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Abstract. An industrial scheme, to simulate the two compressible phase flow in porous
media, consists in a finite volume method together with a phase-by-phase upstream scheme.
The implicit finite volume scheme satisfies industrial constraints of robustness. We show
that the proposed scheme satisfy the maximum principle for the saturation, a discrete energy
estimate on the pressures and a function of the saturation that denote capillary terms. These
stabilities results allow us to derive the convergence of a subsequence to a weak solution of
the continuous equations as the size of the discretization tends to zero. The proof is given
for the complete system when the density of the each phase depends on the own pressure.

1. Introduction

A rigorous mathematical study of a petroleum engineering schemes takes an important
place in oil recovery engineering for production of hydrocarbons from petroleum reservoirs.
This important problem renews the mathematical interest in the equations describing the
multi-phase flows through porous media. The derivation of the mathematical equations de-
scribing this phenomenon may be found in [6], [10]. The differential equations describing
the flow of two incompressible, immiscible fluids in porous media have been studied in the
past decades. Existence of weak solutions to these equations has been shown under various
assumptions on physical data [4, 10, 11, 12, 13, 17, 18, 24, 25].

The numerical discretization of the two-phase incompressible immiscible flows has been
the object of several studies, the description of the numerical treatment by finite difference
scheme may be found in the books [5], [27].

The finite volume methods have been proved to be well adapted to discretize conservative
equations and have been used in industry because they are cheap, simple to code and robust.
The porous media problems are one of the privileged field of applications. This success induced
us to study and prove the mathematical convergence of a classical finite volume method for
a model of two-phase flow in porous media.

For the two-phase incompressible immiscible flows, the convergence of a cell-centered finite
volume scheme to a weak solution is studied in [26], and for a cell-centered finite volume
scheme, using a “phase by phase” upstream choice for computations of the fluxes have been
treated in [16] and in [8]. The authors give an iterative method to calculate explicitly the
phase by phase upwind scheme in the case where the flow is driven by gravitational forces
and the capillary pressure is neglected. An introduction of the cell-centered finite volume can
be found in [15].

For the convergence analysis of an approximation to miscible fluid flows in porous media
by combining mixed finite element and finite volume methods, we refer to [2], [3].

Key words and phrases. Finite volume scheme, degenerate problem.
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2 B. SAAD AND M. SAAD

Pioneers works have been done recently by C. Galusinski and M. Saad in a serie of articles
about “Degenerate parabolic system for compressible, immiscible, two-phase flows in porous
media” ([19], [20], [21]) when the densities depend on the global pressure , and by Z. Khalil
and M. Saad in ([22], [23]) for the general case where the density of each phase depends on
its own pressure. And for the two compressible, partially miscible flow in porous media, we
refer to [9], [28]. For the convergence analysis of a finite volume scheme for a degenerate
compressible and immiscible flow in porous media with the feature of global pressure, we
refer to [7].

In this paper, we consider a two-phase flow model where the fluids are immiscible. The
medium is saturated by a two compressible phase flows. The model is treated without sim-
plified assumptions on the density of each phase, we consider that the density of each phase
depends on its corresponding pressure. It is well known that equations arising from multi-
phase flow in porous media are degenerated. The first type of degeneracy derives from the
behavior of relative permeability of each phase which vanishes when his saturation goes to
zero. The second type of degeneracy is due to the time derivative term when the saturation
of each phase vanishes.

This paper deals with construction and convergence analysis of a finite volume scheme for
two compressible and immiscible flow in porous media without simplified assumptions on the
state law of the density of each phase.

The goal of this paper is to show that the approximate solution obtained with the proposed
upwind finite volume scheme (3.8)–(3.9) converges as the mesh size tends to zero, to a solution
of system (2.1) in an appropriate sense defined in section 2. In section 3, we introduce some
notations for the finite volume method and we present our numerical scheme and the main
theorem of convergence.

In section 4, we derive three preliminary fundamental lemmas. In fact, we will see that we
can’t control the discrete gradient of pressure since the mobility of each phase vanishes in the
region where the phase is missing. So we are going to use the feature of global pressure. We
show that the control of velocities ensures the control of the global pressure and a dissipative
term on saturation in the whole domain regardless of the presence or the disappearance of
the phases.
Section 5 is devoted to a maximum principle on saturation and a well posedness of the
scheme which inspired from H.W. Alt, S. Luckhaus [1]. Section 7 is devoted to a space-time
L1 compactness of sequences of approximate solutions.
Finally, the passage to the limit on the scheme and convergence analysis are performed in
section 8. Some numerical results are stated in the last section 9.

2. Mathematical formulation of the continuous problem

Let us state the physical model describing the immiscible displacement of two compressible
fluids in porous media. Let T > 0 be the final time fixed, and let be Ω a bounded open subset
of R` (` ≥ 1). We set QT = (0, T ) × Ω, ΣT = (0, T ) × ∂Ω. The mass conservation of each
phase is given in QT

(2.1) φ(x)∂t(ρα(pα)sα)(t, x) + div(ρα(pα)Vα)(t, x) + ρα(pα)sαfP (t, x) = ρα(pα)sIαfI (t, x),

where φ, ρα and sα are respectively the porosity of the medium, the density of the α phase
and the saturation of the α phase. Here the functions fI and fP are respectively the injection
and production terms. Note that in equation (2.1) the injection term is multiplied by a
known saturation sIα corresponding to the known injected fluid, whereas the production term
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is multiplied by the unknown saturation sα corresponding to the produced fluid.
The velocity of each fluid Vα is given by the Darcy law:

(2.2) Vα = −K
krα(sα)

µα

(
∇pα − ρα(pα)g

)
, α = l, g.

where K is the permeability tensor of the porous medium, krα the relative permeability of the
α phase, µα the constant α-phase’s viscosity, pα the α-phase’s pressure and g is the gravity
term. Assuming that the phases occupy the whole pore space, the phase saturations satisfy

(2.3) sl + sg = 1.

The curvature of the contact surface between the two fluids links the jump of pressure of
the two phases to the saturation by the capillary pressure law in order to close the system
(2.1)-(2.3)

(2.4) pc(sl(t, x)) = pg(t, x)− pl(t, x).

With the arbitrary choice of (2.4) (the jump of pressure is a function of sl), the application

sl 7→ pc(sl) is non-increasing, (dpc
dsl

(sl) < 0, for all sl ∈ [0, 1]), and usually pc(sl = 1) = 0

when the wetting fluid is at its maximum saturation.

2.1. Assumptions and main result. The model is treated without simplified assumptions
on the density of each phase, we consider that the density of each phase depends on its
corresponding pressure. The main point is to handle a priori estimates on the approximate
solution. The studied system represents two kinds of degeneracy: the degeneracy for evolution
terms ∂t(ραsα) and the degeneracy for dissipative terms div(ραMα∇pα) when the saturation
vanishes. We will see in the section 5 that we can’t control the discrete gradient of pressure
since the mobility of each phase vanishes in the region where the phase is missing. So, we
are going to use the feature of global pressure to obtain uniform estimates on the discrete
gradient of the global pressure and the discrete gradient of the capillary term B (defined on
(2.7)) to treat the degeneracy of this system.

Let us summarize some useful notations in the sequel. We recall the conception of the
global pressure as describe in [10]

M(sl)∇p = Ml(sl)∇pl +Mg(sg)∇pg,
with the α-phase’s mobility Mα and the total mobility are defined by

Mα(sα) = krα(sα)/µα, M(sl) = Ml(sl) +Mg(sg).

This global pressure p can be written as

p = pg + p̃(sl) = pl + p̄(sl),(2.5)

or the artificial pressures are denoted by p̄ and p̃ defined by:

p̃(sl) = −
∫ sl

0

Ml(z)

M(z)
p
′
c(z)dz and p(sl) =

∫ sl

0

Mg(z)

M(z)
p
′
c(z)dz(2.6)

We also define the capillary terms by

γ(sl) = −Ml(sl)Mg(sg)

M(sl)

dpc
dsl

(sl) ≥ 0,
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and let us finally define the function B from [0, 1] to R by:

B(sl) =

∫ sl

0
γ(z)dz = −

∫ sl

0

Ml(z)Mg(z)

M(z)

dpc
dsl

(z)dz

= −
∫ sg

0
Ml(z)

dp̄

dsl
(z)dz =

∫ sl

0
Mg(z)

dp̃

dsl
(z)dz.(2.7)

We complete the description of the model (2.1) by introducing boundary conditions and initial
conditions. To the system (2.1)–(2.4) we add the following mixed boundary conditions. We
consider the boundary ∂Ω = Γl ∪ Γimp, where Γl denotes the water injection boundary and
Γimp the impervious one.

(2.8)

{
pl(t, x) = pg(t, x) = 0 on (0, T )× Γl,

ρlVl · n = ρgVg · n = 0 on (0, T )× Γimp,

where n is the outward normal to Γimp.
The initial conditions are defined on pressures

(2.9) pα(t = 0) = p0
α for α = l, g in Ω

We are going to construct a finite volume scheme on orthogonal admissible mesh, we treat
here the case where

K = kId
where k is a constant positive. For clarity, we take k = 1 which equivalent to change the scale
in time.
Next we introduce some physically relevant assumptions on the coefficients of the system.

(H1) There is two positive constants φ0 and φ1 such that φ0 ≤ φ(x) ≤ φ1 almost everywhere
x ∈ Ω.

(H2) The functions Ml and Mg belongs to C0([0, 1],R+), Mα(sα = 0) = 0. In addition, there
is a positive constant m0 > 0 such that for all sl ∈ [0, 1],

Ml(sl) +Mg(sg) ≥ m0.

(H3) (fP , fI ) ∈ (L2(QT ))2, fP (t, x), fI (t, x) ≥ 0 almost everywhere (t, x) ∈ QT .
(H4) The density ρα is C1(R), increasing and there exist two positive constants ρm > 0 and

ρM > 0 such that 0 < ρm ≤ ρα(pg) ≤ ρM .
(H5) The capillary pressure fonction pc ∈ C1([0, 1];R+), decreasing and there exists pc > 0

such that 0 < pc ≤ |dpcdsl
|.

(H6) The function γ ∈ C1 ([0, 1];R+) satisfies γ(sl) > 0 for 0 < sl < 1 and γ(sl = 1) =
γ(sl = 0) = 0. We assume that B−1 (the inverse of B(sl) =

∫ sl
0 γ(z)dz) is an Hölder1

function of order θ, with 0 < θ ≤ 1, on [0,B(1)].

The assumptions (H1)–(H6) are classical for porous media. Note that, due to the boundedness
of the capillary pressure function, the functions p̃ and p̄ defined in (2.6) are bounded on [0, 1].

Let us define the following Sobolev space

H1
Γl

(Ω) = {u ∈ H1(Ω);u = 0 sur Γl},
this is an Hilbert space with the norm ‖u‖H1

Γl
(Ω) = ‖∇u‖(L2(Ω))` .

1This means that there exists a positive constant c such that for all a, b ∈ [0,B(1)], one has |B−1(a) −
B−1(b)| ≤ c|a− b|θ.
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Definition 1. (Weak solutions) . Under assumptions (H1)-(H6) and definitions (2.5)-(2.9)
with the fact that p0

l , p
0
g belongs to L2(Ω) and s0

α satisfies 0 ≤ s0
α ≤ 1 almost everywhere in

Ω, then the pair (pl, pg) is a weak solution of problem (2.1) satisfying :

pα ∈ L2(0, T ;L2(Ω)),
√
Mα(sα)∇pα ∈ (L2(0, T ;L2(Ω)))`,(2.10)

0 ≤ sα(t, x) ≤ 1 a.e in QT (α = l, g), B(sl) ∈ L2(0, T ;H1
Γl

(Ω)),(2.11)

φ∂t(ρα(pα)sα) ∈ L2(0, T ; (H1
Γl

(Ω))′) ∈ L2(0, T ; (H1
Γl

(Ω))′),(2.12)

such that for all ϕ, ψ ∈ C1([0, T ];H1
Γl

(Ω)) withϕ(T, ·) = ψ(T, ·) = 0,

−
∫
QT

φρl(pl)sl∂tϕdxdt−
∫

Ω
φ(x)ρl(p

0
l (x))s0

l (x)ϕ(0, x) dx

+

∫
QT

Ml(sl)ρl(pl)∇pl · ∇ϕdxdt−
∫
QT

Ml(sl)ρ
2
l (pl)g · ∇ϕdxdt(2.13)

+

∫
QT

ρl(pl)slfPϕdxdt =

∫
QT

ρl(pl)s
I
l fIϕdxdt,

−
∫
QT

φρg(pg)sg∂tψdxdt−
∫

Ω
φ(x)ρg(p

0
g(x))s0

g(x)ψ(0, x) dx

+

∫
QT

Mg(sg)ρg(pg)∇pg · ∇ψdxdt−
∫
QT

Mg(sg)ρ
2
g(pg)g · ∇ψdxdt(2.14)

+

∫
QT

ρg(pg)sgfPψdxdt =

∫
QT

ρg(pg)s
I
gfIψdxdt.

3. The finite volume scheme

3.1. Finite volume definitions and notations. Following [15], let us define a finite volume
discretization of Ω× (0, T ).

Definition 2. (Admissible mesh of Ω). An admissible mesh T of Ω is given by a set of open
bounded polygonal convex subsets of Ω called control volumes and a family of points (the
“centers” of control volumes) satisfying the following properties:

(1) The closure of the union of all control volumes is Ω. We denote by |K| the measure
of K, and define

h = size(T ) = max{diam(K),K ∈ T }.
(2) For any (K,L) ∈ T 2 with K 6= L, then K ∩ L = ∅. One denotes by E ⊂ T 2 the set

of (K,L) such that the d− 1-Lebesgue measure of K ∩ L is positive. For (K,L) ∈ E,
one denotes σK|L = K ∩ L and |σK|L| the d− 1-Lebesgue measure of σK|L. And one
denotes ηK|L the unit normal vector to σK|L outward to K

(3) For any K ∈ T , one defines N(K) = {L ∈ T , (K,L) ∈ E} and one assumes that
∂K = K\K = (K ∩ ∂Ω) ∪ (∪L∈N(K)σK|L).

(4) The family of points (xK)K∈T is such that xK ∈ K (for all K ∈ T ) and, if L ∈
N(K), it is assumed that the straight line (xK , xL) is orthogonal to σK|L. We set

dK|L = d(xK , xL) the distance between the points xK and xL, and τK|L =
|σK|L|
dK|L

, that

is sometimes called the ”transmissivity” through σK|L (see Figure 1).
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(5) Let ξ > 0. We assume the following regularity of the mesh :

(3.1) ∀K ∈ T ,
∑

L∈N(K)

|σK|L|dK|L ≤ ξ|K|

K

xK

xL
σK,L

LTK,L

T

Figure 1. Control volumes, centers and diamonds

We denote by Hh(Ω) ⊂ L2(Ω) the space of functions which are piecewise constant on each
control volume K ∈ T . For all uh ∈ Hh(Ω) and for all K ∈ T , we denote by uK the constant
value of uh in K. For (uh, vh) ∈ (Hh(Ω))2, we define the following inner product:

〈uh, vh〉Hh = `
∑
K∈T

∑
L∈N(K)

∣∣σK|L∣∣
dK|L

(uL − uK)(vL − vK),

and the norm in Hh(Ω) by

‖uh‖Hh(Ω) = (〈uh, uh〉Hh)1/2.

Finally, we define Lh(Ω) ⊂ L2(Ω) the space of functions which are piecewise constant on each
control volume K ∈ T with the associated norm

(uh, vh)Lh(Ω) =
∑
K∈T

|K|uKvK , ‖uh‖2Lh(Ω) =
∑
K∈T

|K| |uK |2 ,

for (uh, vh) ∈ (Lh(Ω))2. Further, a diamond TK|L is constructed upon the interface σK|L,

having xK , xL for vertices (see Figure 1) and the `-dimensional mesure
∣∣TK|L∣∣ of TK|L equals

to 1
`

∣∣σK|L∣∣ dK|L.



FINITE VOLUME SCHEME FOR COMPRESSIBLE 7

The discrete gradient ∇huh of a constant per control volume function uh is defined as the
constant per diamond TK|L R`-valued function with values

∇huh(x) =

{
`uL−uKdK|L

ηK|L if x ∈ TK|L,
`uσ−uKdK,σ

ηK|σ if x ∈ T ext
K|σ.

And the semi-norm ‖uh‖Hh coincides with the L2(Ω) norm of ∇huh, in fact

‖∇huh‖2L2(Ω) =
∑
K∈T

∑
L∈N(K)

∫
TK|L

|∇huh|2 dx = `2
∑
K∈T

∑
L∈N(K)

∣∣TK|L∣∣ |uL − uK |2|dK|L|2

= `
∑
K∈T

∑
L∈N(K)

∣∣σK|L∣∣
dK|L

|uL − uK |2 := ‖uh‖2Hh(Ω) .

We assimilate a discrete field (~FK|L) on Ω to the piecewise constant vector-function

~Fh =
∑

σK|L∈E

~FK|L11TK|L .

The discrete divergence of the field ~Fh is defined as the discrete function wh = divh ~Fh with
the entires

(3.2) divK ~Fh :=
1

|K|
∑

L∈N(K)

|σK|L|~FK|L · ηK|L.

The problem under consideration is time-dependent, hence we also need to discretize the
time interval (0, T ).

Definition 3. (Time discretization). A time discretization of (0, T ) is given by an integer
value N and by a strictly increasing sequence of real values (tn)n∈[0,N+1] with t0 = 0 and

tN+1 = T . Without restriction, we consider a uniform step time δt = tn+1−tn, for n ∈ [0, N ].

We may then define a discretization of the whole domain Ω× (0, T ) in the following way:

Definition 4. (Discretization of Ω× (0, T )). A finite volume discretization D of Ω × (0, T )
is defined by

D =
(
T , E , (xK)K∈T , N, (t

n)n∈[0,N ]

)
,

where T , E , (xK)K∈T is an admissible mesh of Ω in the sense of Definition 2 and N, (tn)n∈[0,N ]

is a time discretization of (0, T ) in the sense of Definition 3. One then sets

size(D) = max(size(T ), δt).

Definition 5. (Discrete functions and notations). Let D be a discretization of Ω× (0, T ) in
the sense of Definition 4. We denote any function from T × [0, N + 1] to R by using the sub-
script D, (sα,D and pα,D for instance) and we denote its value at the point (xK , t

n) using the
subscript K and the superscript n (snα,K for instance, we then denote sα,D = (snα,K)K∈T ,n∈[0,N+1]).
To any discrete function uD corresponds an approximate function defined almost everywhere
on Ω× (0, T ) by:

uD(t, x) = un+1
K , for a.e. (t, x) ∈ (tn, tn+1)×K,∀K ∈ T ,∀n ∈ [0, N ].
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For any continuous function f : R → R, f(uD) denotes the discrete function (K,n) →
f(un+1

K ). if L ∈ N(K), and uD is a discrete function, we denote by δn+1
K|L(u) = un+1

L − un+1
K .

For example, δn+1
K|L(f(u)) = f(un+1

L )− f(un+1
K ).

Let us recall the following two lemmas :

Lemma 1. (Discrete Poincaré inequality ) [15]. Let Ω be an open bounded polygonal subset
of R`, ` = 2 or 3. Let T be a finite volume discretization of Ω in the sense of Definition 2,
and let u be a function which is constant on each cell K ∈ T , that is, u(x) = uK if x ∈ K,
then

‖u‖L2(Ω) ≤ diam(Ω) ‖u‖Hh(Ω) ,

where ‖·‖Hh(Ω) is the discrete H1
0 norm.

Remark 1. (Dirichlet condition on part of the boundary). The lemma 1 gives a discrete
Poincaré inequality for Dirichlet boundary conditions on the boundary ∂Ω. In the case of
Dirichlet condition on part of the boundary only, it is still possible to prove a discrete Poincaré
inequality provided that the polygonal bounded open set Ω is connected.

Lemma 2. (Discrete integration by parts formula). Let FK/L, K ∈ T and L ∈ N(K) be a
value in R depends on K and L such that FK/L = −FL/K and let ϕ be a function which is
constant on each cell K ∈ T , that is, ϕ(x) = ϕK if x ∈ K, then

(3.3)
∑
K∈T

∑
L∈N(K)

FK/LϕK = −1

2

∑
K∈T

∑
L∈N(K)

FK/L(ϕL − ϕK)

Consequently, if FK/L = aK/L(bL − bK), with aK/L = aL/K , then

(3.4)
∑
K∈T

∑
L∈N(K)

aK/L(bL − bK)ϕK = −1

2

∑
K∈T

∑
L∈N(K)

aK/L(bL − bK)(ϕL − ϕK)

3.2. The coupled finite volume scheme. The finite volume scheme is obtained by writing
the balance equations of the fluxes on each control volume. Let D be a discretization of
Ω × (0, T ) in the sense of Definition 4. Let us integrate equations (2.1) over each control
volume K. By using the Green formula, if Φ is a vector field, the integral of div(Φ) on a
control volume K is equal to the sum of the normal fluxes of Φ on the edges (3.2). Here
we apply this formula to approximate Mα(sα)∇pα · ηK|L, (α = l, g) by means of the values
sα,K , sα,L and pα,K , pα,L that are available in the neighborhood of the interface σK|L. To do

this, let us use some function Gα of (a, b, c) ∈ R3 . The numerical convection flux functions
Gα ∈ C(R3,R), are required to satisfy the properties:

(3.5)



(a) Gα(·, b, c) is non-decreasing for all b, c ∈ R,

and Gα(a, ·, c) is non-increasing for all a, c ∈ R;

(b) Gα(a, a, c) = −Mα(a) c for all a, c ∈ R;

(c) Gα(a, b, c) = −Gα(b, a,−c) and there exists C > 0 such that

|Gα(a, b, c)| ≤ C
(
|a|+ |b|

)
|c| for all a, b, c ∈ R.

Note that the assumptions (a), (b) and (c) are standard and they respectively ensure the
maximum principle on saturation, the consistency of the numerical flux and the conservation
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of the numerical flux on each interface. Practical examples of numerical convective flux
functions can be found in [15].

In our context, we consider an upwind scheme, the numerical flux Gα satisfying (3.5)
defined by

Gα(a, b, c) = −Mα(b) c+ +Mα(a) c−(3.6)

where c+ = max(c, 0) and c− = max(−c, 0). Note that the function sα 7→ Mα(sα) is non-
decreasing, which lead to the monotony property of the function Gα.

The resulting equation is discretized with a implicit Euler scheme in time; the normal
gradients are discretized with a centered finite difference scheme.
Denote by pα,D = (pn+1

α,K )K∈T ,n∈[0,N ] and sα,D = (sn+1
α,K )K∈T ,n∈[0,N ] the discrete unknowns

corresponding to pα and sα. The finite volume scheme is the following set of equations :

(3.7) p0
α,K =

1

|K|

∫
K
p0
α(x)dx, s0

α,K =
1

|K|

∫
K
s0
α(x)dx, for all K ∈ T ,

(3.8) |K|φK
ρl(p

n+1
l,K )sn+1

l,K − ρl(pnl,K)snl,K
δt

+
∑

L∈N(K)

τK|Lρ
n+1
l,K|LGl(s

n+1
l,K , sn+1

l,L ; δn+1
K|L(pl))

+ F n+1
l,K + |K| ρl(pn+1

l,K )sn+1
l,K fn+1

P,K = |K| ρl(pn+1
l,K )(sIl,K)n+1fn+1

I,K ,

(3.9) |K|φK
ρg(p

n+1
g,K )sn+1

g,K − ρg(png,K)sng,K
δt

+
∑

L∈N(K)

τK|Lρ
n+1
g,K|LGg(s

n+1
g,K , s

n+1
g,L ; δn+1

K|L(pg))

+ F n+1
g,K + |K| ρg(pn+1

g,K )sn+1
g,K f

n+1
P,K = |K| ρg(pn+1

g,K )(sIg,K)n+1fn+1
I,K ,

(3.10) pc(s
n+1
g,K ) = pn+1

l,K − pn+1
g,K ,

where Fn+1
α,K (α = l, g) the approximation of

∫
∂K

ρ2
α(pn+1

α )Mα(sn+1
α )g · ηK|L dΓ(x) by an

upwind scheme:

(3.11) Fn+1
α,K =

∑
L∈N(K)

Fn+1
α,K|L =

∑
L∈N(K)

|σK|L|(ρn+1
α,K|L)2

(
Mα(sn+1

α,K )g+
K|L−Mα(sn+1

α,L )g−K|L

)
,

with g+
K|L := (g · ηK|L)+ and g−K|L := (g · ηK|L)−. Notice that the source terms are, for

n ∈ {0, . . . , N − 1}

fn+1
P,K :=

1

δt |K|

∫ tn+1

tn

∫
K
fP (t, x) dxdt, fn+1

I,K :=
1

δt |K|

∫ tn+1

tn

∫
K
fI(t, x) dxdt

The mean value of the density of each phase on interfaces is not classical since it is given
as

(3.12)
1

ρn+1
α,K|L

=


1

pn+1
α,L −p

n+1
α,K

∫ pn+1
α,L

pn+1
α,K

1
ρα(ζ) dζ if pn+1

α,K 6= pn+1
α,L ,

1
ρn+1
α,K

otherwise.
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This choice is crucial to obtain estimates on discrete pressures.
Note that the numerical fluxes to approach the gravity terms Fα are nondecreasing with

respect to sα,K and nonincreasing with respect to sα,L.
The upwind fluxes (3.6) can be rewritten in the equivalent form

(3.13) Gα(sn+1
α,K , s

n+1
α,L ; δn+1

K|L(pα)) = −Mα(sn+1
α,K|L) δn+1

K|L(pα),

where Mα(sn+1
α,K|L) denote the upwind discretization of Mα(sα) on the interface σK|L and

sn+1
α,K|L =

{
sn+1
α,K if (K,L) ∈ En+1

α ,

sn+1
α,L otherwise,

(3.14)

with the set En+1
α is subset of E such that

En+1
α = {(K,L) ∈ E , δn+1

K|L(pα) = pn+1
α,L − pn+1

α,K ≤ 0}.(3.15)

We extend the mobility functions sα 7→Mα(sα) outside [0, 1] by continuous constant functions.
We show below (see Prop. 2) that there exists at least one solution to this scheme. From this
discrete solution, we build an approximation solution pα,D defined almost everywhere on QT
by (see Definition 5):

(3.16) pα,D(t, x) = pn+1
α,K , ∀x ∈ K,∀t ∈ (tn, tn+1).

The main result of this paper is the following theorem.

Theorem 1. Assume hypothesis (H1)-(H6) hold. Let {Dm}m∈N be a sequence of discretiza-
tion of QT in the sense of definition 4 such that limm→+∞ size(Dm) = 0. Let (p0

α, s
0
α) ∈

L2(Ω,R)× L∞(Ω,R). Then there exists an approximate solutions (pα,Dm)m∈N corresponding
to the system (3.8)-(3.9), which converges (up to a subsequence) to a weak solution pα of
(2.1) in the sense of the Definition 1.

4. Preliminary fundamental lemmas

The mobility of each phase vanishes in the region where the phase is missing. Therefore,
if we control the quantities Mα∇pα in the L2-norm, this does not permit the control of the
gradient of pressure of each phase. In the continuous case, we have the following relationship
between the global pressure, capillary pressure and the pressure of each phase

(4.1) M |∇p|2 +
MlMg

M
|∇pc|2 = Ml|∇pl|2 +Mg|∇pg|2.

This relationship, means that, the control of the velocities ensures the control of the global
pressure and the capillary terms B in the whole domain regardless of the presence or the disap-
pearance of the phases. This estimates (of the global pressure and the capillary terms B) has
a major role in the analysis, to treat the degeneracy of the dissipative terms div(ραMα∇pα).

In the discrete case, these relationship, are not obtained in a straightforward way. This
equality is replaced by three discrete inequalities which we state in the following three lemmas.

We derive in the next lemma the preliminary step to proof the estimates of the global
pressure and the capillary terms given in Proposition 1 and Corollary 1. These lemmas are
first used to prove a compactness lemma and then used for the convergence result.
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Lemma 3. (Total mobility and global pressure [16]). Under the assumptions (H1) − (H6)
and the notations (2.5). Let D be a finite volume discretization of Ω× (0, T ) in the sense of
Definition 4. Then for all (K,L) ∈ E and for all n ∈ [0, N ] the following inequalities hold:

Mn+1
l,K|L +Mn+1

g,K|L ≥ m0,(4.2)

and

m0

(
δn+1
K|L(p)

)2
≤Mn+1

l,K|L

(
δn+1
K|L(pl)

)2
+Mn+1

g,K|L

(
δn+1
K|L(pg)

)2
.(4.3)

The proof of this lemma is made by R. Eymard and al. in [16]. The proof of this result can
be applied for compressible flow since the proof use only the definition of the global pressure.

Lemma 4. (Capillary term B). Under the assumptions (H1)−(H6) and the notations (2.5).
Let D be a finite volume discretization of Ω× (0, T ) in the sense of Definition 4. Then there
exists a constant C > 0 such that for all (K,L) ∈ E and n ∈ [0, N ] :

(4.4) (δn+1
K|L(B(sl)))

2 ≤Mn+1
l,K|L

(
δn+1
K|L(pl)

)2
+Mn+1

g,K|L

(
δn+1
K|L(pg)

)2
.

In the incompressible case (see [16]) this kind of estimate is obtained by using the mass
conservation equation and under hypotheses ont the relative permeability of the α phase,
whereas, the compressibility add more difficulties, our approach use only the definition of
the function B and consequently this lemma can be used for compressible and incompressible
degenerate flows.

Proof. We take the same decomposition of the interface as that proposed by R. Eymard and
al. in [16], namely the different possible cases (K,L) ∈ En+1

l ∩ En+1
g , (K,L) /∈ En+1

l ∪ En+1
g ,

(K,L) ∈ En+1
l and (K,L) /∈ En+1

g , and the last case (K,L) /∈ En+1
l and (K,L) ∈ En+1

g ; where

the sets En+1
l and En+1

g are defined in (3.15). We establish for the four cases.
•First case. If (K,L) /∈ El and (K,L) ∈ Eg. We may notice that if the upwind choice is

different for the two equations, we have

Mn+1
α,K|L = max

[sl,K ,sl,L]
Mα.

By definition of B in (2.7), there exists some a ∈ [sl,K , sl,L] such that

δn+1
K|L(B(sl)) = − Ml(a)Mg(a)

Ml(a) +Mg(a)
δn+1
K|L(pc(sl)),

we then get

(δn+1
K|L(B(sl)))

2 ≤Mn+1
l,K|LM

n+1
g,K|L(δn+1

K|L(pc(sl)))
2

≤ C1M
n+1
l,K|LM

n+1
g,K|L

(
(δn+1
K|L(pg))

2 + (δn+1
K|L(pl))

2
)

≤ C2

(
Mn+1
l,K|L(δn+1

K|L(pl))
2 +Mn+1

g,K|L(δn+1
K|L(pg))

2
)
.

•Second case: The case (K,L) ∈ El and (K,L) /∈ Eg is similar.
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•Third case: The case (K,L) ∈ El and (K,L) ∈ Eg. We have

(4.5)

Mn+1
l,K|L(δn+1

K|L(pl))
2 +Mn+1

g,K|L(δn+1
K|L(pg))

2

= Ml(s
n+1
l,K )(δn+1

K|L(pl))
2 +Mg(s

n+1
g,K )(δn+1

K|L(pg))
2

=
(
Ml(s

n+1
l,K ) +Mg(s

n+1
g,K )

)
(δn+1
K|L(p))2

+Mg(s
n+1
g,K )(δn+1

K|L(p̃(sl)))
2 +Ml(s

n+1
l,K )(δn+1

K|L(p̄(sl)))
2

− 2Mg(s
n+1
g,K )δn+1

K|L(p)δn+1
K|L(p̃(sl))− 2Ml(s

n+1
l,K )δn+1

K|L(p)δn+1
K|L(p̄(sl)).

We will distinguish the case sn+1
l,K ≤ sn+1

l,L and the case sn+1
l,K ≥ sn+1

l,L .

(1) If we assume that sn+1
l,K ≤ sn+1

l,L , we deduce that

(a) δn+1
K|L(p̄(sl)) ≤ 0 since p̄(sl) is nonincreasing,

(b) δn+1
K|L(p̃(sl)) ≥ 0 since p̃(sl) is nondecreasing,

(c) δn+1
K|L(p) = δn+1

K|L(pl) + δn+1
K|L(p̄(sl)) ≤ 0.

One then gets from (4.5) that:

Ml(s
n+1
l,K )(δn+1

K|L(pl))
2 +Mg(s

n+1
g,K )(δn+1

K|L(pg))
2

≥
(
Ml(s

n+1
l,K ) +Mg(s

n+1
g,K )

)
(δn+1
K|L(p))2

+Mg(s
n+1
g,K )(δn+1

K|L(p̃(sl))
2) +Ml(s

n+1
l,K )(δn+1

K|L(p̄(sl)))
2

− 2Ml(s
n+1
l,K )δn+1

K|L(p)δn+1
K|L(p̄(sl)).

The previous inequality gives:(
Ml(s

n+1
l,K ) +Mg(s

n+1
g,K )

)
(δn+1
K|L(p))2

+Mg(s
n+1
g,K )(δn+1

K|L(p̃(sl)))
2 +Ml(s

n+1
l,K )(δn+1

K|L(p̄(sl)))
2

≤Mg(s
n+1
g,K )(δn+1

K|L(pg))
2 +Ml(s

n+1
l,K )(δn+1

K|L(pl))
2 + 2Ml(s

n+1
l,K )δn+1

K|L(p)δn+1
K|L(p̄(sl))

≤Ml(s
n+1
l,K )(δn+1

K|L(pl))
2 +Mg(s

n+1
g,K )(δn+1

K|L(pg))
2

+Ml(s
n+1
l,K )(δn+1

K|L(p))2 +Ml(s
n+1
l,K )(δn+1

K|L(p̄(sl)))
2,

which implies the inequality:

(4.6)
Mg(s

n+1
g,K )(δn+1

K|L(p))2 +Mg(s
n+1
g,K )(δn+1

K|L(p̃(sl)))
2

≤Ml(s
n+1
l,K )(δn+1

K|L(pl))
2 +Mg(s

n+1
g,K )(δn+1

K|L(pg))
2.

Or, by definition of B (2.7), there exists some a ∈ [sl,K , sl,L] such that δn+1
K|L(B(sl)) =

Mg(a)δn+1
K|L(p̃(sl)), we get then

(δn+1
K|L(B(sl)))

2 ≤Mg(sg,K)(δn+1
K|L(p̃(sl)))

2

≤Ml(s
n+1
l,K )(δn+1

K|L(pl))
2 +Mg(s

n+1
g,K )(δn+1

K|L(pg))
2.

which is (4) in that case.

(2) If we assume that sn+1
l,L ≤ sn+1

l,K , we get that
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(a) δn+1
K|L(p̄(sl)) ≥ 0 since p̄(sl) is nonincreasing,

(b) δn+1
K|L(p̃(sl)) ≤ 0 since p̃(sl) is nondecreasing,

(c) δn+1
K|L(p) = δn+1

K|L(pg) + δn+1
K|L(p̃(sl)) ≤ 0.

One then gets from (4.5) that:

Ml(s
n+1
l,K )(δn+1

K|L(pl))
2 +Mg(s

n+1
g,K )(δn+1

K|L(pg))
2

≥
(
Mg(s

n+1
g,K ) +Ml(s

n+1
l,K )

)
(δn+1
K|L(p))2

+Mg(s
n+1
g,K )(δn+1

K|L(p̃(sl))
2) +Ml(s

n+1
l,K )(δn+1

K|L(p̄(sl)))
2

− 2Mg(s
n+1
g,K )δn+1

K|L(p)δn+1
K|L(p̃(sl)).

The previous inequality gives:(
Ml(s

n+1
l,K ) +Mg(s

n+1
g,K )

)
(δn+1
K|L(p))2

+Mg(s
n+1
g,K )(δn+1

K|L(p̃(sl))
2) +Ml(s

n+1
l,K )(δn+1

K|L(p̄(sl)))
2

≤Ml(s
n+1
l,K )(δn+1

K|L(pl))
2 +Mg(s

n+1
g,K )(δn+1

K|L(pg))
2 + 2Mg(s

n+1
g,K )δn+1

K|L(p)δn+1
K|L(p̃(sl))

≤Ml(s
n+1
l,K )(δn+1

K|L(pl))
2 +Mg(s

n+1
g,K )(δn+1

K|L(pg))
2

+Mg(s
n+1
g,K )(δn+1

K|L(p))2 +Mg(s
n+1
g,K )(δn+1

K|L(p̃(sl)))
2,

which implies the inequality:

(4.7)
Ml(s

n+1
l,K )(δn+1

K|L(p))2 +Ml(s
n+1
l,K )(δn+1

K|L(p̄(sl)))
2

≤Ml(s
n+1
l,K )(δn+1

K|L(pl))
2 +Mg(s

n+1
g,K )(δn+1

K|L(pg))
2.

Or, by definition of B (2.7) there exists some a ∈ [sl,K , sl,L] such that δn+1
K|L(B(sl)) =

−Ml(a)δn+1
K|L(p̄(sl)), we get then

(δn+1
K|L(B(sl)))

2 ≤Ml(sl,K)(δn+1
K|L(p̄(sl)))

2

≤Ml(s
n+1
l,K )(δn+1

K|L(pl))
2 +Mg(s

n+1
g,K )(δn+1

K|L(pg))
2,

which is (4) in that case.

•Fourth case: The case (K,L) /∈ El and (K,L) /∈ Eg is similar of the third case. �

Lemma 5. (Dissipative terms). Under the assumptions (H1)−(H6) and the notations (2.5).
Let D be a finite volume discretization of Ω× (0, T ) in the sense of Definition 4. Then there
exists a constant C > 0 such that for all (K,L) ∈ E and n ∈ [0, N ]

(4.8) Mn+1
l,K|L(δn+1

K|L(p̄(sl)))
2 ≤Mn+1

l,K|L

(
δn+1
K|L(pl)

)2
+Mn+1

g,K|L

(
δn+1
K|L(pg)

)2
,

and

(4.9) Mn+1
g,K|L(δn+1

K|L(p̃(sl)))
2 ≤Mn+1

l,K|L

(
δn+1
K|L(pl)

)2
+Mn+1

g,K|L

(
δn+1
K|L(pg)

)2
.

Proof. In order to prove (4.8) and (4.9), we consider the exclusive cases (K,L) ∈ En+1
l ∩En+1

g ,

(K,L) /∈ En+1
l ∪ En+1

g , (K,L) /∈ En+1
l and (K,L) ∈ En+1

g and the last case (K,L) ∈ En+1
l and

(K,L) /∈ En+1
g .
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First case. If (K,L) /∈ El and (K,L) ∈ Eg. We have

Mn+1
α,K|L = max

[sl,K ,sl,L]
Mα,

and by definition of p̄ there exists some a ∈ [sl,K , sl,L] such that δn+1
K|L(p̄(sl)) =

Mg(a)
Mg(a)+Ml(a)δ

n+1
K|L(pc(sl)),

we get then

Mn+1
l,K|L(δn+1

K|L(p̄(sl)))
2 ≤Mn+1

l,K|LM
n+1
g,K|L(δn+1

K|L(pc(sl)))
2

≤ C1M
n+1
l,K|LM

n+1
g,K|L

(
(δn+1
K|L(pg))

2 + (δn+1
K|L(pl))

2
)

≤ C2

(
Mn+1
l,K|L(δn+1

K|L(pl))
2 +Mn+1

g,K|L(δn+1
K|L(pg))

2
)
,

which gives (4.8). For the discrete estimate (4.9) and by definition of p̃ there exists some

b ∈ [sl,K , sl,L] such that δn+1
K|L(p̃(sl)) = − Ml(b)

Mg(b)+Ml(b)
δn+1
K|L(pc(sl)), we get then

Mn+1
g,K|L(δn+1

K|L(p̃(sl)))
2 ≤Mn+1

g,K|LM
n+1
l,K|L(δn+1

K|L(pc(sl)))
2

≤ C1M
n+1
g,K|LM

n+1
l,K|L

(
(δn+1
K|L(pg))

2 + (δn+1
K|L(pl))

2
)

≤ C2

(
Mn+1
l,K|L(δn+1

K|L(pl))
2 +Mn+1

g,K|L(δn+1
K|L(pg))

2
)
,

which gives (4.9).
Second case. The case (K,L) ∈ El and (K,L) /∈ Eg is similar.
The third case and the fourth case can be treated as the cases in the lemma 4. �

5. A priori estimates and existence of the approximate solution

We derive new energy estimates on the discrete velocities Mα(sn+1
α,K|L)δn+1

K|L(pα). Never-

theless, these estimates are degenerate in the sense that they do not permit the control of
δn+1
K|L(pα), especially when a phase is missing. So, the global pressure has a major role in the

analysis, we will show that the control of the discrete velocities Mα(sn+1
α,K|L)δn+1

K|L(pα) ensures

the control of the discrete gradient of the global pressure and the discrete gradient of the
capillary term B in the whole domain regardless of the presence or the disappearance of the
phases.

The following section gives us some necessary energy estimates to prove the theorem 1.

5.1. The maximum principle. Let us show in the following Lemma that the phase by
phase upstream choice yields the L∞ stability of the scheme which is a basis to the analysis
that we are going to perform.

Lemma 6. (Maximum principe). Under assumptions (H1)-(H6). Let (s0
α,K)K∈T ∈ [0, 1]

and let D =
(
T , E , (xK)K∈T , N, (t

n)n∈[0,N ]

)
be a discretization of Ω × (0, T ) in the sense of

Definition 4 and assume that (pα,D) is a solution of the finite volume (3.7)-(3.10). Then, the
saturation (snα,K)K∈T ,n∈{0,...,N} remains in [0, 1].

Proof. Let us show by induction in n that for all K ∈ T , snα,K ≥ 0 where α = l, g. For
α = l, the claim is true for n = 0 and for all K ∈ T . We argue by induction that for
all K ∈ T , the claim is true up to order n. We consider the control volume K such that
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sn+1
l,K = min {sn+1

l,L }L∈T and we seek that sn+1
l,K ≥ 0.

For the above mentioned purpose, multiply the equation in (3.8) by −(sn+1
l,K )−, we obtain

(5.1) − |K|φK
ρl(p

n+1
l,K )sn+1

l,K − ρl(pnl,K)snl,K
δt

(sn+1
l,K )−

−
∑

L∈N(K)

τK|Lρ
n+1
l,K|LGl(s

n+1
l,K , sn+1

l,L ; δn+1
K|L(pl))(s

n+1
l,K )− − F (n+1)

l,K (sn+1
l,K )−

− |K| ρl(pn+1
l,K )sn+1

l,K fn+1
P,K (sn+1

l,K )− = − |K| ρl(pn+1
l,K )(sIg,K)n+1fn+1

I,K (sn+1
l,K )− ≤ 0.

The numerical flux Gl is nonincreasing with respect to sn+1
l,L (see (a) in (3.5)), and consistence

(see (c) in (3.5)), we get

Gl(s
n+1
l,K , sn+1

l,L ; δn+1
K|L(pl)) (sn+1

l,K )− ≤ Gl(sn+1
l,K , sn+1

l,K ; δn+1
K|L(pl)) (sn+1

l,K )−

= −δn+1
K|L(pl)Ml(s

n+1
l,K ) (sn+1

l,K )− = 0.(5.2)

Using the identity sn+1
l,K = (sn+1

l,K )+ − (sn+1
l,K )−, and the mobility Ml extended by zero on

]−∞, 0], then Ml(s
n+1
l,K )(sn+1

l,K )− = 0 and

(5.3) − F (n+1)
l,K (sn+1

l,K )− − |K| ρl(pn+1
l,K )sn+1

l,K fn+1
P,K (sn+1

l,K )−

=
∑

L∈N(K)

(ρn+1
l,K|L)2Ml(s

n+1
l,L )gL,K(sn+1

l,K )− + |K| ρl(pn+1
l,K )fn+1

P,K ((sn+1
l,K )−)2 ≥ 0.

Then, we deduce from (5.1) that

ρl(p
n+1
l,K )|(sn+1

l,K )−|2 + ρl(p
n
l,K)snl,K(sn+1

l,K )− ≤ 0,

and from the nonnegativity of snl,K , we obtain (sn+1
l,K )− = 0. This implies that sn+1

l,K ≥ 0 and

0 ≤ sn+1
l,K ≤ sn+1

l,L for all n ∈ [0, N − 1] and L ∈ T .

In the same way, we prove sn+1
g,K ≥ 0. �

5.2. Estimations on the pressures.

Proposition 1. Let pα,D be a solution of (3.7)-(3.10). Then, there exists a constant C > 0,

which only depends on Mα, Ω, T , p0
α, s0

α, sIα, fP , fI and not on D, such that the following
discrete L2(0, T ;H1(Ω)) estimates hold:

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

τK|LMα(sn+1
α,K|L)|pn+1

α,L − pn+1
α,K |2 ≤ C,(5.4)

and

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

τK|L|pn+1
L − pn+1

K |2 ≤ C.(5.5)
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Proof. We define the function Hα(pα) := ρα(pα)gα(pα) − pα, Pc(sl) :=
∫ sl

0 pc(z)dz and

gα(pα) =
∫ pα

0
1

ρα(z)dz. In the following proof, we denote by Ci various real values which

only depend on Mα, Ω, T , p0
α, s0

α, sIα, fP , fI and not on D. To prove the estimate (5.4), we
multiply (3.8) and (3.9) respectively by gl(pl,K), gg(pg,K) and adding them, then summing
the resulting equation over K and n. We thus get:

(5.6) E1 + E2 + E3 + E4 = 0,

where

E1 =
N−1∑
n=0

∑
K∈T

|K|φK
(

(ρl(p
n+1
l,K )sn+1

l,K − ρl(pnl,K)snl,K) gl(p
n+1
l,K )

+ (ρg(p
n+1
g,K )sn+1

g,K − ρg(png,K)sng,K) gg(p
n+1
g,K )

)
,

E2 =
N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

τK|L

(
ρn+1
l,K|LGl(s

n+1
l,K , sn+1

l,L ; δn+1
K|L(pl)) gl(p

n+1
l,K )

+Gg(s
n+1
g,K , s

n+1
g,L ; δn+1

K|L(pg)) gg(p
n+1
g,K )

)
,

E3 =

N−1∑
n=0

δt
∑
K∈T

(
F

(n+1)
l,K|L gl(p

n+1
l,K ) + F

(n+1)
g,K|L gg(p

n+1
g,K )

)
,

E4 =

N−1∑
n=0

δt
∑
K∈T

|K|
(
ρl(p

n+1
l,K )sn+1

l,K fn+1
P,K gl(p

n+1
l,K )− ρl(pn+1

l,K )(sIg,K)n+1fn+1
I,K gl(p

n+1
l,K )

+ ρg(p
n+1
g,K )sn+1

g,K f
n+1
P,K gg(p

n+1
g,K )− ρg(pn+1

g,K )(sIg,K)n+1fn+1
I,K gg(p

n+1
g,K )

)
.

To handle the first term of the equality (5.6). Let us forget the exponent n+ 1 and let note
with the exponent ∗ the physical quantities at time tn. In [22] the authors prove that : for
all sα ≥ 0 and s?α ≥ 0 such that sl + sg = s?l + s?g = 1,

(5.7)
(
ρl(pl)sl − ρl(p?l )s?l

)
gl(pl) +

(
ρg(pg)sg − ρg(p?g)s?g

)
gg(pg)

≥ Hl(pl)sl −Hl(p?l )s?l +Hg(pg)sg −Hg(p?g)s?g − Pc(sl) + Pc(s?l ).
The proof of (5.7) is based on the concavity property of gα and Pc. So, this yields to

(5.8) E1 ≥
∑
K∈T

φK |K|
(
sNl,KH(pNl,K)− s0

l,KH(p0
l,K) + sNg,KH(pNg,K)− s0

g,KH(p0
g,K)

)
−
∑
K∈T

φK |K| Pc(sNl,K) +
∑
K∈T

φK |K| Pc(s0
l,K).

Using the fact that the numerical fluxes Gl and Gg are conservative in the sense of (c) in
(3.5), we obtain by discrete integration by parts (see Lemma 2)

E2 =
1

2

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

τK|L

(
ρn+1
l,K|LGl(s

n+1
l,K , sn+1

l,L ; δn+1
K|L(pl))(gl(p

n+1
l,K )− gl(pn+1

l,L ))

+ ρn+1
g,K|LGg(s

n+1
g,K , s

n+1
g,L ; δn+1

K|L(pg))(gg(p
n+1
g,K )− gg(pn+1

g,L ))
)
,
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and due to the correct choice of the density of the phase α on each interface,

ρn+1
α,K|L(gα(pn+1

α,K )− gα(pn+1
α,L )) = pn+1

α,K − pn+1
α,L ,(5.9)

we obtain

E2 =
1

2

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

τK|L

(
Gl(s

n+1
l,K , sn+1

l,L ; δn+1
K|L(pl))(p

n+1
l,K − pn+1

l,L )

+Gg(s
n+1
g,K , s

n+1
g,L ; δn+1

K|L(pg))(p
n+1
g,K − pn+1

g,L )
)
.

The definition of the upwind fluxes in (3.13) implies

Gl(s
n+1
l,K , sn+1

l,L ; δn+1
K|L(pl))(p

n+1
l,K − pn+1

l,L ) +Gg(s
n+1
g,K , s

n+1
g,L ; δn+1

K|L(pg))(p
n+1
g,K − pn+1

g,L )

= Ml(s
n+1
l,K|L)(δn+1

K|L(pl))
2 +Mg(s

n+1
g,K|L)(δn+1

K|L(pg))
2.

Then, we obtain the following equality

E2 =
1

2

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

τK|L

(
Ml(s

n+1
l,K|L)(δn+1

K|L(pl))
2 +Mg(s

n+1
g,K|L)(δn+1

K|L(pg)
2
)
.(5.10)

To handle the other terms of the equality (5.6), firstly let us remark that the numerical fluxes
of gravity term are conservative which satisfy Fn+1

l,K|L = −Fn+1
l,L,K and Fn+1

g,K|L = −Fn+1
g,L,K , so we

integrate by parts and we obtain

E3 =
1

2

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

|σK|L|
(
F

(n+1)
l,K|L (gl(p

n+1
l,K )−gl(pn+1

l,L ))+F
(n+1)
g,K|L (gg(p

n+1
g,K )−gg(pn+1

g,L ))
)
.

According to the choice of the density of the phase α on each interface (5.9) and the definition
(3.11) we obtain

E3 =− 1

2

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

∣∣σK|L∣∣ ρn+1
l,K|L[Ml(s

n+1
l,K )g+

K|L −Ml(s
n+1
l,L )g−K|L](δn+1

K|L(pl))

− 1

2

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

∣∣σK|L∣∣ ρn+1
g,K|L[Mg(s

n+1
g,K )g+

K|L −Mg(s
n+1
g,L )g−K|L](δn+1

K|L(pg)).

Recall the truncations of δn+1
K|L(pα)

(δn+1
K|L(pα))+ = max{δn+1

K|L(pα), 0}, (δn+1
K|L(pα))− = max{−δn+1

K|L(pα), 0},

with δn+1
K|L(pα) = (δn+1

K|L(pα))+ − (δn+1
K|L(pα))−. So we obtain

E3 ≤
1

2

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

∣∣σK|L∣∣ ρn+1
l,K|LMl(s

n+1
l,K )g+

K|L(δn+1
K|L(pl))

−

+
1

2

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

∣∣σK|L∣∣ ρn+1
l,K|LMl(s

n+1
l,L )g−K|L(δn+1

K|L(pl))
+
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+
1

2

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

∣∣σK|L∣∣ ρn+1
g,K|LMg(s

n+1
g,K )g+

K|L(δn+1
K|L(pg))

−

+
1

2

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

∣∣σK|L∣∣ ρn+1
g,K|LMg(s

n+1
g,L )g−K|L(δn+1

K|L(pg))
+.

From the following equality
∣∣σK|L∣∣ = (dK|L|σK|L|)

1
2 τ

1
2

K|L and apply the Cauchy-Schwarz in-

equality to obtain

E3 ≤2C
N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

dK|L|σK|L|

+
1

4

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

τK|L

(
Ml(s

n+1
l,L ) ((δn+1

K|L(pl))
+)2 +Ml(s

n+1
l,K ) ((δn+1

K|L(pl))
−)2

+Mg(s
n+1
g,L ) ((δn+1

K|L(pg))
+)2 +Mg(s

n+1
g,K ) ((δn+1

K|L(pg))
−)2
)

≤ 2CT |Ω|

+
1

4

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

τK|L

(
Ml(s

n+1
l,L ) ((δn+1

K|L(pl))
+)2 +Mg(s

n+1
l,K ) ((δn+1

K|L(pl))
−)2

+Mg(s
n+1
g,L ) ((δn+1

K|L(pg))
+)2 +Mg(s

n+1
g,K ) ((δn+1

K|L(pg))
−)2
)
.

From the definition of the truncations of δn+1
K|L(pα), we obtain

(5.11) E3 ≤ 2CT |Ω|+ 1

4

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

τK|L

(
Ml(s

n+1
l,K|L)(δn+1

K|L(pl))
2

+Mg(s
n+1
g,K|L)(δn+1

K|L(pg))
2
)
.

The last term will be absorbed by the terms on pressures from the estimate (5.10).
In order to estimate E4, using the fact that the densities are bounded and the map gα is
sublinear (a.e.|g(pα)| ≤ C|pα|), we have

|E4| ≤ C1

N−1∑
n=0

δt
∑
K∈T

|K| (fn+1
P,K + fn+1

I,K )(|pn+1
l,K |+ |pn+1

g,K |),

then

|E4| ≤ C1

N−1∑
n=0

δt
∑
K∈T

|K| (fn+1
P,K + fn+1

I,K )(2|pn+1
K |+ |p̄n+1

K |+ |p̃n+1
K |).

Hence, by the Hölder inequality, we get that

|E4| ≤ C2 ‖fP + fI‖L2(QT )

(N−1∑
n=0

δt
∥∥pn+1

h

∥∥2

L2(Ω)

) 1
2 ,
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and, from the discrete Poincaré inequality lemma 1, we get

(5.12) |E4| ≤ C3

(N−1∑
n=0

δt
∥∥pn+1

h

∥∥2

Hh

) 1
2 + C4.

The equality (5.6) with the inequalities (5.8), (5.10), (5.11), (5.12) give (5.4). Then we deduce
(5.5) from (4.3). �

We now state the following corollary, which is essential for the compactness and limit study.

Corollary 1. From the previous Proposition, we deduce the following estimations:

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

τK|L(δn+1
K|L(B(sl)))

2 ≤ C,(5.13)

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

τK|LM
n+1
l,K|L(δn+1

K|L(p̄(sl)))
2 ≤ C,(5.14)

and
N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

τK|LM
n+1
g,K|L(δn+1

K|L(p̃(sl)))
2 ≤ C.(5.15)

Proof. The prove of the estimates (5.13), (5.14) and (5.15) are a direct consequence of the
inequality (4), (4.8), (4.9) and the Proposition 1. �

6. Existence of the finite volume scheme

We start with a technical assertion to characterize the zeros of a vector field which stated
and proved in [14].

Lemma 7. ([14], p. 529) Assume the continuous function v : Rn → Rn satisfies

v(z) · z ≥ 0 if ‖z‖ = r,

for some r > 0. Then there exists a point z with ‖z‖ ≤ r such that

v(z) = 0.

Proposition 2. The problem (3.8)-(3.9) admits at least one solution (pnl,K , p
n
g,K)(K,n)∈D.

Proof. At the beginning of the proof, we set the following notations;

M := Card(T ),

pl,M := {pn+1
l,K }K∈T ∈ RM,

pg,M := {pn+1
g,K }K∈T ∈ RM.

We define the map Th : RM × RM −→ RM × RM,

Th(pl,M, pg,M) = ({Tl,K}K∈T , {Tg,K}K∈T ) where,

Tl,K = |K|φK
ρl(p

n+1
l,K )sn+1

l,K − ρl(pnl,K)snl,K
δt

+
∑

L∈N(K)

τK|Lρ
n+1
l,K|LGl(s

n+1
l,K , sn+1

l,L ; δn+1
K|L(pl))



20 B. SAAD AND M. SAAD

+ F n+1
l,K + |K| ρl(pn+1

l,K )
(
sn+1
l,K fn+1

P,K − (sIl,K)n+1fn+1
I,K

)
,

(6.1)

Tg,K = |K|φK
ρg(p

n+1
g,K )sn+1

g,K − ρg(png,K)sng,K
δt

+
∑

L∈N(K)

τK|Lρ
n+1
g,K|LGg(s

n+1
g,K , s

n+1
g,L ; δn+1

K|L(pg))

+ F n+1
g,K + |K| ρg(pn+1

g,K )
(
sn+1
g,K f

n+1
P,K − (sIg,K)n+1fn+1

I,K

)
.

(6.2)

Note that Th is well defined as a continuous function. Also we define the following homeo-
morphism F : RM × RM 7→ RM × RM such that,

F(pl,M, pg,M) = (vl,M, vg,M)

where vα,M = {gα(pn+1
α,K )}K∈T .

Now let us consider the following continuous mapping Ph defined as

Ph(vl,M, vg,M) = Th ◦ F−1(vl,M, vg,M) = Th(pl,M, pg,M).

According to Lemma 7, our goal now is to show that

Ph(vl,M, vg,M) · (vl,M, vg,M) > 0, for ‖(vl,M, vg,M)‖R2M = r > 0,(6.3)

and for a sufficiently large r.
We observe that

Ph(vl,M, vg,M) · (vl,M, vg,M) ≥ 1

δt

∑
K∈T

φK |K|
(
sn+1
l,K H(pn+1

l,K )− snl,KH(pnl,K)

+ sn+1
g,KH(pn+1

g,K )− sng,KH(png,K)
)

− 1

δt
Pc(sn+1

l,K ) +
1

δt
Pc(snl,K) + C

∥∥pn+1
h

∥∥2

Hh(Ω)
− C,

for some constants C > 0. This implies that

Ph(vl,M, vg,M) · (vl,M, vg,M) ≥− 1

δt

∑
K∈T

φK |K|
(
snl,KH(pnl,K) + sng,KH(png,K)

)
− 1

δt
Pc(sn+1

l,K ) + C
∥∥pn+1

h

∥∥2

Hh(Ω)
− C ′,

(6.4)

for some constants C,C ′ > 0. Finally using the fact that gα is a Lipschitz function, then
there exists a constant C > 0 such that∥∥∥({gl(pn+1

l,K )}K∈T , {gg(pn+1
g,K ))}K∈T )

∥∥∥
R2M

≤ C
(∥∥∥pn+1

l,h

∥∥∥
L2(Ω)

+
∥∥∥pn+1

g,h

∥∥∥
L2(Ω)

)
≤ 2C

(∥∥pn+1
h

∥∥
L2(Ω)

+
∥∥p̄n+1

h

∥∥
L2(Ω)

+
∥∥p̃n+1

h

∥∥
L2(Ω)

)
≤ 2C

( ∥∥pn+1
h

∥∥
Hh(Ω)

+ C1

)
.

Using this to deduce from (6.4) that (6.3) holds for r large enough. Hence, we obtain the
existence of at least one solution to the scheme (3.8)-(3.9). �
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7. Compactness properties

In this section we derive estimates on differences of space and time translates of the func-
tion φDρα(pα,D)sα,D which imply that the sequence φDρα(pα,D)sα,D is relatively compact in
L1(QT ).

We replace the study of discrete functions Uα,D = φDρα(pα,D)sα,D (constant per cylinder
QnK := (tn, tn+1)×K) by the study of functions Ūα,D = φDρα(p̄α,D)s̄α,D piecewise continuous
in t for all x, constant in x for all volume K, defined as

Ūα,D(t, x) =

N−1∑
n=0

∑
K∈T

1

δt

(
(t− nδt)Un+1

α,K + ((n+ 1)δt− t)Unα,K
)

11QnK (t, x).

One may deduce from the estimates (5.5) and (5.13) the following property.

Lemma 8.
(
Space translate of Ūα,D

)
. Under the assumptions (H1) − (H6) . Let D be a

finite volume discretization of Ω×(0, T ) in the sense of Definition 4 and let pα,D be a solution
of (3.7)-(3.10). Then, the following inequality hold:

(7.1)

∫
Ω
′×(0,T )

∣∣Ūα,D(t, x+ y)− Ūα,D(t, x)
∣∣dxdt ≤ ω(|y|),

for all y ∈ R` with Ω′ = {x ∈ Ω, [x, x+ y] ⊂ Ω} and ω(|y|)→ 0 when |y| → 0.

Proof. For α = l and from the definition of Ul,D, one gets∫
(0,T )×Ω′

|Ul,D(t, x+ y)− Ul,D(t, x)| dxdt

=

∫
(0,T )×Ω′

∣∣∣(ρl(pl,D)sl,D

)
(t, x+ y)−

(
ρl(pl,D)sl,D

)
(t, x)

∣∣∣dxdt

≤
∫

(0,T )×Ω′

∣∣∣sl,D(t, x+ y)
(
ρl(pl,D(t, x+ y))− ρl(pl,D(t, x))

)∣∣∣ dxdt

+

∫
(0,T )×Ω′

∣∣∣ρl(pl,D)(t, x)
(
sl,D(t, x+ y)− sl,D(t, x)

)∣∣∣dxdt

≤ E1 + E2

where E1 and E2 defined as follows

(7.2) E1 = ρM

∫
(0,T )×Ω′

|sl,D(t, x+ y)− sl,D(t, x)| dxdt,

(7.3) E2 =

∫
(0,T )×Ω′

|ρl(pl,D(t, x+ y))− ρl(pl,D(t, x))|dxdt.

To handle with the space translation on saturation, we use the fact that B−1 is an hölder
function, then

E1 ≤ ρMC
∫

(0,T )×Ω
′
|B(sl,D(t, x+ y))− B(sl,D(t, x))|θ dxdt

and by application of the Cauchy-Schwarz inequality, we deduce

E1 ≤ C
(∫

(0,T )×Ω′
|B(sl,D(t, x+ y))− B(sl,D(t, x))|dxdt

)θ
.
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According to [15]), let y ∈ R`, x ∈ Ω′, and L ∈ N(K). We set

βσK|L =

{
1, if the line segment [x, x+ y] intersects σK|L, K and L,

0, otherwise.

We observe that (see for more details [15])∫
Ω′
βσK|L(x) dx ≤ |σK|L| |y| .(7.4)

To simplify the notation, we write
∑
σK|L

instead of
∑

{(K,L)∈T 2,K 6=L, |σK|L| 6=0}
.

Now, denote that

E1 ≤C
(N−1∑
n=0

δt
∑
σK,L

∣∣∣B(sl,L)− B(sl,K)
∣∣∣ ∫

Ω′
βσK|L(x)dx

)θ
≤ C

(
|y|

N−1∑
n=0

δt
∑
σK,L

∣∣σK|L∣∣ ∣∣∣B(sl,L)− B(sl,K)
∣∣∣)θ.

Let us again write |σK,L| = (dK,L|σK,L|)
1
2 τ

1
2

K|L, applying again the Cauchy-Schwarz inequality

and using the fact that the discrete gradient of the function B is bounded (5.13) to obtain

(7.5) E1 ≤ C |y|θ .

To treat the space translate of E2, we use the fact that the map ρ′l is bounded and the
relationship between the gas pressure and the global pressure, namely : pl = p− p̄ defined in
(2.5), then we have

E2 ≤ max
R
|ρ′l|
∫

(0,T )×Ω′
|pl,D(t, x+ y)− pl,D(t, x)| dxdt

≤ max
R
|ρ′l|
∫

(0,T )×Ω′
|pD(t, x+ y)− pD(t, x)| dxdt

+ max
R
|ρ′l|
∫

(0,T )×Ω′
|p̄(sl,D(t, x+ y))− p̄(sl,D(t, x))| dxdt,

(7.6)

furthermore one can easily show that p̄ is a C1([0, 1];R), it follows, there exists a positive
constant C > 0 such that

E2 ≤ C
∫

(0,T )×Ω′
|pD(t, x+ y)− pD(t, x)|dxdt

+ C

∫
(0,T )×Ω′

|sl,D(t, x+ y)− sl,D(t, x)|dxdt.
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The last term in the previous inequality is proportional to E1, and consequently it remains
to show that the space translate on the global pressure is small with y. In fact∫

(0,T )×Ω′
|pD(t, x+ y)− pD(t, x)|dxdt ≤

N−1∑
n=0

δt
∑
σK,L

|pn+1
L − pn+1

K |
∫

Ω′
βσK|L(x)dx

≤ |y|
N−1∑
n=0

δt
∑
σK,L

∣∣σK|L∣∣ |pn+1
L − pn+1

K |.

Finally, using the fact that the discrete gradient of global pressure is bounded (5.5), we deduce
that ∫

(0,T )×Ω′
|Ul,D(t, x+ y)− Ul,D(t, x)| dx ≤ C(|y|+ |y|θ),(7.7)

for some constant C > 0.
In addition, we have∫ +∞

0

∫
Ω′
|Ūl,D(t, x+ dx)− Ūl,D(t, x)|dxdt ≤2

∫ T

0

∫
Ω′
|Ul,D(t, x+ dx)− Ul,D(t, x)|dxdt

+2δt

∫
Ω
′
δ

|U0
l,D(x)|dx

where U0
l = ρl(p

0
l )s

0
l and Ω

′
δ = {x ∈ Ω, dist(x,Ω

′
) < |δ|}. By (7.7), the assumption δt→ 0 as

size(D) → 0 and the boundedness of (U0
l,h)h in L1(Ω

′
δ), then the space translates of Ūl,D on

Ω
′

are estimated uniformly for all sequence size(Dm)m tend to zero.
In the same way, we prove the space translate for α = g. �

We state the following lemma on time translate of Ūα,D.

Lemma 9.
(
Time translate of Ūα,D

)
. Under the assumptions (H1)−(H6) . Let D be a finite

volume discretization of Ω × (0, T ) in the sense of Definition 4 and let pα,D be a solution of
(3.7)-(3.10). Then, there exists a positive constant C > 0 depending on Ω, T such that the
following inequality hold:

(7.8)

∫
Ω×(0,T−τ)

∣∣Ūα,D(t+ τ, x)− Ūα,D(t, x)
∣∣2 dx dt ≤ ω̃(τ),

for all τ ∈ (0, T ). Here ω̃ : R+ → R+ is a modulus of continuity, i.e. limτ→0 ω̃(τ) = 0.

We state without proof the following lemma on time translate of Ūα,D. Following the
lemma ??, the proof is a direct consequence of the estimations (5.5) and (5.13), then we omit
it.

8. Study of the limit

Proposition 3. Let (Dm)m be a sequence of finite volume discretizations of Ω × (0, T )
such that limm→+∞ size(Dm) = 0. Then there exists subsequences, still denoted (sα,Dm)m∈N,
(pα,Dm)m∈N verify the following convergences

‖Uα,Dm − Ūα,Dm‖L1(Ω′) −→ 0,(8.1)

Uα,Dm −→ Uα strongly in Lp(QT ) and a.e. in QT for all p ≥ 1,(8.2)



24 B. SAAD AND M. SAAD

∇DmB(sl,Dm)−→∇B(sl) weakly in (L2(QT ))`,(8.3)

∇DmpDm−→∇p weakly in (L2(QT ))`,(8.4)

sα,Dm −→ sα almost everywhere in QT ,(8.5)

pα,Dm−→pα almost everywhere in QT .(8.6)

Furthermore,

0 ≤ sα ≤ 1 a.e. in QT ,(8.7)

Uα = φρα(pα)sα a.e. in QT .(8.8)

Proof. For the first convergence (8.1) it is useful to introduce the following inequality, for all
a, b ∈ R, ∫ 1

0
|θa+ (1− θ)b| dθ ≥ 1

2
(|a|+ |b|).

Applying this inequality to a = Un+1
α,Dm − Unα,Dm , b = Unα,Dm − U

n−1
α,Dm , from the definition of

Ūα,Dm we deduce∫ T

0

∫
Ω′
|Uα,Dm(t, x)− Ūα,Dm(t, x)|dxdt ≤ 2

∫ T+δt

0

∫
Ω′
|Ūα,Dm(t+δt, x)− Ūα,Dm(t, x)|dxdt.

Since δt tends to zero as size(Dm)→ 0, estimate (7.8) in Lemma 9 implies that the right-hand
side of the above inequality converges to zero as size(Dm) tends to zero, and this established
(8.1).
By the Riesz-Frechet-Kolmogorov compactness criterion, the relative compactness of (Ūα,Dm)m∈N
in L1(QT ) is a consequence of the Lemmas 8 and 9. Now, the convergence (8.2) in L1(QT )
and a.e in QT becomes a consequence of (8.1). Due to the fact that Uα,Dm is bounded, we
establish the convergence in L1(QT ). This ensures the following strong convergences

ρα(pα,Dm)sα,Dm −→ lα in L1(QT ) and a.e. in QT .

Denote by uα = ρα(pα)sα. Define the map H : R+ × R+ 7→ R+ × [0,B(1)] defined by

(8.9) H(ul, ug) = (p,B(sl))

where uα are solutions of the system

ul(p,B(sl)) = ρl(p− p̄(B−1(B(sl))))B−1(B(sl))

ug(p,B(sl)) = ρg(p− p̃(B−1(B(sl))))(1− B−1(B(sl)).

Note that H is well defined as a diffeomorphism, since

∂ul
∂p

= ρ′1(p− p̄(B−1(B(s1))))B−1(B(s1)) ≥ 0

∂ul
∂B = ρ′1(p− p̄(B−1(B(s1))))[−p̄′(B−1(B(s1)))(B−1′(B(s1)))]B−1(B(s1))

+ ρ1(p− p̄(B−1(B(s1))))B−1′(B(s1)) ≥ 0

∂ug
∂p

= −ρ′2(p− p̃(B−1(B(s1))))(1− B−1(B(s1))) ≥ 0

∂ug
∂B = ρ′2(p− p̃(B−1(B(s1))))[−p̃′(B−1(B(s1)))(B−1′(B(s1)))][1− B−1(B(s1))]

− ρ2(p− p̃(B−1(B(s1))))B−1′(B(s1)) ≤ 0,
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and if one of the saturations is zero the other one is one, this conserves that the jacobian
determinant of the map H−1 is strictly negative.

As the map H defined in (8.9) is continuous, we deduce

pDm −→ p a.e. in QT ,

B(sl,Dm) −→ B∗ a.e. in QT .

Then, as B−1 is continuous, we deduce

sl,Dm −→ sl = B−1(B∗) a.e. in QT ,

and the convergences (8.5) hold.
Consequently and due to the relationship between the pressure of each phase and the global

pressure defined in (2.5), then the convergences (8.6) hold

pα,Dm −→ pα a.e. in QT .

It follows from Proposition 1 that, the sequence (∇DmpDm)m∈N is bounded in (L2(QT ))`,
and as a consequence of the discrete Poincaré inequality, the sequence (pDm)m∈N is bounded
in L2(QT ). Therefore there exist two functions p ∈ L2(QT ) and ψ ∈ (L2(QT ))` such that
(8.4) holds and

∇DmpDm −→ ψ weakly in (L2(QT ))`.

It remains to identify ∇p by ψ in the sense of distributions. For that, it is enough to show as
m→ +∞:

Em :=

∫ ∫
QT

∇DmpDm · ϕdxdt+

∫ ∫
QT

pDmdivϕdxdt −→ 0, ∀ϕ ∈ D(QT ).

Let Dm be small enough such that ϕ vanishes in T ext
K,σ for all K ∈ T , then∫

Ω
pDmdivϕ(t, x) dx =

∑
K∈T

∫
K
pDmdivϕ(t, x) dx

=
∑
K∈T

∑
L∈N(K)

pnK

∫
σK|L

ϕ(t, x) · ηK|L dΓ =
1

2

∑
K∈T

∑
L∈N(K)

(pnK − pnL)

∫
σK|L

ϕ(t, x) · ηK|L dΓ.

Now, from the definition of the discrete gradient,∫
Ω
∇DmpDmϕ(t, x) dx =

1

2

∑
K∈T

∑
L∈N(K)

∫
TK|L

∇DmpDmϕ(t, x) dx

=
1

2

∑
K∈T

∑
L∈N(K)

`

dK|L
(pnL − pnK)

∫
TK|L

ϕ(t, x) · ηK|L dx

Then,

Em =
1

2

∑
K∈T

∑
L∈N(K)

σK|L(pnL − pnK)
( 1

|σK|L|

∫
σK|L

ϕ(t, x) · ηK|LdΓ− 1

|TK|L|

∫
TK|L

ϕ(t, x) · ηK|L dx
)
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Due to the smoothness of ϕ, one gets∣∣∣ 1

|σK|L|

∫
σK|L

ϕ(t, x) · ηK|LdΓ− 1∣∣TK|L∣∣
∫
TK|L

ϕ(t, x) · ηK|L dx
∣∣∣ ≤ C h,

and the Cauchy-Scharwz inequality with the estimate (5.4) in Proposition 1 yield

|Em| ≤ Ch
N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

|σK|L||pnL − pnK | ≤ Ch
N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

|σK|L|dK|L ≤ Ch|Ω|T.

The identification of the limit in (8.8) follows from the previous convergence. �

8.1. Proof of theorem 1. Let T be a fixed positive constant and ϕ ∈ D([0, T ) × Ω). Set
ϕnK := ϕ(tn, xK) for all K ∈ T and n ∈ [0, N ].

For the discrete liquid equation, we multiply the equation (3.8) by δtϕn+1
K and sum over

K ∈ T and n ∈ {0, ..., N}. This yields

Sm1 + Sm2 + Sm3 + Sm4 = 0,

where

Sm1 =
N−1∑
n=0

∑
K∈T

|K|φK
(
ρl(p

n+1
l,K )sn+1

l,K − ρl(pnl,K)snl,K

)
ϕn+1
K ,

Sm2 =
N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

τK|Lρ
n+1
l,K|LGl(s

n+1
l,K , sn+1

l,L ; δn+1
K|L(pl))ϕ

n+1
K ,

Sm3 =
N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

|σK|L|
(

(ρn+1
l,K|L)2Ml(s

n+1
l,K )(gK|L)+ − (ρn+1

l,K|L)2Ml(s
n+1
l,L )(gK|L)−

)
ϕn+1
K ,

Sm4 =
N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

|K|
(
ρl(p

n+1
l,K )sn+1

l,K fn+1
P,K ϕ

n+1
K − ρl(pn+1

l,K )(sIl,K)n+1fn+1
I,K ϕn+1

K

)
.

Making summation by parts in time and keeping in mind that ϕ(T, xK) = ϕN+1
K = 0. For all

K ∈ T , we get

Sm1 =−
N−1∑
n=0

∑
K∈T

|K|φKρl(pn+1
l,K )sn+1

l,K

(
ϕn+1
K − ϕnK

)
−
∑
K∈Th

|K|φKρl(p0
l,K)s0

l,Kϕ
0
K

=−
N−1∑
n=0

∑
K∈T

∫ tn+1

tn

∫
K
φKρl(p

n+1
l,K )sn+1

l,K ∂tϕ(t, xK)dxdt−
∑
K∈Th

∫
K
φKρl(p

0
l,K)s0

l,Kϕ(0, xK)dx.

Since φDmρl(pl,Dm)sl,Dm and φDmρl(p
0
l,Dm)s0

l,Dm converge almost everywhere respectively to

φρl(pl)sl and φρl(p
0
l )s

0
l , and as a consequence of Lebesgue dominated convergence theorem,

we get

lim
m→+∞

Sm1 =

∫
QT

φρl(pl)sl∂tϕ(t, x)dxdt−
∫

Ω
φρl(p

0
l )s

0
l ϕ(0, x)dx.

Now, let us focus on convergence of the degenerate diffusive term to show

lim
m→+∞

Sm2 = −
∫
QT

ρl(pl)Ml(sl)∇pl · ∇ϕdxdt.(8.10)
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Since the discrete gradient of each phase is not bounded, it is not possible to justify the pass
to the limit in a straightforward way. To do this, we use the feature of global pressure and
the auxiliary pressures defined in (2.5) and the discrete energy estimates in proposition 1 and
corollary 1.

Gathering by edges, the term Sm2 can be rewritten as:

Sm2 =− 1

2

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

τK|Lρ
n+1
l,K|LGl(s

n+1
l,K , sn+1

l,L ; δn+1
K|L(pl))

(
ϕ(tn+1, xL)− ϕ(tn+1, xK)

)
=

1

2

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

τK|Lρ
n+1
l,K|LMl(s

n+1
l,K|L)δn+1

K|L(pl)
(
ϕ(tn+1, xL)− ϕ(tn+1, xK)

)
= Am1 +Am2 ,

with, by using the definition (2.5),

Am1 =
1

2

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

τK|Lρ
n+1
l,K|LMl(s

n+1
l,K|L)δn+1

K|L(p)
(
ϕ(tn+1, xL)− ϕ(tn+1, xK)

)
,

Am2 = −1

2

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

τK|Lρ
n+1
l,K|LMl(s

n+1
l,K|L)δn+1

K|L(p̄(sl))
(
ϕ(tn+1, xL)− ϕ(tn+1, xK)

)
.

Let us show that

lim
m→+∞

Am1 =

∫
QT

ρl(pl)Ml(sl)∇p · ∇ϕdxdt.(8.11)

For each couple of neighbours K and L we denote sn+1
l,min the minimum of sn+1

l,K and sn+1
l,L and

we introduce

Am,∗1 =
1

2

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

τK|Lρ
n+1
l,K|LMl(s

n+1
l,min)δn+1

K|L(p)
(
ϕ(tn+1, xL)− ϕ(tn+1, xK)

)
Remark that

Am,∗1 =
1

2

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

`|TK|L|ρn+1
l,K|LMl(s

n+1
l,min)

pL − pK
dK|L

ϕ(tn+1, xL)− ϕ(tn+1, xK)

dK|L

=
1

2

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

|TK|L|ρn+1
l,K|LMl(s

n+1
l,min)∇K|LpDm · ηK|L∇ϕ(tn+1, xK|L) · ηK|L,

where xK|L = θxK + (1− θ)xL, 0 < θ < 1, is some point on the segment ]xK , xL[. Recall that
the value of ∇K|L is directed by ηK|L, so

∇K|LpDm · ηK|L∇ϕ(tn+1, xK|L) · ηK|L = ∇K|LpDm · ∇ϕ(tn+1, xK|L)

Define sα,Dm and sα,Dm by

sα,Dm |(tn,tn+1]×TK|L := max{sα,K , sα,L}, sα,Dm |(tn,tn+1]×TK|L := min{sα,K , sα,L}
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Now, Am,∗1 can be written under the following continues form

Am,∗1 =

∫ T

0

∫
Ω
ρl(pl,Dm)Ml(sl,Dm)∇DmpDm · (∇ϕ)Dmdxdt.

By the monotonicity of B and thanks to the estimate (5.13), we have∫ T

0

∫
Ω

∣∣B(sl,Dm)− B(sl,Dm)
∣∣2 dxdt ≤

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

|TK|L|
(
B(sn+1

l,L )− B(sn+1
l,K )

)2

≤ Csize(T )2
N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

∣∣σK|L∣∣
dK|L

∣∣∣B(sn+1
l,L )− B(sn+1

l,K )
∣∣∣2

≤ Csize(T )2.

Since B−1 is continuous, we deduce up to a subsequence∣∣sα,Dm − sα,Dm∣∣→ 0 a.e. on QT .(8.12)

Moreover, we have sα,Dm ≤ sα,Dm ≤ sα,Dm and sα,Dm → sα a.e. on QT . Consequently, and
due to the continuity of the mobility function Ml we have Ml(sl,Dm)→Ml(sl) a.e on QT and
in Lp(QT ) for p < +∞.

As consequence of the convergence (8.6) and by the Lebesgue dominated convergence the-
orem we get

ρl(pl,Dm)Ml(sl,Dm)(∇ϕ)Dm → ρl(pl)Ml(sl)∇ϕ strongly in (L2(QT ))`.

And as consequence of the weak convergence on global pressure (8.4), we obtain that

lim
m→+∞

Am,∗1 =

∫
QT

ρl(pl)Ml(sl)∇p · ∇ϕdxdt.

It remains to show that

(8.13) lim
m→+∞

∣∣Am1 −Am,∗1

∣∣ = 0.

Remark that∣∣∣Ml(s
n+1
l,K|L)δn+1

K|L(p)−Ml(s
n+1
l,min)δn+1

K|L(p)
∣∣∣ ≤ C ∣∣∣sn+1

l,L − sn+1
l,K

∣∣∣ ∣∣∣δn+1
K|L(p)

∣∣∣ .
Consequently ∣∣Am1 −Am,∗1

∣∣ ≤ C ∫
QT

∣∣∣sn+1
l,L − sn+1

l,K

∣∣∣∇DmpDm · (∇ϕ)Dmdxdt.

Applying the Cauchy-Schwarz inequality, and thanks to the uniform bound on ∇DmpDm and
the convergence (8.12), we establish (8.13).

To prove the pass to limit of Am2 , we need to prove firstly that

‖δn+1
K|L(Γ(sl))−

√
Ml(s

n+1
l,K|L)δn+1

K|L(p̄(sl))‖L2(QT ) → 0 as size(T )→ 0,

where Γ(sl) =
∫ sl

0

√
Ml(z)

dp̄
dsl

(z)dz.

In fact. Remark that there exist a ∈ [sl,K , sl,L] such as:

|δn+1
K|L(Γ(sl))−

√
Ml(s

n+1
l,K,L)δn+1

K|L(p̄(sl))| = |
√
Ml(a)−

√
Ml(s

n+1
l,K,L)||δn+1

K|L(p̄(sl))|
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≤ C|δn+1
K|L(p̄(sl))| ≤ C

∣∣∣sn+1
l,L − sn+1

l,K

∣∣∣
≤ C

∣∣∣B(sn+1
l,L )− B(sn+1

l,K )
∣∣∣θ ,

since B−1 is an Hölder function. Thus we get,

‖δn+1
K|L(Γ(sl))−

√
Ml(s

n+1
l,K,L)δn+1

K|L(p̄(sl))‖2L2(QT )

=
N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

|TK,L||δn+1
K|L(Γ(sl))−

√
Ml(s

n+1
l,K,L)δn+1

K|L(p̄(sl))|2

≤
N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

|TK,L|1−θ|TK,L|θ
∣∣∣B(sn+1

l,L )− B(sn+1
l,K )

∣∣∣2θ ,
and using the Cauchy-Schwarz inequality and the estimate , we deduce

‖δn+1
K|L(Γ(sl))−

√
Ml(s

n+1
l,K,L)δn+1

K|L(p̄(sl))‖2L2(QT )

≤

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

|TK,L|

1−θN−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

|TK,L|
∣∣∣B(sn+1

l,L )− B(sn+1
l,K )

∣∣∣2
θ

≤ C(size(T ))2θ

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

|σK,L|
dK|L

∣∣∣B(sn+1
l,L )− B(sn+1

l,K )
∣∣∣
θ

which shows that ‖δn+1
K|L(Γ(sl)) −

√
Ml(s

n+1
l,K|L)δn+1

K|L(p̄(sl))‖2L2(QT ) → 0 as size(T ) → 0. And

from (5.14) in corollary 1, we deduce that there exists a constant C > 0 where the following
inequalities hold:

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

τK|L(δn+1
K|L(Γ(sl)))

2 ≤ C.(8.14)

That prove

∇DmΓ(sl,Dm)→ ∇Γ(sl) weakly in (L2(QT ))`.(8.15)

As consequence √
Ml(sl,Dm)∇Dm p̄(sl,Dm)→ ∇Γ(sl) weakly in (L2(QT ))`.(8.16)

Rearranging Am2 to write

Am2 = −1

2

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

∣∣TK|L∣∣ ρn+1
l,K|LMl(s

n+1
l,K|L)∇K|Lp̄(sl,Dm) · ηK|L∇ϕ(tn+1, xK|L) · ηK|L,

where xK|L = θxK + (1− θ)xL, 0 < θ < 1, is some point on the segment ]xK , xL[. using again
that the mesh is orthogonal, we can write

Am2 = −
∫ T

0

∫
Ω
ρl(pl,Dm)Ml(sl,Dm)∇Dm p̄(sl,Dm) · (∇ϕ)Dmdxdt.
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As a consequence of the convergences (8.5), (8.6) and by the Lebesgue theorem we get

ρl(pl,Dm)
√
Ml(sl,Dm)(∇ϕ)Dm → ρl(pl)

√
Ml(sl)∇ϕ strongly in (L2(QT ))`.

And as consequence of (8.16),

lim
m→+∞

Am2 = −
∫ T

0

∫
Ω
ρl(pl)

√
Ml(sl)∇Γ(sl) · ∇ϕdxdt(8.17)

= −
∫ T

0

∫
Ω
ρl(pl)Ml(sl)∇p̄(sl) · ∇ϕdxdt.(8.18)

Now, we treat the convergence of the gravity term

lim
m→+∞

Sm3 = −
∫ T

0

∫
Ω
ρl(pl)Ml(sl)g · ∇ϕdxdt.(8.19)

Perform integration by parts (3.3)

Sm3 =
N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

Fn+1
l,K|Lϕ(tn+1, xK)

= −1

2

N−1∑
n=0

δt
∑
K∈T

∑
L∈N(K)

Fn+1
l,K|L

(
ϕ(tn+1, xL)− ϕ(tn+1, xK)

)
.

Note that the numerical flux Fn+1
l,K|L is independent of the gradient of pressures and the pass

to the limit on Sm3 is mush simple then the term Am,∗1 since the discrete gradient of global
pressure is replaced by the gravity vector g. We omit this proof of (8.19).

Finally, Sm4 can be written equivalently

Sm4 =
N−1∑
n=0

∑
K∈T

∫ tn+1

tn

∫
K
ρl(p

n+1
l,K )sn+1

l,K fP (t, x)ϕ(tn+1, xK)dxdt

−
N−1∑
n=0

∑
K∈T

∫ tn+1

tn

∫
K
ρl(p

n+1
l,K )(sIl,K)n+1fI(t, x)ϕ(tn+1, xK)dxdt.

From the convergences (8.5), (8.6) and by the Lebesgue dominated convergence theorem, we
get

lim
m→+∞

Sm,∗4 =

∫
QT

ρl(pl)slfP (t, x)ϕ(t, x)dxdt−
∫
QT

ρl(pl)s
I
l fI(t, x)ϕ(t, x)dxdt,

which completes the proof of the theorem 1.

9. Numerical results

In this section we show some numerical experiments simulating the five spot problem in
petroleum engineering. A Newton algorithm is implemented to approach the solution of
nonlinear system (3.8)-(3.9) coupled with a bigradient method to solve linear system arising
from the Newton algorithm process.

We will provide two tests made on a nonuniform admissible grid.



FINITE VOLUME SCHEME FOR COMPRESSIBLE 31

Figure 2. Mesh with 896 triangles

Datas used for the numerical tests are the following :

k1(s1) = s2
1, k2(s2) = s2

2

K = 0.1510−10m2, φ = 0.206,
µ2 = 10−3 Pa.s(water viscosity), µ1 = 910−5 Pa.s(gas viscosity),
ρ(p) = ρref (1 + cref (p− pref )), with ρref = 400 Kg m−3, cref = 10−6Pa−1, pref = 1.013 105 Pa,
Lx = 1m, Ly = 1m (the length and the width of the domain)
Pc(s) = Pmax(1− s), with Pmax = 105Pa.

Initial conditions. Initially the saturation of gas is considered to be equal to 0.9 in the
whole domain and the gas pressure is considered to be 1.013 105 Pa.

Boundary conditions. The wetting fluid (water) is injected in the left-down corner in
the region ([0, 0.1]×{0})∪ ({0}× [0, 0.1]) with a constant pressure equal to 4.026 105 Pa. The
right-top corner where ([0.9, 1]×{1})∪ ({1}× [0.9, 1]) keeps fluids flow freely at atmospheric
pressure where as the rest of the boundary is assumed to be impervious (zero fluxes are
imposed). The influence of boundary conditions can be seen in all figures.

Meshes. The domain is recovered by 896 admissible triangles see figure 2.
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Figure 3. Water field including capillary effect at time T = 6s (left) and at time T = 20s
with 0.1 ≤ s ≤ 1.

Figures 3 - 6 show the diffusive effects of the capillary terms, notably the dissipation of
chocs due to the hyperbolic operator Fig. 6. In fact, during the stage of the displacement
saturation shock propagate through rock for flows where capillarity terms are neglected, see
figure 6. This shock, where capillarity effects are signifiant, it is diffused. However, a part of
the the shock wave maintains its sharp front.
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Département d’ Informatique et Mathématiques
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