)

=U(1(0,1])‖Ψn−Φn‖→ 0.

Therefore, both sequences{U(Φn)} and{U(Ψn)} have the same limit and we can define

U(Γ ) = lim
n→∞

U(Φn) = lim
n→∞

U(Ψn).

We may use any sequence of simple functionsΓn →Γ to calculateU(Γ ). Indeed, settingΦn =Γn−‖Γn−
Γ ‖ andΨn = Γn+ ‖Γn−Γ ‖, we obtainΦn ≤ Γ ≤Ψn andΦn ≤ Γn ≤Ψn. Consequently,U(Φn) ≤ U(Γn) ≤
U(Ψn) and

lim
n→∞

U(Γn) =U(Γ ).

The functionalU : B
(

(0,1],Σ
)

→R defined in this way is linear on the subspace of simple functions, which
is a subspace of lin(Qb). Consider two elementsΦ andΨ of B

(

(0,1],Σ
)

, and two sequences{Φn} and{Ψn}
of simple functions such thatΦn → Φ andΨn →Ψ . For anya,b∈R, we obtain

U(aΦ +bΨ) = lim
n→∞

U(aΦn+bΨn) = lim
n→∞

[

aU(Φn)+bU(Ψn)
]

= a lim
n→∞

U(Φn)+b lim
n→∞

U(Ψn) = aU(Φ)+bU(Ψ).

This proves the linearity ofU(·) on the whole spaceB
(

(0,1],Σ
)

.
To verify monotonicity, consider two elementsΦ ≤Ψ in B

(

(0,1],Σ
)

, and two sequences{Φn} and{Ψn}
of simple functions such thatΦn → Φ, Ψn →Ψ , andΦn ≤ Φ ≤Ψ ≤Ψn. AsU(·) is monotonic on the space
of simple functions, we obtainU(Φn)≤U(Ψn), and thusU(Φ)≤U(Ψ).

To prove continuity, consider any elementΦ ∈ B
(

(0,1],Σ
)

. Owing to linearity and monotonicity ofU(·),
we obtain

U(Φ)≤U
(

‖Φ‖1(0,1]
)

=U(1(0,1])‖Φ‖.

Consequently,U(·) is continuous.
Now, we can prove the main result of this section. It involvesintegration with respect to finitely additive

measures, which we denote by the symboldΣ. To the best of our knowledge, it is original in its formulation
and derivation.
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Theorem 4.6 Suppose the total preorderD on Qb is continuous, monotonic, and satisfies the independence
axiom. Then a nonnegative, bounded, finitely additive measure µ onΣ exists, such that the functional

U(Φ) =
∫ 1

0
Φ(p) dΣµ , Φ ∈ B

(

(0,1],Σ
)

, (10)

is a numerical representation ofD.

Proof. The functionalU : B
(

(0,1],Σ
)

→R constructed in the proof of Theorem 4.5 is linear and continuous.
By virtue of [11, Theorem IV.5.1], it has the form (10) of an integral with respect to a certain bounded and
finitely additive measureµ . AsU(·) is nondecreasing,µ is nonnegative.

Under additional conditions, we can write the integral (10)in a more familiar form of a Stieltjes integral.
We define a nondecreasing and bounded functionw : [0,1]→R+ as follows:

w(p) = µ
(

(0, p]
)

, p∈ (0,1]; w(0) = 0. (11)

If the jump points ofΦ(·) andw(·) do not coincide, we can rewrite (10) as follows:

U(Φ) =

∫ 1

0
Φ(p) dw(p). (12)

In general, however, to validate the integral representation (12), we need a weaker topology on the prospect
space. We use theL1-topology on the spaceQb of quantile functions, defined by the distance function

dist(Φ,Ψ ) =

∫ 1

0
|Φ(p)−Ψ(p)| dp.

Theorem 4.7 Suppose the total preorderD onQb is monotonic, continuous in theL1-topology, and satisfies
the independence axiom. Then a bounded, nondecreasing, andcontinuous function w: [0,1]→R exists, such
that the functional(12) is a numerical representation ofD.

Proof. The assumptions of Theorem 4.6 are satisfied, and thus a finitely additive measureµ exists such that
formula (10) holds. Definew(·) by (11). Asµ is nonnegative,w(·) is nondecreasing.

Consider a sequence of simple functions1(pn,1], with pn → p∈ (0,1), asn→ ∞. They are elements of
Qb and converge in theL1-topology to1(p,1]. The continuity of the preorderD in this topology implies that
the numerical representation (10) is continuous. We obtain

U
(

1(pn,1]
)

= µ
(

(pn,1]
)

= w(1)−w(pn)→U
(

1(p,1]
)

= w(1)−w(p).

Thusw(·) is continuous in(0,1). If p= 1, then1(pn,1] → 0, and we obtain in the same wayw(pn)→ w(1).
As w(·) is continuous,µ is a regular, bounded, countably additive, and atomless measure. Consequently,

the integral representation (10) can be written as a Stieltjes integral (12).
The functionw(·) appearing in the integral representation (12) is called therank-dependent utility function

or dual utility function.

Remark 4.8 An attempt to derive an even stronger representation, with adensity ofw(·) with respect to the
Lebesgue measure, has been made in [19, Thm. 1]. Unfortunately, the proof of that theorem contains an
incorrigible error (lines 14–15 on page 132).

Remark 4.9 In a fundamental contribution, Quiggin [25] considers discrete distributions and derives from
a different system of axioms the existence of ananticipated utility functional. In our notation, for a simple
quantile functionΦ = ∑n

i=1zi1(pi−1,pi ] with z1 ≤ z2 ≤ ·· · ≤ zn, and with cumulative probabilities 0= p0 ≤
p1 ≤ ·· · ≤ pn = 1, this functional has the form

U(Φ) =
n

∑
i=1

u(zi)
[

w(pi)−w(pi−1)
]

, (13)

whereu(·) andw(·) are nondecreasing functions (see [26, Ch. 11] and [27, Thm. 3.2] and the references
therein). This corresponds to (12) withu(z) ≡ z. The termrank-dependent utility function, which we adopt
for w(·), is borrowed from this theory.
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4.4 Choquet Integral Representation of Dual Utility

We presented the dual utility theory in the prospect space ofquantile functions, which is most natural for it.
It is interesting, though, to derive an equivalent representation in the prospect space of distribution functions.
Every bounded quantile functionΦ ∈ Qb corresponds to a distribution functionF :R→ [0,1] of a measure
with bounded support,

Φ(p) = F−1(p) △
= inf {η ∈R : F(η)≥ p},

F(z) = Φ−1(z) △
=

{

sup{p∈ [0,1] : Φ(p)≤ z} if z≥ Φ(0),

0 otherwise.

The following theorem employs a form of integration by partsfor the integral (10) and corresponds to the
representation derived in [29].

Theorem 4.10 Suppose the total preorderD on Qb is monotonic, continuous with respect to uniform con-
vergence and satisfies the dual independence axiom. Then a nondecreasing function w: [0,1]→ [0,1] exists,
satisfying w(0) = 0 and w(1) = 1, and such that the functional

U(F−1) =−
∫ 0

−∞
w
(

F(z)
)

dz+
∫ ∞

0

[

1−w
(

F(z)
)]

dz (14)

is a numerical representation ofD.

Proof. Due to Theorem 4.6, the functional (10) with some nonnegative, bounded, finitely additive measureµ
on Σ , is a numerical representation ofD. Without loss of generality, we may assume thatµ

(

(0,1]
)

= 1 and
define the functionw(·) by (11).

First, we check the formula (14) for a stepwise functionΦ(·), given as follows:

Φ(x) =
n

∑
i=1

zi1(pi ,pi+1](x), x∈ (0,1], (15)

wherez1 ≤ z2 ≤ ·· · ≤ zn and 0= p1 ≤ p2 ≤ ·· · ≤ pn ≤ pn+1 = 1. In the formula above,1A(·) denotes the
characteristic function of a setA.

The integral (10) takes on the form:

∫ 1

0
Φ(p) dΣµ =

n

∑
i=1

zi µ
(

(pi , pi+1]
)

=
n

∑
i=1

zi
[

w(pi+1)−w(pi)
]

.

With no loss of generality we may assume thatzk = 0 for somek. Then we can continue the above relations
as follows:

∫ 1

0
Φ(p) dΣµ =

k−1

∑
i=1

w(pi+1)(zi − zi+1)+
n−1

∑
i=k

[

1−w(pi+1)
]

(zi+1− zi)

=−
k−1

∑
i=1

w
(

F(zi)
)

(zi+1− zi)+
n−1

∑
i=k

[

1−w
(

F(zi)
)]

(zi+1− zi).

This proves the formula (14) for simple functions.
To prove it for a general functionΦ ∈ Qb, we consider two sequences of simple functions{Φn} and

{Ψn}, such thatΦn ≤ Φ ≤Ψn, n= 1,2, . . . , and

‖Ψn−Φn‖∞ → 0 as n→ ∞.
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SinceΦ−1
n ≥ Φ−1 ≥Ψ−1

n andw(·) is nondecreasing, we have

U(Φn) =−
∫ 0

−∞
w
(

Φ−1
n

)

dz+
∫ ∞

0

[

1−w
(

Φ−1
n

)]

dz

≤−
∫ 0

−∞
w
(

Φ−1) dz+
∫ ∞

0

[

1−w
(

Φ−1)] dz

≤−
∫ 0

−∞
w
(

Ψ−1
n

)

dz+
∫ ∞

0

[

1−w
(

Ψ−1
n

)]

dz=U(Ψn).

The first and the last equation follow from the formula (14) for simple functions. SinceU(·) is continuous,
the leftmost and the rightmost members converge toU(Φ), asn→ ∞, and thus the middle member must be
equal toU(Φ).

Remark 4.11 The assertion of Theorem 4.10, in the case of distributions supported on[0,1], is similar to the
assertion of [33, Thm. 1]. Our assumptions are weaker, however. We do not assume any uniform bound on
all quantile functions in the prospect space, and we assume continuity of the preorderD with respect to the
topology of uniform convergence, rather than with respect to L1-topology, required in [33, A3]. Therefore,
we could not resort to the expected utility theory applied tothe quantile functions, as in the proof of [33,
Thm. 1].

Remark 4.12 Formula (14) is a special case of the Choquet integral of the functionF−1(·) (see [5]). In
our case we did not invoke the theory of capacities, because the prospect space contains only monotonic
functions.

4.5 Risk Aversion

For everyΦ ∈Qb and anyσ -subalgebraG of the Borelσ -algebraB onR, the conditional expectationEΦ |G
is defined as aG -measurable function, satisfying the equation

∫

G

EΦ |G (z) dΦ−1(z) =
∫

G

z dΦ−1(z), G∈ G .

Observe that it is sufficient to require this equation for thesmallest collectionJ of intervals of form(−∞,c],
generatingG :

∫ c

−∞
EΦ |G (z) dΦ−1(z) =

∫ c

−∞
z dΦ−1(z), ∀ (∞,c] ∈ J .

The corresponding quantile function ofEΦ |G , denoted byΦG (p), is Φ−1(G )-measurable and satisfies the
equation

∫

Φ−1
(

(∞,c]
)

ΦG (p) dp=
∫

Φ−1
(

(∞,c]
)

Φ(p) dp, ∀ (∞,c] ∈ J .

This equation can be rewritten as follows:

∫ β

0
ΦG (p) dp=

∫ β

0
Φ(p) dp, ∀ β ∈ Φ

(

(0,1]
)

.

Definition 4.13 A preference relationD on Qb is risk-averse, if ΦG D Φ, for everyΦ ∈ Qb and everyσ -
subalgebraG of the Borelσ -algebraB onR.

Theorem 4.14 Suppose a total preorderD on Qb is monotonic, continuous, and satisfies the dual indepen-
dence axiom. Then it is risk averse if and only if it has the numerical representation(14)with a nondecreasing
and concave function w: [0,1]→ [0,1].
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Proof. In view of Theorem 4.10, we only need to prove thatw(·) is concave. Consider any 0< p1 < p2 < p3 ≤
1. Define a four-point distribution with massp1 at−3, massp2− p1 at−2, massp3− p2 at−1, and mass
1− p3 at 0. The corresponding quantile functionΦ has, according to (14), the utilityU(Φ) = −

[

w(p1)+
w(p2)+w(p3)

]

. For aσ -subalgebra generated byG1 = (−∞,−3] andG2 = (−∞,−1], the corresponding
conditional expectation has value−3 with probabilityp1, value(2p1− p2− p3)/(p3− p1) with probability
p3− p1, and value 0 with probability 1− p3. The corresponding quantile functionΦG has the utility

U(ΦG ) =−
[

w(p1)
−p1− p2+2p3

p3− p1
+w(p3)

−2p1+ p2+ p3

p3− p1

]

.

Owing to risk aversion,U(ΦG )≥U(Φ). After elementary manipulations, we obtain the inequality

w(p1)
p3− p2

p3− p1
+w(p3)

p2− p1

p3− p1
≤ w(p2).

Let α ∈ (0,1) and letp2 = α p1+(1−α)p3. Then the last inequality reads:

αw(p1)+ (1−α)w(p2)≤ w
(

α p1+(1−α)p3
)

.

This is equivalent to the concavity ofw(·) on (0,1].

Remark 4.15 If we assumed only that the quantile function of the expectedvalue is preferred, that isΦG0 D

Φ, whereG0 = {R, /0} is the trivial σ -subalgebra, then we would not be able to infer the concavityof the
functionw(·).

In fact, the relationΦG0 D Φ for all Φ is equivalent to the inequalityw(p) ≥ p for all p∈ (0,1]. Indeed,
consider a two-point distribution, with massp at 0 and mass 1− pat 1. ThenU(Φ) = 1−w(p) andU

(

ΦG0

)

=
1− p. Thusw(p) ≥ p. To prove the converse implication, we use the inequalityw

(

F(z)
)

≥ F(z) in (14) to
obtain

U(Φ)≤−
∫ 0

−∞
F(z) dz+

∫ ∞

0

[

1−F(z)
]

dz=U
(

ΦG0

)

,

as required.
This is in contrast to the expected utility case, when preference of the expected value was sufficient to

derive preference of all conditional expectations (cf. Remark 3.11).

5 Preferences Among Random Vectors

5.1 Expected Utility Theory for Random Vectors

Suppose(Ω ,F ,P) is a probability space and the prospect spaceZ is the space of random vectorsZ : Ω →
S , whereS is a Polish space equipped with its Borelσ -algebraB. The distribution of a random vector
Z ∈ Z is the probability measureµZ onB defined asµZ = P◦Z−1. We say thatZ andD have the same law

and writeZ D∼W, if µZ = µW.

The preference relationD on Z is calledlaw invariant if Z D∼W implies thatZ ∼ W. Every preference
relation� on P(S ), the space of probability measures onS , defines a law invariant preference relationD

onZ as follows:
Z D W ⇐⇒ µZ � µW.

The converse statement is true, if we additionally require that every probability measureµ on S is a distri-
bution of someZ ∈Z . This can be guaranteed if(Ω ,F ,P) is a standard atomless probability space (see [10,
Thm. 11.7.5] and [31]). In this case, we can consider an operation on random variables inZ corresponding
to the operation of taking a convex combination of measures on S .

For three elementsZ, V, andW in Z we say thatW is a lottery of Z andV with probabilitiesα ∈ (0,1)
and(1−α), if an eventA∈ F of probabilityα exists, such that the conditional distribution ofW, givenA,
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is the same as the (unconditional) distribution ofZ; while the conditional distribution ofW, givenĀ= Ω \A,
is the same as the unconditional distribution ofV. In this case, the probability measureµW induced byW on
S is the corresponding convex combination of the probabilitymeasuresµZ andµV of Z andV, respectively:

µW = αµZ +(1−α)µV.

We write the lottery symbolically as
W = αZ ⊕ (1−α)V.

It should be stressed that only the distributionµW of the lottery is defined uniquely, not the random variable
W itself. However, if the preference relationD onZ is law invariant, it makes sense to compare lotteries.

For law invariant preferences on the space of random vectorswith values inS , we introduce axioms
corresponding to the axioms of the expected utility theory for distributions.

Independence Axiom for Random Vectors: For all Z,V,W ∈ Z one has

Z ⊲ V =⇒ αZ ⊕ (1−α)W ⊲ αV ⊕ (1−α)W, ∀α ∈ (0,1),

Archimedean Axiom for Random Vectors: If Z ⊲ V ⊲ W, thenα,β ∈ (0,1) exist such that

αZ ⊕ (1−α)W ⊲ V ⊲ βZ ⊕ (1−β )W.

These conditions allow us to reproduce the results of Section 3.2 in the language of random vectors. Directly
from Theorem 3.4 we obtain the following result.

Corollary 5.1 Suppose the total preorderD on Z satisfies the independence and Archimedean axioms for
random vectors. Then a numerical representation U: Z →R of D exists, which satisfies for all Z,V ∈ Z
and all α ∈ [0,1] the equation

U(αZ ⊕ (1−α)V) = αU(Z)+ (1−α)U(V).

In order to invoke the integral representation from§3.3, we need to introduce an appropriate topology
on the spaceZ and assume continuity of the preorderD in this topology. For this purpose we adopt the
topology of convergence in distribution. Recall that a sequence of random vectorsZn : Ω → S converges in
distribution to a random vectorZ : Ω →S , if the sequence of probability measures{µZn} converges weakly
to the measureµZ.

We can now recall Theorem 3.5 to obtain an integral representation of the utility functional.

Corollary 5.2 Suppose the total preorderD onZ is law invariant, continuous, and satisfies the independence
axiom for random vectors. Then a continuous and bounded function u: S →R exists, such that the functional

U(Z) =E
[

u(Z)
]

=

∫

Ω
u
(

Z(ω)
)

P(dω) (16)

is a numerical representation ofD onZ .

It should be stressed, however, that the assumption of continuity with respect to the topology of weak con-
vergence is rather strong. For example, if we assume only that for everyZ ∈ Z the sets

{V ∈ Z : V D Z} and {V ∈ Z : Z D V}

are closed in the spaceL1(Ω ,F ,P;S ), the existence of a utility function is not guaranteed.
Monotonicity and risk aversion considerations from section 3.4 translate to the case of random vectors in

a straightforward way.
SupposeS is a separable Banach space, with a partial order relation≥. In the definition below, the

relation≥ applied to random vectors is understood in the almost sure sense.
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Definition 5.3 The total preorderD is called monotonic with respect to the partial order≥, if Z ≥ V =⇒
Z D V.

In this section, we shall always understand the monotonicity of a preorderD in the sense of Definition
5.3.

The following result is a direct consequence of Theorem 3.8.

Corollary 5.4 Suppose the total preorderD on Z is monotonic, continuous, and satisfies the independence
axiom for random vectors. Then a nondecreasing, continuousand bounded function u: S →R exists, such
that the functional(16) is a numerical representation ofD onZ .

We now focus on the case when everyZ ∈ Z the Bochner integral (the expected value)

E[Z] =
∫

Ω
Z(ω) P(dω),

is well-defined (for integration of Banach space valued random vectors, see [8,§ II.2]). Then for every
σ -subalgebraG of F the conditional expectationE[Z|G ] : Ω → S is defined as aG -measurable function
satisfying

∫

G
E[Z|G ](ω) P(dω) =

∫

G
Z(ω) P(dω), ∀ G∈ G ,

(see,e.g., [23,§2.1]).

Definition 5.5 A preference relationD on Z is risk-averse, if E[Z|G ] D Z, for every Z∈ Z and everyσ -
subalgebraG of F .

The following corollary is a direct consequence of Remark 3.11, because Definition 5.5 implies that
E[Z] D Z.

Corollary 5.6 Suppose a total preorderD on Z is continuous, risk-averse, and satisfies the independence
axiom for random vectors. Then a concave function u: S → R exists such that the functional(16) is a
numerical representation ofD onZ .

Again, as discussed in Remark 3.11, it would be sufficient to assume thatE[Z] D Z for all Z ∈ Z , but we
shall need Definition 5.5 also in the next subsection, where such simplification will not be justified.

5.2 Dual Utility Theory for Random Variables

The dual utility theory can be formulated in the prospect spaceZ of real-valued random variables defined
on a probability space(Ω ,F ,P). The axioms formulated in section 4.1 for quantile functions can be equiv-
alently formulated for comonotonic random variables. Recall that real random variablesZi , i = 1, . . . ,n, are
comonotonic, if

(

Zi(ω)−Zi(ω ′)
)(

Z j(ω)−Z j(ω ′)
)

≥ 0

for all ω ,ω ′ ∈ Ω and alli, j = 1, . . . ,n.
The following axioms were formulated in [33], when the theory of dual utility was axiomatized.

Dual Independence Axiom for Random Variables: For all comonotonic random variablesZ, V, andW in
Z one has

Z ⊲ V =⇒ αZ+(1−α)W ⊲ αV +(1−α)W, ∀α ∈ (0,1),

Dual Archimedean Axiom for Random Variables: For all comonotonic random variablesZ, V, andW in
Z , satisfying the relations

Z ⊲ V ⊲ W,

there existα,β ∈ (0,1) such that

αZ+(1−α)W ⊲ V ⊲ βZ+(1−β )W.
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In addition to that, in [33] the preorderD was assumed monotonic in the sense of Definition 5.3.
It is clear that for comonotonic random variables the first two axioms are equivalent to the axioms dis-

cussed in§4.1. Furthermore, if a preorderD is monotonic in the sense of Definition 5.3, then the correspond-
ing preorder on the space of quantile functions is monotonicin the sense of Definition 4.4.

Theorem 5.7 SupposeZ is the set of random variables on a standard and atomless probability space
(Ω ,F ,P). If the total preorderD onZ is law invariant, and satisfies the dual independence and Archimedean
axioms for random variables, then a numerical representation U : Z →R of D exists, which satisfies for all
comonotonic Z,V ∈ Z and allα,β ∈R+ the equation

U(αZ+βV) = αU(Z)+βU(V). (17)

Moreover,
U(c1) = c, ∀c∈R. (18)

Proof. Let Y be a uniform random variable on(Ω ,F ,P). The preference relationD on Z induces a prefer-
ence relation� onQ by the formula

Φ �Ψ ⇐⇒ Φ(Y) DΨ(Y).

The preference relation� does not depend on the particular choice ofY, becauseD is law invariant.
For comonotonic random variablesZ andV, and forα ∈ (0,1), we have

F−1
αZ+(1−α)V = αF−1

Z +(1−α)F−1
V .

Thus, the dual independence and Archimedean axioms for the relationD among random variables imply the
same properties for the relation� on Q. By virtue of Theorem 4.3, a linear functionalU : lin(Q) → R

exists, whose restriction toQ is a numerical representation of the preorder�.
ThenU(Z) = U

(

F−1
Z

)

, Z ∈ Z , is a numerical representation ofD. For comonotonicZ,V ∈ Z and
α,β ≥ 0, the linearity ofU yields

U(αZ+βV) = U
(

F−1
αZ+βV

)

= U
(

αF−1
Z +βF−1

V

)

= αU
(

F−1
Z

)

+βU
(

F−1
V

)

= αU(Z)+βU(V),

which proves (17).
By monotonicity,U(1) =U (F−1

1

)> 0. We may normalizeU(·) to haveU(1) = 1. Forc> 0 the equation
(18) follows from (17). Then

U(−c1) = U (F−1
−c1) = U (−F−1

c1 ) =−U (F−1
c1 ) =−U(c1) =−c,

owing to the linearity ofU (·).
In our further considerations, we assume thatZ is the space of bounded random variables equipped with

the the norm topology of the spaceL1(Ω ,F ,P).

Theorem 5.8 SupposeZ is the set of bounded random variables on a standard and atomless probability
space(Ω ,F ,P). If the total preorderD on Z is law invariant, continuous, monotonic, and satisfies the
dual independence axioms for random variables, then a bounded, nondecreasing, and continuous function
w : [0,1]→R+ exists, such that the functional

U(Z) =
∫ 1

0
F−1

Z (p) dw(p), Z ∈ Z , (19)

is a numerical representation ofD.
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Proof. Recall that the preorderD induces a preorder� on the spaceQb of bounded quantile functions. The
preorder� is defined in the proof of Theorem 5.7. It satisfies the monotonicity condition onQb, because for
a uniform random variableY we have the chain of equivalence relations:

Φ ≥Ψ ⇐⇒ Φ(Y)≥Ψ (Y) =⇒ Φ(Y) DΨ (Y) ⇐⇒ Φ �Ψ . (20)

The dual independence axiom for� follows from the dual independence axiom forD with comonotonic
random variables. In order to use Theorem 4.7, we only need toverify the continuity condition for�.

Consider a convergent sequence of functions{Φn} and a functionΨ in Qb, such thatΦn �Ψ , n= 1,2. . . ,
and letΦ be theL1-limit of {Φn}, that is,

lim
n→∞

∫ 1

0
|Φn(p)−Φ(p)| dp= 0.

For a uniform random variableY, we defineZn = Φn(Y), Z = Φ(Y), andV = Ψ(Y). By (20), Zn D V.
Substituting the definitions ofZn andZ and changing variables we obtain

‖Zn−Z‖1 =

∫

Ω
|Zn(ω)−Z(ω)| P(dω) =

∫

Ω
|Φn(Y(ω))−Φ(Y(ω))| P(dω)

=
∫ 1

0
|Φn(p)−Φ(p)| dp→ 0, as n→ ∞.

By the continuity ofD in Z , we conclude thatZ DV. By (20),Φ �Ψ . In a similar way we consider the case
whenΨ � Φn, n= 1,2. . . and we prove thatΨ � Φ. Consequently, the preorder� is continuous inQb.

By Corollary 4.7, a numerical representationU (·) : Qb →R of � exists, which has the integral repre-
sentation

U (Φ) =

∫ 1

0
Φ(p) dw(p), Φ ∈ Qb,

for some continuous nondecreasing functionw : (0,1]→R+. SettingU(Z) = U
(

F−1
Z

)

, we obtain (19).
Another possibility is to consider the topology of uniform convergence, induced by the norm

‖Z‖∞ = sup
ω∈Ω

|Z(ω)|.

This means that we identifyZ with the Banach spaceB(Ω ,F ) of bounded functions defined onΩ , which
can be obtained as uniform limits of simple functions. We assume that the preorderD is continuous in this
space.

Theorem 5.9 SupposeZ = B(Ω ,F ) and the probability space(Ω ,F ,P) is standard and atomless. If the
total preorderD on Z is law invariant, continuous, monotonic, and satisfies the dual independence axiom
for random variables, then a nondecreasing function w: [0,1]→ [0,1] exists, such that the functional

U(Z) =−
∫ 0

−∞
w
(

FZ(η)
)

dη +

∫ ∞

0

[

1−w
(

FZ(η)
)]

dη (21)

is a numerical representation ofD.

Proof. Recall that the preorderD induces a preorder� onQb defined in the proof of Theorem 5.7. It satisfies
the monotonicity condition onQb, as in (20). In order to use Theorem 4.10, we need to verify thecontinuity
condition for�.

Consider a uniformly convergent sequence of functions{Φn} and a functionΨ in Qb, such thatΦn �Ψ ,
n= 1,2. . . , and letΦ be the uniform limit of{Φn}, that is,

lim
n→∞

sup
0≤p≤1

|Φn(p)−Φ(p)|= 0.
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For a uniform random variableY, we defineZn = Φn(Y), Z = Φ(Y), andV = Ψ(Y). By (20), Zn D V.
Substituting the definitions ofZn andZ and changing variables we obtain

‖Zn−Z‖∞ = sup
ω∈Ω

|Φn(Y(ω))−Φ(Y(ω))|

= sup
0≤p≤1

|Φn(p)−Φ(p)| → 0, as n→ ∞.

By the continuity ofD in Z , we conclude thatZ DV. By (20),Φ �Ψ . In a similar way we consider the case
whenΨ � Φn, n= 1,2. . . and we prove thatΨ � Φ. Consequently, the preorder� is continuous inQb.

By Theorem 4.10, a numerical representationU (·) : Qb →R of � exists, which has the integral repre-
sentation (14) for some continuous nondecreasing functionw : (0,1]→R+. SettingU(Z) = U

(

F−1
Z

)

, we
obtain (21).

Formula (21) is a special case of the Choquet integral of the variableZ (see [5]). Clearly, if the assump-
tions of Theorem 5.8 are satisfied, so are the assumptions of Theorem 5.9. In this case, the representation
(21) follows (by integration by parts and change of variables) from (19), provided that the functionw(·) in
(19) is normalized so thatw(1) = 1.

If we additionally assume that the preference relationD is risk-averse in the sense of Definition 5.5, we
obtain the following corollary from Theorem 4.14.

Corollary 5.10 Suppose a total preorderD on Z is continuous, monotonic, and satisfies the dual indepen-
dence axiom for random vectors. Then it is risk-averse if andonly if it has the numerical representation(21)
with a nondecreasing and concave function w: [0,1]→ [0,1] such that w(0) = 0 and w(1) = 1.

Similarly to the case of preferences among quantile functions, we need here the full Definition 5.5. This
is in contrast to the expected utility theory when the preferenceE[Z] D Z was sufficient (see Remark 4.15).
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Appendix

For convenience, we provide here two integral representation theorems for continuous linear functionals on
spaces of signed measures. They are consequences of Banach’s theorem on weakly⋆ continuous functionals
[1, VIII.8,Thm. 8].

Theorem 5.11 A functional U: M (S )→R is continuous and linear if and only if there exists f∈ Cb(S )
such that

U(µ) =
∫

S
f (z)µ(dz), ∀µ ∈ M (S ). (22)

Proof. Consider a compact setK ⊂ S , and the space

MK = {µ ∈ M (S ) : supp(µ)⊆ K}.

Every continuous linear functional onM (S ) is also a continuous linear functional onM (K). The space
M (K) can be identified with the space of continuous linear functionals onC (K), the space of continuous
functions onK. The topology of weak convergence of measures inM (K) is exactly the weak⋆ topology on
[C (K)]∗. By Banach’s theorem, every weakly⋆ continuous functionalU(·) on the dual space has the form

U(µ) = 〈 fK ,µ〉=
∫

K
fK(z)µ(dz), ∀µ ∈ M (K), (23)

where fK ∈ C (K).
Define f : S → R as f (z) = f{z}(z). If z∈ K, thenM ({z}) ⊆ M (K). From (23) we conclude that

f (z) = fK(z). Consequently, (23) can be rewritten as follows:

U(µ) =
∫

S
f (z)µ(dz), ∀µ ∈ M (K), ∀K ⊂ S . (24)

Observe thatf (z) =U(δz). If zn → z, asn→ ∞, thenδzn
w−→ δz. Owing to the continuity ofU(·), we have

f (zn) =U(δzn)→U(δz) = f (z), which implies the continuity off (·) onS .
We shall prove thatf (·) is bounded. Suppose the opposite, that for everyn ≥ 1 we can findzn ∈ S

with f (zn)≥ n. Consider the sequence of measuresµn = δzn/
√

n, n= 1,2, . . . . On the one hand,µn
w−→ 0

and thusU(µn) → U(0), whenn→ ∞. On the other hand,U(µn) = f (zn)/
√

n→ ∞, asn→ ∞, which is a
contradiction. Consequently,f ∈ Cb(S ).

It remains to prove that representation (24) holds true for every µ ∈ M (S ). Since the spaceS is
Polish, everyµ ∈ M (S ) is tight, that is, for everyn = 1,2, . . . , there exists a compact setKn such that
|µ |(S \Kn)< 1/n. Define the sequence of measuresµn, n= 1,2, . . . , as follows:µn(A) = µ(A∩Kn), for all
A∈ B. By the definition of weak convergence,µn

w−→ µ . Eachµn ∈ MKn and thus we can use (24) and the
continuity ofU(·) to write

U(µ) = lim
n→∞

U(µn) = lim
n→∞

∫

S
f (z)µn(dz) =

∫

S
f (z)µ(dz).

The last equation follows from the fact thatf ∈ Cb(S ) andµn
w−→ µ .

Theorem 5.12 A functionalU: M ψ(S )→R is continuous and linear if and only if there exists f∈C ψ
b (S )

such that
U(µ) =

∫

S
f (z)µ(dz), ∀µ ∈ M ψ (S ). (25)

Proof. Every µ ∈ M ψ(S ) can be associated with a uniqueν ∈ M (S ), such thatdν
dµ = ψ . The mapping

L : M ψ(S ) → M (S ) defined in this way is linear, continuous, and invertible. Therefore, each linear
continuous functionalU : M ψ(S )→R corresponds to a linear continuous functionalU0 : M (S )→R as
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follows: U0(ν) =U(L−1ν), andvice versa: for every linear continuous functionalU0 : M (S )→R we have
a correspondingU : M ψ(S )→R defined asU(µ) =U0(Lµ).

By Theorem 5.11, there existsf0 ∈ Cb(S ), such that

U0(ν) =
∫

S
f0(z)ν(dz), ∀ν ∈ M (S ).

Thus, for allµ ∈ M ψ(S ) we have

U(µ) =U0(Lµ) =
∫

S
f0(z)ψ(z)µ(dz).

It follows that the representation (25) is true with function f = f0ψ , which is an element ofC ψ
b (S ). The

converse implication is evident.
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