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A VARIATIONAL APPROACH FOR CONTINUOUS SUPPLY CHAIN
NETWORKS∗

KE HAN † , TERRY L. FRIESZ‡ , AND TAO YAO§

Abstract. We consider a continuous supply chain network consisting of buffering queues and
processors first articulated by [2] and analyzed subsequently by [1] and [4]. A model was proposed
for such network by [23] using a system of coupling partial differential equations and ordinary differ-
ential equations. In this article, we propose an alternative approach based on a variational method
to formulate the network dynamics. We also derive, based on the variational method, an algorithm
that guarantees numerical stability, allows for rigorous error estimates, and facilitates efficient com-
putations. A class of network flow optimization problems are formulated as mixed integer programs
(MIP). The proposed numerical algorithm and the corresponding MIP are compared theoretically
and numerically with existing ones [22, 23], which demonstrates the modeling and computational
advantages of the variational approach.
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integer program
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1. Introduction.

1.1. Modeling overview. Manufacturing systems can be described by a num-
ber of mathematical models, which provide powerful tools to study and analyze the
behavior of such systems under specific conditions. Among theses mathematical rep-
resentations, we distinguish between static/stationary models and dynamic models;
the latter has an inherent dependence on time and falls within the scope of this paper.

The dynamic models describe and predict time evolution of system states by
introducing dynamics to different production steps. These models can be further cat-
egorized as discrete event simulation (DES) [5], and continuum models [2]. The DES
is an exact and computationally intensive method, in which the evolution of the sys-
tem is viewed as a sequence of significant changes in time, called events, for each part
(product) separately. A cost-effective alternative to the discrete event models is fluid-
based continuum network models represented by partial differential equations (PDEs).
The continuum models seek to describe the system dynamics from an aggregate level
and ignore local granularities. There has been a significant number of publications
on the PDE formulation of traffic dynamics, for example, in [12, 13, 25, 36, 37, 40].
The continuum modeling technique was not applied to supply chain networks until
recently, by the seminal work of [1, 2, 3, 4, 11, 15, 32] and [33].
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In particular, [2] derived, based on simple rules for releasing parts, a conservation
law model for the density and flux (flow) of the parts in the production process:

∂tρ(t, x) + ∂x min
{
V (x)ρ(t, x), µ(x)

}
= 0 t ∈ [0, T ], x ∈ [a, b] (1.1)

where the processor is expressed as a spatial interval [a, b], and ρ(t, x) denotes the
spatial-temporal distribution of the product density. In other words, ρ(t, x) measures
the local product density (in number of products per unit distance) at time t and
location x. V (x) and µ(x) denote location-dependent processing speed and flow ca-
pacity, respectively. The above PDE will be asymptotically valid in regimes where
a substantial number of parts are present on the processor. It should be noted that
the solution to the conservation law (1.1) can only be considered in the distributional
sense, due to the discontinuous dependence of the flux function on x. This is easily
seen from an example involving bottleneck: consider the flow capacity µ(a) at a point
a, and assume µ(a−) > µ(a+). If the flow µ(a−) is saturated, a Dirac δ-distribution
will emerge in the density profile ρ(t, ·) at location x = a, which corresponds to an
active bottleneck. When this happens, an integral solution of (1.1) does not exist.

To overcome such theoretical difficulty, [23] proposed, in addition to the PDE
formulation (1.1), a separate ordinary differential equation for the buffering queues
immediately upstream of each processor, thus avoiding direct encounter of the δ-
distribution. This finally leads to a system of conservation laws coupled with ordinary
differential equations. This supply chain model can be extended to incorporate general
network topology [29], certain real-world production features such as multi-commodity
or due-date production [16], and a class of network control and optimization problems
[24].

1.2. Numerical techniques. In [16, 22, 23] and [24], the numerical methods
for solving the aforementioned coupling system of PDEs and ODEs is solved with
an upwind finite difference scheme for the conservation laws and a forward Euler
scheme for the ordinary differential equations. To guarantee stability of the explicit
discretization scheme, the Courant-Friedrichs-Lewy condition [35] must hold for the
PDE:

∆t ≤ min
i

{∆xi
V i

}
(1.2)

where ∆t denotes the time step, index i runs through every processor (link) of the sup-
ply chain network, ∆xi and V i denote respectively the spatial step and the maximum
processing speed on processor i. The solution method described above encounters
several numerical difficulties. First, the ODE representing the buffer queue has a dis-
continuous dependence on its unknown variable, this will be explained in more details
later in Section 2. Certain modifications were proposed in the literature to remedy
such numerical deficiency. For example, [4] proposed a smoothing parameter to revise
the dynamics at queues. However, such modification could suffer from non-physical
solutions to be illustrated in Section 5.5. Second, the CFL condition for the PDE
and the stiffness condition for the modified ODE from [4] imply a trade-off between
numerical accuracy and computational efficiency, which could potentially increase the
computational burden of the model.

In view of the above limitations, we propose in this article a reformulation of the
same physical system using cumulative production curves [43] and Hamilton-Jacobi
equations. As we shall demonstrate subsequently, this alternative not only eliminates
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the abovementioned numerical issues, but also leads to an efficient ‘grid-free’ algo-
rithm and closed-form solution representation. Here ‘grid-free’ means the PDE is
solved without spatial discretization and without intermediate calculation of densi-
ties inside the processor. The solution procedure of the Hamilton-Jacobi equation
is a variational method called the Lax formula [7, 14, 18, 19, 34]. The formula was
originally proposed as a semi-analytic solution representation of the scalar conserva-
tion law and the Hamilton-Jacobi equation [18, 34]; its applications to fluid-based
traffic modeling are recently investigated in [7, 8, 9, 10, 14]. Using the variational
approach, the viscosity solution of the Hamilton-Jacobi equation is formulated as an
optimization problem which, depending on the specific form of the Hamiltonian, may
be simplified or explicitly instantiated. The variational approach for the continuous
supply chains is a powerful analytical and computational tool; and its advantages
compared to the finite-difference schemes, to be fully established in the rest of this
paper, are listed as follows.

1. The dynamics of the buffer queue and the processor can be simultaneously
treated using a single Lax formula, thus avoiding separate modeling of these
two components.

2. The Lax formula yields a much lower numerical error in the solution than the
finite-difference schemes.

3. The proposed algorithm is grid-free; in other words, there is no need to dis-
cretize the spatial domain of the PDE.

4. The proposed algorithm does not impose any constraints on the time step or
uniformity of the time grid. Thus one has more flexibility in choosing the
time grid for computational convenience.

5. Our reformulation of the supply chain networks is free of the spatial variables
originally appearing in the PDEs. This is arguably more general than the
PDE-based system in terms of modeling assumptions and solution methods.

This paper also presents a mixed integer program (MIP) formulation of the supply
chain network optimization problem using the variational reformulation. The mixed
integer program is one of the main formulations of supply chain optimization in the
economic literature, see [38, 42]. Its connection with continuum network models brings
new insights to the management of such networks; MIPs have been investigated quite
extensively in the context of traffic flows and supply chains [21, 22, 26, 44]. This
article reveals a new relationship between MIPs and fluid-based continuum models
from the point of view of variational principle.

It is natural to compare our proposed MIP with existing ones such as those
proposed by [21, 22]. The latter are based on a finite-difference discretization of the
PDEs and ODEs. For the same reason mentioned before, the MIP based on the
variational approach will allow more efficient computation and yields better solution
quality. To reach the same level of numerical precision, the MIP we put forward
requires much less (binary) variables than those based on finite-difference schemes;
this will be established both theoretically and numerically in this paper.

The rest of the paper is organized as follows. Section 2 briefly reviews the supply
chain network model originally proposed by [23], which consists of conservation laws
and ODEs. In Section 3, a variational approach is proposed to reformulate the sys-
tem. The solutions are derived in closed form in both continuous and discrete time.
Section 4 considers a network flow optimization problem based on the proposed vari-
ational approach and derives a mixed integer program. Such MIP is then compared
to the MIP considered in [22]. Finally, several numerical experiments are presented
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in Section 5 to illustrate the advantages of applying the variational approach.

2. Supply chain network model. We begin with the articulation of the net-
work model proposed by [23]. The supply chain model consists of separate modeling
of the buffer queues (using ODEs) and processors (using PDEs). A precise description
of the network is made via the notion of directed graph G(A, V) with the set of edges
(or arcs) A and the set of vertices (or nodes) V.

Definition 2.1. (Continuous supply chain network)
1. A continuous supply chain network is represented as a directed graph G(A, V)

where each edge e ∈ A corresponds to an individual processor, each vertex v ∈ V
represents the respective queue upstream of the processor.

2. Each processor e ∈ A is expressed as a spatial interval [ae, be], with Le = be−ae
being the length of the processor 1.

3. Each processor possesses a queue, which is located at the vertex at the upstream
end of the processor.

4 . The flow capacity µe, processing speed V e and throughput time T e = Le/V e

of each processor e ∈ A are constants.
For each e ∈ A, let ρe(t, x) denote the density of products at time t ∈ [0, T ] and

location x ∈ [ae, be]; let qe(t) denote the size of the queue upstream of this processor.
Assume that products are fed to the buffer queue at the rate ue(t), before they are
released to the processor. The dynamics of the processor and the queue are governed
by the following advection equation (2.1) and ODE (2.2)-(2.3).

∂tρ
e(t, x) +V e ∂xρ

e(t, x) = 0, ρe(0, x) = ρe0(x), (t, x) ∈ [0, T ]× [ae, be] (2.1)

d

dt
qe(t) = ue(t)− fe

(
ρe(t, ae)

)
, qe(0) = qe0 (2.2)

fe
(
ρe(t, ae)

)
=

{
min{ue(t), µe} qe(t) = 0

µe qe(t) > 0
(2.3)

Equation (2.3) represents the rate at which products in the queue are released to the
processor, i.e., the service rate. Notice that the PDE (2.1) with the flow capacity
constraint can be re-written as a scalar conservation law:

∂tρ
e(t, x) + ∂xφ

e
(
ρe(t, x)

)
= 0 (2.4)

where the flux function satisfies

φe(ρ) = min
{
V eρ, µe

}
(2.5)

A straightforward numerical scheme for solving system (2.1)-(2.3) is to apply
space-time discretization and use the finite difference approximation, see [2, 16, 23, 24].
For example, one could use an upwind scheme for conservation law (2.1) and forward
Euler method for ODE (2.2). Moreover, to ensure numerical stability, one needs to
impose the CFL-type constraints on the time step, see (1.2).

1Note that the spatial representation of the processor is somewhat imaginary and arbitrary. In
an actual manufacturing process, the key quantity of interest is the processing time (or throughput
time) of a part, which is assumed to be a constant in this paper. Having a virtual spatial dimension
introduced to the dynamics enables us to invoke the PDE formulation.
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One of the goals of this article is to provide an effective alternative to the numerical
scheme mentioned above, namely, the variational method (Lax formula) [7, 14, 18].
The Lax formula was proposed in [34] for the study of scalar conservation laws of the
form

∂tu+ ∂xf(u) = 0 (2.6)

of which the PDE (2.1) is just a special case. The Lax formula expresses the weak
entropy solution of (2.6) as the solution of a minimization problem which, in our
case, can be expressed explicitly. Notice that (2.6) can be equivalently written as the
following Hamilton-Jacobi equation

∂tU + f
(
∂xU

)
= 0, where U(t, x) =

∫ t

0

u(s, x) ds (2.7)

We also wish to consider the following initial condition

U(0, x) = U0(x) (2.8)

The classical Lax formula for the Cauchy problem (initial value problem) (2.7)-(2.8)
is stated below, the reader is referred to [18] for a detailed derivation.

Lemma 2.2. (Lax formula) Assume that f(·) is convex, and that U0(·) is
Lipschitz continuous. Then the viscosity solution to the Cauchy problem (2.7)-(2.8)
is

U(t, x) = inf
y∈R

{
tf∗

(
x− y
t

)
+ U0(y)

}
t > 0 (2.9)

where f∗(·) is the Legendre transform of f(·): f∗(v) = supu{vu− f(u)}.

3. Variational method. In this section, we apply the variational formulation
to the system governed by (2.1)-(2.3), we will demonstrate the capability of the Lax
formula to simultaneously handle dynamics of the queue and processor, in a way
consistent with (2.1)-(2.3), and to reduce the complexity of the coupling PDEs and
ODEs introduced in [23]. We first consider a single processor. For simplicity of
notation, the superscript e will be dropped for now. The following argument will be
extended to a general supply chain network in Section 3.3.

Denote the flux of products by u(t, x), i.e., u(t, x)
.
= φ(ρ), where φ(·) is defined

in (2.5). Recall the density-based scalar conservation law (2.4), which is rewritten as
a PDE whose unknown variable is the flux:

∂xu(t, x) + ∂tg
(
u(t, x)

)
= 0 (3.1)

where the function u 7→ g(u) = ρ is defined as the inverse of the function ρ 7→ φ(ρ) = u
on the interval [0, µ/V ]. To be precise, we have

g(u) = u/V u ∈ [0, µ] (3.2)

Remark 3.1. Notice that such inversion of the unknown in the PDE is made
possible only when the flux function φ(·) is invertible. In addition, to show the equiv-
alence between (3.1) and (2.4), one needs to invoke the definition of weak entropy
solution ([6]). The reader is referred to [7] for more detail on the inversion technique
and [20] for a formal proof of equivalence.
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Let us fix a time horizon [0, T ] for any given T > 0. The processor of interest is
represented by a spatial interval [a, b], where b − a = L. We introduce the function
U(·, ·) : [0, T ]× [a, b] 7→ R+, defined as

U(t, x)
.
=

∫ t

0

u(s, x) ds (t, x) ∈ [0, T ]× [a, b]

The conservation law (3.1) can be equivalently written as a Hamilton-Jacobi equa-
tion with unknown U(t, x):

∂xU(t, x) + g
(
∂tU(t, x)

)
= 0 (3.3)

Define function Q(·) : [0, T ] 7→ R+ which measures the cumulative number of
products that have arrived at queue by time t. For what follows, Q(·) is naturally
assumed to be non-decreasing and continuous except for countably many t. For reason
that will become clearly later in Section 3.1, we extend Q(·) to the time interval
(−∞, 0), with value zero assigned. For the rest of this article, we consider the left-
continuous version of Q(·), so that Q(t) = Q(t−), t ∈ R. Now consider the Lipschitz
continuous function:

U(t)
.
= inf

τ≤t

{
Q(τ) + µ(t− τ)

}
≤ Q(t) (3.4)

Clearly, U(t) measures the total number of products that have been released from
the buffering queue to the processor by time t. Notice that Q(t)−U(t) measures the
size of the queue upstream of the processor. We consider the following “initial value”
problem {

∂xU(t, x) + g
(
∂tU(t, x)

)
= 0

U(t, 0) = U(t)
(3.5)

For t > 0, the viscosity solution to (3.5) is provided by the following variation of the
Lax formula.

Proposition 3.2. The solution to (3.5) is given by the following identities.

U(t, x) = inf
τ∈R

{
x g∗

( t− τ
x

)
+ U(τ)

}
= inf

τ∈R

{
x g∗

( t− τ
x

)
+Q(τ)

}
(3.6)

where g∗ is the Legendre transform of g

g∗(q) = sup
p∈[0, µ]

{
q p− g(p)

}
=

{
0 q ≤ 1

V(
q − 1

V

)
µ q > 1

V

(3.7)

where µ denotes the flow capacity of the processor, V denotes the processing speed.
Proof. Given the functional format of g(·) from (3.2), the Legendre transform can

be easily calculated as (3.7). In order to apply the Lax formula given in Lemma 2.2 to
the problem (3.5), we readily notice, by switching the roles of t and x, that problem
(3.5) is in fact an initial value problem. Adjusting the Lax formula to such Cauchy
problem yields the first identity of (3.6). To prove the second identity, we refer to
reader to [7].

Equation (3.6) has several significant impacts. (1) The first identity, which is an
adjustment of the Lax formula to treat boundary value problems, provides a grid-free
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and semi-analytical solution representation of PDE (3.5). (2) The second identity sug-
gests that the solution can be represented directly in terms of the inflow profile Q(·),
without knowledge or intermediate computation of U(·). As a result, the separating
modeling of processor and buffer queue (2.1)-(2.3) are no longer necessary, and the
coupled PDEs and ODEs are replaced by the closed-form solutions provided by (3.6).
(3) The assumptions made on Q(·) suggest that the our methodological framework
can accommodate very general inflow profile, which can even be a distribution.

3.1. Explicit solution in continuous time. Given the simple and explicit
functional forms of g(·) and g∗(·), we are able to further simplify the semi-analytical
expression (3.6) for the solution. The goal of this subsection is to derived closed-form
solutions for the system in continuous time. A time-discretization will be introduced
in the next subsection to express the solution in discrete time.

For reason that will become clear later, we focus our analyses on the family of
piecewise affine (PWA) inflow profiles Q(·). Such assumption is not too restrictive
in application since any piecewise continuous function can be approximated, to an
arbitrary degree of accuracy, by piecewise affine functions. Notice that by (3.4), U(·)
will also be piecewise affine. Given a fixed processor with length L, flow capacity µ
and processing speed V , by setting x = L formula (3.6) becomes

U(t, L) = min

{
inf

τ≥t−L/V
Q(τ), inf

τ<t−L/V

{
Q(τ)− µτ + (t− L/V )µ

}}
(3.8)

We recall that Q(·) is non decreasing and left-continuous, therefore

inf
τ<t−L/V

{
Q(τ)− µτ + (t− L/V )µ

}
≤ lim

τ→(t−L/V )−

{
Q(τ)− µτ + (t− L/V )µ

}
= Q(t− L/V ) = inf

τ≥t−L/V
Q(τ)

Now we can write (3.8) in a simplified form

U(t, L) = inf
τ≤t−L/V

{
Q(τ)− µτ

}
+ (t− L/V )µ (3.9)

Remark 3.3. Identity (3.9) has a simple interpretation. Recall that the cumula-
tive number of products that have been released from the queue into the processor at
time t is given by (3.4):

U(t)
.
= inf

τ≤t

{
Q(τ) + µ(t− τ)

}
Then for a product that exits the processor at time t, the time of its entry into the
processor is t − L/V . In view of the natural first-in-first-out assumption, the total
products that have exited the processor at time t is equal to the total products that
have been released into the processor at time t−L/V . Replacing t by t−L/V in (3.4)
gives rise to (3.9).

The initial conditions for the buffer queue and the processor can be incorporate
into our formula. Let q(t) be the queue size, and ρ(t, x) be the density of products
on the processor. Consider the following initial conditions

q(0) = q0 ≥ 0, ρ(0, · ) = ρ0(·) ∈ L1([a, b]) (3.10)
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where L1([a, b]) denotes the set of Lebesque integrable functions on the interval [a, b].
Let Q̂(·) : (−∞, T ) 7→ R+ be the left-continuous function defined by

Q̂(t) =

{
0 t ≤ 0

q0 +Q(t) t > 0
(3.11)

We are now ready to state and prove one of the main results of this article,
namely, the explicit instantiation of the variational principle (3.6), with piecewise
affine boundary profile Q(·) and initial conditions q0, ρ0(·).

Proposition 3.4. (Continuous-time solution) Given constants µ, L, V and
piecewise affine inflow profile Q(·) : [0, T ] 7→ R+ with break points {ξi ∈ R : i ∈ I}, we
associate with each time t > L/V the finite set Ωt

.
= {ξi : ξi ≤ t−L/V }

⋃
{t−L/V }.

Given the following initial conditions

q(0) = q0, ρ(0, x) = ρ0(x). (3.12)

we define Q̂(·) as in (3.11). Then the exit flow profile U(t, L) can be written as

U(t, L) =


∫ L

L−V t
ρ0(ζ) dζ t ∈ [0, L/V )

min
τ∈Ωt

{
Q̂(τ)− µ τ

}
+ (t− L/V )µ+

∫ L

0

ρ0(ζ) dζ t ∈ [L/V, T ]

(3.13)
Moreover, U(·, L) is Lipschitz continuous.

Proof. Notice that L/V is the minimal time taken to traverse the processor,
therefore at any positive time t < L/V , U(t, L) is completely determined by the
initial distribution ρ0(x) of products on the processor. A simple calculation using
method of characteristics shows that for 0 ≤ t < L/V ,

U(t, L) =

∫ t

0

V ρ(s, L) ds =

∫ t

0

V ρ0(L− sV ) ds =

∫ L

L−tV
ρ0(ζ) dζ (3.14)

For time beyond L/V , we argue that an initially positive queue q0 can be treated
as an upward jump in Q(·) at t = 0, which is incorporated by replacing Q(·) with
left-continuous, piecewise affine and non-decreasing function Q̂(·) defined in (3.11).
Finally, in view of (3.9), it remains to show that

inf
τ≤t−L/V

{
Q̂(τ)− µτ

}
+ (t− L/V )µ = min

τ∈Ωt

{
Q̂(τ)− µτ

}
+ (t− L/V )µ (3.15)

This is true since Q̂ is piecewise affine, the infimum in (3.15) must be obtained at
either one of the break points, or at t−L/V . See Figure 3.1 for an illustration. Since
the Lax formula (3.6) gives an viscosity solution to the Hamilton-Jacobi equation,
U(t, L) is Lipschitz continuous with Lipschitz constant µ.

The expression (3.13) does not depend on any sort of approximation and is there-
fore exact. Notice that the feasible set Ωt is finite, thus we have converted a continuous
optimization problem into a discrete and finite form.

3.2. Explicit solution in discrete form. The goal of this subsection is to
derive the discrete version of (3.13) for a given time grid. This new algorithm will be
applied to network simulation and optimization later in this paper. We consider a time
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Q(  )τ

Q(  )τ

τ

µ

t−L/V

0

τ

µ

t−L/V

0

^

^

Fig. 3.1. Graphical representation of the formula (3.9). Since Q̂(·) is piecewise affine, the

infimum in the vertical difference between Q̂(τ) and µτ is obtained either at the break points of Q̂(·)
(left), or at t− L/V (right).

horizon [0, T ] for some T > 0 and a uniform time grid 0 = t0 < t1 < . . . < tN = T
with step size h.

Let Q(·) be any non-decreasing, left-continuous function. For notation conve-
nience, let Qi

.
= Q(ti−), U i

.
= U(ti), 0 ≤ i ≤ N . Then Q(·) is approximated by

the piecewise-affine function with break points {(ti, Qi)}Ni=0. To derive an explicit
numerical scheme, we make one simplification by rounding ti − L/V to the nearest
grid point to the left, and define integer constant ∆

.
= d LV he.

We make note of the fact that the presence of the initial density ρ0(x) induces
only integral terms to the Lax formula (3.13), for which the error are quite stan-
dard in the literature. Therefore, in the following statements of discrete formula and
accompanying numerical error, we assume ρ0(x) ≡ 0.

Proposition 3.5. (Lax formula in discrete form) Given constants L, V, µ,
discrete values Qi, i = 0, . . . , N and initial data q(0) = q0 > 0, ρ0(x) ≡ 0. Define
Q̂0 = 0, Q̂i = Qi + q0, 1 ≤ i ≤ N . Let U(t, L) satisfy (3.13). Then the following
discrete version of Lax formula

Ui, L =

{
0, 0 ≤ i < ∆;

min
0≤j≤i−∆

{
Q̂j − µtj

}
+ (ti − L/V )µ. ∆ ≤ i ≤ N.

(3.16)

satisfies

0 ≤ Ui, L ≤ Ui+1, L ∆ ≤ i ≤ N − 1 (3.17)

and

0 ≤ Ui, L − U(ti, L) ≤
(
d L
V h
e − L

V h

)
hµ, ∆ ≤ i ≤ N (3.18)

In particular, if L
V h is integer, (3.16) becomes exact.

Proof. We first verify (3.17). Notice that min
0≤j≤i−∆

{
Q̂j −µtj

}
− min

0≤j≤i+1−∆

{
Q̂j −

µtj
}

is equal to either 0 or min
0≤j≤i−∆

{
Q̂j − µtj

}
− (Q̂i+1−∆ − µti+1−∆), in the latter

case

min
0≤j≤i−∆

{
Q̂j − µtj

}
− min

0≤j≤i+1−∆

{
Q̂j − µtj

}
≤ Q̂i−∆ − µti−∆ − (Q̂i+1−∆ − µti+1−∆) ≤ µ∆

thus Ui, L − Ui+1, L = min
0≤j≤i−∆

{
Q̂j − µtj

}
− min

0≤j≤i+1−∆

{
Q̂j − µtj

}
−∆µ ≤ 0. This

shows monotonicity. To show non negativity, it suffices to check that U∆, L ≥ 0.
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For error estimate (3.18), recall ∆
.
= d LV he, it follows from (3.13) and the

definition of Ωt that

U(ti, L) = min
τ∈Ωti

{
Q̂(τ)− µτ

}
+ (ti − L/V )µ

= min

{
min

0≤j≤i−∆

{
Q̂(tj)− µtj

}
, Q̂(ti − L/V )− µ(ti − L/V )

}
+ (ti − L/V )µ

≤ Ui, L

and U(ti, L) < Ui, L if and only if Q̂(ti−L/V )−µ(ti−L/V ) < min
0≤j≤i−∆

{
Q̂(tj)−µtj

}
.

In this case, we have the estimate

Ui, L − U(ti, L) = min
0≤j≤i−∆

{
Q̂(tj)− µtj

}
− Q̂(ti − L/V ) + µ(ti − L/V )

≤ Q̂(ti−∆)− µti−∆ − Q̂(ti − L/V ) + µ(ti − L/V )

≤ µ(ti − L/V − ti−∆)

= µ(ti − L/V − ti + ∆h) = µh
(
∆− L

V h

)
This verifies (3.18).

Remark 3.6. Inequality (3.18) implies the uniform convergence of the numer-
ical method as h → 0. In fact, one may extend such error estimates to piecewise
continuous Q(·), using standard results on linear interpolation.

Proposition 3.5 does not impose any constraint on the time grid in terms of step
size and uniformity, except that ∆ ≥ 1. This condition implies that the time step has
to be less than or equal to the minimum processing time of the processor. According
to (3.18), in order to reduce the numerical error, one may either reduce the step size
h, or less obviously, choose h in a way such that the processing time L/V is a multiple
of h.

3.3. Network model. We are in a position ready to extend the Lax formula
to a general supply chain network. In view of Definition 2.1, we introduce a few
additional notations. Given a node v ∈ V, the set of incoming arcs and outgoing arcs
are denoted by Iv and Ov, respectively. In case |Ov| > 1, we call v a dispersive node.
We introduce the flow allocation rate Av, e(t) for each node v and e ∈ Ov:0 ≤ Av, e(t) ≤ 1,

∑
e∈Ov

Av, e(t) = 1 if |Ov| > 1

Av, e(t) ≡ 1 if |Ov| = 1
(3.19)

These allocation rates Av, e(t) describe the proportion of the flow coming from
incoming links that is going to the outgoing link e. They will be later considered as
control of the network product flow and are subject to optimization. For a processor
e ∈ A, let Qe(t) be a non decreasing, left-continuous function describing the cumula-
tive number of products arriving at the buffer queue of the processor. Let W e(t) be a
non decreasing and Lipschitz continuous function describing the cumulative number of
products that have left the processor. In addition, we fix the processor length Le, the
processing speed V e and the flow capacity µe. Adapting Proposition 3.4 to network
notations, we obtain the following dynamics describing the supply chain network.

Proposition 3.7. (Network model based on variational formulation)
Given a supply chain network G(A, V), consider, for every e ∈ A, parameters Le, V e,
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µe, and initial conditions qe(0) = q0, ρ
e(0, x) = ρe0(x). Then we have the following

variational formulations describing the dynamics of the system.

d

dt
Qe(t) = Av, e(t)

∑
ē∈Iv

d

dt
W ē(t) for almost every t, ∀v ∈ V, e ∈ Ov (3.20)

Q̂e(t) =

{
0, t ≤ 0

qe0 +Qe(t) 0 < t ≤ T
∀e ∈ A (3.21)

W e(t) =


∫ Le

Le−tV e

ρe0(ζ) dζ t < Le

V e

inf
τ≤t− Le

V e

{
Q̂e(τ)− µeτ

}
+

(
t− Le

V e

)
µe +

∫ Le

0

ρe0(ζ) dζ t ≥ Le

V e

(3.22)
Remark 3.8. For any e ∈ A, W e(t) is Lipschitz continuous by Proposition 3.4,

thus differentiable almost everywhere. Therefore the right hand side of (3.20) is well
defined for almost every t. As a consequence, if e ∈ Ov for some v ∈ V, then Qe is
also Lipschitz continuous.

The above system expresses the continuous-time solution of the network model
proposed in [23], where a system of coupling PDEs and ODEs were initially employed
to describe the dynamics. As we shall see later, besides the closed-form solution,
(3.22) also yields better solution precision than the finite-difference schemes under
minor condition.

3.4. Some model extensions. The conservation law (2.1) used to represent
the dynamic on a single processor is an advection equation and assumes a constant
speed of all products regardless of their position or density. Such simple dynamics
may not be quite realistic in certain applications, and it is the purpose of this section
to introduce several model extensions and the corresponding variational methods.

3.4.1. Location-dependent parameters. A processor may comprise a se-
quence of individual stages, each one with a different processing speed and/or flow
capacity. Such heterogeneity of parameters within a single processor may be captured
by the following conservation law:

∂tρ(t, x) + ∂x min {V (x)ρ(t, x), µ(x)} = 0 (t, x) ∈ [0, T ]× [a, b] (3.23)

where unlike (2.1), the processing speed and capacity are dependent on the spatial pa-
rameter x ∈ [a, b]. A conservation law with an x-dependent flux function is often used
by traffic analyst to model road heterogeneity such as lane change, curvature, road
condition, etc., [31]. We note that there exist variational methods for the conservation
law (Hamilton-Jacobi equation) with x-dependent flux function (Hamiltonian); see,
for example, [17]. In this paper we propose a simple treatment of (3.23) by assuming
piecewise constant approximations of V (x) and µ(x). By doing so, we decompose the
dynamic on the processor into a set of homogeneous ones, each governed by an ODE
for the queue and a PDE of the form (2.1) with constant processing speed and capac-
ity. Topologically, this means that we break each link in the network into smaller ones.
The variational approach proposed in this paper will apply to such new network.
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3.4.2. Density-dependent processing speed. If the local processing speed is
dependent on the density of products, the conservation law becomes

∂tρ(t, x) + ∂x (V (ρ(t, x))ρ(t, x)) = 0 (t, x) ∈ [0, T ]× [a, b] (3.24)

which is more in line with the fluid-like traffic dynamics [36, 40]. In particular, it is
assumed that the map φ(·) : ρ 7→ V (ρ)ρ is concave and increasing. See Figure 3.2.
Notice that unlike traffic flow models, backward propagation of kinematic waves is not
considered here; therefore there is no need to include the monotonically decreasing
part of the fundamental diagram [12, 13, 36]. Similar techniques based on switching
the roles of t and x, as we demonstrate in this paper, will apply to conservation law
(3.24) and the corresponding Hamilton-Jacobi equation, and the variational solution
representation can be consequently obtained. Due to space limitation, we omit techni-
cal details and refer the reader to [7] for a specific discussion. Notice that for general
functional forms of φ(·), the variational formulation amounts to a nonconvex opti-
mization problem, for which closed-form solutions are hardly available. In a special
case where φ(·) is piecewise affine, it can be shown that the variational formulation
becomes an optimization problem over a set of finite elements; this is directly related
to the fact that there are only finite number of wave speeds, see the right part of
Figure 3.2.

ρ

φ(ρ)

0 ρ

φ(ρ)

0 ρ

φ(ρ)

0

µ µµ

V

V
1

V
2

V
3

Fig. 3.2. Examples of concave and increasing flux function φ(·) where ρ denotes density, µ
denotes flow capacity, and V, V1, V2, V3 denote processing speeds. Left: the linear flux function
employed in this paper. Middle: the smooth flux function which leads to a general continuous
optimization problem. Right: the piecewise affine flux function which leads to an optimization
problem over a finite set with cardinality equal to the number of affine pieces.

4. Optimizing network flow. This section defines and solves the following
network optimization problem: given a general supply chain network as in Definition
2, with dynamics at processors and buffer queues described by the variational for-
mulation (3.20)-(3.22). Assume that at each dispersive node one can determine the
allocation of flows by controlling Av, e(t), so that the network is optimized subject to
some other constraints. A general objective functional of such optimization problem
is

min
Av, e(t)

∑
e∈A
Fe(Qe, W e) (4.1)

The continuous-time optimization problem is given by (4.1), subject to (3.20), (3.21)
and (3.22). It is shown in the next subsection that by properly time-discretize the sys-
tem and by introducing binary variables, the optimization problem can be formulated
as a mixed integer program (MIP).
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4.1. Time discretization. We adapt the “discretize-then-optimize” strategy
by time-discretizing system (3.20)-(3.22) and then optimizing the discrete system via
mathematical programming techniques. To do this, we prescribe a time grid {ti}Ni=0

with step size h, and adapt the following notations Qei
.
= Qe(ti), W

e
i

.
= W e(ti),

Av, ei
.
= Av, e(ti), ∆e .

= d L
e

V ehe.
To avoid differentiation arising from (3.20), we invoke the following lemma.
Lemma 4.1. Constraint (3.20) can be equivalently expressed as∑

e∈Ov

Qe(t) =
∑
ē∈Iv

W ē(t) (4.2)

Qe(t1) ≤ Qe(t2), ∀ t1 < t2, e ∈ Ov (4.3)

Proof. “(3.20)⇒(4.2), (4.3)”. In view of (3.19), summing up (3.20) over e ∈ Ov
and integrating over time give rise to (4.2). Moreover,

d

dt
Qe(t) = Av, e(t)

∑
ē∈Iv

d

dt
W ē(t) ≥ 0 for almost every t

this establishes (4.3).
“(4.2), (4.3)⇒(3.20)”. Differentiating (4.2) gives∑

e∈Ov

d

dt
Qe(t) =

∑
ē∈Iv

d

dt
W ē(t)

define Av, e(t)
.
= d

dtQ
e(t)/

∑
ē∈IW

ē(t), e ∈ Ov, then it is straightforward to verify
that (3.19) holds.

Note that (4.2) and (4.3) guarantee conservation of flux across the junction and
non-negativity of the flux. After applying Lemma 4.1, information of the allocation
rates Av, e is implicitly described by Qe; and it is a matter of simple calculation to
recover such information from the solution.

The discrete-time forms of (3.21), (3.22) are

Q̂e0 = 0, Q̂ei = qe0 +Qei , 1 ≤ i ≤ N (4.4)

W e
i =

{
0 i < ∆e

min
0≤j≤i−∆e

{
Q̂ej − µetj

}
+ (ti − Le/V e)µe i ≥ ∆e (4.5)

We introduce the variables Rei for e ∈ A, ∆e ≤ i ≤ N , defined recursively via the
following.

Rei =

{
Q̂ei−∆e − µeti−∆e i = ∆e

min
{
Rei−1, Q̂ei−∆e − µeti−∆e

}
∆e < i ≤ N + ∆e

(4.6)

Then the second equation of (4.5) becomes

W e
i = Rei + (ti − Le/V e)µe i ≥ ∆e (4.7)
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By virtue of this new variable Rei and (4.6), for each time step i we need to evaluate
the “min” function only once, thus reducing the number of variables and operations
needed in the problem. In order to linearize the constraints involving the “min”
operator, we introduce the binary variables βei ∈ {0, 1}, i = ∆e + 1, . . . ,∆e +N , and
equivalently write condition (4.6) as

Re∆e = Q̂e0 − µet0,

{
Rei−1 + (βei − 1)M ≤ Rei ≤ Rei−1

Q̂ei−∆e − µeti−∆e −Mβei ≤ Rei ≤ Q̂ei−∆e − µeti−∆e

(4.8)

where M is chosen to be a sufficiently large constant. We are now ready to state the
main result of this section.

Theorem 4.2. (MIP formulation of network optimization problem) Con-
sider a supply chain network as in Definition 2.1, with parameters Le, V e, µe, and ini-
tial conditions qe(0) = qe0, ∀e ∈ A. Define a linear objective function F(Qe, W e, Re).
Given a time grid 0 = t0 < t1 . . . < tN = T with step size h, then the network opti-
mization problem (4.1), (3.20), (3.21) and (3.22) can be formulated as the following
mixed integer program.

min
Qe

i ,W
e
i , R

e
i

F(Qei , W
e
i , R

e
i ) (4.9)

subject to ∑
e∈Ov

Qei =
∑
ē∈Iv

W ē
i , Qei−1 ≤ Qei , 1 ≤ i ≤ N (4.10)

Re∆e = −µet0, Rei−1 + (βei − 1)M ≤ Rei ≤ Rei−1, ∆e + 1 ≤ i ≤ ∆e +N (4.11)

qe0 +Qei−∆e − µeti−∆e −Mβei ≤ Rei ≤ qe0 +Qei−∆e − µeti−∆e , ∆e + 1 ≤ i ≤ ∆e +N
(4.12)

W e
i = Rei + (ti − Le/V e)µe, ∆e ≤ i ≤ N (4.13)

∆e .
= d L

e

V eh
e, βei ∈ {0, 1}, e ∈ A, v ∈ V (4.14)

where M is a sufficiently large constant.
Proof. We have already established (4.10) from Lemma 4.1 and (4.13) from (4.7).

(4.11) and (4.12) are immediate consequences of (4.4) and (4.8).

Remark 4.3. If |Ov| = 1, i.e. node v is non-dispersive, the non-negative
flow condition Qei−1 ≤ Qei in (4.10) is automatically satisfied since W ē

i , ē ∈ Iv are
guaranteed to be non-decreasing with respect to the time step i, due to Proposition 3.5.
Therefore the non-negative flow constraints can be dropped for such node.

Remark 4.4. The objective function (4.9) is, in its own form, an arbitrary real-
valued function of Qei , W

e
i and Rei , for all 0 ≤ i ≤ N , e ∈ A. Throughout this paper,

the objective function is chosen to be linear for the ease of computation, see Section 5.1
and 5.6. However, in a manufacturing environment with different cost scenarios, the
objective function is often nonlinear, nonconvex and even nonsmooth. If the objective
function is smooth and convex, then the resulting program can still be solved efficiently
with commercial software. If the objective function is nonsmooth but is convex and
admits well-defined subgradients, then using branch and bound, the relaxed problem
can still be handled relatively well by ellipsoidal method, analytic center cutting-plane
method, etc.
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4.2. Model extensions. We provide some discussion on two straightforward
extensions of the proposed MIP formulation.

4.2.1. Finite buffers. In a realistic manufacturing process, the capacity of the
buffering queue is usually limited. Articulation of this type of condition in the op-
timization procedure requires the queue size qe(t) to be expressed explicitly. Recall
that the queue size can be written as qe(t) = Qe(t)− Ue(t), where U

e
(t) is given by

(3.4). Thus we have

qe(t) = Qe(t)− Ue(t) = (Qe(t)− µet)− inf
τ≤t

{
Qe(τ)− µeτ

}
(4.15)

The discrete-time expression for the queue reads

qei = Qei −µeti− min
0≤j≤i

{
Qej −µetj

}
= Qei −µeti−Rei+∆e , i = 0, . . . , N (4.16)

The finite buffer constraint can then be implemented in the mixed integer program
by adding the following linear constraints

Qei − µeti −Rei+∆e ≤ Ceq , e ∈ A, 0 ≤ i ≤ N (4.17)

where Ceq denotes the buffer queue capacity on link e.

4.2.2. Inventory cost. In certain cases the handling of products in the buffer
queue may incur additional costs; these may include fixed costs (e.g. warehouse rents)
and variable costs (e.g. product degradation). Such situation can be easily handled
in our framework by adding the following cost function to the objective function:

∑
e∈A

αeq

N∑
i=0

(Qei − µeti −Rei+∆e), αeq ≥ 0, e ∈ A (4.18)

where constant αeq measures the cost per unit storage. With the revised objective
function, the decision variables may further include the network inflow profiles which
allow the buffer queues to remain minimum, while maintaining a maximum through-
put of the supply chain network.

4.3. Comparison with existing approaches. The MIP (4.9)-(4.14) differs
from the one proposed by [22] in a number of ways. First of all, the governing
equations for the system in our paper are derived from a variational perspective, and
the main variables are cumulative product counts, which are related to each other via
the Hamilton-Jacobi equations and the junction conditions. In contrast to the model
of [23, 24], the dynamics of the processor and the buffering queue are simultaneous
handled by the Lax formula. Our approach accepts discontinuous boundary datum
Q(·), which implies the presence of a delta-distribution in the flow; such situation
cannot be handled by the conservation law without a separate modeling of the queue.
This intuitively explains why in the variational formulation, an explicit treatment of
the queue is unnecessary. The Lax formula not only avoids the numerical issue arising
from the discontinuity in the ODE (2.2)-(2.3) (a detailed study of such issue will be
provided in Section 5.5), but also facilitates efficient simulation and optimization of
the network by reducing the number of variables needed and memory usage, due to
the ‘grid-free’ nature of the algorithm. The conservation law-based models, on the
other hand, rely on a two-dimensional grid and are restricted by the CFL conditions,
thus could potentially lead to large systems which are computationally expensive.
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Next we compare the number of variables used in the MIP (4.9)-(4.14) with those
presented in [22] with a two-point spatial discretization. Assume the numbers of arcs
in the network is |A|, and that the number of time intervals is N . Our proposed
MIP has 3N |A| real variables and N |A| binary variables; the MIP of [22] has the
same number of real and binary variables. However, in the latter approach, a two-
point spatial discretization may be too coarse to properly represent the PDE. If the
spatial grid is to be refined by a factor of n, the CFL condition (1.2) implies that the
number of variables needed for the spatiotemporal grid will increase by a factor of
n2, and the number of binary variables will also increase by a factor of n. Such fact
reveals a trade-off between numerical accuracy and computational efficiency for the
conservation law models and the MIP built upon them. The variational approach, on
the other hand, does not invoke spatial discretization and has no restrictions on the
time step. Therefore, to achieve the same level of numerical precision, our proposed
MIP is arguably much smaller in size compared to that of [22], and can be computed
more efficiently.

5. Numerical example. In this section, we conduct a sequence of numerical
studies of the variational approach and the resulting MIP, with modeling extensions
discussed in Section 4.2. Consider a test network shown in Figure 5.1, which consists
of seven arcs (processors) a− g, and four nodes 1− 4. The primary control variables
are the time-varying flow allocation rate A1, b(t) and A2, e(t) at dispersive nodes 1 and
2, respectively. The time horizon is fixed to be [0, 10]. Network parameters employed
in our numerical test are shown in Table 5.1. In addition, we assume zero initial
conditions: qe0 = 0, ρe0(x) = 0, ∀e ∈ A.

1

2

3

4a

b

c

e

f

g
d

Fig. 5.1. A test network consisting of seven arcs and four nodes

Processor a b c d e f g

Le 2 2 2 2 2 2 2
V e 2 1 2 4 2 2 2
µe 15 6 5 4 3.5 8 14

Table 5.1
Processor parameters

All mixed integer programs presented in this section were solved with ILOG Cplex
12.1.0 [30], on the HPC platform with Intel Xeon X5675 Six-Core 3.06 GHz processor,
provided by the Penn State High Performance Computing Systems [39].



A VARIATIONAL APPROACH FOR CONTINUOUS SUPPLY CHAIN NETWORK 17

5.1. Without buffer size constraints. As our first scenario, we assume that
the flow fa(t) into the network through processor a is fixed and given by

fa(t) =

{
37.5 0 ≤ t ≤ 2

0 otherwise

It is assumed that all the buffers have infinite capacity. The objective is to maximize
the total throughput of the network within the time horizon, namely

W g(10) (5.1)

where the notations have the same meaning as before. The optimal allocation rates
A1, b(t), A2, e(t) are computed from the MIP formulation introduced by Theorem 4.2,
and are illustrated graphically in Figure 5.2 and Figure 5.3. In the optimized network
flow profile, only processors a, b and c have non-empty buffering queues associated
with them; this is shown in Figure 5.4. The optimal value of the throughput W g(10)
is 58.75.
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Fig. 5.2. Without buffer size constraints:
optimal allocation rate A1, b.
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Fig. 5.3. Without buffer size constraints:
optimal allocation rate A2, e.
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Fig. 5.4. Without buffer size constraints: queues upstream of each processor
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5.2. With finite buffer constraints. We consider additional buffer capacity
constraints in the MIP, namely, qbi ≤ 10, qci ≤ 10, i = 0, . . . , N . Such constraints are
implemented by inserting inequality constraints (4.17) to the MIP. Figure 5.7 shows
the time-dependent queue sizes in the new optimal network flow profile. Notice that
the queue associated with processor a cannot be controlled since the inflow fa(·) is
fixed.
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Fig. 5.5. With buffer size constraints: op-
timal allocation rate A1, b
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Fig. 5.6. With buffer size constraints: op-
timal allocation rate A2, e
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Fig. 5.7. With buffer size constraints: queue upstream of each processor.

In the presence of the finite-buffer constraints, the adjusted allocation rates are
depicted in Figure 5.5 and Figure 5.6. Interestingly, the optimal value of W g(10)
remains the same as the previous case, without buffer size constraints. This shows
the non-uniqueness of the optimal solution of the MIP.

5.3. Minimizing queuing. In this example, we wish to minimize the queuing
in the network, by controlling not only the allocation rates, but also the inflow profile
fa(t) of the network. In view of our discussion in Section 4.2.2, we consider the
following revised objective function:

max
Qa

i , A
v, e
i

{
W g(10)−

∑
e∈A

ceq

N∑
i=0

(Qei −Rei+∆e)
}

(5.2)
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where the unit queuing cost ceq is set to be equal to one for all e ∈ A. By employing
the above objective function, we wish to maximize the throughput of the network
while keeping the queuing at a minimum level. The resulting optimal inflow from the
mixed integer program is shown in Figure 5.8; the corresponding optimal allocation
rates at vertices 1 and 2 are illustrated in Figure 5.9 and 5.10 respectively. Under
such controls on the inflow and the allocation rates, the queues associated with all
the processors remain empty throughout the time horizon.

The final throughput W g(10) is again 58.75.
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Fig. 5.8. Minimum queuing case: optimal inflow fa(t).
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Fig. 5.9. Minimum queuing case: alloca-
tion rate A1, b
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Fig. 5.10. Minimum queuing case: allo-
cation rate A2, e

5.4. Solution quality. We will analyze the result of our proposed MIP in terms
of numerical error and convergence, which will be compare with the finite difference
schemes [16, 22, 23, 24]. We use the same network and parameters as before, and
assume infinite buffer capacities. The time horizon of interest is set to be [0, 80]. The
objective is to maximize the throughput W g

N . The inflow profile is

fa(t) =

{
45 0 ≤ t < 10

0 10 ≤ t ≤ 80
(5.3)

Note that the integration of fa(t) on the time horizon is 450; it is natural to ex-
pect that the total throughput W g(80) is the same provided the time horizon is
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large enough. We run instances of the mixed integer program (4.9)-(4.14) for N =
40, 50, 60, . . . , 1000 where N is the number of time intervals. The optimal through-
puts produced by these programs are plotted in Figure 5.11.
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Fig. 5.11. Optimal output for different choices of time grid

Before we explain the figure, let us recall from Proposition 3.5 that the discrete-
time Lax formula is exact provided that the throughput time Le/V e, e ∈ A is a
multiple of the time step h, that is, when N = 160, 320, 480, 640, 800, 960 in our
example. Otherwise, the error is given by estimate (3.18):

0 ≤ W e
N −W e(80) ≤

(
d L

e

V eh
e − Le

V eh

)
hµe e ∈ A (5.4)

(5.4) suggests that 1) the discrete-time numerical values overestimate the actual value
of W g(80) which is 450; 2) the error displays an oscillatory pattern with damping,
as N increases. The oscillation is caused by the discontinuous function d LV he while
the damping is due to the factor h. Notice that the right hand side of error estimate
(5.4) can be further relaxed to hµ. It is not difficult to extend the error estimates for
a single processor to a network, noticing that the error in the cumulative production
curves adds up linearly through one processor (arc) to another:

0 ≤ W g
N −W

g(80) ≤ hmax
p∈P

∑
e∈p

µe (5.5)

where p = {e1, e2, . . . , em} is any viable path of product flow, ei ∈ A, and W g(80) is
the exact value of throughput. The right hand side of (5.5) is shown in Figure 5.11
against different values of N .

For comparison purposes, we also implement the MIP proposed by [22], which is
based on a finite difference scheme. We experiment with different number of spatial
intervals D for the discretization; for example, D = 1 means the two-point discretiza-
tion. The optimal throughputs are plotted in Figure 5.11 as well. Notice that when
D increases, the value of N must also increase due to the CFL condition. The nu-
merical results summarized in Figure 5.11 leads to two observations: 1) the values
of D ∈ {1, 2, 4} seem to have no effect on the error as long as the CFL condition is
satisfied; 2) in terms of solution precision, the variational approach outperforms the
finite difference scheme even in the worst case scenario.
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The above numerical experiment suggests that in order to maintain the same
level of numerical error, the size of our proposed MIP can be significantly smaller
than the finite-difference approach. For example, to keep the error of W g

N under
1%, that is, W g

N ∈ [450, 454.5], the finite-difference approach requires a time grid
of approximately 1000 points and the same amount of binary variables, while with
the variational approach, a time grid of 80 or 160 points is sufficient to achieve such
solution precision. This observation is clearly supported by Figure 5.11.

5.5. A case study of a smoothed out version of (2.2)-(2.3). [22] prosed
a smoothed out version of the ODE (2.2)-(2.3), in order to avoid the numerical dif-
ficulties caused by the discontinuous right hand side. The modified ODE reads as
follows.

d

dt
qe(t) = ue(t)− fe

(
ρe(t, ae)

)
(5.6)

fe
(
ρe(t, ae)

)
= min

{
µe,

qe(t)

ε

}
(5.7)

where ε > 0 is a smoothing parameter. (5.6)-(5.7) is a practical representation of the
original dynamic since it makes the right hand side of the ODE continuous, and the
solution approximates the one of (2.2)-(2.3) well in most cases. To ensure numerical
stability of the finite difference discretization, a stiffness condition ([22]) requires that

∆t ≤ ε (5.8)

where ∆t denotes the time step size.

In this case study, we compare the solutions of (5.6)-(5.7) and the variational
formulation to illustrate that the smoothed out version of the original ODE could still
yield ill-behaved solution in certain case.

Let us return to the example in Section 5.1 and set the network inflow to be

fa(t) =

{
14 0 ≤ t < 10

0 10 ≤ t ≤ 80
(5.9)

The MIP proposed by [22] employs the smoothed (5.6)-(5.7) for the queue dynamics.
Such MIP is solved with N = 600, D = 1, where N denotes the number of time steps,
and D denotes the number of spatial intervals for each processor. In other words,
the two-point upwind discretization for the conservation law is used. The inflow,
exit flow and queue size of processor a are shown together on the left part of Figure
5.5. We notice that a discretization of (5.6)-(5.7) yields a nonzero queue even though
the inflow is strictly below the processor capacity µa = 15. It turns out that such
non-physical queue is caused by the smoothing parameter ε and can be reduced by
choosing smaller ε, however, this once again implies a trade-off between numerical
accuracy and computational burden, due to the stiffness condition (5.8).

The variational method, on the other hand, handles the same problem well with
N = 600. The right part of Figure 5.5 shows that the queue stays zero and the exit
flow is a a simple time shift of the inflow profile, which is consistent with the physics
of the model.
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Fig. 5.12. A comparison of the smoothed out version of (2.2)-(2.3) and the variational ap-
proach. Left: solution on processor a obtained by the finite-difference discretization of (5.6)-(5.7)
with ε = 0.5. Right: solution on processor a given by the variational approach.

5.6. Solution time. As our final test, the computational times of both MIPs
are recorded for the same network optimization problem as in Section 5.1 with the
following network inflow:

fa(t) =

{
30 0 ≤ t ≤ 5

0 5 < t ≤ 10

For the MIP of [22], we employ a coarse two-point spatial discretization. For both
MIP formulations, the same objective function is chosen to be

max

N∑
i=0

wgi
1 + ti

(5.10)

where wgi is the exit flow on processor g at time ti. Choosing such objective function
ensures that the network throughput is maximized at every instance of time; in other
words, the products are handled in a way such that they exit the network as early as
possible.

The two MIPs are solved with N , the number of time intervals, ranging from 160
to 3000. The corresponding solution times are summarized in Figure 5.13. Although
the two MIPs are similar in size as we demonstrated in Section 4.3, the solution times
of the proposed MIP problem is significantly lower than the other MIP. In addition,
we observe a nearly linear growth of the computational time when N increases for
the variational approach. Possible mechanisms for causing such significant difference
in solution times for large scale problems, involving either internal structure of the
discretization or specific settings of the branch-and-bound algorithm, is currently
under investigation.

6. Conclusion. This paper proposes a variational method for the modeling,
computation, and optimization of a class of continuous supply chain networks. Such
supply chain networks are investigated by [23] and can be formulated as a system of
partial differential equations and ordinary differential equations. The main contri-
bution made in this paper is an explicit solution representation of the dynamics on
both the buffer queue and the processor. Our methodological framework is based on
a Hamilton-Jacobi equation and a variational method known as the Lax formula. The
closed-form solution is derived in both continuous and discrete time; and the latter
leads to an algorithm with provable error estimates. The proposed computational
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Fig. 5.13. Computational times of the two MIPs.

method is grid-free in the sense that it does not require a spatial discretization. No-
tably, the algorithm requires less computational effort and induces less numerical error
than the finite difference method proposed for the coupling PDE and ODE [22]. We
also propose, based on the variational formulation, a mixed integer programming ap-
proach for the optimization of continuous supply chain networks. As we demonstrate
in a series of numerical studies, the appropriate choice of the time grid could lead to
a significantly reduced and even zero error, when compared with the MIP of [22]. We
also show that the proposed MIP requires much less computational effort than the
one based on the PDE-ODE system, in order to properly represent the dynamics.

It is worthy mentioning that the continuous supply chain model, expressed by an
ODE for the buffer queue and a PDE for the processor, is in many ways similar to the
famous Vickrey model [41] for dynamic traffic flows. Applications of the variational
approach in the venue of traffic modeling are presented in [27] and [28].

Future extensions of the variational formulation will be focused on the modeling
of multi-commodity supply chain network with more realistic features. To do so, it is
desirable to consider inhomogeneous Hamilton-Jacobi equations to account for non-
constant processing time. More sophisticated junction models need to be introduced
as well to treat product flows with given origins and destinations.
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