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Abstract

Let G be a graph with a threshold function θ : V (G) → N such that 1 ≤
θ(v) ≤ dG(v) for every vertex v of G, where dG(v) is the degree of v in G.
Suppose we are given a target set S ⊆ V (G). The paper considers the following
repetitive process on G. At time step 0 the vertices of S are colored black and
the other vertices are colored white. After that, at each time step t > 0, the
colors of white vertices (if any) are updated according to the following rule.
All white vertices v that have at least θ(v) black neighbors at the time step
t− 1 are colored black, and the colors of the other vertices do not change. The
process runs until no more white vertices can update colors from white to black.
The following optimization problem is called TARGET SET SELECTION: Finding
a target set S of smallest possible size such that all vertices in G are black at
the end of the process. Such an S is called an optimal target set for G under
the threshold function θ. We are interested in finding an optimal target set
for the well-known class of honeycomb networks under an important threshold
function called strict majority threshold, where θ(v) = ⌈(dG(v)+ 1)/2⌉ for each
vertex v in G. In a graph G, a feedback vertex set is a subset S ⊆ V (G) such
that the subgraph induced by V (G) \ S is cycle-free. In this paper we give
exact value on the size of the optimal target set for various kinds of honeycomb
networks under strict majority threshold, and as a by-product we also provide
a minimum feedback vertex set for different kinds regular graphs in the class
of honeycomb networks.
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1 Introduction

Most computer users connect with their friends through email, social networks and

chatting applications. Recently some popular social networks, such as Facebook,

YouTube, Twitter and blogs, have become one of the most important ways for com-

panies to market themselves. A lot of companies use viral-marketing techniques to

advertise their products. Viral marketing is used to quickly spread the word about

their products and brands. Individual decisions are influenced by others. In viral mar-

keting, company tries to target some small number of people to “seed” their product;

advertising spread from one person to another by people talking about it - a kind of

snowball effect; and then the advertising reaches nearly every potential customer.

Consider the following hypothetical scenario as a motivating example. A com-

pany wish to market a new product. The company has at hand a description of the

social network G formed among a sample of potential customers, where the vertices

represent customers and edges connect people to their friends. The company wants

to target key potential customers S of the social network and persuade them into

adopting the new product by handing out free samples. We assume that individuals

in S will be convinced to adopt the new product after they receive a free sample,

and the friends of customers in S would be persuaded into buying the new product,

which in turn will recommend the product to other friends. The company hopes that

by word-of-mouth effects, convinced vertices in S can trigger a cascade of further

adoptions, and finally all potential customers will be persuaded to buy the product.

But now how to find a good set of potential customers S to target? To study this

problem, in the following we formally define it.

A graph G consists of a set V (G) of vertices together with a set E(G) of

unordered pairs of vertices called edges. We use uv for an edge {u, v}. The degree

of a vertex v ∈ V (G) is the number of vertices adjacent to v and is denoted by

dG(v) (the subscript G will be dropped if no confusion can arise). A person-to-person

recommendation social network is usually modeled by a graph G together with a

threshold function θ : V (G) → N such that 1 ≤ θ(v) ≤ dG(v) for each vertex v

in G, and such a social network is denoted by (G, θ). For the sake of convenience

if θ(v) = k for all vertices v in G, then (G, θ) shall be abbreviated to (G, k). In

marketing setting, the threshold of a vertex (customer) v represents his/her latent

tendency of buying the new product when his/her neighbors (friends) do (see [31]).

There are two types of important and well-studied thresholds on a graph G called

majority threshold and strict majority threshold (see [2, 6, 20, 21, 23, 27, 28] and

references therein), which will be denoted by θ≥ and θ> respectively throughout this

paper. In a majority threshold we have θ≥(v) = ⌈d(v)/2⌉ for every vertex v of G,
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while in a strict majority threshold we have θ>(v) = ⌈(d(v) + 1)/2⌉ for every vertex

v of G.

Given a vertex subset S of a connected social network (G, θ). Consider the

following repetitive process played on (G, θ) called activation process on (G, θ) starting

from S. At round 0 (the beginning of the game), the vertices of S are colored black

and the other vertices are colored white. After that, at each round t > 0, the colors

of white vertices (if any) are updated according to the following rule:

Parallel updating rule: All white vertices v that have at least θ(v) black neighbors

at the previous round t − 1 are colored black. The colors of the other vertices

do not change.

The process runs until no more white vertices can update colors from white to black.

The set S is called a target set for (G, θ). We denote by [S]Gθ the set of vertices that

are black at the end of the process. If F ⊆ [S]Gθ , then we say that the target set S

influences F on (G, θ). We are interested in the following optimization problem:

TARGET SET SELECTION: Finding a target set S of smallest possible size such that

all vertices in (G, θ) are black at the end of the activation process starting from

S. Such an S is called an optimal target set for (G, θ) and its size is denoted by

min-seed(G, θ).

The theoretical investigations of certain kinds of target set selection problem

were initiated by Kempe, Kleinberg, and Tardos in [18, 19], where they mainly con-

sider probabilistic thresholds such that all thresholds are drawn randomly from a

given distribution. They focused on the maximization problem - find a target set of

a given size k ∈ N to maximize the expected number of black vertices at the end of

the activation process.

Many authors have investigated target set selection problem with different types

of thresholds and network structures in various settings and under a variety of as-

sumptions. In a dynamic monopoly setting, Peleg [28] proved that it is NP-hard to

compute the optimal target set for majority thresholds. In constant threshold setting,

Dreyer and Roberts [11] showed that it is NP-hard to compute the min-seed(G, k)

for any k ≥ 3, and Chen [7] showed that the target set selection problem is NP-hard

when the thresholds are at most 2, even for bounded bipartite graphs. In fact, this

problem is not only NP-hard, it is also extremely hard to solve approximately. Chen

[7] proved that min-seed(G, θ≥) cannot be approximated within the ratio O(2log
1−ǫ n)

for any fixed constant ǫ > 0, unless NP ⊆ DTIME(npolylog(n)), where n = |V (G)|.
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We now turn to determine the exact value of min-seed(G, θ) for certain families

of graphs G under specific threshold functions θ. Related results can be found in

[1, 2, 4, 5, 7, 8, 11, 13, 14, 15, 16, 24, 25, 27, 28, 29, 33], where min-seed(G, θ) has

been investigated for different types of network structure G such as bounded treewidth

graphs, hexagonal grids, trees, cycle permutation graphs, generalized Petersen graphs,

block-cactus graphs, chordal graphs, Hamming graphs, chordal rings, tori, meshes,

butterflies, Cartesian products of two cycles.

Majority threshold model has many applications in distributed computing such

as maintaining data consistency in a distributed system, fault-local mending in dis-

tributed network and overcoming failure in distributed computing [22, 23, 27, 28]. On

the other hand, honeycomb networks have been suggested as an attractive architec-

ture for interconnected networks which have been widely investigated in parallel and

distributed applications (see [3, 30] and references therein). In this paper, we study

target set selection problem under strict majority thresholds on different kinds of hon-

eycomb networks such as honeycomb mesh HMt, honeycomb torus HTt, honeycomb

rectangular torus HReT(m,n), honeycomb rhombic torus HRoT(m,n), generalized

honeycomb rectangular torus GHT(m,n), planar hexagonal grid PHG(m,n), cylin-

drical hexagonal grid CHG(m,n), and toroidal hexagonal grid THG(m,n) (all terms

will be defined in later sections).

In Section 3 we determine the exact value of min-seed(G, θ>) for any honey-

comb mesh G. In Section 4, by computing the optimal target set for a generalized

honeycomb rectangular torus, we determine the exact values of min-seed(G, θ>) when

G is a honeycomb torus or a honeycomb rectangular torus or a honeycomb rhombic

torus. Finally, in Section 5, we compute min-seed(G, θ>) for planar, cylindrical, and

toroidal hexagonal grids G, where θ> denote the strict majority threshold of G. Our

results in Section 5 are summarized in Table 1.

Structure of G Result
Planar min-seed(G, θ>) = ⌈mn+2m+n

4
⌉ − 1

Cylindrical min-seed(G, θ>) = ⌈mn+2m
4

⌉
Toroidal min-seed(G, θ>) = ⌈mn+2

4
⌉

Table 1. Summary of results on min-seed(G, θ>) where G is an m by n hexagonal

grid with m ≥ 2, n ≥ 4, and n even.

A subset S of V (G) is a feedback vertex set (or a decycling set) of a graph

G if the subgraph of G induced by the vertices in V (G) \ S is acyclic (see [12, 29]

and references therein). The size of a minimum feedback vertex set in a graph G

is called the decycling number of G and is denoted by ∇(G) (adapted from [29]).
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In [2], by using feedback vertex sets for graphs, Adams, Troxell and Zinnen show

lower and upper bounds for min-seed(G, θ≥) when G is one of the graphs planar,

cylindrical, and toroidal hexagonal grids. We summarize their results in Table 2,

where θ≥ denote the majority threshold of G. Since toroidal hexagonal grids are

3-regular, it can readily be seen that if G is a toroidal hexagonal grid, then min-

seed(G, θ≥) = min-seed(G, θ>). Thus our result for toroidal hexagonal grids (see

Table 1) closes the gap in the corresponding result of Table 2.

Structure of G Result

Planar min-seed(G, θ≥) = ⌈ (n−2)(m−1)
4

⌉

Cylindrical min-seed(G, θ≥) ∈ {⌈ (n−2)m+2
4

⌉, ⌈ (n−2)m+2
4

⌉+ 1}
Toroidal min-seed(G, θ≥) ∈ {⌈mn+2

4
⌉, ⌈mn+2

4
⌉+ 1}

Table 2. Summary of results on min-seed(G, θ≥) proved in [2] where G is an m by

n hexagonal grid with m ≥ 2, n ≥ 4, and n even.

In [11], Dreyer and Roberts show that, for a vertex subset S of a (k+1)-regular

graph G, the target set S can influence all vertices of V (G) \ S in the social network

(G, k) if and only if S is a feedback vertex set of G. In [2], the authors further show

that if G is a graph with minimum degree at least 2, maximum degree at most 3 and

S ⊆ V (G), then S can influence all vertices of V (G) \S in the social network (G, θ≥)

if and only if S is a feedback vertex set of G.

Finding a minimum feedback vertex set of a graph is quite difficult, and has

been proved to be NP-complete in general [17]. However, in this paper by using the

above facts, we are able to provide a minimum feedback vertex set in honeycomb

torus networks, honeycomb rectangular torus networks, honeycomb rhombic torus

networks, generalized honeycomb rectangular torus networks, and toroidal hexagonal

grid networks.

2 Notations and preliminary results

In this section, we introduce the necessary notations, definitions and preliminary

results which will be used through the paper. For a set S ⊆ V (G), the subgraph of

G induced by S is the graph with vertex set S and edge set {uv ∈ E(G) : u, v ∈ S}

and is denoted by G[S]. Denote by G \ S the subgraph of G induced by V (G) \ S.

In order to study the optimal target sets for (G, θ) we introduce a sequential version

of activation process on (G, θ), called sequential activation process in which at each

round t > 0 one employs the following sequential updating rule instead of the parallel

updating rule:
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Sequential updating rule: Exactly one of white vertices that have at least θ(v)

black neighbors at the previous round t− 1 is colored black. The colors of the

other vertices do not change.

Given a target set S for (G, θ), consider a sequential activation process starting

from S. In this process, if v1, v2, . . . , vr is the order that vertices in [S]Gθ \ S become

black, then [v1, v2, . . . , vr] is called the convinced sequence of S on (G, θ). We define

an operation ⊔ on convinced subsequences α = [v1, v2, . . . , vr] and β = [u1, u2, . . . , us]

as follows: α ⊔ β = [v1, v2, . . . , vr, u1, u2, . . . , us]. For a list of convinced subsequences

{αi,j}1≤i≤k,1≤j≤ℓ, the sequences ⊔k
i=1αi,j and ⊔ℓ

j=1 ⊔
k
i=1 αi,j are defined to be

⊔k
i=1αi,j = α1,j ⊔ α2,j ⊔ · · · ⊔ αk,j and ⊔ℓ

j=1 ⊔
k
i=1αi,j = ⊔ℓ

j=1(⊔
k
i=1αi,j).

A vertex-ordering π of a graphG having n vertices is a numbering (v1, v2, . . . , vn)

of V (G). For an edge vivj with i < j, vj is a successor of vi, and vi is a predecessor of

vj . The number of predecessors and successors of a vertex vk is denoted by predπ(vk)

and succπ(vk), respectively. We may omit the subscript π if the ordering is clear. The

proof of the following lemma is straightforward and so is omitted. This lemma will

be used frequently in the sequel, sometimes without explicit reference to it.

Lemma 1 Let (G, θ) be a connected graph G with thresholds θ on the vertices of

G. (a) An optimal target set for (G, θ) under the sequential updating rule is also

an optimal target set for (G, θ) under the parallel updating rule, and vice versa.

(b) Finding an optimal target set S for (G, θ) is equivalent to that of finding a set

S ⊆ V (G) of minimum possible cardinality such that G \ S has a vertex-ordering

(v1, v2, . . . , v|V (G\S)|) with the following property: for each 1 ≤ i ≤ |V (G \ S)|, vi is

adjacent to at least θ(vi) vertices in the set S ∪ {vj : j ≤ i− 1}.

We use similar ideas as in the proof of Theorem 1 of [33] to show the results in

Lemma 2 which generalizes Lemma 4 of [9].

Lemma 2 Let (G, θ) be a connected graph G with thresholds θ on V (G) and let ∆

be the maximum degree of G. Let n = |V (G)|, m = |E(G)|, δ = max{dG(v)− θ(v) :

v ∈ V (G)}, θV =
∑

v∈V (G) θ(v), θmax = max{θ(v) : v ∈ V (G)} and θmin = min{θ(v) :

v ∈ V (G)}. Then the following quantity Λ is a lower bound for min-seed(G, θ):

Λ = max

{

m− (n− 1)δ

∆− δ
,
θV −m

θmax

,
nθmin −m

θmin

,
θV − (n− 1)δ

∆− δ + θmax

,
nθmin − (n− 1)δ

∆− δ + θmin

}

.

Proof. Let S be an optimal target set for (G, θ) and let V = V (G), s = |S|

and ℓ = n − s. For any two subsets A,B ⊆ V , let E(A,B) denote the number
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of edges between A and B. Since S (sequentially) influences all vertices of (G, θ),

G \ S has a vertex-ordering π = (v1, v2, . . . , vℓ) with the following property: for each

1 ≤ i ≤ ℓ, vi is adjacent to at least θ(vi) vertices in the set S ∪ {vj : j ≤ i − 1},

and hence succπ(vi) ≤ dG(vi)− θ(vi). It follows that |E(G \ S)| =
∑ℓ−1

i=1 succπ(vi) ≤
∑ℓ−1

i=1(dG(vi) − θ(vi)) ≤ (n − s − 1)δ. Note that if e is an edge in E(G) but not

in E(G \ S), then e has an end in S. This leads to |E(G \ S)| ≥ m − s∆. Thus

m− s∆ ≤ (n− s− 1)δ, and hence s ≥ m−(n−1)δ
∆−δ

. To prove the remaining part of the

lemma, we see that

min {m, s∆+ (n− s− 1)δ} ≥ min

{

m, s∆+

ℓ−1
∑

i=1

succπ(vi)

}

≥ min

{

m,E(S, {vj : 1 ≤ j ≤ ℓ}) +
ℓ−1
∑

i=1

succπ(vi)

}

=
ℓ

∑

i=1

E(S ∪ {vj : j ≤ i− 1}, {vi})

≥
ℓ

∑

i=1

θ(vi) ≥ max {θV − sθmax, (n− s)θmin} .

This implies the following four inequalities: m ≥ θV − sθmax, m ≥ (n − s)θmin,

s∆ + (n − s − 1)δ ≥ θV − sθmax, and s∆ + (n − s − 1)δ ≥ (n − s)θmin. After

simple algebraic manipulations, we obtain s ≥ θV −m
θmax

, s ≥ nθmin−m
θmin

, s ≥ θV −(n−1)δ
∆−δ+θmax

,

s ≥ nθmin−(n−1)δ
∆−δ+θmin

, respectively, which complete the proof of the lemma.

We remark that the result min-seed(G, θ) ≥ nθmin−m
θmin

shown in Lemma 2 has already

appeared in Corollary 2 of [33].

3 Honeycomb mesh

In this section, we determine the exact value for min-seed(G, θ>) where G is a hon-

eycomb mesh network with strict majority threshold function θ>. The honeycomb

mesh of size t (see [30] for a comprehensive introduction to this class of graphs and

their variants), denoted by HMt is defined inductively as follows: HM1 is a hexagon.

Honeycomb mesh HMt of size t > 1 is obtained from HMt−1 by adding a layer of

hexagons around the boundary of HMt−1. The number of vertices and edges of HMt

are 6t2 and 9t2 − 3t, respectively. The edges of HMt are in 3 different directions. See

Figure 1 for examples of HMt when t = 1, 2, 3, where the point O of HMt is called the

centre of the honeycomb mesh. Through O one can draw three lines perpendicular

to the three edge directions and name them as α, β, γ axes. These three axes will be

used in Section 4 to define the honeycomb torus network introduced in [30].
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Every honeycomb mesh has a nice drawing as shown in Figure 2. We call this

kind of drawing the castle drawing. In Figure 2, we show an addressing scheme to

describe the vertices of a honeycomb mesh which will be used in the proof of Theorem

3.

Figure 1. HM1 (left), HM2 (middle) and HM3 (right).

Figure 2. The castle drawing of a honeycomb mesh with a coordinate system on it:

HM1 (lower), HM2 (middle) and HM3 (upper). In each graph, the same edge is

given the same label, that is, v11v
1
6, v

3
1v

3
12, v

5
1v

5
18 are edges.

Theorem 3 min-seed(HMt, θ>) = (3t2 + 3t)/2.

Proof. Let G = HMt and θmin = min{θ>(v) : v ∈ V (G)}. Obviously, min-

seed(G, θ>) = min-seed(G, 2). Since HMt has 6t2 vertices and 9t2 − 3t edges, by

the result min-seed(G, θ>) ≥ |V (G)|θmin−|E(G)|
θmin

presented in Lemma 2, we see at once

that min-seed(G, 2) ≥ (3t2 + 3t)/2.

Next we will show that min-seed(G, 2) ≤ (3t2 + 3t)/2 by giving a target set S

of size (3t2 + 3t)/2 which influences all vertices of V (G) \ S in (G, 2). Consider the
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castle drawing of G with an addressing scheme on vertices, as shown in Figure 2. For

each positive integer i, define that

Vi =

{

{vi1, v
i
2, . . . , v

i
3i} if i is even,

{vi1, v
i
2, . . . , v

i
3i+3} if i is odd.

It can be seen that V (G) = ∪2t−1
i=1 Vi. Consider S = ∪t

k=1{v
2k−1
1 , v2k−1

3 , v2k−1
5 , . . . , v2k−1

6k−1}

as a target set for (G, 2) (see Figure 3 for a graphical illustration of this target set S).

It is easy to check that S can influence all vertices of V (G)\S by using the convinced

sequence β = α1⊔β2, where α1 = {v12, v
1
4, v

1
6} and β2 = ⊔t

i=2([v
2i−2
1 , v2i−2

2 , v2i−2
3 , . . . , v2i−2

6(i−1)]⊔

[v2i−1
2 , v2i−1

4 , v2i−1
6 , . . . , v2i−1

6i ]) (see Figure 1 in Appendix for a graphical illustration of

this convinced sequence β). Since the cardinality of S is
∑t

k=1 3k = 3t(t+1)
2

, we have

min-seed(HMt, 2) ≤ (3t2 + 3t)/2, which completes the proof of the theorem.

Figure 3. HM1 (lower), HM2 (middle) and HM3 (upper), where the target set S is

the set of all black vertices.

4 Generalized honeycomb rectangular torus

In this section, under strict majority threshold model, we study the problem of com-

puting optimal target sets for three well-known honeycomb tori: honeycomb torus,

honeycomb rectangular torus, and honeycomb rhombic torus. Actually, we will tackle

this problem by considering a slightly more general class of network topologies called

generalized honeycomb rectangular torus.

The honeycomb torus of size t introduced in [30], denoted by HTt, is obtained

from a honeycomb mesh of size t by joining the pairs of degree 2 vertices in HMt that

are mirror symmetric with respect to the three axes α, β, γ of the HMt (see Figure 1

9



for the three axes of a honeycomb mesh). Figure 4 shows how to wraparound HM1,

HM2 and HM3 to obtain HT1, HT2 and HT3, respectively.

Figure 4. HT1 (left), HT2 (middle) and HT3 (right).

Let m and n be positive even integers such that n ≥ 4. The honeycomb

rectangular torus HReT(m,n), introduced by Stojmenovic [30] (see also [10, 26]), is

the graph with the vertex set {(i, j) : 0 ≤ i < m, 0 ≤ j < n} such that (i, j) and

(k, ℓ) are adjacent if and only if they satisfy one of the following conditions:

1. i = k and j = ℓ± 1 (mod n);

2. j = ℓ and k = i− 1 (mod m) if i+ j is even.

For example, consider Figure 5(left) which depicts HReT(4, 6). Note that our notation

for HReT(m,n) is slightly different from the one used by Stojmenovic in [30].
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Figure 5. HReT(4, 6) (left), HRoT(5, 6) (middle), and GHT(4, 6, 2) (right).

Let m and n be positive integers such that n is even. The honeycomb rhombic

torus HRoT(m,n), introduced by Stojmenovic [30] (see also [10, 32]), is the graph

with the vertex set {(i, j) : 0 ≤ i < m, 0 ≤ j − i < n} such that (i, j) and (k, ℓ) are

adjacent if and only if they satisfy one of the following conditions:

1. i = k and j = ℓ± 1 (mod n);

2. j = ℓ and k = i− 1 if i+ j is even; and

3. i = 0, k = m− 1, and ℓ = j +m if j is even.

For example, consider Figure 5(middle) which depicts HRoT(5, 6). Note that our

notation HRoT(m,n) for a honeycomb rhombic torus is different from the one used

in [30, 32].

In [10] Cho and Hsu introduced a class of generalized honeycomb tori which

cover the three honeycomb tori mentioned above. Let m and n be positive integers

such that n ≥ 4 is even. Let d be any nonnegative integer such that m − d is an

even number. The generalized honeycomb rectangular torus (or generalized honeycomb

torus), denoted by GHT(m,n, d) and proposed by Cho and Hsu [10], is the graph with

the vertex set {(i, j) : 0 ≤ i < m, 0 ≤ j < n} such that (i, j) and (k, ℓ) are adjacent

if and only if they satisfy one of the following conditions:

1. i = k and j = ℓ± 1 (mod n);

2. j = ℓ and k = i− 1 if i+ j is even; and

3. i = 0, k = m− 1, and ℓ = j + d (mod n) if j is even.

For example, Figure 5(right) depicts a GHT(4, 6, 2). We remark that, in [3], the

authors call GHT(m,n, d) the honeycomb toroidal graph.

Now, given a generalized honeycomb rectangular torus G, in the proof of Theo-

rem 4, we shall show how to compute an optimal target set for G under strict majority

threshold model.

Theorem 4 If G is a generalized honeycomb rectangular torus GHT(m,n, d), then

min-seed(G, θ>)= ⌈(mn + 2)/4⌉.
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Proof. Let G = GHT(m,n, d) and δ = max{dG(v) − θ>(v) : v ∈ V (G)}. Let ∆

be the maximum degree of G. Obviously, G is a 3-regular graph. It follows that

min-seed(G, θ>) = min-seed(G, 2). Since G has mn vertices and 3mn
2

edges, by the

result min-seed(G, θ>) ≥
|E(G)|−(|V (G)|−1)δ

∆−δ
presented in Lemma 2, we see at once that

min-seed(G, 2) ≥ ⌈(mn + 2)/4⌉.

Next, we shall prove that min-seed(G, 2) ≤ ⌈(mn + 2)/4⌉ by giving a target set

S for (G, 2) which influences all vertices in V (G)\S and has cardinality ⌈(mn+ 2)/4⌉.

Note that n ≥ 4 is even. We let n = 4t+r, where t is a positive integer and r ∈ {0, 2}.

The proof is divided into three cases, according to the parity of m and the value of r.

Case 1. m is even. Let S1 = ∪
(n−4)/2
j=0 {(0, 2j), (2, 2j), (4, 2j), . . . , (m − 2, 2j)}

and S2 = {(1, n−1), (3, n−1), (5, n−1), . . . , (m−1, n−1)}. Consider S = S1∪S2 ∪

{(0, n− 2)} as a target set for (G, 2) (see Figure 6 for a graphical illustration of S).

Note that, in this case, d is even. By the definition of GHT(m,n, d) and by the choice

of S, it can be seen that if ℓ is even, then the vertex (m− 1, ℓ) is adjacent to a vertex

(0, j) in S such that j is even. With this observation, it is straightforward to check that

S can influence all vertices of V (G)\S by using the convinced sequence α = α1⊔α2 (see

Figure 2 in Appendix for a graphical illustration of this convinced sequence α), where

α1 = [(0, n−1), (0, n−3), (0, n−5), . . . , (0, 1)]⊔ [(1, 0), (1, 1), (1, 2), . . . , (1, n−2)] and

α2 = ⊔
m

2
−1

i=1 ([(2i, n−1), (2i, n−2)]⊔[(2i, n−3), (2i, n−5), (2i, n−7), . . . , (2i, 1)]⊔[(2i+

1, 0), (2i+ 1, 1), (2i+ 1, 2), . . . , (2i+ 1, n− 2)]). Since |S| = mn
4

+ 1 = ⌈(mn+ 2)/4⌉,

we obtain the desired inequality min-seed(G, 2) ≤ ⌈(mn+ 2)/4⌉.

Case 2. m is odd and r = 0. Let S1 = ∪
(n−4)/2
j=0 {(0, 2j), (2, 2j), (4, 2j), . . . , (m−

3, 2j)}, S2 = {(1, n − 1), (3, n − 1), (5, n − 1), . . . , (m − 2, n − 1)}, and S3 = {(m −

1, 0), (m− 1, 4), (m− 1, 8), . . . , (m− 1, n− 4)}. Consider S = S1 ∪ S2 ∪ S3 ∪ {(0, n−

2)} as a target set for (G, 2) (see Figure 7 for a graphical illustration of S). Note

that, in this case, d is odd. By the definition of GHT(m,n, d) and by the choice

of S, we see that if ℓ is odd, then the vertex (m − 1, ℓ) is adjacent to a vertex

(0, j) in S such that j is even. With the above in mind, it is straightforward to

check that S can influence all vertices of V (G) \ S by using the convinced sequence

α = α1 ⊔ α2 ⊔ α3 ⊔ α4 (see Figure 3 in Appendix for a graphical illustration of this

convinced sequence α), where α1 = [(m−1, 1), (m−1, 3), (m−1, 5), . . . , (m−1, n−1)],

α2 = [(m−1, 2), (m−1, 6), (m−1, 10), (m−1, 14), . . . , (m−1, n−6), (m−1, n−2)],

α3 = [(0, n − 1), (0, n − 3), (0, n − 5), . . . , (0, 1)] ⊔ [(1, 0), (1, 1), (1, 2), . . . , (1, n − 2)],

and α4 = ⊔
m−3

2

i=1 ([(2i, n−1), (2i, n−2)]⊔ [(2i, n−3), (2i, n−5), (2i, n−7), . . . , (2i, 1)]⊔

[(2i+1, 0), (2i+1, 1), (2i+1, 2), . . . , (2i+1, n− 2)]). Since n ≡ 0 (mod 4), we have

|S| = mn
4

+ 1 = ⌈(mn + 2)/4⌉, and hence min-seed(G, 2) ≤ ⌈(mn + 2)/4⌉.

Case 3. m is odd and r = 2. In the following proof, the second coordinate
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of a vertex (a, b) in G is read modulo n, for example we have (m − 1, d + 4t − 1) =

(m−1, d−3). Let S1 = ∪
(n−4)/2
j=0 {(0, 2j), (2, 2j), (4, 2j), . . . , (m−3, 2j)}, S2 = {(1, n−

1), (3, n − 1), (5, n − 1), . . . , (m − 2, n − 1)}, and S3 = {(m − 1, d − 1), (m − 1, d +

3), (m− 1, d+ 7), . . . , (m− 1, d+ 4t− 1)}.

By the definition of GHT(m,n, d), we see that (m− 1, d), (m− 1, d+ 2), (m−

1, d+4), . . . , (m−1, d+4t−2) are adjacent to vertices (0, 0), (0, 2), (0, 4), . . . , (0, 4t−

2), respectively, and the vertex (m − 1, d − 2) is adjacent to both (m − 1, d − 1)

and (m − 1, d − 3). Note that {(0, 0), (0, 2), (0, 4), . . . , (0, 4t − 2)} ⊆ S1 and {(m −

1, d − 1), (m − 1, d − 3)} ⊆ S3. Consider S = S1 ∪ S2 ∪ S3 as a target set for

(G, 2) (see Figure 8 for a graphical illustration of S). By the above observation and

by the choice of S, it is straightforward to check that S can influence all vertices

of V (G) \ S by using the convinced sequence α = α1 ⊔ α2 ⊔ α3 (see Figure 4 in

Appendix for a graphical illustration of this convinced sequence α), where α1 =

[(m − 1, d − 2), (m − 1, d), (m − 1, d + 2), (m − 1, d + 4), . . . , (m − 1, d + 4t − 2)],

α2 = [(m−1, d+1), (m−1, d+5), (m−1, d+9), (m−1, d+13), . . . , (m−1, d+4t−3)],

and α3 = ⊔
(m−3)/2
i=0 ([(2i, n−1), (2i, n−2)]⊔[(2i, n−3), (2i, n−5), (2i, n−7), . . . , (2i, 1)]⊔

[(2i + 1, 0), (2i + 1, 1), (2i + 1, 2), . . . , (2i + 1, n − 2)]). Since |S| = n(m−1)
4

+ t + 1 =
mn+2

4
= ⌈(mn + 2)/4⌉, we see that min-seed(G, 2) ≤ ⌈(mn+ 2)/4⌉. This completes

the proof of the theorem.

Figure 6. GHT(6, 8, 4) where the target set S is the set of all black vertices.
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Figure 7. GHT(9, 8, 5) where the target set S is the set of all black vertices.

Figure 8. GHT(9, 10, 5) where the target set S is the set of all black vertices.

From the definitions of the honeycomb rectangular torus, the honeycomb rhom-

bic torus, and the generalized honeycomb rectangular torus, it can readily be seen

that HReT(m,n) is isomorphic to GHT(m,n, 0) and HRoT(m,n) is isomorphic to

GHT(m,n,m (modn)). In [10], Cho and Hsu proved that the honeycomb torus of
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size t is isomorphic to GHT(t, 6t, 3t). Now the following corollary follows immediately

from Proposition 1 of [11], Theorem 4 and the above discussion.

Corollary 5 (1) If G is a generalized honeycomb rectangular torus GHT(m,n, d),

then the decycling number ∇(G) = ⌈(mn+ 2)/4⌉. (2) If G is a honeycomb torus

HTt then min-seed(G, θ>) = ∇(G) = ⌈(3t2 + 1)/2⌉. (3) If G is a honeycomb rect-

angular torus HReT(m,n) or a honeycomb rhombic torus HRoT(m,n), then min-

seed(G, θ>) = ∇(G) = ⌈(mn + 2)/4⌉.

5 Hexagonal grids

In this section, under strict majority threshold model, we study the problem of com-

puting optimal target sets for a graph G which has an underlying hexagonal (or

honeycomb) grid structure. Let m and n be two integers such that m ≥ 2, n ≥ 4,

and n even. An m by n planar hexagonal grid, denoted by PHG(m,n), consists of an

array of n rows of m vertices (x, y), with 0 ≤ x ≤ m−1, 0 ≤ y ≤ n−1, arranged on a

standard Cartesian plane such that each vertex (x, y) is adjacent to (x, y + 1) and, if

y is even (zero is considered to be even), also adjacent to (x+1, y+1), provided that

each coordinate is within its allowed range and no vertex of degree one is generated.

As an example, PHG(5,8) is depicted in Figure 9.

An m by n cylindrical hexagonal grid CHG(m,n) is obtained from the m by n

planar hexagonal grid PHG(m,n) by adding the edges from (m − 1, y) to (0, y + 1)

for any even y. In other words, a CHG(m,n) is defined the same as a PHG(m,n)

except that for each vertex (x, y) the addition in the first coordinate is taken modulo

m. As an example, CHG(5,8) is depicted in Figure 9.

An m by n toroidal hexagonal grid, denoted by THG(m,n), is defined the same

as a PHG(m,n) except that for each vertex (x, y) addition in the first coordinate is

taken modulo m and addition in the second coordinate is taken modulo n. As an

example, THG(5,8) is depicted in Figure 9.
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Figure 9. PHG(5, 8) (left), CHG(5, 8) (middle), and THG(5, 8) (right).

In Theorem 3.3 of [2], Adams et al. showed that if G is an m by n planar

hexagonal grid then min-seed(G, θ≥) =
⌈

(n−2)(m−1)
4

⌉

. Below we consider an m by n

planar hexagonal grid equipped with a strict majority threshold θ> and determine its

optimal target set.

Theorem 6 If G is an m by n planar hexagonal grid, then min-seed(G, θ>) =

⌈(mn + 2m+ n)/4⌉ − 1.

Proof. Let G = PHG(m,n), θmin = min{θ>(v) : v ∈ V (G)}. Obviously, min-

seed(G, θ>) = min-seed(G, 2). Since G has mn−2 vertices and 3mn
2

− n
2
−m−2 edges

(see Lemma 3.1 of [2]), by the result min-seed(G, θ>) ≥
|V (G)|θmin−|E(G)|

θmin

presented in

Lemma 2, we see at once that min-seed(G, 2) ≥ ⌈(mn+ 2m+ n)/4⌉ − 1.

Next we will show that min-seed(G, 2) ≤ ⌈(mn+ 2m+ n)/4⌉ − 1 by giving

a target set S for (G, 2) which influences all vertices of V (G) \ S and has |S| =

⌈(mn + 2m+ n)/4⌉ − 1. Note that n is even and n ≥ 4. Let n = 4t + r, where t is

a positive integer and r ∈ {0, 2}. The proof is divided into three cases, according to

the value of r and the parity of m.

Case 1. r = 2. In this case, consider S = {(0, 2i)|0 ≤ i ≤ 2t}∪{(j, 4+4k)|1 ≤

j ≤ m−1, 0 ≤ k ≤ t−1}∪{(1, 0), (2, 0), (3, 0), . . . , (m−2, 0)}∪{(m−1, 1)} as a target

set for (G, 2) (see Figure 10 for a graphical illustration of S). It is straightforward to

check that S can influence all vertices of V (G) \ S in (G, 2) by using the convinced

sequence α = α1 ⊔ α2 ⊔ α3 ⊔ α4 (see Figure 5 in Appendix for a graphical illustration

of this convinced sequence α), where

α1 = [(0, 1), (1, 1), (2, 1), . . . , (m− 2, 1)],

α2 = ⊔t−2
k=0[(0, 5 + 4k), (1, 5 + 4k), (2, 5 + 4k), . . . , (m− 1, 5 + 4k)],

α3 = ⊔t−1
k=0([(0, 3 + 4k), (1, 3 + 4k), (1, 2 + 4k)] ⊔ (⊔m−1

j=2 [(j, 3 + 4k), (j, 2 + 4k)])), and

α4 = [(1, n− 1), (2, n− 1), (3, n− 1), . . . , (m− 1, n− 1)].

Since |S| = (2t + 1) + (m − 1)t + (m − 1) = ⌈(mn + 2m+ n)/4⌉ − 1, we see that

min-seed(G, 2) ≤ ⌈(mn + 2m+ n)/4⌉ − 1.

Case 2. r = 0 and m is even. Consider S = {(0, 2i)|0 ≤ i ≤ 2t− 1} ∪ {(j, 2 +

4k)|1 ≤ j ≤ m − 1, 0 ≤ k ≤ t − 1} ∪ {(2, 0), (4, 0), (6, 0), . . . , (m − 2, 0)} as a target

set for (G, 2) (see Figure 11 for a graphical illustration of S). It is straightforward to

check that S can influence all vertices of V (G) \ S in (G, 2) by using the convinced

sequence α = α1⊔α2⊔α3⊔α4⊔α5 (see Figure 6 in Appendix for a graphical illustration

of this convinced sequence α), where

α1 = [(0, 1), (1, 1), (2, 1), . . . , (m− 1, 1)],
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α2 = [(1, 0), (3, 0), (5, 0), . . . , (m− 3, 0)],

α3 = ⊔t−2
k=0[(0, 3 + 4k), (1, 3 + 4k), (2, 3 + 4k), . . . , (m− 1, 3 + 4k)],

α4 = ⊔t−2
k=0([(0, 5 + 4k), (1, 5 + 4k), (1, 4 + 4k)] ⊔ (⊔m−1

j=2 [(j, 5 + 4k), (j, 4 + 4k)])), and

α5 = [(1, n− 1), (2, n− 1), (3, n− 1), . . . , (m− 1, n− 1)].

Since |S| = 2t + (m − 1)t + (m
2
− 1) = ⌈(mn + 2m+ n)/4⌉ − 1, we see that min-

seed(G, 2) ≤ ⌈(mn+ 2m+ n)/4⌉ − 1.

Case 3. r = 0 and m is odd. Consider S = {(0, 2i)|0 ≤ i ≤ 2t− 1} ∪ {(j, 2 +

4k)|1 ≤ j ≤ m− 1, 0 ≤ k ≤ t− 1}∪{(2, 0), (4, 0), (6, 0), . . . , (m− 3, 0)}∪{(m− 2, 0)}

as a target set for (G, 2) (see Figure 12 for a graphical illustration of S). It is

straightforward to check that S can influence all vertices of V (G) \ S by using the

convinced sequence α = α1⊔α2⊔α3⊔α4⊔α5 (see Figure 7 in Appendix for a graphical

illustration of this convinced sequence α), where

α1 = [(0, 1), (1, 1), (2, 1), . . . , (m− 1, 1)],

α2 = [(1, 0), (3, 0), (5, 0), . . . , (m− 4, 0)],

α3 = ⊔t−2
k=0[(0, 3 + 4k), (1, 3 + 4k), (2, 3 + 4k), . . . , (m− 1, 3 + 4k)],

α4 = ⊔t−2
k=0([(0, 5 + 4k), (1, 5 + 4k), (1, 4 + 4k)] ⊔ (⊔m−1

j=2 [(j, 5 + 4k), (j, 4 + 4k)])), and

α5 = [(1, n− 1), (2, n− 1), (3, n− 1), . . . , (m− 1, n− 1)].

Since |S| = 2t + (m − 1)t + (m−1
2

) = ⌈(mn + 2m+ n)/4⌉ − 1, we see that min-

seed(G, 2) ≤ ⌈(mn+ 2m+ n)/4⌉ − 1.

Figure 10. PHG(8, 6) (left), PHG(8, 10) (middle), and PHG(8, 14) (right) where the

target set S is the set of all black vertices.
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Figure 11. PHG(4, 16) (left), PHG(6, 16) (middle), and PHG(8, 16) (right) where

the target set S is the set of all black vertices.

Figure 12. PHG(5, 16) (left), PHG(7, 16) (middle), and PHG(9, 16) (right) where

the target set S is the set of all black vertices.

In Theorems 4.1 and 4.2 of [2], Adams et al. showed that if G is an m by n

cylindrical hexagonal grid, then min-seed(G, θ≥) ∈ {⌈ (n−2)m+2
4

⌉, ⌈ (n−2)m+2
4

⌉+ 1}. Be-

low we consider an m by n cylindrical hexagonal grid equipped with a strict majority

threshold θ> and determine its optimal target set.

Theorem 7 If G is an m by n cylindrical hexagonal grid, then min-seed(G, θ>) =

⌈(mn + 2m)/4⌉.
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Proof. Let G = CHG(m,n), θmin = min{θ>(v) : v ∈ V (G)}. Obviously, min-

seed(G, θ>) = min-seed(G, 2). Since G has mn vertices and 3mn
2

− m edges (see

Lemma 4.1 of [2]), by the result min-seed(G, θ>) ≥ |V (G)|θmin−|E(G)|
θmin

presented in

Lemma 2, we see at once that min-seed(G, 2) ≥ ⌈(mn+ 2m)/4⌉.

Next we will show that min-seed(G, 2) ≤ ⌈(mn + 2m)/4⌉ by giving a target set

S for (G, 2) which influences all vertices of V (G) \ S and has |S| = ⌈(mn + 2m)/4⌉.

Notice that n is even. Let n = 4t+ r where t is a positive integer and r ∈ {0, 2}. The

proof is divided into three cases, according to the value of r and the parity of m.

Case 1. r = 2. Consider S = {(0, 2i)|0 ≤ i ≤ 2t}∪{(j, 4k)|1 ≤ j ≤ m−2, 0 ≤

k ≤ t} ∪ {(m − 1, n − 2)} as a target set for (G, 2) (see Figure 13 for a graphical

illustration of S). It is straightforward to check that S can influence all vertices of

V (G) \ S by using the convinced sequence α = α1 ⊔ α2 ⊔ α3 ⊔ α4 (see Figure 8 in

Appendix for a graphical illustration of this convinced sequence α), where

α1 = ⊔t−1
k=0[(0, 1 + 4k), (1, 1 + 4k), (2, 1 + 4k), . . . , (m− 2, 1 + 4k)],

α2 = ⊔t−1
k=0([(0, 3 + 4k), (1, 3 + 4k), (1, 2 + 4k)] ⊔ (⊔m−2

j=2 [(j, 3 + 4k), (j, 2 + 4k)])),

α3 = [(0, n− 1), (1, n− 1), (2, n− 1), . . . , (m− 1, n− 1)], and

α4 = [(m− 1, n− 3), (m− 1, n− 4), (m− 1, n− 5), . . . , (m− 1, 0)].

Since |S| = (2t + 1) + (m − 2)(t + 1) + 1 = ⌈(mn + 2m)/4⌉, we see that min-

seed(G, 2) ≤ ⌈(mn+ 2m)/4⌉.

Case 2. r = 0 and m is even. Consider S = {(0, 2i)|0 ≤ i ≤ 2t− 1} ∪ {(j, 2 +

4k)|1 ≤ j ≤ m−2, 0 ≤ k ≤ t−1}∪{(2, 0), (4, 0), (6, 0), . . . , (m−2, 0)}∪{(m−1, n−2)}

as a target set for (G, 2) (see Figure 14 for a graphical illustration of S). It is

straightforward to check that S can influence all vertices of V (G) \ S by using the

convinced sequence α = α1 ⊔ α2 ⊔ α3 ⊔ α4 ⊔ β1 ⊔ β2 (see Figure 9 in Appendix for a

graphical illustration of this convinced sequence α), where

α1 = ⊔t−2
k=0[(0, 3 + 4k), (1, 3 + 4k), (2, 3 + 4k), . . . , (m− 2, 3 + 4k)],

α2 = ⊔t−2
k=0([(0, 5 + 4k), (1, 5 + 4k), (1, 4 + 4k)] ⊔ (⊔m−2

j=2 [(j, 5 + 4k), (j, 4 + 4k)])),

α3 = [(0, n− 1), (1, n− 1), (2, n− 1), . . . , (m− 1, n− 1)],

α4 = [(m− 1, n− 3), (m− 1, n− 4), (m− 1, n− 5), . . . , (m− 1, 2)],

β1 = [(0, 1), (1, 1), (2, 1), . . . , (m− 1, 1)], and

β2 = [(1, 0), (3, 0), (5, 0), . . . , (m− 1, 0)].

Since |S| = 2t+ (m− 2)t+ m−2
2

+ 1 = ⌈(mn + 2m)/4⌉, we see that min-seed(G, 2) ≤

⌈(mn + 2m)/4⌉.

Case 3. r = 0 and m is odd. Consider S = {(0, 2i)|0 ≤ i ≤ 2t − 1} ∪

{(j, 2 + 4k)|1 ≤ j ≤ m − 2, 0 ≤ k ≤ t − 1} ∪ {(2, 0), (4, 0), (6, 0), . . . , (m − 3, 0)} ∪

{(m − 1, 1), (m − 1, n − 2)} as a target set for (G, 2) (see Figure 15 for a graphical

illustration of S). It is straightforward to check that S can influence all vertices of
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V (G) \ S by using the convinced sequence α = α1 ⊔ α2 ⊔ α3 ⊔ α4 ⊔ β1 ⊔ β2 ⊔ β3

(see Figure 10 in Appendix for a graphical illustration of this convinced sequence α),

where

α1 = ⊔t−2
k=0[(0, 3 + 4k), (1, 3 + 4k), (2, 3 + 4k), . . . , (m− 2, 3 + 4k)],

α2 = ⊔t−2
k=0([(0, 5 + 4k), (1, 5 + 4k), (1, 4 + 4k)] ⊔ (⊔m−2

j=2 [(j, 5 + 4k), (j, 4 + 4k)])),

α3 = [(0, n− 1), (1, n− 1), (2, n− 1), . . . , (m− 1, n− 1)],

α4 = [(m− 1, n− 3), (m− 1, n− 4), (m− 1, n− 5), . . . , (m− 1, 2)],

β1 = [(0, 1), (1, 1), (2, 1), . . . , (m− 2, 1)],

β2 = [(1, 0), (3, 0), (5, 0), . . . , (m− 4, 0)], and

β3 = [(m− 2, 0), (m− 1, 0)].

Since |S| = 2t+ (m− 2)t+ m−3
2

+ 2 = ⌈(mn + 2m)/4⌉, we see that min-seed(G, 2) ≤

⌈(mn + 2m)/4⌉.

Figure 13. CHG(8, 6) (left), CHG(8, 10) (middle), and CHG(8, 14) (right) where

the target set S is the set of all black vertices.
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Figure 14. CHG(6, 16) (left), CHG(8, 16) (middle), and CHG(10, 16) (right) where

the target set S is the set of all black vertices.

Figure 15. CHG(5, 16) (left), CHG(7, 16) (middle), and CHG(9, 16) (right) where

the target set S is the set of all black vertices.

In Theorems 5.1 and 5.2 of [2], Adams et al. showed that if G is an m by

n toroidal hexagonal grid then min-seed(G, θ≥) ∈ {⌈mn+2
4

⌉, ⌈mn+2
4

⌉ + 1}. Below we

consider an m by n toroidal hexagonal grid equipped with a strict majority threshold

θ> and determine its optimal target set. Since THG(m,n) is 3-regular, it can be seen

that if G is a toroidal hexagonal grid then min-seed(G, θ≥) = min-seed(G, θ>). Thus

our result in Theorem 8 closes the gap in the corresponding result proved by Adams

et al. (see Table 2).
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Theorem 8 If G is an m by n toroidal hexagonal grid, then min-seed(G, θ>) =

min-seed(G, θ≥) = ∇(G) = ⌈(mn + 2)/4⌉.

Proof. Let G = THG(m,n). To prove min-seed(G, θ>) = ⌈(mn + 2)/4⌉ we show

that G is isomorphic to the honeycomb rhombic torus HRoT(m,n). Let f be a

function from the vertex set of HRoT(m,n) to the vertex set of G such that f(i, j) =

(m − 1 − i, j − i). It is straightforward to check that f is a bijection and preserves

edges. Since both HRoT(m,n) and G have 3mn
2

edges, f also preserves non-edges.

Therefore f is an isomorphism from HRoT(m,n) to G. It follows that, by Proposition

1 of [11] and Corollary 5, min-seed(G, θ>) = ∇(G) = ⌈(mn + 2)/4⌉.
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Appendix: [Not for publication - for referees’ information only]

Figure 1. HM4 and its target set S. For i = 2, 3, 4, convinced subsequences α2i−2 =

[v2i−2
1 , v2i−2

2 , v2i−2
3 , . . . , v2i−2

6(i−1)] and α2i−1 = [v2i−1
2 , v2i−1

4 , v2i−1
6 , . . . , v2i−1

6i ] are illus-

trated by colored directed paths. β = ⊔7
k=1αk.

Figure 2. GHT(6, 8, 4) and its target sets S. Convinced subsequences α1, α2 are

illustrated by colored directed paths and α = α1 ⊔ α2.
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Figure 3. GHT(9, 8, 5) and its target sets S. Convinced subsequences α1, . . . , α4 are

illustrated by colored directed paths and α = ⊔4
i=1αi.

Figure 4. GHT(9, 10, 5) and its target sets S. Convinced subsequences α1, α2, α3

are illustrated by colored directed paths and α = ⊔3
i=1αi.
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Figure 5. PHG(8, 6), PHG(8, 10), PHG(8, 14) and their target sets S. Convinced

subsequences α1, . . . , α4 are illustrated by colored directed paths and α =

⊔4
k=1αk.

Figure 6. PHG(4, 16), PHG(6, 16), PHG(8, 16) and their target sets S. Convinced

subsequences α1, . . . , α5 are illustrated by colored directed paths and α =

⊔5
k=1αk.
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Figure 7. PHG(5, 16), PHG(7, 16), PHG(9, 16) and their target sets S. Convinced

subsequences α1, . . . , α5 are illustrated by colored directed paths and α =

⊔5
k=1αk.

Figure 8. CHG(8, 6), CHG(8, 10), CHG(8, 14) and their target sets S. Convinced

subsequences α1, . . . , α4 are illustrated by colored directed paths and α =

⊔4
k=1αk.
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Figure 9. CHG(6, 16), CHG(8, 16), CHG(10, 16) and their target sets S. Convinced

subsequences α1, . . . , α4 and β1, β2 are illustrated by colored directed paths and

α = (⊔4
k=1αk) ⊔ β1 ⊔ β2.

Figure 10. CHG(5, 16), CHG(7, 16), CHG(9, 16) and their target sets S. Convinced

subsequences α1, . . . , α4 and β1, β2, β3 are illustrated by colored directed paths

and α = (⊔4
k=1αk) ⊔ β1 ⊔ β2 ⊔ β3.
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