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Abstract. Let Γ be a self-complementary circulant of prime power order. It is shown that either
Γ is a lexicographic product of two small self-complementary circulants or there exists a multiplicative
automorphism of a regular cyclic subgroup that maps Γ to its complement.
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1. Introduction. A digraph (or an undirected graph) Γ is called a circulant of
order n if it has a cyclic group of automorphisms which is regular on the vertex set.
Recall that a permutation group is regular if it is transitive and the only element that
fixes a point is the identity.

Moreover, for undirected graphs we introduce the concept of being self-
complementary. Let Γ = (V,E) be an undirected graph with vertex set V and edge
set E. The complement Γ of Γ is the undirected graph with vertex set V such that
{u, v} is an edge of Γ if and only if {u, v} /∈ E. An undirected graph Γ is called
self-complementary if Γ ∼= Γ.

This paper aims to classify self-complementary (undirected) circulants of prime-
power order pd, where p is a prime and d ≥ 1.

In the literature, self-complementary circulants have received attention for a long
time, dating back to Sachs in 1962; refer to [1, 4, 7, 19, 20, 22]. More recently, study
has been extended to self-complementary graphs which are vertex-transitive; refer to
the articles [3, 6, 13, 18, 23] and the survey [2] and references therein.

In [4], Fronček, Rosa, and Širáň determined the order of self-complementary circu-
lants. They then proposed the question of whether each self-complementary circulant
could be produced by a multiplicative automorphism of a regular cyclic subgroup in
the sense of Construction 3.2. This question was answered in [7, 16] in the nega-
tive. A natural next step is to seek a classification of self-complementary circulants.
By Muzychuck’s theorem [17], self-complementary circulants of square-free order can
be constructed by multiplicative automorphisms of the regular cyclic subgroup, see
Construction 3.2. The purpose of this paper is to determine the other extremal case,
namely, the prime power order case.
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We next introduce two typical constructions for self-complementary circulants.

Let G be a finite group. We remark here that throughout this paper we use mul-
tiplicative notation for our groups, so the identity element of the group G is denoted
by 1. In general, let S be a subset of G which does not contain the identity, and the
Cayley digraph Cay(G,S) is the digraph with vertex set G such that u is adjacent to
v if and only if vu−1 ∈ S. It follows from the definition that the automorphism group
AutCay(G,S) has a subgroup Ĝ ∼= G, where

Ĝ = {ĝ ∈ Sym(G) : x �→ xg ∀x ∈ G | g ∈ G}.

So Ĝ is regular on the vertex set of Cay(G,S), and Ĝ is actually the right regular
representation of the group G which is also denoted by GR in some literature. In fact,
it is well known that a digraph Γ is a Cayley digraph if and only if Aut Γ contains a
regular subgroup. A circulant is therefore a Cayley digraph of a cyclic group. Clearly
the Cayley digraph Cay(G,S) is undirected if and only if S = S−1 = {s−1 | s ∈ S}.
From now on, when we say “a Cayley graph” or “a self-complementary circulant
(graph),” we always mean it is undirected.

For a self-complementary graph Γ = (V,E), an isomorphism σ between Γ and
its complement Γ is called a self-complementary isomorphism, or an sc-isomorphism
for short. An sc-isomorphism σ of Γ is a permutation of the vertex set V such that
σ2 ∈ Aut Γ and so σ normalizes Aut Γ. Assume further that Γ = Cay(G,S) is a
Cayley graph of the group G and so AutΓ contains the regular group Ĝ. Now an
extremal case is where σ normalizes Ĝ. Such a self-complementary Cayley graph is
called a self-complementary-normal Cayley graph with respect to σ, or an sc-normal
graph for short. It is easy to show that Γ is an sc-normal circulant if and only if
there exists a multiplicative automorphism of a regular cyclic subgroup that maps
Γ to its complement; see section 3. Construction 3.2 provides us with a method for
constructing all sc-normal circulants of prime power order.

Another typical construction comes from a special graph product. In general, for
a digraph Σ with vertex set U and a digraph Δ with vertex set W , the lexicographic
product Σ[Δ] (this graph construction is also called the wreath product) is the digraph
with vertex set U ×W such that the vertex (u,w) is adjacent to (u′, w′) if and only
if either u is adjacent to u′ in Σ or u = u′ and w is adjacent in Δ to w′. If both Σ
and Δ are self-complementary graphs, then so is Σ[Δ]; see Lemma 2.4.

The main result of this paper is the following theorem. Note that by the definition,
it is easy to deduce that the order of a self-complementary circulant must be an odd
integer.

Theorem 1.1. Let Γ be a self-complementary circulant of order pd, where p is a
prime and d ≥ 1. Then p is odd, and either Γ is sc-normal or Γ = Σ1[Σ2], where Σi

is a self-complementary circulant of order pni for i = 1, 2 and n1 + n2 = d.

2. Preliminary results. Throughout the paper, let p be an odd prime. A finite
permutation group is called a c-group if it contains a cyclic regular subgroup. Since
the automorphism group of a circulant must contain a cyclic regular group, the studies
of circulants are closely related to the studies of c-groups. The research of c-groups
was initiated by Burnside in 1900, and recently a precise list of primitive c-groups
was obtained by using the classification of finite simple groups and a classical result
of Schur; see, for example, [8, 11, 15].

In this paper we always use the notation Zn to denote an abstract cyclic multi-
plicative group of order n.
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Lemma 2.1 (see [15, Lemma 2.3]). Suppose that X is a primitive permutation
group on Ω and X contains a cyclic regular subgroup. Then one of the following holds:

(i) |Ω| = q, and X ≤ AGL(1, q), where q is a prime.
(ii) |Ω| = 4, and X = S4.
(iii) X is almost simple and 2-transitive on Ω.

Corollary 2.2. Suppose that X is a solvable primitive c-group on Ω, where
|Ω| = pd is an odd prime power. Then |Ω| = p and Zp ≤ X ≤ AGL(1, p).

Next we introduce the concept of the normal Cayley digraph. Let Γ = Cay(G,S)
be a Cayley digraph. Let Aut(G,S) = {σ ∈ Aut(G) | Sσ = S}. Then each element
in Aut(G,S) induces an automorphism of the Cayley digraph Γ = Cay(G,S) and
it is well known that the normalizer of the regular subgroup Ĝ in Aut(Γ) is Ĝ �

Aut(G,S). A Cayley digraph Γ = Cay(G,S) is called normal if Ĝ is normal in
Aut(Γ) or equivalently if Aut(Γ) = Ĝ�Aut(G,S); see [5, 21].

The finite arc-transitive circulants were classified independently, and via two dif-
ferent methods, by Kovács [9] and Li [12]. Note that in [12, Theorem 1.3], the orders
of the deleted lexicographic product type digraphs cannot be a prime power. Then
the following result concerning arc-transitive circulants of order pd is an immediate
corollary of Theorem 1.3 in [12]. As usual, denote by Kn the complete graph of order
n and by Kn the complement of Kn.

Theorem 2.3. Let Γ = Cay(Zpd , S) be a connected arc-transitive directed (or
undirected) circulant of order pd, where p is an odd prime and d ≥ 1 is an integer.
Then one of the following holds:

(i) Γ is a complete graph.
(ii) Γ is a normal circulant.
(iii) There exists an arc-transitive circulant Σ of order pd−i such that Γ = Σ[Kpi ],

where 1 ≤ i < d. Let Zpi ≤ Zpd be the subgroup of order pi; then sZpi ⊆ S
for any s ∈ S.

The next lemma concerns the lexicographic product of two graphs; refer to [14]
or [2, Theorem 4.3] and [10, Lemma 2.2].

Lemma 2.4. Let Γ = Σ[Δ], where Σ and Δ are two graphs. Then we have the
following statements:

(i) If both Σ and Δ are self-complementary, then so is Γ.
(ii) If both Σ and Δ are circulants, then so is Γ.

We also need the following theorem.

Theorem 2.5 (see [15, Theorem 1.4]). The automorphism group of a self-
complementary circulant is solvable.

3. Two constructions. In this section we discuss two constructions of self-
complementary circulants.

Let G = Zpd be a multiplicative cyclic group of order pd and the identity element
of G is 1. Let Γ = Cay(G,S) be a self-complementary circulant of odd prime power
order (so S = S−1), and let σ be an sc-isomorphism of Γ. Let G# = G\{1}. Since Γ
is vertex transitive, without loss of generality, we may suppose that σ fixes the vertex
1, and hence Sσ = G#\S. Moreover replacing σ by σm for some odd integer m, we
may assume that the order o(σ) is a power of 2.

We first construct sc-normal circulants. Suppose Γ = Cay(Zpd , S) is sc-normal
with respect to σ. As explained above we may suppose that σ fixes 1 and o(σ) is a
power of 2. Since Γ is sc-normal, σ can be viewed as an automorphism of the group
Zpd , and so we may assume that σ ∈ Aut(Zpd). Note that Aut(Zpd) ∼= Zpd−1(p−1) is
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a cyclic group and the unique involution (g → g−1) in Aut(Zpd) preserves S, so we
have o(σ) ≥ 4. Define

(3.1) S(pd, σ) := {S | S ⊂ (Zpd)#, Sσ = (Zpd)#\S}.
It is easy to prove the following lemma.

Lemma 3.1. The circulant Γ = Cay(Zpd , S) is sc-normal if and only if S ∈
S(pd, σ) for some σ ∈ Aut(Zpd) such that o(σ) ≥ 4 is a power of 2.

Therefore, to classify all sc-normal circulants, it is sufficient to determine the set
S(pd, σ) for each σ in the Sylow 2-subgroup of Aut(Zpd) with o(σ) ≥ 4. The following
construction, which is an application of Suprunenko’s construction in [20], tells us how
to obtain the set S(pd, σ), and so we are able to construct all sc-normal circulants of
order pd.

Construction 3.2. Let G = Zpd . Let τk be an element of Aut(G) with order

2k for k ≥ 2. Clearly, both 〈τk〉 and 〈τ2k 〉 act semiregularly on G#. Let m = pd−1
2k .

Then τ2k has 2m orbits on G#: O1, . . . , O2m. Relabeling these orbits if necessary, we
may assume that Oτk

2i−1 = O2i for each i ∈ {1, 2, . . . ,m}. We observe

(1) S ∈ S(pd, τk) if and only if S = ∪m
i=1O2i−ji , where ji = 0 or 1;

(2) Cay(G,S) is sc-normal if and only if S ∈ S(pd, τk) for some k ≥ 2.
The second special construction is the lexicographic product of small self-

complementary ciruculants. In general, let Γ = Cay(G,S), where G is a finite group.
If S is a union of some left cosets of a subgroupH and H∩S = ∅, then sH ⊆ S for any
s ∈ S. In this case, it is proved in [10, Lemma 2.2] that Γ = Σ[Km], wherem = |H | and
Σ is a graph of order |G|/|H |. In particular, if H �G, then Σ = Cay(G/H, S), where
S is the image of S in G/H . Applying this general result to the self-complementary
lexicographic product circulants, we have the following useful lemma.

Lemma 3.3. Let G = Zpd and let Gi = Zpi be the unique subgroup of order
pi, where 1 ≤ i ≤ d − 1. The graph Γ = Cay(G,S) is self-complementary such that
sGi ⊂ S for any s ∈ S with o(s) > pi if and only if Γ = Σ[Γ1] is a lexicographic
product of a self-complementary circulant Σ of order pd−i by a self-complementary
circulant Γ1 of order pi.

Proof. Suppose Γ = Cay(G,S) is a self-complementary circulant of order pd such
that sGi ⊂ S for any s ∈ S with o(s) > pi. Let

S1 = {s ∈ S | o(s) ≤ pi} and S2 = {s ∈ S | o(s) > pi}.
Let Γ1 = Cay(Gi, S1). Then the graph Cay(G,S2) = Σ[Kpi ], where Σ = Cay(G/Gi, S2)

and S2 = {s = sGi | s ∈ S2}. Moreover, Γ = Σ[Γ1] is a lexicographic product graph.
By Corollary 4.5 (proved in the next section), it is easy to deduce that Σ and Γ1 are
also self-complementary circulants of order pd−i and order pi, respectively.

Conversely, suppose we have a self-complementary circulant Γ1 = Cay(Gi, S1) of
order pi and a self-complementary circulant Σ = Cay(G/Gi, S2) of order p

d−i. (Here
we use the notation of quotient groups just for convenience.) Put S2 = {s | s ∈
G, sGi ∈ S2}. Let S = S1∪S2 and Γ = Cay(G,S). By the argument of the preceding
paragraph, we have that Γ = Σ[Γ1] such that sGi ⊂ S for any s ∈ S with o(s) > pi.
Since Σ and Γ1 are self-complementary, by Lemma 2.4, Γ is also self-complementary
as required.

4. Cayley subsets. We begin to study the self-complementary circulant Γ =
Cay(Zpd , S) by analyzing the Cayley subset S of Γ. The main result of this section is
Proposition 4.2 that divides the Cayley subset S into two parts.
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4.1. Notation. We first fix the notation. Throughout this section, let G = Zpd

be a cyclic multiplicative group of odd prime power order. Let Gi ≤ G be the unique
cyclic subgroup of G with order pi, where i ∈ {1, 2, . . . , d − 1}. For convenience,
set Gd = G. Let Γ = Cay(G,S) be a self-complementary circulant and let σ be an
sc-isomorphism of Γ that fixes 1 and is of order a power of 2. Moreover, we have
(Aut(Γ))σ = Aut(Γ) = Aut(Γ) and σ2 ∈ Aut(Γ). We list the following assumption
for the proof of Proposition 4.2.

Assumption 4.1. Let Γ = Cay(Zpd , S) be a self-complementary circulant and let

σ : Γ → Γ be an sc-isomorphism that fixes 1 and is of order a power of 2. Let G = Zpd

and let

(4.1) Ĝ ≤ X ≤ Aut(Γ)

such that Xσ = X and σ2 ∈ X . Let

(4.2) Y = 〈X, σ〉.

For example, the pair (X,Y ) = (Aut(Γ), 〈Aut(Γ), σ〉) satisfies Assumption 4.1.
Under Assumption 4.1, we have that the quotient group Y/X is a cyclic group of
order 2. By Theorem 2.5, X is solvable and hence Y is also solvable.

Moreover suppose B is a block of Y ; we denote Y B
B to be the induced permutation

group on B by the setwise stabilizer YB.
We now prove a proposition, which is one of the key ingredients in the proof of

the main theorem.
Proposition 4.2. With the above notation, suppose Γ = Cay(Zpd , S), σ,X, Y

satisfy Assumption 4.1. Then there exists n ∈ {1, . . . , d} such that Gn = Zpn is a

block of Y and Ĝn � Y Gn

Gn
, in particular, σ|Gn ∈ Aut(Gn). Moreover, for each s ∈ S

with o(s) > pn, sG1 ⊂ S.

4.2. Proof of Proposition 4.2. With the above notation, suppose the hypoth-
esis of Proposition 4.2 holds throughout this subsection. We first note that Y is
imprimitive when d ≥ 2.

Lemma 4.3. Under the hypothesis of Proposition 4.2, let d ≥ 2. Then Y is
imprimitive. Moreover, let B be a minimal block of Y such that 1 ∈ B. Then B =
G1 = Zp. Moreover, Ĝ1 � Y G1

G1
.

Proof. Since Y is a solvable c-group of degree pd with d ≥ 2, Corollary 2.2 implies
that Y is not primitive. Let B be a minimal block of Y such that 1 ∈ B; then Y B

B is
primitive. Consider the right multiplications by the elements in B; we have BB = B.
Thus B is a subgroup of G. It follows that Y B

B is a primitive group containing a cyclic

regular subgroup B̂. Since Y B
B is solvable, Corollary 2.2 implies that B = G1 and

Ĝ1 � Y G1

G1
≤ AGL(1, p).

Lemma 4.4. For each i ∈ {1, 2, . . . , d− 1}, Gi is a block of Y .
Proof. Suppose that d − 1 ≥ 2. Let B = {xG1 | x ∈ G} be the complete block

system containing the block G1. Let Y = Y B be the permutation group on B induced
by Y . Then G = G/G1

∼= ĜB is regular on B. Thus Y is also a solvable c-group of
degree pd−1. Applying the same argument of Lemma 4.3, G2 = G2/G1 is the unique
minimal block (containing G1) of Y ; therefore G2 is a block of Y . Repeating this
argument, we conclude that Gi is a block of Y for each i ∈ {1, 2, . . . , d− 1}.

Corollary 4.5. Let g ∈ G with order pi, where i ∈ {1, 2, . . . , d}. Let Y0 be the
point stabilizer of 1 in Y . Then each element in the orbit gY0 is of order pi. Moreover,
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Γi = Cay(Gi, S(i)), where S(i) = {s ∈ S | o(s) ≤ pi} is a self-complementary graph
and σ|Gi : Γi → Γi is an sc-isomorphism.

Proof. The proof follows from the fact that the point stabilizer Y0 fixes each block
Gi setwise for i ∈ {1, 2, . . . , d− 1}.

Let Ω = G be the vertex set of Γ. An orbit Δ of Y on Ω×Ω is called an orbital of
Y on Ω, and the digraph with vertex set Ω and arc set Δ is called an orbital digraph of
Y . Clearly Y is a subgroup of the automorphism group of this orbital digraph and Y
is transitive on both the vertex set Ω and the arc set Δ (that is, this orbital digraph is
both Y -vertex-transitive and Y -arc-transitive). We next consider the orbital digraphs
of Y . The main tool of our analysis is Theorem 2.3 which is true for both directed
and undirected arc-transitive circulants.

Lemma 4.6. Under the hypothesis of Proposition 4.2, let d ≥ 2. Then either
Ĝ� Y and σ ∈ Aut(G) or sG1 ⊂ S for each s ∈ S with o(s) = pd.

Proof. Let X0 and Y0 be the point stabilizers of 1 in X and Y, respectively.
Take any g ∈ S with o(g) = pd. Consider the orbital digraph Γg of Y with arc set
Δ = {1, g}Y . Then Γg = Cay(G,Sg ∪ Tg), where Sg = gX0 is a subset of S and
Tg = Sσ

g . Since o(g) = pd, Γg is a connected Y -arc-transitive circulant of order pd.

By Corollary 4.5, o(h) = pd for any h ∈ Sg ∪ Tg. In particular, Γg is not the
complete graph Kpd . Applying Theorem 2.3, we have either

(i) Ĝ� Y , that is, Y ≤ Ĝ�Aut(G), in particular, σ ∈ Aut(G); or
(ii) gG1 ⊂ Sg ∪ Tg.

In the latter case, we claim that gG1 ⊂ Sg ⊂ S. Note that by Lemma 4.3, B =
{xG1 | x ∈ G} is a block system of Y . Thus (gG1)

σ = gσG1. If gG1 ∩ Tg �= ∅, then
gσG1 ∩ Sg �= ∅, and so there exists x ∈ X0 such that gx ∈ gσG1. It follows that
(gG1)

σ = (gG1)
x and so |gG1 ∩Tg| = |gG1 ∩Sg|, contradicting the fact that p is odd.

Hence gG1 ⊂ Sg. The lemma is proved.
Proof of Proposition 4.2: By Lemma 4.6, we may assume that sG1 ⊂ S for each

s ∈ S with o(s) = pd. The case d − 1 = 1 is an immediate consequence of this and
Lemma 4.3.

We can now assume that d−1 ≥ 2. Note that Gd−1 is a block of Y . Let S(d−1) =
{s ∈ S|o(s) ≤ pd−1}. It follows from Corollary 4.5 that Γd−1 = Cay(Gd−1, S(d−1)) is

self-complementary and σ|Gd−1
is an sc-isomorphism of Γd−1. Let Xd−1 = X

Gd−1

Gd−1
and

Yd−1 = Y
Gd−1

Gd−1
. Assumption 4.1 holds for Γd−1 when we take X = Xd−1, Y = Yd−1

in this case. Therefore applying Lemma 4.6, we deduce that either ˆGd−1 � Yd−1 and
σ|Gd−1

∈ Aut(Gd−1) or sG1 ⊂ S for any s ∈ S with order pd−1.

Continuing in this fashion (note that Ĝ1 � Y G1

G1
by Lemma 4.3) we have that an

integer n exists such that n ∈ {1, . . . , d}, Ĝn�Y
Gn

Gn
and for each s ∈ S with o(s) > pn,

sG1 ⊂ S.

4.3. Cayley subsets S. Let Γ = Cay(G,S) be a self-complementary circulant
of order pd and let σ : Γ → Γ be a self-complementary isomorphism that fixes 1 and
is of order a power of 2. We next discuss in more detail the properties of the Cayley
subset S when d ≥ 2.

With the notation of Proposition 4.2, let X = Aut(Γ) and Y = 〈Aut(Γ), σ〉. Then
there exists n ∈ {1, . . . , d} such that Ĝn � Y Gn

Gn
and for each s ∈ S with o(s) > pn,

sG1 ⊂ S. Thus we divide the Cayley subset S into the following two parts. Let

(4.3) S1 = {s ∈ S | o(s) ≤ pn} and S2 = {s ∈ S | pd ≥ o(s) ≥ pn+1}.
Then S = S1 ∪ S2. Note that we set S2 = ∅ if n = d.
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Lemma 4.7. Let Γ = Cay(G,S) be a self-complementary circulant of order pd(d ≥
2) and let σ : Γ → Γ be an sc-isomorphism that fixes 1 and is of order a power of 2.
With the notation of Proposition 4.2, let X = Aut(Γ) and Y = 〈Aut(Γ), σ〉. Suppose
n, S1, S2 are defined as above in (4.3). Then the following hold:

(1) For any s ∈ S2, we have sG1 ⊆ S2.
(2) Ĝn � Y Gn

Gn
, in particular, σ|Gn := τ ∈ Aut(Gn).

(3) Γn := Cay(Gn, S1) is self-complementary, and τ is an isomorphism from Γn

to its complement. So Γn is sc-normal and S1 ∈ S(pn, τ) that is defined in
(3.1) in section 3.

(4) Let Xn = XGn

Gn
and let S(pn, τ,Xn) be the subset of S(pn, τ) such that each

element of S(pn, τ,Xn) is the union of some orbits of the stabilizer of 1 in
Xn on the set G#

n . Then S1 ∈ S(pn, τ,Xn).
(5) Given R ∈ S(pn, τ,Xn), let S′ = R ∪ S2. Then Γ′ = Cay(G,S′) is also

self-complementary such that (Γ′)σ = Γ′ and X = Aut(Γ) ≤ Aut(Γ′).
(6) Suppose further that n ≥ 2. Then there exists R ∈ S(pn, τ,XGn

Gn
) such that

rG1 ⊂ R for any r ∈ R with order greater than p.
Proof. Parts (1) and (2) follow from Proposition 4.2. Part (3) follows from

Corollary 4.5 and Lemma 3.1.
(4) Let L be the stabilizer of 1 inXn. SinceXn = Ĝn�L, where L ⊂ Aut(Gn, S1),

we have that S1 is the union of the orbits of L on G#
n .

(5) The result is trivial if d = n, so we suppose that d > n. Since R ∈
S(pn, τ), it follows from Lemma 3.1 that Cay(Gn, R) is self-complementary such
that τ maps Cay(Gn, R) to its complement. Moreover, XGn

Gn
≤ Aut(Cay(Gn, R))

as R ∈ S(pn, τ,Xn).
For any x ∈ X , g ∈ G, and r ∈ S′ = R ∪ S2, we have (g, rg)x = (1, r)ĝx. Since

X = ĜX0, where X0 is the point stabilizer of vertex 1 and ĝx ∈ X , there exist
g0 ∈ G and x0 ∈ X0 such that ĝx = x0ĝ0. Therefore, (g, rg)x = (1, r)x0ĝ0 . Note that
X0 ≤ XGn . If r ∈ R, then (1, r)x0 = (1, r′) for some r′ ∈ R. If r ∈ S2, then by
Corollary 4.5 we have (1, r)x0 = (1, r′) for some r′ ∈ S2. It then follows easily that X
preserves the edge set of Γ′, and so X ≤ Aut(Γ′).

Next we show that Γ′ is self-complementary. Since (Ĝ)σ ≤ Xσ = X for any g ∈ G,
there exists x ∈ X such that ĝσ = σx. It then follows that (g, s′g)σ = (1, s′)σx for
any s′ ∈ S′. By our definition of Γ′, (1, s′)σ is not an edge in Γ′. Hence X ≤ Aut(Γ′)
implies that Γ′ = Cay(G,S′) is also self-complementary and (Γ′)σ = Γ′. Part 5 is
proved.

(6) Suppose that Xn = Ĝn � L, where L ≤ Aut(Gn, S1) and τ
2 ∈ L. By Lemma

4.4, B1 = {gG1 | g ∈ Gn} forms a complete block system of 〈Xn, τ〉 on Gn. For any
gG1 ∈ B1 such that gG1 �= G1, we have |gG1 ∩ S1| �= |gτG1 ∩ S1| as p is odd, and so
gτG1 �= (gG1)

x for any x ∈ L. Thus we may suppose that L has even, say, 2m2, orbits
on B1\{G1}. After relabeling if necessary, we may suppose that {Σ1, . . . ,Σ2m2} are
L-orbits such that τ interchanges Σ2i−1 and Σ2i for each i.

Let

R1 =

m2−1⋃

i=0

Σ2i+1 and S0 = {s ∈ S1 | o(s) = p}.

Take R = S0 ∪R1. It is easy to see that R ∈ S(pn, τ,Xn) and rG1 ⊂ R for any r ∈ R
with order > p.

With the notation of Lemma 4.7, take R as in Lemma 4.7(6) and construct
Γ′ = Cay(G,R∪S2). Then Γ′ is closely related to the original Γ by the above lemma.
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It now follows from Lemma 3.3 that Γ′ is a lexicographic product self-complementary
circulant. We summarize this observation in the following corollary that allows us to
use induction to classify all self-complementary circulants of order pd.

Corollary 4.8. Let Γ = Cay(G,S) be a self-complementary circulant of order
pd(d ≥ 2) and let σ : Γ → Γ be an sc-isomorphism that fixes 1 and is of order a
power of 2. Suppose further that n, S1, S2 are defined as in (4.3). Then there exists a
self-complementary circulant Γ′ = Cay(G,S′) satisfying the following conditions:

(i) σ is also an sc-isomorphism of Γ′ and Aut(Γ) ≤ Aut(Γ′).
(ii) For any r ∈ S′ such that o(r) > p, we have rG1 ⊆ S′. So Γ′ = Σ[Γ1], where

Γ1 is a self-complementary circulant of order p and Σ is a self-complementary
circulant of order pd−1.

(iii) Let S′
2 = {r ∈ S′|o(r) > pn}; then S′

2 = S2.
(iv) Let S′

1 = {r ∈ S′|o(r) ≤ pn} and let τ = σ|Gn . Then τ ∈ Aut(Gn) and
τ : S′

1 → G#
n \S′

1.

5. Proof of Theorem 1.1.
Proposition 5.1. Suppose that Γ = Cay(Zp, S) is a self-complementary circu-

lant of order p. Then Γ is sc-normal.
Proof. The proof follows from Proposition 4.2 easily.
Hence Construction 3.2 tells us how to construct all self-complementary circulants

of order p.
Suppose Γ = Cay(Zpd , S) is sc-normal with respect to τ ∈ Aut(Zpd) and o(τ) is

a power of 2. We next study the properties of τ .
Lemma 5.2. Let Γ = Cay(G,S) be a self-complementary circulant of order pd

and G = Zpd . Let τ ∈ Aut(G) be an sc-isomorphism of order 2k1 from Γ to its
complement. Then the following hold:

(1) Let σ ∈ Aut(G). Then σ is an sc-isomorphism of order 2k2 from Γ to its
complement if and only if o(σ) = o(τ).

(2) Let τi = τ |Gi ∈ Aut(Gi), where Gi is the subgroup of order pi and 1 ≤ i ≤ d.

Then o(τi) = o(τ) and τi : S ∩Gi → G#
i \(S ∩Gi).

(3) Let d ≥ 2 and 1 ≤ i < d. Suppose further that sGi ⊂ S for any s ∈ S
with o(s) > pi. Let S = {sGi|s ∈ S, o(s) > pi} and let τ̄ ∈ Aut(G/Gi)
which is induced by τ . Then Cay(G/Gi, S) is sc-normal with respect to τ̄ and
o(τ̄ ) = o(τ).

Proof. (1) Note that τm ∈ Aut(Γ) if m is even, while τm is an sc-isomorphism if
m is odd. The result now follows from the fact that Aut(Zpd) is cyclic.

(2) Note that the unique involution ς : g �→ g−1 is not trivial on Gi; the result
then follows from Corollary 4.5.

(3) Let Aut(G) = 〈μ〉×〈γ〉 = Zp−1×Zpd−1 . It is easy to check that Aut(G/Gi) =

Aut(G)/〈γpd−1−i〉 and so o(τ) = o(τ̄ ). By Lemma 4.4, τ preserves B = {xGi|x ∈ G}
and hence τ : S → (G/Gi)

#\S.
We give some explanation of the above lemma which is useful when we handle

sc-normal circulants. Let Γ = Cay(Zpd , S) be an sc-normal circulant with respect
to τ ∈ Aut(Zpd) with order 2k1 . Lemma 5.2(1) gives a characterization for all sc-
isomorphisms in the Sylow 2-subgroup of Aut(Zpd). Next, for any subgroup Zpi , let
S(i) = {s ∈ S|o(s) ≤ pi}. We obtain a subgraph Cay(Zpi , S(i)) of Γ; Lemma 5.2(1)
and (2) tells us this subgraph is also sc-normal with respect to σi, where σi ∈ Aut(Zpi )
and o(σi) = 2k1 . Moreover, suppose further that this sc-normal Γ is of lexicographic
product type as well, that is, sZpi ⊂ S for any s ∈ S with o(s) > pi. Let S =

{sZpi |s ∈ S, o(s) > pi}. We obtain a quotient graph Cay(Zpd/Zpi , S) of Γ in this case.
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Lemma 5.2(1) and (3) tells us that this quotient graph is also sc-normal with respect
to σ̄, where σ̄ ∈ Aut(Zpd/Zpi) is induced by some σ ∈ Aut(Zpd) with o(σ) = 2k1 .

We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We proceed by induction on d. If d = 1, the result follows
from Proposition 5.1. Assume inductively the result holds for self-complementary
circulants of order ≤ pd−1, where d ≥ 2.

Let G = Zpd and Γ = Cay(G,S) be a self-complementary circulant of order pd.

Let σ : Γ → Γ be an sc-isomorphism that fixes 1 and is of order a power of 2. Let
Gi be the subgroup of order pi in G for any i ∈ {1, . . . , d}. By Proposition 4.2, there
exists n ∈ {1, . . . , d} such that σ|Gn ∈ Aut(Gn). If n = d, then Γ is sc-normal as
required. So we assume next that n < d.

By Proposition 4.2, sG1 ⊆ S, where s ∈ S with o(s) > pn. Let S1 = {s ∈
S | o(s) ≤ pn} and S2 = {s ∈ S | o(s) ≥ pn+1}. By Corollary 4.8, there exists a
self-complementary circulant Γ′ = Cay(G,S′) such that Γ′ = Σ[Γ1], where Γ1 is a
self-complementary circulant of order p and Σ is a self-complementary circulant of
order pd−1. Moreover, letting S′

1 = {r ∈ S′|o(r) ≤ pn} and S′
2 = {r ∈ S′|o(r) > pn},

we have S′
2 = S2.

If i(≥ 1) is maximal such that Γ′ = Σ′
1[Σ

′
2], where Σ′

2 is a self-complementary
circulant of order pi and Σ′

1 is a self-complementary circulant of order pd−i, then Σ′
1

cannot be a lexicographic product of two smaller self-complementary circulants. By
induction, Σ′

1 is sc-normal.

Suppose first that i ≥ n; then rGi ⊆ S′ for any r ∈ S′
2 with o(r) > pi by

Lemma 3.3. Since S′
2 = S2, sGi ⊆ S for any s ∈ S with o(s) > pi. By Lemma 3.3

again, Γ = Σ1[Σ2], where Σ2 is a self-complementary circulant of order pi and Σ1 is
a self-complementary circulant of order pd−i.

Suppose next that i < n. We will show that Γ is sc-normal in this case.

Let τ = σ|Gn and suppose that o(τ) = 2k1 (as o(τ)|o(σ)). By Proposition 4.2
τ ∈ Aut(Gn) and τ : S1 → G#

n \S1. By Lemma 5.2(1), any element of order 2k1 in
Aut(Gn) maps S1 to G#

n \S1. To show Γ is sc-normal, Lemma 5.2 implies that we
need to find ψ ∈ Aut(G) such that o(ψ) = 2k1 and ψ(s) /∈ S2 for any s ∈ S2.

By Corollary 4.8, Γ′
n = Cay(Gn, S

′
1) is also sc-normal with respect to τ . On the

other hand, Γ′ = Σ′
1[Σ

′
2], where Σ

′
1 = Cay(G/Gi, S

′
) and S

′
= {rGi|r ∈ S′, o(r) > pi}.

By induction, we have seen that Σ′
1 is sc-normal. Suppose ψ̄ ∈ Aut(G/Gi) is an sc-

isomorphism of Σ′
1. Without loss of generality, we may suppose that o(ψ̄) = 2k2 and

ψ̄ is induced by ψ ∈ Aut(G), where o(ψ) = 2k2 . Since i < n, we have rGi ⊆ S′
1,

where r ∈ S′
1 with o(r) > pi, and so the sc-normal circulant Γ′

n is of lexicographic
product type as well. In order to apply Lemma 5.2(2) and (3), we consider Γ′′ =
Cay(Gn/Gi, S

′
1), where S

′
1 = {rGi|r ∈ S′

1}. By the explanation after Lemma 5.2, Γ′′

is both a subgraph of the sc-normal circulant Σ′
1 and a quotient graph of the sc-normal

circulant Γ′
n. This forces o(ψ) = o(τ) = 2k1 by Lemma 5.2. By Lemma 4.4 and noting

that S′
2 = S2 and ψ̄ : S

′ → (G/Gi)
#\S′

, it follows that ψ(S2) ∩ S2 = ∅. Therefore Γ
is sc-normal with respect to ψ. This completes the proof of the theorem.
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[19] H. Sachs, Über selbstcomplementäre graphen, Publ. Math. Debrecen, 9 (1962), pp. 270–288.
[20] D. A. Suprunenko, Self-complementary graphs, Cybernetics, 21 (1985), pp. 559–567.
[21] M. Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math., 182

(1998), pp. 309–320.
[22] B. Zelinka, Self-complementary vertex-transitive undirected graphs, Math. Slovaca, 29 (1979),

pp. 91–95.
[23] H. Zhang, Self-complementary symmetric graphs, J. Graph Theory, 16 (1992), pp. 1–5.



Reproduced with permission of the copyright owner. Further reproduction prohibited without
permission.


