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Abstract. In this paper we present a hybrid approach to numerically solve two-dimensional
electromagnetic inverse scattering problems, whereby the unknown scatterer is hosted by a possibly
inhomogeneous background. The approach is ‘hybrid’ in that it merges a qualitative and a quantita-
tive method to optimize the way of exploiting the a priori information on the background within the
inversion procedure, thus improving the quality of the reconstruction and reducing the data amount
necessary for a satisfactory result. In the qualitative step, this a priori knowledge is utilized to im-
plement the linear sampling method in its near-field formulation for an inhomogeneous background,
in order to identify the region where the scatterer is located. On the other hand, the same a priori
information is also encoded in the quantitative step by extending and applying the contrast source
inversion method to what we call the ‘inhomogeneous Lippmann-Schwinger equation’: the latter
is a generalization of the classical Lippmann-Schwinger equation to the case of an inhomogeneous
background, and in our paper is deduced from the differential formulation of the direct scattering
problem to provide the reconstruction algorithm with an appropriate theoretical basis. Then, the
point values of the refractive index are computed only in the region identified by the linear sampling
method at the previous step. The effectiveness of this hybrid approach is supported by numerical
simulations presented at the end of the paper.
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1. Introduction. Acoustic, elastic or electromagnetic scattering is a physical
phenomenon where an incident wave is scattered by an inhomogeneity (or an obsta-
cle) and the total field at any point is represented by the sum of the incident and
the scattered field. From a mathematical viewpoint, in the direct problem the phys-
ical parameters and the geometry of the inhomogeneity are given and the unknown
is represented by the scattered field. In the inverse scattering problem, one aims at
recovering the shape and the physical properties of the object of interest from mea-
surements of the scattered field. The direct scattering problem is in general well-posed
in the sense of Hadamard and therefore its approximate solution can be determined by
means of stable numerical methods. On the contrary, the inverse scattering problem
is ill-posed in the sense of Hadamard (specifically, the unknown physical parameters
of the scatterer are mapped onto the measured scattered field by a compact operator),
and its solution must be addressed by means of some regularizing approach [11].

Most inverse scattering methods belong to two different sets of algorithms: the
family of qualitative approaches and the family of quantitative approaches. Qualita-
tive methods [8] require the regularized solution of a linear integral equation of the first
kind, parameterized over a grid of sampling points covering the investigation domain.
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2 THE INHOMOGENEOUS LIPPMANN-SCHWINGER EQUATION

The Euclidean norm of such regularized solution behaves as an indicator function
of the unknown scatterer, since it is bounded when the sampling point is inside the
target, grows up if the point approaches its edge and can be made arbitrarily large
when it is taken outside. The advantages of qualitative methods are that they are fast
and need very few a priori information to work. However, the informative content of
their output is rather poor, since they are essentially visualization techniques and do
not provide quantitative reconstructions of the inhomogeneity.

On the other hand, quantitative inverse scattering methods [3, 11] are, in general,
iterative schemes that minimize an appropriate functional, starting from an initial-
ization mask for the refractive index of the scatterer, and then reconstruct its point
values after an optimized number of iterations. In principle, they can provide all the
required information on the problem, although by means of a notable computational
effort. However, they can suffer from local minima problems, since the number of
unknowns is typically larger than the data amount at disposal in scattering experi-
ments, or because often the initialization of the method is not precise enough for a
proper convergence to the solution. The effectiveness of a quantitative method can
be notably increased by incorporating some a priori information (when available) on
the scatterer into the minimization process. Although the most traditional approach
is to use this knowledge for a better initialization of the algorithm, an improvement
in its performance can be achieved when such information is integrated into each step
of the iterative scheme, e.g., by decreasing the complexity of the target [14], or by
adding appropriate constraints to the minimization technique [28].

Recent developments in inverse scattering are concerned with the formulation
of hybrid methods, i.e., methods merging different techniques in order to integrate
and optimize the different kinds of information they can provide (see e.g. [6, 7, 18]).
In particular, a priori knowledge on the scatterer and/or qualitative techniques are
typically utilized to improve the performance of some quantitative method, e.g., by
reducing the number of unknowns, or by providing a more precise initialization. In this
paper, we rely on a rather general strategy for the formulation of hybrid techniques,
based on the following three steps:

1. the a priori information on the physical characteristics of the (possibly inho-
mogeneous) background is coded into the corresponding Green’s function;

2. a segmentation between the background and the scatterer is realized by apply-
ing a qualitative method, thus reducing the size of the investigation domain,
i.e., the number of unknowns in the following step;

3. a quantitative method is applied only in the region highlighted by the quali-
tative method, in order to reconstruct the point values of the refractive index
in this region.

Although this scheme is of general applicability, in this paper we present a specific
implementation: more precisely, the Green’s function of the (inhomogeneous) back-
ground is numerically computed by means of the method of moments [15, 25], which
solves the forward scattering problem. Then the linear sampling method [13] is applied
in its near-field formulation for inhomogeneous backgrounds [9, 12] in order to visual-
ize the scatterer of interest, and a procedure based on active contours [1, 10] is used
for extracting the (approximate) shape of its support. Finally, the inverse scattering
problem is solved by generalizing and applying the contrast source inversion method
[14, 27, 28] to what we call the ‘inhomogeneous Lippmann-Schwinger equation’, since
it is a generalization of the integral formulation of the direct scattering problem to
the case of an inhomogeneous background: such equation is deduced in our paper as
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a preliminary but essential tool that allows encoding the a priori information on the
background into each step of the iterative reconstruction procedure. Note that the
initial qualitative approach allows computing the point values of the refractive index
only in the region identified by the linear sampling method, thus reducing the number
of unknowns to be determined by the quantitative method.

The plan of the paper is as follows. In Section 2 we introduce the differential
formulation of the direct scattering problem and recall some known results. Sec-
tion 3 addresses the same problem from an integral perspective, and as a result the
inhomogeneous Lippmann-Schwinger equation is derived from the direct differential
formulation. In Section 4 we recall the key ideas of the linear sampling method in the
near-field case, and adapt the contrast source inversion method to the inhomogeneous
Lippmann-Schwinger equation. In Section 5 some numerical examples are described,
also including an application to breast cancer detection by using microwaves. Finally,
our conclusions are offered in Section 6.

2. The scattering problem: differential formulation. We consider a rather
general two-dimensional and time-harmonic scattering problem, whereby the back-
ground medium is inhomogeneous and described by a piecewise continuously differ-
entiable refractive index [11, 12]

nb(x) =
1

ε0

[
ε(x) + i

σ(x)

ω

]
. (2.1)

In (2.1), x = (x1, x2) is a generic point of R2, ε0 > 0 is the dielectric permittivity of
vacuum, ε(x) ≥ 1 and σ(x) ≥ 0 are the point values of the dielectric permittivity and
conductivity of the medium, ω is the angular frequency, and i =

√
−1. More precisely

(see e.g. fig. 2.1), we assume that there exists a finite number N + 1 of open and
connected C2-domains Ωi ⊂ R2, with i = 0, . . . , N , such that 1) Ωi∩Ωj = ∅ for i 6= j;
2) R2 = ∪Ni=0Ω̄i; 3) Ωi is bounded for each i 6= 0; 4) nb|Ωi

∈ C1(Ω̄i) for all i = 0, . . . , N ;
5) nb(x) = ñ0 ∈ C for x ∈ Ω0, with Im{ñ0} ≥ 0; 6) there exists a subset J0 of the
finite set {1, 2, . . . , N} such that Ω̃0 := int

{
x ∈ R2 : nb(x) = ñ0

}
= Ω0 ∪ (∪j∈J0Ωj)

(in particular, J0 = ∅ if and only if Ω̃0 = Ω0). Finally, we assume that the magnetic
permeability is constant on all R2. Note that a) the domains Ωi do not need to
be simply connected: e.g., in fig. 2.1, Ω3 has Ω4 as its hole and, in turn, Ω1 has
holes corresponding to Ω2 and Ω3 ∪ Ω4; b) the boundaries ∂Ωi may be either curves
where a discontinuity of nb occurs, or boundaries of virtual domains Ωi immersed in
a homogeneous region, where to host a scatterer that will be introduced later: this
trick allows some notational simplifications.
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Figure 2.1. Scheme of the reference background for the scattering problem. In this case,
Ω̃0 = Ω0 ∪ Ω4.

Next, we define the Green’s function G(x; y) of the background as the radiating
solution of the equation [12]

∆xG(x; y) + k2nb(x)G(x; y) = −δ(x− y) for x ∈ R2, (2.2)

where k = ω/c is the wave number in vacuum, c being the speed of light in free space.
The existence and uniqueness of G(x; y) (at least for y ∈ Ω̃0) can be proved as in
[11, 12]: in fact, if we denote the Green’s function of the homogeneous medium in

Ω̃0 by Φ(x; y) := i
4H

(1)
0 (k̃0 |x− y|), where H

(1)
0 is the Hankel function of first kind of

order zero, k̃0 := k
√
ñ0 and Im{

√
ñ0} ≥ 0, we can write

G(x; y) = Φ(x; y) + usb(x; y), (2.3)

where usb(x; y) is the perturbation to Φ(x; y) due to the inhomogeneous medium in

R2 \ Ω̃0.
We point out that [12] G(·; y) ∈ C1(R2 \ {y}), i.e., the discontinuities of nb across

some of the boundaries ∂Ωi only affect the smoothness of second (and higher order)
derivatives on the boundaries themselves. Actually, eq. (2.2) is to be understood
as a set of N + 1 equations, one for each domain Ωi, linked by proper transmission
conditions at the boundaries ∂Ωi. These conditions are imposed by physics, which
states the continuity of the tangential components of both the total electric field E
and the magnetic field H: this is equivalent to the continuity of the vector fields ν×E
and ν×H, where ‘×’ denotes the vector product and ν is the unit normal at a point of
∂Ωi. In our two-dimensional setting, Cartesian axes are chosen so that G is the non-
zero component of the total electric field E = (0, 0, G), which vibrates perpendicularly
to the scattering plane (i.e., the electromagnetic field is assumed to be TM-polarized).
Moreover, from the time-harmonic Maxwell equation [11] curlE − ikH = 0, it follows
that H = 1

ik (∂2G,−∂1G, 0), having denoted by ∂j the partial derivative with respect
to the variable xj , for j = 1, 2. Finally, in the same reference system, the normal
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ν can be written as (ν1, ν2, 0): accordingly, ν × E = (ν2G,−ν1G, 0) and ν × H =
(0, 0,−ν1 ∂1G− ν2 ∂2G). Then, the continuity of ν ×E and ν ×H corresponds to the
continuity of G and its normal derivative ν · ∇G = ∂νG.

In our scattering problem, the scatterer is assumed to take up the spatial region
D = ∪Mi=1Ωi, with 1 ≤ M ≤ N ; accordingly, the whole propagation medium is
described by a refractive index n(x) such that, in general, n(x) 6= nb(x) for x ∈ Ωi,
with i = 1, . . . ,M . In any case, we still require that n|Ωi

∈ C1(Ω̄i) for all i = 0, . . . , N .

Moreover, for a unit point source placed at x0 ∈ Ω̃0 \ (Ω̃0 ∩D), we denote by u(x;x0)
the non-zero component of the total electric field E = (0, 0, u), which, as before,
vibrates perpendicularly to the scattering plane. Then, the differential form of the
scattering problem we are interested in is [12]

∆xu(x;x0) + k2n(x)u(x;x0) = −δ(x− x0) for x ∈ R2 (a)

u(x;x0) = ui(x;x0) + us(x;x0) (b)

lim
r→∞

[√
r

(
∂us

∂r
− i k̃0u

s

)]
= 0, (c)

(2.4)

where ui(x;x0) = G(x;x0) is the incident field, us(x;x0) is the scattered field and
(2.4)(c) is the Sommerfeld radiation condition, which holds uniformly in all directions
x̂ = x/|x|. If Im{ñ0} > 0, such a condition can be relaxed [12] by only requiring the
boundedness of us(·;x0) in R2.

Note that, from eq. (2.3) and the identification ui(x;x0) = G(x;x0), we can
rewrite eq. (2.4)(b) as u(x;x0) = Φ(x;x0) + [usb(x;x0) + us(x;x0)]: then, as before,
the existence and uniqueness of a solution u(·;x0) ∈ C1(R2 \ {x0}) to problem (2.4)
can be proved as in [12], and eq. (2.4)(a) is again to be regarded as a set of N + 1
equations, one for each domain Ωi, with the above transmission conditions at the
boundaries ∂Ωi.

Moreover, since both the incident field ui(·;x0) and the total field u(·;x0) are in
C1(R2 \{x0}), also the scattered field us(·;x0), expressed by (2.4)(b) as the difference
u(·;x0)− ui(·;x0), is in C1(R2 \ {x0}). Actually, it is not difficult to establish further
regularity properties of us(·;x0), i.e., us(·;x0) ∈ C1(R2) and ∆us(·;x0) ∈ C1

(
Ω̄i
)

for
all i = 0, . . . , N . To this end, we observe that a simple algebraic manipulation of eq.
(2.4)(a) yields

∆xu(x;x0) + k2nb(x)u(x;x0) = −δ(x− x0) + k2ñ0
nb(x)− n(x)

ñ0
u(x;x0), (2.5)

i.e., by setting m(x) := [nb(x)− n(x)]/ñ0 and remembering that k̃0 = k
√
ñ0,

∆xu(x;x0) + k2nb(x)u(x;x0) = −δ(x− x0) + k̃2
0m(x)u(x;x0). (2.6)

By using equations (2.2) and (2.4)(b), as well as the above identification ui(x;x0) =
G(x;x0), eq. (2.6) is easily seen to become

∆xu
s(x;x0) + k2nb(x)us(x;x0) = −

[
−k̃2

0m(x)u(x;x0)
]
. (2.7)

The structure of eq. (2.7), which parallels that of eq. (2.2), allows regarding us(·;x0)
as the third component of the electric field Es = (0, 0, us) radiated by the equivalent
source −k̃2

0m(x)u(x;x0) in the background medium described by the refractive index
nb. We now note that this equivalent source is compactly supported, since suppm
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coincides with the support D̄ of the scatterer, which is compact by assumption. On

the other hand, by hypothesis, we have that x0 ∈ Ω̃0 \ (Ω̃0 ∩D), i.e., the point x0

is at a finite distance from the equivalent source: accordingly, there exists an open
neighbourhood Ux0

⊂ Ω̃0 of x0 such that 1) Ux0
∩suppm = ∅; 2) both the electric field

Es and the corresponding magnetic field Hs = 1
ik (∂2u

s,−∂1u
s, 0) are well-defined and

bounded in Ux0 . Even more, from the transmission conditions imposed by physics
and previously recalled, we can conclude that both us(·;x0) and ∂νu

s(·;x0) are in
C0(Ūx0

). But here the unit normal is arbitrary, since no physical interface, i.e., no
discontinuity of the refractive index occurs inside Ux0

, where in fact nb(x) = ñ0:
then, in particular, ∂ju

s(·;x0) ∈ C0(Ūx0
) for j = 1, 2. Accordingly, we have that

us(·;x0) ∈ C1(Ūx0). On the other hand, we know that us(·;x0) ∈ C1(R2 \ {x0}): we
then conclude that us(·;x0) ∈ C1(R2).

Finally, from eq. (2.7) we find

∆xu
s(x;x0) = −k2nb(x)us(x;x0) + k̃2

0m(x)u(x;x0). (2.8)

Since, by hypothesis, nb,m ∈ C1(Ω̄i) for all i = 0, . . . , N , while us(·;x0) ∈ C1(R2)
and u(·;x0) ∈ C1(R2 \ {x0}), from (2.8) we have ∆us(·;x0) ∈ C1(Ω̄i): indeed, the
singularity of u(x;x0) for x = x0 is cancelled out by m(x), since x0 /∈ suppm by
assumption, while us(·;x0) is bounded at infinity (actually, it is bounded in all R2

[12]).
Of course, as a particular case (i.e., n(x) = nb(x) ∀x ∈ R2) of the above discussion,

the same regularity properties also hold for the field usb(·; y) introduced in (2.3), i.e.,
usb(·; y) ∈ C1(R2) and ∆usb(·; y) ∈ C1

(
Ω̄i
)

for all i = 0, . . . , N .

3. The inhomogeneous Lippmann-Schwinger equation. The goal of the
present section is to derive an integral equation for the scattered field us(·;x0) from
the differential formulation (2.4) of the scattering problem. Observing the structure
of eq. (2.7), the natural candidate for an integral formulation is the ‘generalized’
Lippmann-Schwinger equation

us(x;x0) = −k̃2
0

∫
R2

G(x; y)m(y)u(y;x0) dy. (3.1)

In fact, an exact equivalence between differential and integral formulation is proved
in [11] for the three-dimensional acoustic and electromagnetic cases under strong
regularity assumptions on the refractive index: the background is assumed to be
homogeneous (i.e., nb(x) = ñ0 ∈ C for all x ∈ R3), and n must be continuously
differentiable on the whole space (however, see [17] for a variational approach notably
relaxing the latter requirement). In particular, under such assumptions, this proof
can provide a rigorous justification of the following procedure: compute ∆xu

s(x;x0)
by interchanging the Laplacian operator with the integral in (3.1), then replace

∆xΦ(x; y) = −k̃2
0Φ(x; y)− δ(x− y) (3.2)

(which is the analogous of eq. (2.2) in the homogeneous case G(x; y) = Φ(x; y)) into
eq. (3.1) to obtain

∆xu
s(x;x0) + k̃2

0u
s(x;x0) = −

[
−k̃2

0m(x)u(x;x0)
]
. (3.3)

Eq. (3.3) suggests regarding the term in square brackets at its right-hand side as an
equivalent, although unknown, source radiating the field us(x;x0) in the homogeneous
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background, which is consistent with the physical interpretation of (3.1). In any case,
by means of eq.s (3.2) and (3.3), it is easily verified that us, as given by (3.1), solves
problem (2.4).

However, as correctly pointed out in [22], even a mere discontinuity of the physical
parameters at the interface ∂D between the scatterer and the (homogeneous) back-
ground suffices to invalidate, in general, the previous procedure: as a consequence,
even with a homogeneous background, the integral formulation becomes more com-
plicated (owing to the occurrence of boundary terms on ∂D) and its equivalence with
the differential formulation is more difficult to prove.

To our knowledge, in the case of an inhomogeneous background, results concern-
ing the equivalence between the differential and integral formulation of a scattering
problem are not available. In this section, we shall limit ourselves to deriving the inte-
gral equation (3.1) (for x ∈ Ω̃0) from the differential problem (2.4): indeed, a thorough
discussion of the equivalence between (3.1) and (2.4) would be very technical and be-
yond the framework of this paper. However, it is likely that an exact equivalence
actually holds, since, as recalled above, the scattered field us is in C1(R2): then, the
boundary contributions on each ∂Ωi that would appear in (3.1) from Green’s second
theorem [11] applied in each domain Ωi cancel out, as detailed in the following Lemma
3.1 and Theorem 3.2 for the case x ∈ Ω̃0.

Finally, it is worth noting that, even in two dimensions, the previous argument
fails [22] whenever the magnetic permeability is discontinuous across ∂Ωi. This is
analogous to what happens in the two or three-dimensional acoustic case [22], where
the pressure field is continuous across the discontinuities of the fluid density, but not
continuously differentiable.

Lemma 3.1. Let Ωi (with i = 0, . . . , N), Ω̃0, nb(x), G(x; y) be as above, let
BR := {x ∈ R2 : |x| < R} be such that BR ⊃ ∪Ni=1Ω̄i, and define ΩN+1 := BR\∪Ni=1Ω̄i.
Moreover, let w ∈ C1(B̄R) be such that ∆w ∈ C0(Ω̄i) for all i = 1, . . . , N + 1. Then,
the following generalization of Green’s formula holds:

w(x) =

∫
∂BR

[
∂w

∂ν
(y)G(y;x)− w(y)

∂G(y;x)

∂ν(y)

]
ds(y)+ (3.4)

−
∫
BR

[
∆w(y) + k2nb(y)w(y)

]
G(y;x) dy ∀x ∈ BR ∩ Ω̃0.

Proof. Consider an arbitrary point x ∈ ΩR := BR ∩ Ω̃0: since ΩR is open, there
exist ρ > 0 and a ball B(x; ρ) := {y ∈ R2 : |y − x| < ρ} such that B̄(x; ρ) ⊂ ΩR.
Moreover, G(·;x) solves a particular case of the differential problem (2.4), with the
identifications x0 = x, u(·;x0) = G(·;x), ui(·;x0) = Φ(·;x) and n = nb: accordingly,
remembering eq. (2.3) and the regularity properties stated in the previous section, we
have that G(·;x) ∈ C1

(
B̄R \ {x}

)
, ∆G(·;x) ∈ C1

(
Ω̄R \ {x}

)
and ∆G(·;x) ∈ C1(Ω̄i)

for all i ∈ {1, . . . , N} \ J0, where the index set J0 has been defined in assumption no.
6) soon below eq. (2.1). Then, given the regularity properties assumed for w, we can
apply the usual Green’s second theorem [11, 16] in the domain ΩR \ B̄(x; ρ), i.e.,∫

ΩR\B̄(x;ρ)

[G(y;x)∆w(y)− w(y)∆yG(y;x)] dy = (3.5)

=

∫
∂ΩR∪∂B(x;ρ)

[
G(y;x)

∂w(y)

∂ν
− w(y)

∂G(y;x)

∂ν(y)

]
ds(y),
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as well as in any other domain Ωi, with i ∈ {1, . . . , N} \ J0, i.e.,∫
Ωi

[G(y;x)∆w(y)− w(y)∆yG(y;x)] dy = (3.6)

=

∫
∂Ωi

[
G(y;x)

∂w(y)

∂ν
− w(y)

∂G(y;x)

∂ν(y)

]
ds(y).

In eq.s (3.5) and (3.6), it is understood that the unit normal is chosen as outward
with respect to each domain. We now sum eq. (3.5) with all the equations (3.6)
obtained for i ∈ {1, . . . , N} \ J0: note that, except for ∂BR and ∂B(x; ρ), all the
boundary integrals are taken twice, with opposite orientation of the unit normal.
Since the integrand functions are continuous on the boundaries, these integrals cancel
out. Moreover, by eq. (2.2), we can substitute ∆yG(y;x) = −k2nb(y)G(y;x) for
y 6= x into (3.5) and (3.6). As a result, we find∫

BR\B̄(x;ρ)

[
∆w(y) + k2nb(y)w(y)

]
G(y;x)dy = (3.7)

=

∫
∂BR∪∂B(x;ρ)

[
G(y;x)

∂w(y)

∂ν
− w(y)

∂G(y;x)

∂ν(y)

]
ds(y).

We now focus on the integral over ∂B(x; ρ), say I∂B(x;ρ), at the right-hand side of
(3.7): remembering eq. (2.3), we have

I∂B(x;ρ) =

∫
∂B(x;ρ)

[
Φ(y;x)

∂w(y)

∂ν
− w(y)

∂Φ(y;x)

∂ν(y)

]
ds(y)+ (3.8)

+

∫
∂B(x;ρ)

[
usb(y;x)

∂w(y)

∂ν
− w(y)

∂usb(y;x)

∂ν(y)

]
ds(y).

Now, the second integral in (3.8) vanishes as ρ → 0, since the integrand is bounded
and the measure of the integration domain tends to zero. As regards the first integral
in (3.8), we recall [8] the following asymptotic behaviors

Φ(y;x) =
1

2π
ln

1

|x− y|
+O(1) as |x− y| → 0, (3.9)

∂Φ(y;x)

∂ν(y)
=

1

2π

1

|x− y|
+O(|x− y| ln |x− y|) as |x− y| → 0. (3.10)

By using (3.9) and (3.10), the integral mean value theorem applied to the first integral
in (3.8) easily shows that the latter tends to −w(x) as ρ → 0. Then, thesis (3.4) is
obtained by taking ρ → 0 in eq. (3.7): indeed, remembering eq. (2.3) and the
regularity of usb(y;x), the singularity of G(y;x) for y → x is only due to Φ(y;x), i.e.,
it is weak and then the integral on BR converges.

Theorem 3.2. Let Ωi (with i = 0, . . . , N+1), Ω̃0, D, nb(x), n(x), m(x), G(x; y)

be as above, and let x0 ∈ Ω̃0 \ (Ω̃0 ∩D) be as above. If us(·;x0) ∈ C1(R2), with
∆us(·;x0) ∈ C1

(
Ω̄i
)

for all i = 0, . . . , N , is a solution of the differential problem

(2.4), then us(·;x0) solves the integral equation (3.1) for x ∈ Ω̃0.
Proof. Consider an arbitrary point x ∈ Ω̃0. Let BR := {x ∈ R2 : |x| < R}

be an open disk with exterior unit normal ν and radius R large enough, so that
BR ⊃

[
∪Ni=1Ω̄i ∪ {x}

]
. By hypothesis, us(·;x0) is regular enough in the domain BR
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to be represented by means of the generalized Green’s formula (3.4) in ΩR := BR∩Ω̃0,
i.e.,

us(x;x0) =

∫
∂BR

{
∂us(y;x0)

∂ν(y)
G(y;x)− us(y;x0)

∂G(y;x)

∂ν(y)

}
ds(y)+ (3.11)

−
∫
BR

{
∆yu

s(y;x0) + k2nb(y)us(y;x0)
}
G(y;x)dy, x ∈ ΩR.

First we prove that the integral on ∂BR in (3.11) is zero. To this end, consider
Br := {x ∈ R2 : |x| < r} such that r > R, and apply Green’s second theorem [11] in
the domain Br \ BR: by choosing the unit normal ν as outgoing from both BR and
Br, and observing that both the fields us(·;x0) and G(·;x) verify the same Helmholtz
equation in Br \BR ⊂ Ω0 (where nb(x) = n(x) = ñ0), we find∫

∂BR

{
∂us(y;x0)

∂ν(y)
G(y;x)− us(y;x0)

∂G(y;x)

∂ν(y)

}
ds(y) = (3.12)

=

∫
∂Br

{
∂us(y;x0)

∂ν(y)
G(y;x)− us(y;x0)

∂G(y;x)

∂ν(y)

}
ds(y).

We now recall [11] that any radiating solution v of the Helmholtz equation (with
generic wave number k > 0) outside a disk in R2 has the following asymptotic behavior

v(x) =
eikr

√
r

{
v∞(x̂) +O

(
1

r

)}
, r = |x| → ∞, (3.13)

where v∞ is the far-field pattern of v. If v1 and v2 are two such solutions, from (3.13)
we find [11]

v1(x)
∂v2(x)

∂r
= ik

e2ikr

r
v1
∞(x̂) v2

∞(x̂) +O

(
1

r2

)
, r →∞, (3.14)

uniformly for all directions. By applying (3.14) to the radiating fields us(·;x0) and
G(·;x), we easily find that the integrand function at the right-hand side of (3.12) is
O
(

1
r2

)
and then the integral itself vanishes as r → ∞. This is even more true if the

wave number k > 0 is replaced by k
√
ñ0 with Im

{√
ñ0

}
> 0, since the attenuation of

the fields and their derivatives is faster.
As regards the integral on BR in (3.11), we come back to eq. (2.7) in Section 2

and recall that the singularity of u(x;x0) for x = x0 is cancelled out by m(x), since
x0 /∈ suppm: then, substituting (2.7) into (3.11) and taking the limit as R→∞, we
can write

us(x;x0) = −k̃2
0

∫
R2

G(y;x)m(y)u(y;x0) dy ∀x ∈ Ω̃0, (3.15)

which is immediately written in the form (3.1) by using the reciprocity property
[12, 19] G(y;x) = G(x; y).

We call eq. (3.1) the ‘inhomogeneous Lippmann-Schwinger equation’, to empha-
size that the reference background is (or may be) inhomogeneous. In the next section,
we shall apply an inversion algorithm to this equation in order to compute the point
values of m, i.e., of the refractive index inside the region under investigation.
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4. A hybrid scheme. In general, iterative methods for the quantitative solution
of inverse scattering problems are applied to the homogeneous Lippmann-Schwinger
equation. Such methods take as input the scattering data collected by antennas placed
outside the investigated area and inside a homogeneous zone, and provide as output
the reconstruction of the refractive index everywhere in the inhomogeneous region.
The main drawback of this computational approach is that, particularly when the
scattering experiment is performed with a single and fixed frequency, the number of
unknowns is typically much larger than the number of measured data, and therefore
the reconstruction accuracy is often rather low. However, there are situations where
just a certain part of the inhomogeneous region is unknown and of interest for practical
applications, while information is available about the refractive index of the rest of the
domain. In this case, the quantitative inverse scattering method can be applied to the
inhomogeneous Lippmann-Schwinger equation, provided one is able to compute the
Green’s function of the inhomogeneous (and known) background and to approximately
identify the region taken up by the scatterer under investigation. In the following of
the current section, we describe an implementation of this approach essentially based
on the contrast source inversion method. Therefore, in order to realize the proposed
hybrid approach, the ingredients we need are: 1) a method for computing the Green’s
function of the background; 2) a qualitative method to visualize (an overestimate of)
the scatterer support inside the background itself; 3) a quantitative scheme for the
inversion of the inhomogeneous Lippmann-Schwinger equation in the region identified
at step 2).

4.1. The computation of the Green’s function. A handy way to compute
the Green’s function of an inhomogeneous background is given by the method of
moments (MOM) [15, 25]. Since G(·;x0) solves a particular case of problem (2.4)
with the identifications u(·;x0) = G(·;x0), ui(·;x0) = Φ(·;x0) and n(x) = nb(x), it
also satisfies the homogeneous Lippmann-Schwinger equation [11, 12]

G(x;x0) = Φ(x;x0)− k̃2
0

∫
R2

Φ(x; y)mb(y)G(y;x0) dy for x ∈ R2, (4.1)

with mb(x) := [ñ0−nb(x)]/ñ0 and x0 ∈ Ω̃0. Since suppmb is compact, the integration
domain in (4.1) is bounded: then, we can consider a finite (and not necessarily uni-
form) partition of suppmb by L cells A1, . . . , AL, chosen so small that mb and G(·;x0)
can be assumed to be constant inside each cell. Then, eq. (4.1) can be approximated
as

G(x;x0) ≈ Φ(x;x0)− k̃2
0

L∑
j=1

mb(yj)G(yj ;x0)

∫
Aj

Φ(x; y)dy, (4.2)

where yj ∈ R2 identifies the center of the cell Aj . Furthermore, following [25], we
approximate each square cell as a circular cell of the same area, so that the integral
in eq. (4.2) can be evaluated as∫

Aj

Φ(x; y)dy =
i

4

∫
Aj

H
(1)
0 (k̃0|x− y|)dy ≈ (4.3)

≈


iπk̃0aj

2
J1(k̃0aj)H

(1)
0 (k̃0|x− yj |) for x /∈ Aj

i

2

[
πk̃0ajH

(1)
1 (k̃0aj) + 2i

]
for x ∈ Aj ,
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where aj :=
√

∆j/π, ∆j is the area of the cell Aj , J1 is the Bessel function of first

order and H
(1)
1 is the Hankel function of first kind of order one. We point out that the

method can be notably speeded up by utilizing the fast Fourier transform algorithm
as it is described for example in [4, 29]: we shall adopt this version of the MOM
method for our numerical simulations.

4.2. The linear sampling method. The linear sampling method (LSM) is
the earliest and most used qualitative method in inverse scattering: in the case of
an object embedded in a homogeneous background, it provides a reconstruction of
its support by only knowing the field measured around it. When the background is
inhomogeneous and its Green’s function is known, the LSM can be extended to the
case of an inhomogeneity immersed in a medium with piecewise constant refractive
index. The basic idea is to write and to approximately solve the modified far-field
equation [9, 12]∫

Γ

[us(x;x0)− usb(x;x0)]gz(x0) dx0 = G(x; z) for x ∈ Γ, (4.4)

where Γ := {x ∈ R2 : |x| = RΓ} ⊂ Ω0 is the circle of radius RΓ where emitting and
receiving antennas are placed, and z ∈ R2 is a sampling point inside the investigation
domain enclosed by Γ. In (4.4), the Green’s function G(x; z) and the field usb(x;x0)
can be computed by exploiting the knowledge of the background and applying the
MOM method, while us(x;x0) represents the measurements, i.e., the data of the
inverse scattering problem.

In fact, it can be proved [9, 12] that there exists an approximate solution of
(4.4) whose L2(Γ)-norm is bounded inside the scatterer, grows up as z approaches
its boundary from inside and remains very large outside, thus behaving as an indi-
cator function for the support D̄ of the scatterer itself. This result inspires a simple
algorithm that approximately solves the modified far-field equation by means of a
regularization procedure. More precisely, the LSM requires the choice of a numerical
grid covering the region where the scatterer is placed; then, for each point z of the
grid, a discretized version of the modified far-field equation is solved by using the
Tikhonov regularization method [26], and the Euclidean norm of the regularized so-
lution is plotted for each z. As a result, the boundary of the scatterer is highlighted
by the points of the grid corresponding to the largest increase of the Euclidean norm.
We recall that the computational time of this algorithm can be notably reduced by
applying a no-sampling formulation [2], called ‘no-sampling linear sampling method’
(NSLSM), which is the one adopted in the present paper.

Finally, we remark that, for the purposes of our implementation, a univocal iden-
tification of the shape of the scatterer is performed by post-processing the NSLSM
through an active contour technique [1, 10]: for reasons that will be clear in the next
subsection, we choose the parameters of this edge detection algorithm in such a way
that a slight overestimate of the scatterer is favoured.

4.3. The contrast source inversion method. In our hybrid scheme, the con-
trast source inversion (CSI) method [14, 27, 28] is the technique we use for the quanti-
tative inversion of the inhomogeneous Lippmann-Schwinger equation. More precisely,
the CSI method computes the point values of the refractive index n(x) inside an in-
vestigation domain T containing the scatterer support D̄ = suppm. The idea at the
basis of the CSI method is to split an inverse scattering problem described by an
integral equation such as (3.1) into two different problems, one defined inside T and
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the other one on the curve Γ where antennas are placed. More formally, remembering
(2.4)(b), equation (3.1) is equivalently recast in the form

u(x;x0) = ui(x;x0)− k̃2
0

∫
T

G(x; y)m(y)u(y;x0) dy, (4.5)

and then replaced by the system{
w(x;x0) = m(x)ui(x;x0)−m(x)

[
GTw(·;x0)

]
(x) for x ∈ T (a)

us(x;x0) = −
[
GΓw(·;x0)

]
(x) for x ∈ Γ, (b)

(4.6)

where w(x;x0) := m(x)u(x;x0), the operator GT : L2(T )→ L2(T ) is defined as[
GT f

]
(x) := k̃2

0

∫
T

G(x; z)f(z) dz ∀x ∈ T, (4.7)

and GΓ : L2(T )→ L2(Γ) is defined as[
GΓf

]
(x) := k̃2

0

∫
T

G(x; z)f(z) dz ∀x ∈ Γ. (4.8)

Note that eq. (4.6)(a) is obtained from eq. (4.5) by multiplying both members for
m(x), while eq. (4.6)(b) is the restriction of eq. (3.1) for x ∈ Γ: in particular,
us(x;x0) for x ∈ Γ represents the data of the inverse scattering problem.

The CSI method consists of minimizing the functional

F (w,m) =
‖us − GΓw‖2Γ
‖us‖2Γ

+
‖mui − w −mGTw‖2T

‖mui‖2T
, (4.9)

where we dropped the dependence on x, x0, and ‖ · ‖Γ, ‖ · ‖T denote the L2-norms
on the spaces L2(Γ), L2(T ) respectively. The minimization of F is performed by
applying gradient algorithms [24] and the updates are alternately computed for m
and w [27, 28]. The information on the background is again coded into the Green’s
function, i.e., into the operators GT and GΓ.

In the standard case of a homogeneous medium, the implementation of the ap-
proach described above is well-established and does not require further discussion.
Instead, in the inhomogeneous case two issues need to be addressed. First, we ob-
serve that eq. (4.6)(a) is written for x ∈ T ; on the other hand, the integral equation
(3.1), whence eq. (4.6)(a) should derive, has been proved in Theorem 3.2 only for
x ∈ Ω̃0 and, in general, T is not contained in Ω̃0. To overcome this drawback, we
observe that the purpose of the CSI algorithm is to compute the values of n(x) for
x ∈ T , and these values do not depend on the reference background inside T . Then,
we can think that the original background in T is replaced by an artificial one, which
hosts the same homogeneous medium occupying Ω̃0. In other words, this amounts
to replacing the refractive index nb with ñb, such that ñb(x) = ñ0 for all x ∈ T and
ñb(x) = nb(x) for all x /∈ T . Of course, the background Green’s function G(x; z) in
eqs. (4.7) and (4.8) must be replaced accordingly, i.e., by G̃(x; z). We point out that
a good choice of the investigation domain T is the region highlighted by the NSLSM,
as explained in Subsection 4.2: indeed, such region is an overestimate of D, i.e., it
contains D, but is also close to be as small as possible, thus minimizing the number of
points where n(x) is to be computed, i.e., the number of unknowns of the problem. As
a result, also the number of measurements necessary for a successful implementation
of the method is optimized.
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This same trick, i.e., changing the background as just explained, is also useful
to address the second issue, which is concerned with the computation of the Green’s
function G(x; z). Indeed, eq. (4.7) shows that both x and z vary in T : then, in
particular, also the singular case x = z is of interest. Now, G(x; z) satisfies eq. (4.1)
(with the identification z = x0), which implies that if z ∈ suppmb and x = z, the
integrand function at the right-hand side of (4.1) is affected by a double singularity
for y = z: one due to Φ(z; y), the other one due to G(y; z). This prevents us from
applying the usual approximation scheme outlined in eq.s (4.2) and (4.3): accordingly,
an ad hoc quadrature rule should be created to numerically compute the integral.
Such problem is avoided by the previous choice of the new background, i.e., of ñb:
indeed, the region T is now erased by the actual integration domain in (4.1), since
m̃b(x) := [ñ0 − ñb(x)]/ñ0 vanishes inside T , while z ∈ T .

We are now ready to present in the next section some numerical results obtained
by implementing the theoretical framework developed so far.

5. Numerical examples. The aim of this section is twofold. First, we numeri-
cally validate the CSI algorithm in the inhomogeneous case: more precisely, we com-
pare the performance of the CSI based on the inhomogeneous Lippmann-Schwinger
equation with that of the traditional CSI (the two algorithms will be called ‘inhomo-
geneous CSI’ and ‘homogeneous CSI’, respectively). To this end, we perform a pre-
liminary set of simulations by using simple numerical phantoms and without adding
noise to measurements. Second, we test the effectiveness of the whole hybrid scheme
presented above, as well as its worthwhileness in real applications, by implementing
it with a realistic phantom of a female breast slice: the goal is to highlight the pres-
ence of a tumoral mass inside the inhomogeneous background formed by the healthy
tissues.

5.1. Homogeneous and inhomogeneous CSI: a comparison. The first
set of numerical simulations is concerned with the reconstruction of the two (non-
absorbing) phantoms visualized in panels (a) and (b) of Figure 5.1. In particular, we
are going to show an example where the homogeneous CSI fails to provide a satisfac-
tory result, while the inhomogeneous CSI succeeds: this is obtained by coding some
additional information into the background, which then becomes inhomogeneous.

Indeed, consider first the phantom in Figure 5.1(a): the pixel values of the rela-
tive dielectric permittivity εr and the geometry of the objects are plotted in Figure
5.2(a). The scattering experiment is simulated by choosing a wavelength λ equal to
the length unit adopted for all panels in Figure 5.2, and by using 30 unit point sources
uniformly placed on a circle centred at the origin and with radius 3λ. The scattered
field is computed by means of a MOM code, as outlined in Subsection 4.1, at 30
points obtained from the previous ones after a rotation of π/30. Then, we apply the
homogeneous CSI (implemented in the error-reducing version of [28] and initialized
by backpropagation): as a result, we obtain the satisfactory reconstruction shown in
Figure 5.2(b).

However, if we consider the more complex scenario of Figure 5.1(b), with pixel
values of εr plotted in Figure 5.2(c), the same homogeneous CSI provides the un-
satisfactory reconstruction shown in Figure 5.2(d): it is evident that the algorithm
converges to the wrong local minimum. A feasible way to overcome this drawback is
to consider the square barrier surrounding the two disks as a part of the background:
this situation is represented in Figure 5.2(e). Then, we implement the inhomogeneous
CSI: in particular, the reconstruction is now performed only inside the barrier, i.e.,
inside the green square highlighted in Figure 5.2(f). As a result, the effectiveness of
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(a) (b)

Figure 5.1. Visualization of the relative dielectric permittivity εr of the numerical phantoms
utilized for the first set of scattering experiments. The phantoms are piecewise homogeneous and
purely dielectric, i.e., non-absorbing.

the algorithm in reconstructing the two disks is restored, as shown by Figure 5.2(f)
itself.

5.2. The hybrid approach validated against a realistic numerical breast
phantom. In the following numerical examples we test the effectiveness of the hybrid
scheme described in Section 4 when applied to scattering situations that might occur
in practice. To this end, we consider a realistic numerical phantom of a female breast
slice, whose pixel values of relative permittivity εr and conductivity σ are obtained
from the segmentation of MRI (Magnetic Resonance Imaging) images [20] (such phan-
toms are downloadable from the web site uwcem.ece.wisc.edu/home.htm). Then, a
circular tumor with a diameter of 0.5 cm is artificially inserted into the phantom: we
refer e.g. to [21] for the values of the electric parameters of tumoral tissues at various
frequencies. Our numerical experiments are performed at a frequency of f = 3 GHz:
accordingly, in panels (a) and (b) of Figure 5.3 we plot the pixel values of the relative
permittivity εr and conductivity σ of the breast tissues at such frequency. As shown
in this figure, we also assume that the breast slice is immersed in an infinite and
homogeneous coupling medium [23]: this trick reduces reflection phenomena, thus
favouring the penetration of the wave into the breast itself. Finally, we choose 30 unit
point sources uniformly placed on a circle surrounding the breast, concentric with it
and having a radius of 6 cm. By using a MOM code, the scattered field is computed
at 30 points obtained from the previous ones after an angular shift of π/30, then these
field values are perturbed by 3% Gaussian noise.

A whole and precise reconstruction of such a heterogeneous scatterer as a breast
slice is extremely difficult to be achieved: the main issue is the strong variability of
the refractive index from point to point, as well as its large range of values. Then, in
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2. Panels (a) and (c): pixel values of the relative dielectric permittivity εr of the
phantoms shown in Figure (a) and Figure (b), respectively. Panels (b) and (d): corresponding
reconstructions provided by the homogeneous CSI. Panel (f): reconstruction of the phantom in (c)
provided by the inhomogeneous CSI, when the background is assumed to be as shown in panel (e).



16 THE INHOMOGENEOUS LIPPMANN-SCHWINGER EQUATION

order to properly describe the heterogeneity of the tissues, the investigation domain
should be discretized by using a large number of pixels, which corresponds to a large
number of unknowns in the CSI algorithm. In practical applications, this number can
be too large with respect to the amount of data, thus impairing the reliability of the
reconstruction. Therefore, an inhomogeneous-background approach to the problem
can be helpful: indeed, when a priori known, a part of the scatterer can be included
in the background, so that the reconstruction can be performed on a fewer number of
pixels (i.e., in a smaller investigation domain), which reduces the number of unknowns
and increases the quality of the reconstruction itself.

In the first numerical example, whose results are collected and visualized in Figure
5.4, we assume that the known background is formed by the fat internal tissue, the
skin layer and the coupling medium. In general, we may think that such preliminary
information on the tissues is obtained from the segmentation of the most recent MRI
image of the patient’s breast, while the properties of the coupling medium are known a
priori. The pixel values of the relative permittivity εr and conductivity σ of these me-
dia are shown in panels (a) and (b) of Figure 5.4. Since our goal here is to reconstruct
both the glandular and tumoral tissues inside the breast fat, such background panels
have been respectively obtained from panels (a) and (b) of Figure 5.3 by removing
the artificial circular tumor (i.e., by restoring the original healthy tissue) and by ar-
tificially replacing the central glandular mass with an ‘average fat’ (i.e., by replacing
the pixel values of εr and σ in the glandular tissue with constant values computed by
averaging over the pixel values of εr and σ in the fat tissue). Then, this background
is utilized to implement the NSLSM, the qualitative technique outlined in Subsection
4.2. In Figure 5.4(c) we show the visualization of the unknown region as provided by
the NSLSM: more precisely, we plot the values of the indicator function, chosen as
the reciprocal of the squared norm of the regularized solution to the modified far-field
equation (4.4). Next, we apply an active contour technique [1, 10] to this visualiza-
tion map: as a result, we extract the support of the unknown region T , which is the
homogeneous inner domain shown in panel (d) of Figure 5.4. More precisely, in this
panel we plot the pixel values of εr characterizing the artificial background we need to
consider for applying the inhomogeneous CSI in the investigation domain T (the plot
of σ would be analogous and is not shown here). Indeed, we remind that, in order
to avoid the theoretical and computational problems described in Subsection 4.3, the
domain T should be considered as filled with the outmost medium (i.e., in our case,
with the coupling medium). The reconstructions provided by the inhomogeneous CSI
inside T for the relative permittivity and for the conductivity are presented in panels
(e) and (f) of Figure 5.4, respectively: the results are in rather good agreement with
the true phantoms of Figure 5.3.

In the second numerical example, we utilize the inhomogeneous CSI to investigate
the nature of a small inhomogeneity detected by the NSLSM. In this case, while
maintaining the coupling medium as before, the whole healthy breast slice, just as
provided by the segmentation of the MRI image, is assumed as background, and the
reconstruction is performed only on the pixels where the presence of the (prospective)
tumor is highlighted (for a detailed analysis of the performance of the NSLSM in this
framework, see [5]). As before, panels (a), (b) and (c) of Figure 5.5 are concerned with
the NSLSM: (a) and (b) are the plots of the relative permittivity and conductivity of
the background, while (c) shows the NSLSM output, whence the investigation domain
T (containing the inhomogeneity to be analyzed) is extracted by using active contours.
In panel (d) of Figure 5.5 we plot the relative permittivity of the artificial background
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(a) (b)

Figure 5.3. Numerical phantom of the breast slice utilized in our scattering simulations, per-
formed at a frequency of f = 3 GHz. Panel (a): pixel values of the relative dielectric permittivity
εr. Panel (b): pixel values of the conductivity σ. In both panels, the tumoral mass is the small disk
centered at (0.02, 0) m and with a diameter of 0.5 cm.

utilized for the inhomogeneous CSI: the coupling medium is now inserted into the area
T detected by the NSLSM. Finally, panels (e) and (f) show the reconstructions of the
relative permittivity and conductivity provided by the inhomogeneous CSI inside T :
again, a comparison with the true phantoms of Figure 5.3 highlights that the quality
of these reconstructions is rather good.

6. Conclusions and further developments. In this paper we have proposed a
hybrid method to numerically solve a large class of two-dimensional inverse scattering
problems. According to this hybrid approach, a qualitative method, i.e., the NSLSM,
is first applied to approximately identify the region of primary interest inside an inho-
mogeneous background; then, a quantitative algorithm, i.e., the inhomogeneous CSI,
is implemented only in this region to compute the point values of the electric param-
eters (permittivity and conductivity) of the unknown scatterer. Both steps are made
possible by the knowledge of the inhomogeneous background: inserting such informa-
tion in the whole procedure improves the quality of the reconstruction and optimizes
the number of data necessary for a satisfactory result, as shown by the numerical
simulations in Section 5. The first (qualitative) step consists of a no-sampling imple-
mentation of the LSM for an inhomogeneous background, which can be performed
according to the guidelines recalled in Subsection 4.2 and detailed in the papers cited
there. Instead, the second (quantitative) step requires a preliminary theoretical in-
vestigation, in order to extend the usual Lippmann-Schwinger equation to the case of
an inhomogeneous background. Such a generalization has been obtained in Section 3
as a consequence of the differential formulation of the scattering problem: under ap-
propriate assumptions on the refractive index and on the magnetic permeability, the
new integral equation maintains its simplest form, i.e., involves no boundary terms
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4. Reconstruction of the glandular and tumoral tissues by means of the hybrid ap-
proach. Panels (a) and (b): pixel values of the relative permittivity εr (a) and conductivity σ (b) of
the background utilized for the implementation of the NSLSM. Panel (c): visualization provided by
the NSLSM. Panel (d): pixel values of the relative permittivity of the artificial background utilized
for the implementation of the inhomogeneous CSI; the homogeneous inner domain T having the
same properties of the outer coupling medium is obtained by applying an active contour technique
to the visualization map shown in panel (c). Panel (e) and (f): relative permittivity (e) and con-
ductivity (f) as reconstructed by the inhomogeneous CSI; the region of reconstruction, delimited by
a closed green line, coincides with the investigation domain T identified in panel (d).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5. Reconstruction of just the tumoral tissue by means of the hybrid approach. Panels
(a) and (b): pixel values of the relative permittivity εr (a) and conductivity σ (b) of the background
utilized for the implementation of the NSLSM. Panel (c): visualization provided by the NSLSM.
Panel (d): pixel values of the relative permittivity of the artificial background utilized for the imple-
mentation of the inhomogeneous CSI; the (non-connected) homogeneous inner domain T having the
same properties of the outer coupling medium is obtained by applying an active contour technique
to the visualization map shown in panel (c). Panel (e) and (f): relative permittivity (e) and con-
ductivity (f) as reconstructed by the inhomogeneous CSI; the region of reconstruction, delimited by
two closed green lines (a larger one on the right and a very small one on the left of the glandular
tissue), coincides with the investigation domain T identified in panel (d).
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across the discontinuities of the electric parameters. Accordingly, the homogeneous
and inhomogeneous Lippmann-Schwinger equations have the same structure: this has
suggested the idea of generalizing the CSI algorithm, originally based on the former
equation, to the case of an inhomogeneous background, handled by the latter.

As regards possible further developments, a first task is trying to prove the exact
equivalence between differential and integral formulation of the scattering problem
(possibly by adopting a variational approach, i.e., by interpreting system (2.4) in a
weak sense and looking for its solution in an appropriate Sobolev space, cf. [17]):
as pointed out in Section 3, such equivalence is likely to hold. As a generalization,
the case of non-constant magnetic permeability µ(x) would also deserve an analogous
investigation: the corresponding integral formulation would be more complex, owing
to the presence of boundary terms across the discontinuities of µ(x). Of course, the
same problems can also be formulated in a three-dimensional framework. An ideal
goal might be to parallel and generalize to the case of an inhomogeneous background
the results obtained in [22] for a homogeneous one. This would allow extending our
hybrid approach to very general three-dimensional inverse scattering problems, where
the issues of a good balance between the amount of data and the number of unknowns,
as well as the related problem of computational costs, are even more important than
in two-dimensional set-ups.
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