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Abstract. Microscopic models of flocking and swarming takes in account large numbers of interacting individ-
uals. Numerical resolution of large flocks implies huge computational costs. Typically for N interacting individuals
we have a cost of O(N2). We tackle the problem numerically by considering approximated binary interaction dy-
namics described by kinetic equations and simulating such equations by suitable stochastic methods. This approach
permits to compute approximate solutions as functions of a small scaling parameter ε at a reduced complexity of
O(N) operations. Several numerical results show the efficiency of the algorithms proposed.
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1. Introduction. The study of mathematical models describing collective behavior and syn-
chronized motion of animals, like bird flocks, fish schools and insect swarms, has attracted a lot
of attention in recent years [1, 11, 16, 13, 37, 18, 22, 35, 42]. In biological systems such behaviors
are observed in every level of the food chain, from the swarm intelligence of the zoo plankton,
to bird flocking and fish schools, to mammals moving in formation [24, 29, 38]. Beside biology,
emerging collective behaviors play a relevant role in several applications involving the dynamics of
a large number of individuals/particles which range from computer science [41], physics [26] and
engineering [32] to social sciences and economy [10]. We refer to [37] for a recent review of some
of the mathematical topics and the applications involved.

Naturally occurring synchronized motion has inspired several directions of research within the
control community. A well-known application is related to formation flying missions and missions
involving the coordinated control of several autonomous vehicles [31]. There are several current
projects which are dealing with the formation flying and coordinated control of satellites, like the
DARWIN project of the European Space Agency (ESA) with the goal of launching a space-based
telescope aiding in the search for possible life-supporting planets, or the PRISMA project led by
the Swedish Space Corporation (SSC) which will be the first real formation flying space mission
launched [19].

In this manuscript we will focus on general models which are capable to reproduce flocking,
swarming and other collective behaviors. Most of the classical models describing these phenomena
are based on the simple definition of three interacting zones, the so called three-zones model [3, 30].

Let us briefly summarize the three-zones assumptions. We define three regions around each
individual: a short-range repulsion zone, an intermediate velocity alignment zone and a long-range
attraction zone (see Figure 1.1). Each interaction between individuals is evaluated accordingly to
the relative position in the model.

• Repulsion zone: when individuals are too close each other they tend to move away from
that area.
• Alignment zone: individuals try to identify the possible direction of the group and to align

with it.
• Attraction zone: when individuals are too far from the group they want to get closer.

Typically different interaction models are taken in the different zones [1, 22] or the modelling is
focused on a specific zone, like the alignment/consensus dynamic [18, 35]. Of course the particular
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Alignment zone
Repulsion zone
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Figure 1.1. Sketch of the three-zone model

shape and size of the zones depends on the specific application considered. For example recent
studied on birds flocks suggest that each bird modifies its position, relative to few individuals
directly surrounding it, no matter how close or how far away those individuals are [5]. It is not
clear however if this applies also to other kind of animals.

Studying this kind of dynamics for large system of individuals implies a considerable effort in
numerical simulations, microscopic models based on real data my take into account very large num-
bers of interacting individuals (from several hundred thousands up to millions). Computationally
the problems have the same structure of many classical problems in computational physics which
require the evaluation of all pairwise long range interactions in a large ensembles of particles. The
N -body problem of gravitation (or electrostatics) is a classical example. Such problems involve
the evaluation of summations of the type

SNi =

N∑
j=1

wjK(xi, xj), ∀ i. (1.1)

A direct evaluation of such sums at N target points clearly requires O(N2) operations and algo-
rithms which reduce the cost to O(Nα) with 1 ≤ α < 2, O(N logN) etc. are referred to as fast
summation methods. For uniform grid data the most famous of these is certainly the Fast Fourier
Transform (FFT). In the case of general data most fast summation methods are approximate meth-
ods based on analytical considerations, like the Fast Multipole method [26], Wavelets Transform
methods [6] and, more recently, dimension reduction using Compressive Sampling techniques [10],
or based on some Monte Carlo strategies at different levels [9]. Extensions of the above mentioned
approaches to kinetic equations are discussed for example in [36, 33, 2, 25, 39].

From a mathematical modeling point of view, these problem have been developed extensively
in the kinetic research community (see [20, 28, 13]) where the derivation of kinetic and an hydro-
dynamic equations represent a first step towards the reduction of the computational complexity.
Of course, passing from a microscopic description based on phase-space particles (xi(t), vi(t)) to
a mesoscopic level where the object of study is a particle distribution function f(x, v, t) redefines
the model in a new one where new methods of solution are required.

In this paper we are going to follow this research path in two main directions: first we review
the derivation of the different kinetic approximations from the original microscopic models and
then we introduce and analyze several stochastic Monte Carlo methods to approximate the kinetic
equations. Monte Carlo methods are the most well-known approach for the numerical solution
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of the Boltzmann equation of rarefied gases in the short-range interactions, and many efficient
algorithms have been presented [7, 4, 9, 39]. On the other hand the literature on efficient Monte
Carlo strategies for long-range interactions, and thus Landau-Fokker-Plank equations, is much less
developed but of great interest in the field of plasma physics [8, 21].

Here, inspired by the techniques introduced in [8, 21] for plasma, we develop direct simulation
Monte Carlo methods based on a binary collision dynamic described by the corresponding kinetic
equation. The methods permit to approximate the microscopic dynamic at a cost directly propor-
tional to the number of sample particles involved in the computation, thus avoiding the quadratic
computational cost. The limiting behavior characterizing the mean-field interaction process of the
particles system is recovered under a suitable asymptotic scaling of the binary collision process.
In such a limit we show that the Monte Carlo methods here developed are in very good agree-
ment with the direct evaluation of the original microscopic model but with a considerable gain of
computational efficiency.

The rest of the manuscript is organized as follows. In the first section we present some of
the classical microscopic models for flocking and swarming. Generalization of the notion of visual
cone [13] are also discussed. Since the interaction is non local, the derivation of the limiting
mean-field kinetic equation is made through a Povzner-Boltzmann kinetic equation [40] in the
anologous situation of the so-called grazing collision limit [12]. To solve the resulting Boltzmann-
like mesoscopic partial differential equation we introduce different stochastic binary interaction
algorithms and compare their computational efficiency and accuracy with a direct evaluation of
the microscopic models and a stochastic approximation of the mean-field kinetic model. We show
that the new approach permits to reduce the overall cost from O(N2) to O(N) operations. In
particular we show that the choice ε = ∆t, where ε is the small scaling parameter leading to
the mean field kinetic model, originates binary interaction algorithms consistent with the limiting
behavior of the particle system. Furthermore, in contrast with classical methods [8, 21], the nature
of the approximating equations is such that the resulting Monte Carlo algorithms are fully mesh
less. In the last section of the paper we report several simulations in two and three space dimensions
of different microscopic models solved by the binary Monte Carlo method in the above scaling.

2. Microscopic models. In this section we review some well-known microscopic models of
flocking and swarming (see [18, 22, 35] and the references therein). We are interested in the study
of a dynamical system composed of N individuals with the following general structure

ẋi = vi

v̇i = S(vi) +
1

N

N∑
j=1

[H(xi, xj)(vj − vi) +A(xi, xj) +R(xi, xj)]ψα(xi, xj , vi)
i = 1, . . . , N,

(2.1)
where (xi, vi) lives in R2d, d ≥ 1, S(vi) describes a self-propelling term, H(xi, xj) the alignment
process, A(xi, xj) the attraction dynamic and the term R(xi, xj) the short-range repulsion. In (2.1)
the multiplicative factor ψα(xi, xj , vi) ∈ [0, 1] takes into account the effects of space perception as
a function of some vector of parameters α.

2.1. Cucker and Smale model. Cucker and Smale model is a pure alignment model, no
repulsion or attraction or other effects are taken in account, see [18, 17] and [12]. The classical
model reads as follow

ẋi = vi

v̇i =
1

N

N∑
j=1

H(|xj − xi|)(vj − vi)
i = 1, . . . , N, (2.2)
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Figure 2.1. Profile of the function H in Cucker-Smale model

where H(|xj − xi|) is a function that measures the strength of the interaction between individuals
i and j , and depends on the mutual distance, under the assumption that closer individuals have
more influence than the far distance ones.

A typical choice of function H is the following

H(r) =
K

(ς2 + r2)γ
, (2.3)

where K, ς > 0 are positive parameters and γ ≥ 0. Under this assumptions it can be shown that
well-posedness holds for the initial value problem of (2.2) and the solution is mass and momentum
preserving, with compact support for position and velocity, see [27].

Moreover in [18, 12] it was established that the parameter γ discriminate the behavior of the
solution, in the following way

Theorem 2.1. Let Γ(t) = 1
2

∑
i 6=j |xi(t)− xj(t)|2 and Λ(t) = 1

2 |vi(t)− vj(t)|
2. If γ ≤ 1

2 then
(i) exist a positive costant B0 such that: Γ(t) ≤ B0 for all t ∈ R.
(ii) Λ(t) converge towards zero as t→∞.
(iii) The vector xi − xj tends to a limit vector x̂ij, for all i, j = 1, . . . , N .

In other words, the velocity support collapses exponentially to a single point and the flock
holds the same disposition. From this theorem we recover the notion of unconditional flocking
in the regime γ ≤ 1

2 . If γ > 1
2 in general unconditional flocking doesn’t follow, but under some

conditions on initial data flocking condition is reached, see [13].
Note that standard Cucker-Smale model prescribes perfectly symmetric interactions and takes

in account only the alignment dynamic. As a result total momentum is preserved by the dynamics.
The introduction of a limited space perception (like a visual cone) breaks symmetry and momentum
conservation. This choice corresponds to take a function for the strength of the interaction of the
type

Hα(xi, xj , vi) = H(|xi − xj |)ψα(xi, xj , vi), (2.4)

where the parameter vector α is related, for example, to the width of the visual cone.

2.2. D’Orsogna-Bertozzi et al. model. The microscopic model introduced by D’Orsogna,
Bertozzi et al. [22] considers a self-propelling, attraction and repulsion dynamic and reads

ẋi = vi

v̇i = (a− b|vi|2)vi −
1

N

∑
j 6=1

∇xi
U(|xj − xi|)

i = 1, . . . , N, (2.5)
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Figure 2.2. The Morse potential in D’Orsogna-Bertozzi et al. model

where a, b are nonnegative parameters, U : Rd −→ R is a given potential modeling the short-range
repulsion and long-range attraction, and N is the number of individuals. Function U gives us the
attraction-repulsion dynamic typically described by a Morse potential

U(r) = −CAe−r/lA + CRe
−r/lR , (2.6)

where CA, CR, lA, lR are positive constants measuring the strengths and the characteristic lengths
of the attraction and repulsion. In (2.5) the term (a − b|vi|2)vi characterizes self-propulsion and
friction. Asymptotically this term give us a desired velocity, in fact for large times the velocity of
every single particle tends to

√
a/b.

The most interesting case in biological applications occurs when the constants in the Morse
potential satisfy the following inequalities C := CR/CA > 1 and l := lR/lA < 1, which correspond
to the long range attraction and short range repulsion. Moreover the choice of the parameters fixes
the evolution of the N particles system towards a particular equilibrium. The following distinction
holds: if Cld > 1 then crystalline patterns are observed and for Cld < 1 the motion of particles
converges to a circular motion of constant speed, where d ≥ 2 is the space dimension. In [22] a
further study of the parameters can be found.

2.3. Motsch-Tadmor model. In a recent work [35] the authors propose a modification of
the classical Cucker-Smale model as follows

ẋi = vi

v̇i =
1

N

N∑
j=1

h(xi, xj)(vj − vi),
i = 1, . . . , N, (2.7)

where h is defined by

h(xi, xj) =
H(|xi − xj |)

H̄(xi)
, H̄(xi) =

1

N

N∑
k=1

H(|xi − xk|).

The model differs from the classical one, since the influence between two particles H(|xj − xi|) is
weighted by the average influence on the single individual i. In this way the function h(xi, xj) lose
in general any kind of symmetry property of the original Cucker-Smale dynamic.
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Figure 2.3. One of the possible configurations in the interaction with a perception cone. Individual j is
perceived by individual i but not vice versa.

We emphasize, however, that in our general setting this model is included in the Cucker-
Smale alignment dynamic of type (2.4) with a particular choice for the function defining the space
perception of the form

ψα(xi, xj , vi) =
1

H̄(xi)
. (2.8)

This can be interpreted as a higher perception level of zones where the individuals have a higher
concentration and a lower interest in zones where individuals are more scattered.

2.4. Perception cone, topological interactions and roosting force. For interacting
animals like birds, fishes, insects the visual perception of the single individual plays a fundamental
role [15, 23, 24]. In [13] the authors introduce in the dynamic a further rule: the visual cone. A
visual cone identifies the area in which interaction is possible and blind area where can not be
interaction. Mathematically speaking the visual cone depends on an angle, θ, that give us the
visual width. Together with position and velocity the visual area can be described as follows

Σ(xi, v, θ) =

{
y ∈ Rd :

(xi − y) · vi
|(xi − y)| |vi|

≥ cos(θ/2)

}
. (2.9)

As already discussed the introduction of a visual cone breaks the typical symmetry of the interaction
(see Figure 2.3).

The drawback of this choice is that a single individual that has no one in his visual cone,
never changes his direction. For real situations this assumption is clearly too strong, since many
other stimuli are received by the surrounding. We cannot ignore other perceptions like hearing,
smell and visual memory. For example fishes use their visual perception mostly on large/medium
distance whereas on medium/short distance they rely on their lateral line. These observations lead
naturally to improve the idea of a visual cone by introducing a perception cone as follows: we
assign two different weights measuring the strength/probability of the interaction. A weight p1 in
the case of strong perception and p2 in case of weak perception, with 0 ≤ p2 ≤ p1 ≤ 1. Note that
taking p1 = 1 and p2 = 0 we have the standard visual cone. For example, in the simulation section
we consider a perception cone ψα, α = (θ, p1, p2), with the following form

ψα(xi, xj , vi) = p2 + (p1 − p2)1Σ(xi,vi,θ)(xj), (2.10)
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where 1Σ(xi,vi,θ)(·) is the indicator function of the set Σ(xi, vi, θ) defined according to (2.9).
Related efforts to improve the dynamic consider also different ingredients like topological in-

teractions where individuals interact only with the closest individuals and with a limited number
of them, see [5, 16]. Another variant concerns the introduction of a term describing a roosting
force [14, 1]. In fact, flocking phenomena tends to stay localized in a particular area, this force
acts orthogonal to the single velocity, giving each particle a tendency towards the origin.

3. Kinetic equations. For a realistic numerical simulation of a flock the number of inter-
acting individuals can be rather large, thus we need to solve a very large system of ODEs, which
can constitute a serious difficulty. An alternative way to tackle this problem is to consider a
nonnegative distribution function f(x, v, t) describing the number density of individuals at time
t ≥ 0 in position x ∈ Rd with velocity v ∈ Rd. The evolution of f(x, v, t) is characterized by a
kinetic equation which takes into account the motion of individuals due to their own velocity and
the velocity changes due to the interactions with other individuals. Following [13] we consider
here binary interaction Boltzmann-type and mean-field kinetic approximation of the microscopic
dynamics.

3.1. Boltzman-Povzner kinetic approximations. In agreement with (2.2) and (2.4), we
consider a microscopic binary interaction between two individuals with positions and velocities
(x, v) and (y, w) according to v∗ = (1− η(Hα(|x− y| , v))v + ηHα(|x− y| , v)w,

w∗ = ηHα(|x− y| , w)v + (1− η(Hα(|x− y| , w))w,
(3.1)

where v∗, w∗ are the post-interaction velocities and η a parameter that measures the strength of
the interaction. Analogous binary interactions can be introduced for other swarming and flocking
dynamics like D’Orsogna-Bertozzi.

We describe the interaction of the sistem with following integro-differential equation of Boltz-
mann type

(∂tf + v · ∇xf)(x, v, t) =
1

ε
Q(f, f)(x, v, t),

(3.2)
Q(f, f) =

∫
R2d

(
1

J
f(x, v∗, t)f(y, w∗, t)− f(x, v, t)f(y, w, t))dwdy,

where (v∗, w∗) are the pre-interacting velocity that generate the couple (v, w) according to (3.1), J
is the Jacobian of the transformation of (v, w) to (v∗, w∗). Without visual limitation the Jacobian
reads J = (1 − 2ηH(|x − y|))d. Note that, at variance with classical Boltzmann equation the
interaction is non local as in Povzner kinetic model [40].

Let us introduce the time scaling

t→ t/ε, η = λε, (3.3)

where λ is a constant and ε a small parameter. The scaling corresponds to assume that the
parameter η characterizing the strength of the microscopic interactions is small, thus the frequency
of interactions has to increase otherwise the collisional integral will vanish. This corresponds to
large scale interaction frequencies and small interaction strengths, in agreement with a classical
mean-field limit and similarly to the so-called grazing collision limit of the Boltzmann equation for
granular gases [34].
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3.2. Derivation of the mean-field kinetic model. First of all let us remark that the
dynamic (3.1) doesn’t preserve the momentum, as consequence of the velocity dependent function
Hα we have

v∗ + w∗ = v + w − η(Hα(|x− y| , w)−Hα(|x− y| , v)). (3.4)

Moreover under the assumptions |Hα(r, v)| ≤ 1 and η ≤ 1/2 , it is easy to prove that the support
of velocity is limited by initial condition

v∗ = (1− ηHα(|x− y| , v))v + ηHα(|x− y| , v)w ≤ max{|v|, |w|}. (3.5)

Considering now the weak formulation of (3.2) the Jacobian term disappears and we get the
rescaled equation

∂

∂t

∫
R2d

φ(x, v)f(x, v, t)dvdx+

∫
R2d

(v · ∇φ(x, v))f(x, v, t)dvdx =

(3.6)
1

ε

∫
R4d

(φ(x, v∗)− φ(x, v))f(x, v, t)f(y, w, t)dvdxdwdy,

for t > 0 and for all φ ∈ C∞0 (R2d), such that

lim
t→0

∫
R2d

φ(x, v)f(x, v, t)dvdx =

∫
R2d

φ(x, v)f0(x, v, t)dvdx, (3.7)

where f0(x, v) is the starting density.
For small values of ε we have v∗ ≈ v thus we can consider the Taylor expansion of φ(x, v∗)

around v up to the second order we obtain the following formulation to the collisional integral

1

ε

∫
R4d

(φ(x, v∗)− φ(x, v))f(x, v, t)f(y, w, t)dvdxdwdy =

= λ

∫
R4d

(∇vφ(x, v) · (w − v))Hα(x, y, v)f(x, v, t)f(y, w, t)dvdxdwdy︸ ︷︷ ︸
:=I1(f,f)

+ λ2ε

∫
R4d

 d∑
i,j=1

∂2φ(x, ṽ)

∂v2
i

(wj − vj)2

 (Hα(x, y, v))2f(x, v, t)f(y, w, t)dvdxdwdy

︸ ︷︷ ︸
:=I2(f,f)

(3.8)

for some ṽ = τv + (1 − τ)v∗, 0 ≤ τ ≤ 1. In the limit ε → 0 the term I2(f, f) vanishes since the
second momentum of the solution is not increasing and Hα(x, y, v) ≤ 1 hence [12]

|I2(f, f)| ≤ 2‖φ(x, v)‖C2
0

∫
R2d

|v|2f0(x, v)dxdv. (3.9)

Thus in the limit the second-order term can be neglected and I1(f, f) constitutes an approximation
of the collisional integral Q(f, f), in the strong divergence form

I1(f, f) = −∇v ·
∫
R2d

(w − v)Hα(x, y, v)f(y, w, t)f(x, v, t)dwdy, (3.10)

or equivalently in convolution form [12]

I1(f, f) = ∇v · {f(x, v, t)[(Hα(x, y, v)∇ve(v)) ∗ f ](x, v, t)} , (3.11)
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where e(v) = |v|2/2 and ∗ is the (x, v)-convolution. As observed in [12], the operator I1(f, f)
preserves the dissipation proprieties of original Boltzmann operator.

Finally we get the mean-field kinetic equation

∂tf + v · ∇xf = −λ∇v[ξ(f)f ] (3.12)

ξ(f) =

∫
R2d

Hα(x, y, v)(w − v)f(y, w, t)dwdy.

As noted in [1], the continuos kinetic model (3.12) and the microscopic one (2.2)-(2.4) are really
the same when we take the discrete N -particle distribution

f(x, v, t) =
1

N

N∑
i=1

δ(x− xi(t))δ(v − vi(t)),

where δ(·) denotes the Dirac-delta function.
Remark 3.1.
• Kinetic formulation for the D’Orsogna Bertozzi et al. with perception cone can be derived
in the same way and yields the mean-field model

∂tf + v · ∇xf +∇v(S(v)f) = −λ∇v · [
∫
R2d

Zα(x, y, v)f(y, w, t)dydw]f(x, v, t), (3.13)

where Zα(x, y, v) = [A(x, y) +R(x, y)]ψα(x, y, v) represents the attraction repulsion term.
• In [43] the authors observed that a certain degree of randomness helps the coherence in the
collective swarm behavior. Following [13], if we add in (2.2) a nonlinear noise term de-
pending on function Hα and perform essentially the same derivation of the above paragraph
we obtain the kinetic equation

∂tf + v · ∇xf = −λ∇v[ξ(f)f ] + σ∆v(Hα ∗ ρ)f, (3.14)

where ρ = ρ(x, t) represent the mass of the system and σ ≥ 0 the strength of the noise. If
Hα(x, y, v) ≡ H(x, y), the right hand side can be written as a Fokker-Plank operator

∇v · (σ(H ∗ ρ)∇vf − λξ(f)f),

and thus a global Maxwellian function is a steady state solution for the equation (3.14).

3.3. Alternative formulations. In this section we present some alternative formulations
of the Boltzmann equation describing the binary interaction dynamics for alignment. All the
formulations share the property that in the mean-field limit originate the same kinetic model
(3.12).

The Boltzmann equation (3.2) has much in common with a classical Boltzmann equation for
Maxwell molecules, in the sense that the collision frequency is independent of the velocity and
position of individuals. An alternative Boltzmann-like kinetic approximation is obtained with the
interaction operator

Q(f, f) =

∫
R2d

Hα(x, y, v)

(
1

J
f(x, v∗)f(y, w∗)− f(x, v)f(y, w)

)
dwdy, (3.15)

where now  v∗ = (1− η)v + ηw,

w∗ = ηv + (1− η)w.
(3.16)
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From the modeling viewpoint here the function Hα is interpreted as the frequency of interactions
instead of the strength of the same interactions.

Clearly the two formulations (3.2) and (3.15) are not equivalent in general. It is easy to verify
that formally we obtain the same mean-field limit (3.12). Note however that now the second order
term in the expansion (3.8) is slightly different and reads

I2(f, f) :=

∫
R4d

 d∑
i,j=1

∂2φ(x, ṽ)

∂v2
i

(wj − vj)2

Hα(x, y, v)f(x, v, t)f(y, w, t)dvdxdwdy.

Since Hα > (Hα)2, in practice we may expect a slower convergence to the mean-field dynamic for
small values of ε.

Let us finally introduce some stochastic effect in the visual cone perception by defining

Hα(xi, xj , vi) = ζH(xi, xj),

where ζ is a random variable distributed accordingly to some bα(ζ, xi, xj , vi) ≥ 0 s.t.∫
bα(ζ, xi, xj , vi) dζ = 1, ∀ xi, xj , vi. (3.17)

Then the collision term in the form (3.2) becomes

Q(f, f) =

∫
R2d+1

bα(ζ, x, y, v)

(
1

J
f(x, v∗)f(y, w∗)− f(x, v)f(y, w)

)
dwdydζ, (3.18)

whereas in the space dependent interaction frequency form (3.15) reads

Q(f, f) =

∫
R2d+1

Bα(ζ, x, y, v)

(
1

J
f(x, v∗)f(y, w∗)− f(x, v)f(y, w)

)
dwdydζ, (3.19)

where Bα(ζ, x, y, v) = bα(ζ, x, y, v)H(x, y). Again it can be shown that thanks to (3.17) the limit
asymptotic behavior ε→ 0 is unchanged. We omit the details.

We conclude the section reporting an example of distribution for the random variable ζ which
corresponds to the stochastic analogue of (2.10)

ζ =


1 with probability p1, for y ∈ Σ(x, v, θ),
0 with probability 1− p1, for y ∈ Σ(x, v, θ),
1 with probability p2, for y ∈ Rd�Σ(x, v, θ),
0 with probability 1− p2, for y ∈ Rd�Σ(x, v, θ).

4. Monte Carlo methods. Following [8, 21] we introduce different numerical approaches
for the above kinetic equations based on Monte Carlo methods. The main idea is to approximate
the dynamic by solving the Boltzmann-like models for small value of ε. We will also develop some
direct Monte Carlo techniques for the limiting kinetic equation (3.12). For the sake of simplicity we
describe the algorithms in the case of the collision operator (3.2), extensions to the other possible
formulations presented in Section 3 are also discussed along the section. As we will see, thanks to
the structure of the equations, the resulting algorithms are fully meshless.

4.1. Asymptotic binary interaction algorithms. As in most Monte Carlo methods for
kinetic equations, see [39], the starting point is a splitting method based on evaluating in two
different steps the transport and collisional part of the scaled Boltzmann-Povzner equation

∂f

∂t
= −v · ∇xf (T)
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∂f

∂t
=

1

ε
Qε(f, f) (C)

where we used the notation Qε(f, f) to denote the scaled Boltzmann operator (3.2). We emphasize
that the solution to the collision step for small values of ε has very little in common with the classical
fluid-limit of the Boltzmann equation. Here in fact the whole collision process depends on space
and on the small scaling parameter ε. In particular, in the small ε limit the solution is expected
to converge towards the solution of the mean-field model (3.12).

By decomposing the collisional operator in equation (C) in its gain and loss parts we can
rewrite the collision step as

∂f

∂t
=

1

ε

[
Q+
ε (f, f)− ρf

]
, (4.1)

where ρ > 0 represent the total mass and Q+
ε the gain part of the collisional operator. Without

loss of generality in the sequel we assume that

ρ =

∫
R2d

f(x, v, t)dxdv = 1.

In order to solve the trasport step we use the exact free flow of the sample particles (xi(t), vi(t))
in a time interval ∆t

xi(t+ ∆t) = xi(t) + vi(t)∆t, (4.2)

and thus describe the different schemes used for the interaction process in the form (4.1).

4.1.1. A Nanbu-like asymptotic method. Let us now consider a time interval [0, T ] dis-
cretized in ntot intervals of size ∆t. We denote by fn the approximation of f(x, v, n∆t).

Thus the forward Euler scheme writes

fn+1 =

(
1− ∆t

ε

)
fn +

∆t

ε
Q+
ε (fn, fn), (4.3)

where since fn is a probability density, thanks to mass conservation, alsoQ+
ε (fn, fn) is a probability

density. Under the restriction ∆t ≤ ε then also fn+1 is a probability density, since it is a convex
combination of probability densities.

From a Monte Carlo point of view equation (4.3) can be interpreted as follows: an individual
with velocity v at position x will not interact with other individuals with probability 1 − ∆t/ε
and it will interact with others with probability ∆t/ε according to the interaction law stated by
Q+
ε (fn, fn). Since we aim at small values of ε the natural choice as in [8] is to take ∆t = ε. The

major difference compare to standard Nanbu algorithm here is the way particles are sampled from
Q+
ε (fn, fn) which does not require the introduction of a space grid. A simple algorithm for the

solution of (4.3) in a time interval [0, T ], T = ntot∆t, ∆t = ε is sketched in the sequel.

Algorithm 4.1 (Asymptotic Nanbu I).
1. Given N samples (x0

k, v
0
k), with k = 1, . . . , N from the initial distribution f0(x, v);

2. for n = 0 to ntot − 1
(a) for i = 1 to N ;
(b) select an index j uniformly among all possible individuals (xnk , v

n
k ) except i;

(c) evaluate Hα(|xni − xnj |, vni );
(d) compute the velocity change v∗i using the first relation in (3.1) with η = ε;
(e) set (xn+1

i , vn+1
i ) = (xni , v

∗
i ).

end for
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end for

Next we show how the method extends to the case of collision operator of the type (3.15). In
this case an acceptance-rejection strategy is used to select interacting individuals since the forward
Euler scheme reads

fn+1 =

(
1− ∆t

ε

)
fn +

∆t

ε
P+
ε (fn, fn), (4.4)

where P+
ε (fn, fn) = Qε(f, f) + f ≥ 0 is again a probability density.

Now using the fact that Hα ≤ 1 we can adapt the classical acceptance-rejection technique [39]
to get the following method for (4.4) with ∆t = ε

Algorithm 4.2 (Asymptotic Nanbu II).
In Algorithm 4.1 make the following change
(d) if Hα(|xni − xnj |, vni ) > ξ, ξ uniform in [0, 1] then compute the velocity change v∗i for

each individual i of pair (i, j) using the first relation in (3.16) with η = ε;
(e) set (xn+1

i , vn+1
i ) = (xni , v

∗
i ) if the individual has changed its velocity, otherwise set

(xn+1
i , vn+1

i ) = (xni , v
n
i ).

Note that in this version two individuals interact always with the same strength in the velocity
change but with a different probability related to their distance. As a result the total number of
interactions depend on the distribution of individuals and on average is equal to H̄αN < N where

H̄α =
1

N2

N∑
i,j=1

Hα(xi, xj , vi).

Thus the method computes less interactions then the one described in Algorithm 4.1. In fact,
in regions where individuals are scattered very few interactions will be effectively computed by
the method. The efficiency of the method can be further improved if one is able to find an easy
invertible function 1 ≥Wα(xi, xj , vi) ≥ Hα(xi, xj , vi) or is capable to compute directly the inverse
of Hα(xi, xj , vi). We refer to [39] for further details on these sampling techniques.

A symmetric version of the previous algorithms which preserves at a microscopic level other
interaction invariants, like momentum in standard Cucker-Smale model, is obtained as follows

Algorithm 4.3 (Asymptotic symmetric Nanbu).
1. Given N samples (x0

k, v
0
k), with k = 1, . . . , N from the initial distribution f0(x, v);

2. for n = 0 to ntot − 1
(a) set Nc = Iround(N/2);
(b) select Nc random pairs (i, j) uniformly without repetition among all possible pairs of

individuals at time level n.
(c) evaluate Hα(|xni − xnj |, vni ) and Hα(|xni − xnj |, vnj );
(d) For Algorithm 4.1: compute the velocity changes v∗i , v∗j for each pair (i, j) using

relations (3.1) with η = ε;
(d) For Algorithm 4.2:

i. if Hα(|xni −xnj |, vni ) > ξi ξi uniform in [0, 1] then compute the velocity change v∗i
for each pair (i, j) using the first relation in (3.16) with η = ε;

ii. if Hα(|xni −xnj |, vnj ) > ξj ξj uniform in [0, 1] then compute the velocity change v∗j
for each pair (i, j) using the second relation in (3.16) with η = ε;

(e) set (xn+1
i , vn+1

i ) = (xni , v
∗
i ), (xn+1

j , vn+1
j ) = (xnj , v

∗
j ) for all the individuals that

changed their velocity,
(f) (xn+1

h , vn+1
h ) = (xnh, v

n
h) for all the remaining individuals.
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end for

The function Iround(·) denotes the integer stochastic rounding defined as

Iround(x) =

{
[x] + 1, ξ < x− [x],

[x], elsewhere

where ξ is a uniform [0, 1] random number and [·] is the integer part.

4.1.2. A Bird-like asymptotic method. The most popular Monte Carlo approach to solve
the collision step in Boltzmann-like equations is due to Bird [7]. The major differences are that the
method simulate the time continuous equation and that individuals are allowed to interact more
then once in a single time step. As a result the method achieves a higher time accuracy [39].

Here we describe the algorithm for the collision operator described by (3.2). The method is
based on the observation that the interaction time is a random variable exponentially distributed.
Thus for N individuals one introduces a local random time counter given by

∆tc(ξ) = − ln(ξ)ε

N
, (4.5)

with ξ a random variable uniformly distributed in [0, 1].
A simpler version of the method is based on a constant time counter ∆tc corresponding to the

average time between interactions. In fact, in a time interval [0, T ] we have

∆tc =
T

Nc
=

ε

N
, (4.6)

since Nc = NT/ε is the number of average interactions in the time interval. Of course taking time
averages the two formulations (4.5) and (4.6) are equivalent.

From the above considerations, using the symmetric formulation and the time counter ∆tc =
2ε/N , we obtain the following method in a time interval [0, T ], T = Ntot∆tc

Algorithm 4.4 (Asymptotic Bird I).
1. Given N samples (xk, vk), with k = 1, . . . , N from the initial distribution f0(x, v)
2. for n = 0 to Ntot − 1

(a) select a random pair (i, j) uniformly among all possible pairs;
(b) evaluate Hα(|xi − xj |, vi) and Hα(|xi − xj |, vj);
(c) compute the velocity changes v∗i , v∗j for each pair (i, j) using relations (3.1) with

η = ε;
(d) set vi = v∗i and vj = v∗j ;
end for

Note that in the above formulation the method has much in common with Algorithm 4.3 except
for the fact that multiple interactions are allowed during the dynamic (no need to tag particles
with respect to time level) and that the local time stepping is related to the number of individuals.
As a result in the limit of large numbers of individuals the method converges towards the time
continuous Boltzmann equation (3.2) and not to its time discrete counterpart (4.3), as it happens
for Nanbu formulation. Since in Algorithm 4.3 we have ntot = Ntot/Nc, the computational cost of
the methods is the same.

Similarly Bird’s approach can be extended to collision operator in the form (3.15) by intro-
ducing the following changes

Algorithm 4.5 (Asymptotic Bird II).
In Algorithm 4.4 make the following change
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(c) ∗ if Hα(|xni −xnj |, vni ) > ξi ξi uniform in [0, 1] then compute the velocity change v∗i
for each pair (i, j) using the first relation in (3.16) with η = ε;
∗ if Hα(|xni −xnj |, vnj ) > ξj ξj uniform in [0, 1] then compute the velocity change v∗j
for each pair (i, j) using the second relation in (3.16) with η = ε;

Finally we sketch the algorithm to implement the stochastic perception cone present in (3.18)
and (3.19), that can be easily introduced in all the previous algorithms.

Algorithm 4.6 (Interaction with stochastic perception cone).
• if xj ∈ Σ(xi, vi, θ)

– with probability p1 perform the interaction between i and j and compute v′i
else
– with probability p2 perform the interaction between i and j and compute v′i

• if xi ∈ Σ(xj , vj , θ)
– with probability p1 perform the interaction between i and j and compute v′j

else
– with probability p2 perform the interaction between i and j and compute v′j

Note that this reduces further the total number of interactions in the algorithms just described.
In contrast, for the deterministic case we simply change the relative interaction strengths using
respectively η = p1ε and η = p2ε in the binary interaction rules.

4.2. Mean-field interaction algorithms. Let us finally tackle directly the limiting mean
field equation. The interaction step now corresponds to solve

∂tf = −∇v
[
f

∫
R2d

Hα(x, y, v)(v − w)f(y, w, t)dwdy

]
.

As already observed, in a particle setting this corresponds to compute the original O(N2) dynamic.
We can reduce the computational cost using a Monte Carlo evaluation of the summation term as
described in the following simple algorithm.

Algorithm 4.7 (Mean Field Monte Carlo).
1. Given N samples v0

k, with k = 1, . . . , N computed from the initial distribution f0(x, v) and
M ≤ N ;

2. for n = 0 to ntot − 1
(a) for i = 1 to N
(b) sample M particles j1, . . . , jM uniformly without repetition among all particles;
(c) compute

H̄n
α(xi) =

1

M

M∑
k=1

Hα(xi, xjk , v
n
i ), v̄ni =

1

M

M∑
k=1

Hα(xni , x
n
jk
, vni )

H̄n
α(xi)

vjk ,

(d) compute the velocity change

vn+1
i = vni (1−∆tH̄n

α(xi)) + ∆tH̄n
α(xi)v̄

n
i .

end for
end for

The overall cost of the above simple algorithm is O = (MN), clearly for M = N we obtain
the explicit Euler scheme for the original N particle system. In this formulation the method is
closely related to asymptotic Nanbu’s Algorithm 4.1. It is easy to verify that taking M = 1 leads
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exactly to the same numerical method. On the other hand for M > 1 the above algorithm can be
interpreted as an averaged asymptotic Nanbu method over M runs since we can rewrite point (d)
as

vn+1
i =

1

M

M∑
k=1

[(
1−∆tHα(xni , x

n
jk
, vni )

)
vni + ∆tHα(xni , x

n
jk
, vni )vnjk

]
, i = 1, . . . , N.

The only difference is that averaging the result of Algorithm 4.1 does not guarantee the absence
of repetitions in the choice of the indexes j1, . . . , jM . Thus the choice ∆t = ε in Algorithm 4.1
originates a numerical method consistent with the limiting mean-field kinetic equation. Following
this description we can construct other Monte Carlo methods for the mean field limit taking suitable
averaged versions of the corresponding algorithms for the Boltzmann models. Here we omit for
brevity the details.

Remark 4.1.
• In Algorithm 4.7 the size of ∆t can be taken larger then the corresponding ∆t = ε in
Algorithm 4.1. However, as we just discussed, since large values of ∆t in the mean-field
algorithm are essentially equivalent to large values of ε in the Boltzmann algorithms we
don’t expect any computational advantage by choosing larger values of ∆t in Algorithm 4.7.
• We remark that changing the time discretization method from Explicit Euler in (4.3) and
(4.4) to other methods, like semi-implicit methods or method designed for the fluid-limit,
permits to avoid the stability restriction ∆t ≤ ε. Even this approach however does not
lead to any computational improvement since a strong deterioration in the accuracy of the
solution is observed when ∆t > ε. Here we don’t explore further this direction.

5. Numerical Tests. In this section we first compare accuracy and computational cost of
some of the different methods and then illustrate their performance on different two-dimensional
and three-dimensional numerical examples. We use the following notations: ANMC (Algorithm
4.3), ABMC (Algorithm 4.4), and MFMCM (Algorithm 4.7 for a given M).

5.1. Accuracy considerations. Here we compare the accuracy of the different algorithms
studied for a simple space homogeneous situation. In fact, since the algorithms differ only in the
binary interaction dynamic the homogeneous step is the natural setting for comparing the various
approaches in term of accuracy.

We consider the standard Cucker-Smale dynamic. Since we do not have any space dependence
we assume H(|xi − xj |) ≡ 1 for each i, j. Thus there is no difference in this test case between
formulations (3.2) and (3.15) and the relative simulation schemes.

We take N = 50000 individuals and at the initial time the velocity is distributed as the sum
of two gaussian

f0(v) =
1√

2πσv

e− (v + v0)2

2σ2
v + e

− (v − v0)2

2σ2
v

 ,

with v0 = 0.7, σv =
√

0.2.
The results obtained for ANMC and ABMC with ε = 1, 0.1, 0.01 at time T = 1 are reported

in Figure 5.1. The reference solution is computed using the microscopic model which in this simple
situation can be solved exactly and gives

vi(t) = vi(0)e−t + (1− e−t)v̄, v̄ =
1

N

n∑
j=1

vj(0).
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Figure 5.1. Convergence to the exact solution (continuous line) of the velocity profiles calculated with ANMC
(left) and ABMC (right) algorithms. From the top to bottom, ∆t = ε with ε = 1, 0.1, 0.01.

As expected convergence towards the exact solution is observed for both methods. In particular
for ε = 0.01 the results are in good agreement with the direct solution of the microscopic model.

Next in Figure 5.2 we compare the behavior of the MFMCM method with ANMC for the
same values of the time step. A considerable difference is observed for large values of ∆t and
both methods are poorly accurate. On the other hand for smaller values of ∆t they both converge
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Figure 5.2. MFMCM algorithms compared with ANMC method, at different time steps. From the top
∆t = 1, ∆t = 0.1 and ∆t = 0.01. On the left column M = 5 on the left M = 50.

towards the reference solution.

Finally in Figure 5.3 we report the L2-norm of the error for ANMC, ABMC and MFMCM
for various M as a function of ∆t = ε. We compare the convergence of the schemes with different
number of particles N = 1000 and N = 50000. Note that in both cases the convergence rate of
the schemes is rather close and for ε = ∆t < t∗, the statistical error dominates the time error so
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Figure 5.3. Relative errors in the L2 norm at T = 1 for the different methods as a function of ∆t = ε. On
the left the error is computed with N = 1000 particles, on the right the same test is performed with N = 50000
particles.

that we observe a saturation effect, where t∗ ≈ 0.1 for N = 1000 and t∗ ≈ 0.01 for N = 50000.

5.2. Computational considerations and 1D simulations. Next we want to compare the
computational cost of the different binary interaction methods for solving the kinetic equation
(3.12), when compared to the direct numerical solution of the original system (2.1).

We consider the same one-dimensional test problem as in [13] for the Cucker-Smale dynamic.
The initial distribution is given by

f0(x, v) =
1

2πσxσv
e

−x2

2σ2
x

e−(v + v0)2

2σ2
v + e

−(v − v0)2

2σ2
v

 ,

for v0 = 2.5, σv =
√

0.1 and σx =
√

2.
The computational time for the different methods at T = 1 using ε = 0.01 and different

number of individuals is reported in Table 5.1. Simulations have been performed on a Intel Core
I7 dual-core machine using Matlab. The O(N) cost of ANMC and ABMC is evident. The same
results are also reported in Figure 5.4 which shows the linear growth of the various Monte Carlo
algorithms.

N 103 104 105 106

ANMC 0.02 s 0.23 s 2.82 s 3.83× 101 s
ABMC 0.02 s 0.21 s 2.20 s 3.14× 101 s
MFMC50 0.05 s 0.41 s 4.26 s 4.44× 101 s
MFMC500 0.14 s 1.58 s 1.33× 101 s 3.14× 102 s
MFMC5000 5.00 s 5.20× 101 s 1.71× 103 s 4.49× 104 s

Table 5.1
Computational times for the different methods with various values of N . The final time is T = 1 and the

scaling factor ε = ∆t is fixed at 10−2.
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Figure 5.4. Comparison of the computational times for the different methods. For each method the time step
is equal to ∆t = 0.01.

Finally we report the phase-space plots of the previous 1D problem obtained using the per-
ception cone (2.10). Clearly the parameter θ has no meaning in the one-dimensional case, so that
the perception limitation concerns only the capability to detect other individuals on the left and
on the right over the line.

We compare the evolution in the phase space of two different cases: the classical Cucker-Smale
model (non visual limitation p1 = p2 = 1) and the weighted visual cone with p1 = 1 and p2 = 0.5.
The results are reported in Figure 5.5.

The simulations have been computed using ABMC with ∆t = ε = 0.01. The number N of
individuals is N = 50000, with γ = 0.05, that is unconditional flock condition. The phase space
representation is obtained using a space-velocity grid of 100 × 150 cells over the box [−15, 15] ×
[−10, 10]. The results are in good agreement with the one presented in [13]. Note how perception
limitations reduce the flocking tendency of the group of individuals by creating two different flocks
moving towards left and right respectively.

5.3. 2D Simulations.
Cucker-Smale dynamics. A generalization of the previous test in two-dimension is obtained

by considering a group of N individuals with position (x, y) ∈ R2, initially distributed as

f0(x, y, vx, vy) = g0(x, y)h0(vx, vy),

where

g0(x, y) =
1

2πσ2
exp{−(x2 + y2)/2σ2}, h(r) =

1

2πν2

e−(r + v0)2

2ν2 + e

−(r − v0)2

2ν2

 ,

with r = |(vx, vy)|, v0 = 10, σ =
√

2 and ν =
√

0.1. In the following simulations we use N = 100000
particles and the limited perception cone defined by (2.10).

We compare the evolution of the space density for different choices of the perception parameters
and at different times. In the test case considered the parameters for the perception cone are
θ = 4/3π, p1 = 1 and p2 = 0.04.
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Figure 5.5. 1D Cucker-Smale flocking in the phase space. On the left without perception limitations, on the
right with a perception bound characterized by p1 = 1 and p2 = 0.5

To reconstruct the probability density function in the space we use a 100 × 100 grid on
[−20, 20] × [−20, 20]. In each figure we also add the velocity flux to illustrate the flock direc-
tion. We report the results computed with ABMC method and ∆t = ε = 0.01, similar results are
obtained with the other stochastic binary algorithms.

At T = 30 the final flocking structure is reached. It is remarkable that in absence of perception
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limitations we obtain a perfect circular ring moving at constant speed.
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Figure 5.6. 2D Cucker-Smale flocking. On the left without perception limitations, on the right with perception
cone with θ = 4/3π, p1 = 1 and p2 = 0.04.

In contrast when we introduce limitations the flocking behavior is less evident and the groups
splits in two flocks moving in opposite directions. Finally we can also modify the previous example
to create more complex patterns, but with the same basic structure.
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Figure 5.7. 2D Cucker-Smale dynamics. Spatial density of two flock that merge together.

The initial distribution now is given by

g0(x, y, vx, vy) = f0(x+m, y, vx, vy) + f0(x−m, y, vx, vy),

where f0 is defined as before, and m = 7. We report the results obtained in absence of perception
cone. The final flocking state is reached at t ≈ 30 (see figure 5.7).

D’Orsogna, Bertozzi model et al. dynamic. Next we want to simulate the D’Orsogna Bertozzi
model et al. model with the aim to reproduce the typical mill dynamics as in [11, 14, 1] but using
the Boltzmann kinetic approximation.

Mills and double mills are typical emergence phenomena in school of fishes and flock of birds
which travel in a compact circular motion, for example, in order to protect themselves from predator
attacks. At first we work in the twodimensional space taking into account N = 100000 individuals.
According to the interaction described in (2.5), we consider the long-range attraction and short-
range repulsion.

In figure (5.8) the initial data is uniformly distributed on a twodimensional torus, with a
circular motion. The evolution shows how the attraction and repulsion forces stretch the mill
reaching after t = 20 a condition of equilibrium in a stable circular motion as a single mill.
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Figure 5.8. 2D Mill in D’Orsogna-Bertozzi et al. model at various times. Parameters in the attraction-
repulsion potential are such that C = CR/CA = 30, l = lR/lA = 0.3, α = 0.7, β = 0.05. Final configuration is
reached after t = 20

In figure (5.9), we instead consider the following initial data

f0(x, y, vx, vy) =
1

4π2σ2
e
−x

2 + y2

2σ2

e− (vx + v0)2

2 + e
− (vx − v0)2

2

 ,

where σ =
√

2 and v0 = 0.5. Thus density in space is a normal distribution centered in zero and
velocity distribution has two main directions left and right. The evolution computed with ABMC
and ∆t = ε shows that equilibrium is reached after t = 30 in a stable double mill formation.

5.4. 3D simulations. Finally we present some three dimensional simulations for the models
taking into account the different effects of the thee zone dynamic. All the simulations have been
performed with ABMC and ∆t = ε = 0.01.

Bertozzi-D’Orsogna et al. model. First we consider the tridimensional extension of the previous
simulation for the Bertozzi-D’Orsogna model et al. Initial data is uniformly distributed in space
on a 3D-torus, and initial velocity is described by a circular motion in the (x, y) components in z
direction initial velocity has no influence.
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Figure 5.9. 2D Double Mill in D’Orsogna-Bertozzi et al. model at various times. Parameters in the
attraction-repulsion potential are such that C = CR/CA = 1.6, l = lR/lA = 0.025, α = 0.7, β = 0.05. Final
configuration is reached after t = 30

We present the evolution of the swarm mass density and the vectorial field. The equilibrium
reached after t = 80 is a ball-shaped flock with mass concentrated on the border and empty zones
in the middle, that is the typical configuration observed for a mill of a fish school.

Simulation is made taking in account N=200000 particles, and reconstructing the probability
density function in the space we use a 3D grid with ∆x×∆y ×∆z = 100× 100× 100.
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Figure 5.10. Evolution of the 3D mill in D’Orsogna-Bertozzi et al. model at different times.

Roosting Force. Accordingly to the work [14] we introduce in the D’Orsogna-Bertozzi model
a roosting force term. The term expresses essentially the tendency of a flock or a school of fishes
to stay around a certain zone. Such zones usually are of food interest or where birds settle their
nests. Different approaches can be used to model this biological behavior, see for example [29, 5].

Mathematically speaking such term can be described by the introduction of a force term of
the type

Froost = −
[
v⊥i · ∇φ(xi)

]
v⊥i . (5.1)

Such force gives the individuals a tendency to move towards the origin, for a suitable function φ.
Here φ, called roosting potential is a function φ : Rd −→ R. In the simulation we take

φ(x) =
d

4

(
|x|

Rroost

)4

,

where Rroost gives the roosting area radius, and b is a constant weight. Other choice of this roost
term are of course possible, we refer the interested reader to [14].
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Figure 5.11. Trajectory of the center of mass in the roosting dynamic

Starting from the following initial data

f0(x, y, z, vx, vy, vz) =
1

4π2
√

2πσ3ν2
exp

{
1

2σ2

[
(x− x0)2 + (y − y0)2 + (z − z0)2

]
+

1

2ν2

[
v2
x + v2

y

]}
,

with (x0, y0, z0) = (−10, 10, 5), after a certain time the simulation shows a flock in stable equilib-
rium as an orbital motion around the roosting zone.

The simulation takes in account the following parameters C = CR/CA = 30, l = lR/lA = 3/5,
α = 0.7, β = 0.05 and the term of roosting force with parameters Rroost = 10 and d = 1/10.
For a long time simulation the center of mass describe the trajectory depicted in figure 5.4. Some
configurations of the flock at different times obtained using N = 200000 individuals are reported
in figure 5.12.

6. Conclusion. Mathematical modeling of collective behavior involves the interaction of sev-
eral individuals (of the order of millions) which may be computationally highly demanding. Here
we focus on models for flocking and swarming where the particle interactions implies an O(N2)
cost for N interacting objects. Using a probabilistic description based on a Boltzmann equation
we show how it is possible to evaluate the interaction dynamic in only O(N) computations. In
particular we derive different approximation methods depending on a small parameter ε.

The building block of the method is given by classical binary collision simulations techniques for
rarefied gas dynamic. Beside the presence of a further scaling parameter the resulting algorithms
are fully meshless and can be applied to several different microscopic flocking/swarming models.
Applications of the present ideas to other interacting particle systems and comparison with fast
multipole methods are under study and will be presented elsewhere.

Acknowledgements. The authors would like to thank ICERM at Brown University for the
kind hospitality during the 2011 Fall Semester Program on "Kinetic Theory and Computation"
where part of this work has been carried on.

REFERENCES

[1] M. Agueh, R. Illner, and A. Richardson. Analysis and simulations of a refined flocking and swarming model
of Cucker-Smale type. Kinet. Relat. Models, 4(1):1–16, 2011.

[2] X. Antoine and M. Lemou. Wavelet approximations of a collision operator in kinetic theory. C. R. Math.
Acad. Sci. Paris, 337(5):353–358, 2003.



Binary collision algorithms for flocking and swarming 27

−15

−10

−5

0

0

5

10

15

0

5

10

15

X

t=0

Y

Z

−40

−20

0

20

40

−40

−20

0

20

40

0

5

10

15

X

t=5

Y

Z

−40

−20

0

20

40

−40

−20

0

20

40

0

5

10

15

X

t=10

Y

Z

−40

−20

0

20

40

−40

−20

0

20

40

0

5

10

15

X

t=30

Y

Z

−40

−20

0

20

40

−40

−20

0

20

40

0

5

10

15

X

t=40

Y

Z

−40

−20

0

20

40

−40

−20

0

20

40

0

5

10

15

X

t=50

Y

Z

Figure 5.12. Evolution of the flock in 3D space, subject to a roosting force. The red arrow denotes the flock
direction sampled from the initial population of N = 200000 individuals, the green circle represents the roosting
area. We also add the density distribution of the whole flock projected over the plane (x, y).

[3] I. Aoki. A simulation study on the schooling mechanism in fish. Bulletin Of The Japanese Society Of Scientific
Fisheries, 48(8):1081–1088, 1982.

[4] H. Babovsky. On a simulation scheme for the Boltzmann equation. Math. Methods Appl. Sci., 8(2):223–233,
1986.

[5] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi,
A. Procaccini, et al. Interaction ruling animal collective behavior depends on topological rather than metric
distance: Evidence from a field study. Proceedings of the National Academy of Sciences, 105(4):1232, 2008.

[6] G. Beylkin, R. Coifman, and V. Rokhlin. Fast wavelet transforms and numerical algorithms. I. Comm. Pure



28 G. ALBI AND L. PARESCHI

Appl. Math., 44(2):141–183, 1991.
[7] G.A. Bird. Approach to translational equilibrium in a rigid sphere gas. Physics of Fluids, 6:1518, 1963.
[8] A.V. Bobylev and K. Nanbu. Theory of collision algorithms for gases and plasmas based on the boltzmann

equation and the Landau-Fokker-Planck equation. Physical Review E, 61(4):4576, 2000.
[9] R.E. Caflisch. Monte carlo and quasi-monte carlo methods. Acta numerica, 1998:1–49, 1998.

[10] E. J. Candes and T. Tao. Near-optimal signal recovery from random projections: universal encoding strategies?
IEEE Trans. Inform. Theory, 52(12):5406–5425, 2006.

[11] J. A. Carrillo, M. R. D’Orsogna, and V. Panferov. Double milling in self-propelled swarms from kinetic theory.
Kinet. Relat. Models, 2(2):363–378, 2009.

[12] J. A. Carrillo, M. Fornasier, J. Rosado, and G. Toscani. Asymptotic flocking dynamics for the kinetic Cucker-
Smale model. SIAM J. Math. Anal., 42(1):218–236, 2010.

[13] J.A. Carrillo, M. Fornasier, G. Toscani, and Francesco Vecil. Particle, kinetic, and hydrodynamic models of
swarming. pages 297–336, 2010.

[14] J.A. Carrillo, A. Klar, S. Martin, and S. Tiwari. Self-propelled interacting particle systems with roosting force.
Math. Models Methods Appl. Sci, 20:1533–1552, 2010.

[15] I. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N.R. Franks. Collective memory and spatial sorting in
animal groups. J. Theoret. Biol., 218(1):1–11, 2002.

[16] E. Cristiani, B. Piccoli, and A. Tosin. Modeling self-organization in pedestrians and animal groups from macro-
scopic and microscopic viewpoints. In Mathematical modeling of collective behavior in socio-economic and
life sciences, Model. Simul. Sci. Eng. Technol., pages 337–364. Birkhäuser Boston Inc., Boston, MA, 2010.

[17] F. Cucker and S. Smale. On the mathematics of emergence. Jpn. J. Math., 2(1):197–227, 2007.
[18] F. Cucker and S. Smale. Emergent behavior in flocks. IEEE Trans. Automat. Control, 52(5):852–862, 2007.
[19] S. D’Amico, J.-S. Ardaens, S. De Florio, and O. Montenbruck. Autonomous formation flying - Tandem-

x, Prisma and beyond. In Proceedings of the 5th International Workshop on Satellite Constellation &
Formation Flying, 2008.

[20] P. Degond and S. Motsch. Macroscopic limit of self-driven particles with orientation interaction. C. R. Math.
Acad. Sci. Paris, 345(10):555–560, 2007.

[21] G. Dimarco, R. Caflisch, and L. Pareschi. Direct simulation Monte Carlo schemes for Coulomb interactions in
plasmas. Commun. Appl. Ind. Math., 1(1):72–91, 2010.

[22] M.R. D’Orsogna, Y.L. Chuang, A.L. Bertozzi, and L.S. Chayes. Self-propelled particles with soft-core inter-
actions: patterns, stability, and collapse. Physical review letters, 96(10):104–302, 2006.

[23] E. Fernández-Juricic, J.T. Erichsen, and A. Kacelnik. Visual perception and social foraging in birds. Trends
in Ecology & Evolution, 19(1):25–31, 2004.

[24] E. Fernández-Juricic, S. Siller, and A. Kacelnik. Flock density, social foraging, and scanning: an experiment
with starlings. Behavioral Ecology, 15(3):371, 2004.

[25] M. Fornasier, J. Haskovec, and J. Vybiral. Particle systems and kinetic equations modeling interacting agents
in high dimension. Arxiv preprint arXiv:1104.2583, 2011.

[26] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys., 73(2):325–348,
1987.

[27] S. Ha and J. Liu. A simple proof of the Cucker-Smale flocking dynamics and mean-field limit. Commun. Math.
Sci., 7(2):297–325, 2009.

[28] S. Ha and E. Tadmor. From particle to kinetic and hydrodynamic descriptions of flocking. Kinet. Relat.
Models, 1(3):415–435, 2008.

[29] H. Hildenbrandt, C. Carere, and C.K. Hemelrijk. Self-organized aerial displays of thousands of starlings: a
model. Behavioral Ecology, 21(6):1349, 2010.

[30] A. Huth and C. Wissel. The simulation of fish schools in comparison with experimental data. Ecological
modelling, 75:135–146, 1994.

[31] T.R. Krogstad. Attitude synchronization in spacecraft formations: Theoretical and experimental results. PhD
Thesis, NTNU, Trondheim. 2009.

[32] J.M. Lee, S.H. Cho, and R.A. Calvo. A fast algorithm for simulation of flocking behavior. InGames Innovations
Conference, 2009. ICE-GIC 2009. International IEEE Consumer Electronics Society’s, pages 186–190.
IEEE, 2009.

[33] M. Lemou. Multipole expansions for the Fokker-Planck-Landau operator. Numer. Math., 78(4):597–618, 1998.
[34] S. McNamara and W.R. Young. Kinetics of a one-dimensional granular medium in the quasi-elastic limit.

Phys. Fluids A, 5:34–45, 1995.
[35] S. Motsch and E. Tadmor. A new model for self-organized dynamics and its flocking behavior. Arxiv preprint

arXiv:1102.5575, 2011.
[36] C. Mouhot and L. Pareschi. Fast algorithms for computing the Boltzmann collision operator. Math. Comp.,

75(256):1833–1852 (electronic), 2006.
[37] G. Naldi, L. Pareschi, and G. Toscani, editors. Mathematical modeling of collective behavior in socio-economic

and life sciences. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston
Inc., Boston, MA, 2010.

http://arxiv.org/abs/1104.2583
http://arxiv.org/abs/1102.5575


Binary collision algorithms for flocking and swarming 29

[38] A. Okubo. Dynamical aspects of animal grouping: swarms, schools, flocks, and herds. Advances in Biophysics,
22:1–94, 1986.

[39] L. Pareschi and G. Russo. An introduction to Monte Carlo methods for the Boltzmann equation. In CEMRACS
1999 (Orsay), volume 10 of ESAIM Proc., pages 35–76. Soc. Math. Appl. Indust., Paris, 1999.

[40] A. Ja. Povzner. On the Boltzmann equation in the kinetic theory of gases. Mat. Sb. (N.S.), 58 (100):65–86,
1962.

[41] C.W. Reynolds. Flocks, herds and schools: A distributed behavioral model. In ACM SIGGRAPH Computer
Graphics, volume 21, pages 25–34. ACM, 1987.

[42] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel type of phase transition in a system of
self-driven particles. Phys. Rev. Lett., 75:1226–1229, 1995.

[43] C. A. Yates, R. Erban, C. Escudero, I. D. Couzin, J. Buhl, I. G. Kevrekidis, P. K. Maini, and D. J. T. Sumpter.
Inherent noise can facilitate coherence in collective swarm motion. Proceedings of the National Academy
of Sciences of the United States of America, 106(14):5464–5469, 2010.


