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Abstract

We consider the classical Merton problem of lifetime consumption-portfolio optimiza-
tion problem with small proportional transaction costs. The first order term in the asymptotic
expansion is explicitly calculated through a singular ergodic control problem which can be
solved in closed form in the one-dimensional case. Unlike the existing literature, we consider
a general utility function and general dynamics for the underlying assets. Our arguments are
based on ideas from the homogenization theory and use the convergence tools from the the-
ory of viscosity solutions. The multidimensional case is studied in our accompanying paper
[31] using the same approach.
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1 Introduction

The problem of investment and consumption in a market with transaction costs was first studied
by Magill & Constantinides [26] and later by Constantinides[10]. Since then, starting with
the classical paper of Davis & Norman [11] an impressive understanding of this problem has
been achieved. In these papers and in [12, 36] the dynamic programming approach in one space
dimension has been developed. The problem of proportional transaction costs is a special case
of a singular stochastic control problem in which the state process can have controlled discon-
tinuities. The related partial differential equation for this class of optimal control problems
is a quasi-variational inequality which contains a gradient constraint. Technically, the multi-
dimensional setting presents intriguing free boundary problems and the only regularity result to
date are [34] and [35]. For the financial problem, we refer to the recent book by Kabanov &
Safarian [24]. It provides an excellent exposition to the later developments and the solutions in
multi-dimensions.

It is well known that in practice the proportional transaction costs are small and in the
limiting case of zero costs, one recovers the classical problem of Merton [28]. Then, a natural
approach to simplify the problem is to obtain an asymptotic expansion in terms of the small
transaction costs. This was initiated in the pioneering paper of Constantinides [10]. The first
proof in this direction was obtained in the appendix of [36].Later several rigorous results
[5, 20, 22, 32] and formal asymptotic results [1, 21, 38] havebeen obtained. The rigorous
results have been restricted to one space dimensions with the exception of the recent manuscript
by Bichuch and Shreve [6].

In this and its accompanying paper [31], we consider this classical problem of small propor-
tional transaction costs and develop a unified approach to the problem of asymptotic analysis.
We also relate the first order asymptotic expansion inε to an ergodic singular control problem.

Although our formal derivation in Section 3 and the analysisof [31] are multi-dimensional,
to simplify the presentation, in this introduction we restrict ourselves to a single risky asset
with a price process{St , t ≥ 0}. We assumeSt is given by a time homogeneous stochastic
differential equation together withS0 = s and volatility functionσ(·). For an initial capitalz,
the value function of the Merton infinite horizon optimal consumption-portfolio problem (with
zero-transaction costs) is denoted byv(s,z). On the other hand, the value function for the
problem with transaction costs is a function ofs and the pair(x,y) representing the wealth in
the saving and in the stock accounts, respectively. Then, the total wealth is simply given by
z= x+ y. For a small proportional transaction costε3 > 0, we letvε(s,x,y) be the maximum
expected discounted utility from consumption. It is clear thatvε(s,x,y) converges tov(s,x+ y)
asε tends to zero. Our main analytical objective is to obtain an expansion forvε in the small
parameterε.

To achieve such an expansion, we assume thatv is smooth and let

η(s,z) := −
vz(s,z)
vzz(s,z)

(1.1)

be the corresponding risk tolerance. The solution of the Merton problem also provides us an op-
timal feedback portfolio strategyy(s,z) and an optimal feedback consumption functionc(s,z).
Then, the first term in the asymptotic expansion is given through an ergodic singular control
problem defined for every fixed point(s,z) by

ā(s,z) := inf
M

J(s,z,M),

whereM is a control process of bounded variation with variation norm ‖M‖,

J(s,z,M) := limsup
T→∞

1
T
E

[

∫ T

0

|σ(s)ξt |
2

2
+ ‖M‖T

]

,
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and the controlled processξ satisfies the dynamics driven by a Brownian motionB, and param-
eterized by the fixed data(s,z):

dξt = α(s,z)dBt +dMt where α := σ [y(1− yz)− sys].

The above problem is defined more generally in Remark 3.3 and solved explicitly in the sub-
section 4.1 below in terms of the zero-transaction cost value functionv.

Let{Ẑs,z
t , t ≥ 0} be the optimal wealth process using the feedback strategiesy,c, and starting

from the initial conditionsS0 = s and Ẑs,z
0 = z. Our main result is on the convergence of the

function

ūε(x,y) :=
v(s,x+ y)− vε(s,x,y)

ε2 .

Main Theorem. Let ā be as above and set a:= ηvzā. Then, asε tends to zero,

ūε(x,y)→ u(s,z) := E

[

∫ ∞

0
e−β ta(St , Ẑ

s,z
t )dt

]

, locally uniformly. (1.2)

Naturally, the above result requires assumptions and we refer the reader to Theorem 6.1 for
a precise statement. Moreover, the definition and the convergence ofuε is equivalent to the
expansion

vε(s,x,y) = v(z)− ε2u(z)+ ◦(ε2), (1.3)

where as beforez= x+y and◦(εk) is any function such that◦(εk)/εk converges to zero locally
uniformly.

A formal multi-dimensional derivationof this result is provided in Section 3. Our approach
is similar to all formal studies starting from the initial paper by Whalley & Willmont [38].
These formal calculations also provide the connection withanother important class of asymp-
totic problems, namely homogenization. Indeed, the dynamic programming equation of the
ergodic problem described above is thecorrector (or cell) equationin the homogenization ter-
minology. This identification allows us to construct a rigorous proof similar to the ones in
homogenization. These assertions are formulated into a formal theorem at the end of Section
3. The analysis of Section 3 is very general and can easily extend to other similar problems.
Moreover, the above ergodic problem is a singular one and we show in [31] that its continu-
ation region also describes the asymptotic shape of the no-trade region in the transaction cost
problem.

The connection between homogenization and asymptotic problems in finance has already
played an important role in several other problems. Fouque,Papanicolaou & Sircar [18] use
this approach for stochastic volatility models. We refer tothe recent book [19] for information
on this problem and also extensions to multi dimensions. In the stochastic volatility context the
homogenizing (or the so-called fast variable) is the volatility and is given exogenously. Indeed,
for homogenization problems, the fast variable is almost always given. In the transaction cost
problem, however, this is not the case and the main difficultyis to identify the “fast” variable. A
similar difficulty is also apparent in a problem with an illiquid financial market which becomes
asymptotically liquid. The expansions for that problem wasobtained in [30]. We use their
techniques in an essential way.

The later sections of the paper are concerned with the rigorous proof. The main technique is
the viscosity approach of Evans to homogenization [13, 14].This powerful method combined
with the relaxed limits of Barles & Perthame [2] provides thenecessary tools. As well known,
this approach has the advantage of using only a simple localL∞ bound which is described in
Section 5. In addition to [2, 13, 14], the rigorous proof utilizes several other techniques from
the theory of viscosity solutions developed in the papers [2, 15, 17, 25, 33, 37] for asymptotic
analysis.
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For the rigorous proof, we concentrate on the simpler one dimensional setting. This simpler
setting allows us to highlight the technique with the least possible technicalities. The more
general multi-dimensional problem is considered in [31].

The paper is organized as follows. The problem is introducedin the next section and the
approach is formally introduced in Section 3. In one dimension, the corrector equation is solved
in the next section. We state the general assumptions in Section 5 and prove the convergence
result in Section 6. In Section 7 we discuss the assumptions.Finally a short summary for the
power utility is given in the final Section.

2 The general setting

The structure we adopt is the one developed and studied in therecent book by Kabanov &
Safarian [24]. We briefly recall it here.

We assume a financial market consisting of a non-risky assetS0 andd risky assets with price
process{St = (S1

t , . . . ,S
d
t ), t ≥ 0} given by the stochastic differential equations,

dS0
t

S0
t

= r(St)dt,
dSi

t

Si
t
= µ i(St)dt+

d

∑
j=1

σ i, j(St)dW j
t , 1≤ i ≤ d,

wherer :Rd →R+ is the instantaneous interest rate andµ :Rd →R
d, σ :Rd →Md(R) are the

coefficients of instantaneous mean return and volatility. We use the notationMd(R) to denote
d×d matrices with real entries. The standing assumption on the coefficients

r,µ ,σ are bounded and Lipschitz, and(σσT)−1 is bounded,

will be in force throughout the paper (although not recalledin our statements). In particular, the
above stochastic differential equation has a unique strongsolution.

The portfolio of an investor is represented by the dollar valueX invested in the non-risky
asset and the vector processY = (Y1, . . . ,Yd) of the value of the positions in each risky asset.
The portfolio position is allowed to change in continuous-time by transfers from any asset to
any other one. However, such transfers are subject toproportional transaction costs.

We continue by describing the portfolio rebalancing in the present setting. For alli, j =
0, . . . ,d, let Li, j

t be the total amount of transfers (in dollars) from thei-th to the j-th asset cumu-
lated up to timet. Naturally, the processes{Li, j

t , t ≥ 0} are defined as càd-làg, nondecreasing,
adapted processes withL0− = 0 andLi,i ≡ 0. The proportional transaction cost induced by a
transfer from thei-th to the j-th stock is given byε3λ i, j whereε > 0 is a small parameter, and

λ i, j ≥ 0, λ i,i = 0, i, j = 0, . . . ,d.

The scalingε3 is chosen to state the expansion results simpler. We refer the reader to the recent
book of Kabanov & Safarian [24] for a thorough discussion of the model.

Thesolvency region Kε is defined as the set of all portfolio positions which can be trans-
ferred into portfolio positions with nonnegative entries through an appropriate portfolio rebal-
ancing. We use the notationℓ= (ℓi, j)i, j=0,...d to denote this appropriate instantaneous transfers
of sizeℓi, j . We directly compute that the induced change in each entry, after subtracting the
corresponding transaction costs is given by the linear operatorR : Md+1(R+)→ R

d+1,

Ri(ℓ) :=
d

∑
j=0

(

ℓ j ,i − (1+ ε3λ i, j)ℓi, j), i = 0, . . . ,d, for all ℓ ∈ Md+1(R+),
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whereℓi, j > 0 andℓ j ,i > 0 for somei, j would clearly be suboptimal. Then,Kε is given by

Kε :=
{

(x,y) ∈ R×R
d : (x,y)+R(ℓ) ∈R

1+d
+ for some ℓ ∈ Md+1(R+)

}

.

For later use, we denote by(e0, . . . ,ed) the canonical basis ofRd+1 and set

Λε
i, j := ei −ej + ε3λ i, j ei , i, j = 0, . . . ,d.

In addition to the trading activity, the investor consumes at a rate determined by a nonnega-
tive progressively measurable process{ct , t ≥ 0}. Herect represents the rate of consumption in
terms of the non-risky assetS0. Such a pairν := (c,L) is called aconsumption-investment strat-
egy. For any initial position(X0− ,Y0−) = (x,y) ∈ R×R

d, the portfolio position of the investor
are given by the following state equation

dXt =
(

r(St)Xt − ct
)

dt+R0(dLt), and dYi
t =Yi

t
dSi

t

Si
t
+Ri(dLt), i = 1, . . . ,d.

The above solution depends on the initial condition(x,y), the controlν and also on the initial
condition of the stock processs. Let (X,Y)ν,s,x,y be the solution of the above equation. Then, a
consumption-investment strategyν is said to beadmissiblefor the initial position(s,x,y), if

(X,Y)ν,s,x,y
t ∈ Kε , ∀ t ≥ 0, P−a.s.

The set of admissible strategies is denoted byΘε(s,x,y). For given initial positionsS0 = s∈R
d
+,

X0− = x∈R, Y0− = y∈R
d, the investment-consumption problem is the following maximization

problem,

vε(s,x,y) := sup
(c,L)∈Θε (s,x,y)

E

[

∫ ∞

0
e−β t U(ct)dt

]

,

whereU : (0,∞) 7→R is a utility function. We assume thatU isC2, increasing, strictly concave,
and we denote its convex conjugate by,

Ũ(c̃) := sup
c>0

{

U(c)− cc̃
}

, c̃∈ R.

ThenŨ is aC2 convex function. It is well known that the value function is aviscosity solution
of the corresponding dynamic programming equation. In one dimension, this is first proved in
[36]. In the above generality, we refer to [24]. To state the equation, we first need to introduce
some more notations. We define a second order linear partial differential operator by,

L := µ · (Ds+Dy)+ rDx+
1
2

Tr
[

σσT (Dyy+Dss+2Dsy)
]

, (2.1)

whereT denotes the transpose and fori, j = 1, . . . ,d,

Dx := x
∂
∂x

, Di
s := si ∂

∂si , Di
y := yi ∂

∂yi ,

Di, j
ss := sisj ∂ 2

∂si∂sj , Di, j
yy := yiy j ∂ 2

∂yi∂y j , Di, j
sy := siy j ∂ 2

∂si∂y j ,

Ds=(Di
s)1≤i≤d, Dy=(Di

y)1≤i≤d, Dyy :=(Di, j
yy)1≤i, j≤d, Dss:=(Di, j

ss)1≤i, j≤d, Dsy :=(Di, j
sy)1≤i, j≤d.

Moreover, for a smooth scalar function(s,x,y) ∈ R
d
+×R×R

d 7→ ϕ(x,y), we set

ϕx :=
∂ϕ
∂x

∈R, ϕy :=
∂ϕ
∂y

∈R
d.
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Theorem 2.1 Assume that the value function vε is locally bounded. Then, vε is a viscosity
solution of the dynamic programming equation inR

d
+×Kε ,

min
0≤i, j≤d

{

βvε −L vε −Ũ(vε
x) , Λε

i, j · (v
ε
x,v

ε
y)

}

= 0. (2.2)

Moreover, vε is concave in(x,y) and converges to the Merton value function v:= v0, asε > 0
tends to zero.

Under further conditions the uniqueness in the above statement is proved in [24]. However,
this is not needed in our subsequent analysis.

2.1 Merton Problem

The limiting case ofε = 0 corresponds to the classical Merton portfolio-investment problem in
a frictionless financial market. In this limit, since the transfers from one asset to the other are
costless, the value of the portfolio can be measured in termsof the nonrisky assetS0. We then
denote byZ :=X+Y1+ . . .+Yd the total wealth obtained by the aggregation of the positions on
all assets. In the present setting, we denote byθ i :=Yi andθ := (θ 1, . . . ,θ d) the vector process
representing the positions on the risky assets. The wealth equation for the Merton problem is
then given by

dZt =
(

r(St)Zt − ct
)

dt+
d

∑
i=1

θ i
t

(dSi
t

Si
t
− r(St)dt

)

. (2.3)

An admissible consumption-investment strategy is now defined as a pair(c,θ ) of progressively
measurable processes with values inR+ andRd, respectively, and such that the corresponding
wealth process is well-defined and almost surely non-negative for all times. The set of all
admissible consumption-investment strategies is denotedby Θ(s,z).

The Merton optimal consumption-investment problem is defined by

v(s,z) := sup
(c,θ)∈Θ(s,z)

E

[

∫ ∞

0
e−β t U(ct)dt

]

, s∈ R
d
+, z≥ 0.

Throughout this paper, we assume that the Merton value function v is strictly concave inz and
is a classical solution of the dynamic programming equation,

βv− rzvz−L 0v−Ũ(vz)− sup
θ∈Rd

{

θ ·
(

(µ − r1d)vz+σσTDszv
)

+
1
2
|σTθ |2vzz

}

= 0,

where1d := (1, . . . ,1) ∈ R
d, Dsz := ∂

∂zDs, and

L 0 := µ ·Ds+
1
2

Tr
[

σσTDss
]

. (2.4)

The optimal controls are smooth functionsc(s,z) andy(s,z) obtained by as the maximizers of
the Hamiltonian. Hence,

0= βv−L 0v−Ũ(vz)− rzvz− y · (µ − r1d)vz−σσTy ·Dszv−
1
2
|σTy|2vzz, (2.5)

the optimal consumption rate is given by,

c(s,z) :=−Ũ ′
(

vz(s,z)
)

=
(

U ′
)−1(

vz(s,z)
)

for s∈R
d
+, z≥ 0, (2.6)
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and the optimal investment strategyy is obtained by solving the finite-dimensional maximiza-
tion problem,

max
θ∈Rd

{1
2
|σTθ |2vzz+θ ·

(

(µ − r1d)vz+σσTDszv
)

}

.

Sincev is strictly concave, the Merton optimal investment strategy y(s,z) satisfies

− vzz(s,z) σσT(s)y(s,z) = (µ − r1d)(s)vz(s,z)+σσT(s)Dszv(s,z). (2.7)

3 Formal Asymptotics

In this section, we provide the formal derivation of the expansion in any space dimensions.
In the subsequent sections, we prove this expansion rigorously for the one dimensional case.
Convergence proof in higher dimensions is carried out in a forthcoming paper [31]. In the
sequel we use the standard notationO(εk) to denote any function which is less than a locally
bounded function timesεk and◦(εk) is a function such that◦(εk)/εk converges to zero locally
uniformly.

Based on previous results [38, 1, 21, 22, 36], we postulate the following expansion,

vε(s,x,y) = v(s,z)− ε2u(s,z)− ε4w(s,z,ξ )+ ◦(ε2), (3.1)

where(z,ξ ) = (z,ξε ) is a transformation of(x,y) ∈ Kε given by

z= x+ y1+ . . .+ yd, ξ i := ξ i
ε(x,y) =

yi − yi(s,z)
ε

, i = 1, . . . ,d,

y =
(

y1, . . . ,yd
)

is the Merton optimal investment strategy of (2.7). In the postulated expansion
(3.1), we have also introduced two functions

u : Rd
+×R+ 7→R, and w : Rd

+×R+×R
d 7→R.

The main goal of this section is to formally derive equationsfor these two functions. A rig-
orous proof will be also provided in the subsequent sectionsand the precise statement for this
expansion is stated in Section 6.

Notice that the above expansion is assumed to hold up toε2, i.e. the◦(ε2) term. Therefore,
the reason for having a higher term likeε4w(z,ξ ) explicitly in the expansion may not be clear.
However, this term contains the fast variableξ and its second derivative is of orderε2, which
will then contribute to the asymptotics sincevε solves a second order PDE. This follows the
intuition introduced in the pioneering work of Papanicolaou and Varadhan [29] in the theory of
homogenization.

Since(x,y) ∈ Kε 7→ (z,ξ ) ∈ R+×R
d is a one-to-one change of variables, in the sequel for

any functionf of (s,x,y) we use the convention,

f̂ (s,z,ξ ) := f
(

s,z− εξ − y(s,z),εξ + y(s,z)
)

. (3.2)

The new variableξ is the “fast” variable and in the limit it homogenizes to yield the convergence
of v̂ε(s,z,ξ ) to the Merton functionv(s,z) which depends only on the(s,z)-variables. This is
the main formal connection of this problem to the theory of homogenization. This variable
was also used centrally by Goodman & Ostrov [21]. Indeed, their asymptotic results use the
properties of the stochastic equation satisfied byεξ ε(Xt ,Yt).

First we directly differentiate the expansion (3.1) and compute the terms appearing in (2.2)
in term ofu andw. The directional derivatives are given by,

Λε
i, j · (v

ε
x,v

ε
y) =−ε4(ei −ej) · (wx(s,z,ξ ),wy(s,z,ξ ))+ ε3λ i, jvz+O(ε4).

7



We directly calculate that,

(wx,wy)(s,z,ξ ) =
(

wz−
1
ε

yz ·wξ

)

1d+1+
1
ε
(

0,wξ
)

. (3.3)

To simplify the notation, we introduce

D̂ξ w(s,z,ξ ) := (0,Dξ w(s,z,ξ )) ∈ R
d+1. (3.4)

Then,

Λε
i, j · (v

ε
x,v

ε
y) = ε3(λ i, jvz+(ej −ei) · D̂w)+O(ε4). (3.5)

The elliptic equation in (2.2) requires a longer calculation and we will later use the Merton
identities (2.5), (2.6) and (2.7). Firstly, by (2.5),

I ε := βvε −L vε −Ũ(vε
x)

= (y− y) ·
[

(µ − r1d)vz+σσTDszv
]

+
1
2

(

|σTy|2−|σTy|2
)

vzz

+
(

Ũ(vz)−Ũ
(

vz+ ε2uz+O(ε3)
)

)

−ε2
(

βu−L u
)

+
ε4

2
Tr[σσTDyyw]+O(ε3).

We use Taylor expansions on the terms involvingŨ and (2.6)-(2.7) in the first line, to arrive at

I ε =
(

−σT(y− y) ·σTy+
1
2

(

|σTy|2−|σTy|2
)

)

vzz

−ε2
(

βu−L u+ ĉuz

)

+
ε4

2
Tr[σσT(Dyy+Dss+Dsy)w]+O(ε3)

= −
1
2
|σT(y− y)|2vzz− ε2

(

βu−L u+ ĉuz

)

+
ε4

2
Tr[σσT(Dyy+Dss+Dsy)w]+O(ε3)

= ε2
(

−
1
2
|σTξ |2vzz−βu+L u− ĉuz

)

+
ε4

2
Tr[σσT(Dyy+Dss+Dsy)w]+O(ε3).(3.6)

Finally, from (3.3), we see that

∂yw= wz1d +
1
ε
(

Id −1dyT
z

)

wξ .

Therefore,

∂yyw=
(

wzz−
1
ε
(yzz·wξ +yz·wzξ )

)

1d1T
d+

1
ε
(

wzξ 1T
d+1dwT

zξ
)

+
1
ε2

(

Id−1dyT
z

)

wξ ξ
(

Id−yz1T
d

)

.

We substitute this in (3.6) and use the fact thaty= y+O(ε). This yields,

I ε = ε2
(

−
1
2
|σTξ |2vzz+

1
2

Tr
[

ααTwξ ξ
]

−A u
)

+O(ε3), (3.7)

whereα(s,z) is given by

α(s,z) =
{(

Id − yz1T
d

)

diag[y]− yT
sdiag[s]

}

(s,z)σ(s), (3.8)

diag[y] denotes the diagonal matrix withi-th diagonal entryyi , and

A u= βu−L 0u−
(

rz+ y · (µ − r1d)− c
)

uz−
1
2
|σTy|2uzz−σσTy ·Dszu. (3.9)

8



Recall thatL 0 is the infinitesimal generator of the stock price process. Observe that the above
operator is the infinitesimal generator of the pair process(S, Ẑ) whereẐ is the optimal wealth
process in the Merton zero-transaction cost problem corresponding to the optimal feedback
controls(c,y). In particular, the dynamic programming equation (2.5) forthe Merton problem
may be expressed as,

A v(s,z) =U(c(s,z)). (3.10)

We have now obtained expressions for all the terms in the dynamic programming equation (2.2).
We substitute (3.5) and (3.7) into (2.2). Notice that sinceε > 0, for anyA,B, max{ε2A,ε3B}= 0
is equivalent to max{A,B}= 0. Hence,w andu satisfy,

max
0≤i, j≤d

max
{1

2

∣

∣σT(s)ξ
∣

∣

2
vzz(s,z)−

1
2

Tr
[

ααT(s,z)wξ ξ (s,z,ξ )
]

+a(s,z) ,

−λ i, jvz(s,z)+ (ei −ej) · D̂ξ w(z,ξ )
}

= 0.

whereD̂ξ = (0,Dξ w) is as in (3.4) anda is given by,

a(s,z) := A u(s,z), s∈ R
d
+, z> 0.

In the first equation above, the pair(s,z) is simply a parameter and the independent variable is
ξ . Also the value of the functionw(s,z,0) is irrelevant in (3.1) as it only contributes to theε4

term. Therefore, to obtain a uniquew, we set its value at the origin to zero. We continue by
presenting these equations in a form that is compatible withthe power case. So we first divide
the above equation byvz and then introduce the new variable

ρ = ξ/η(s,z),

whereη is the risk tolerance coefficient defined by (1.1). We also set

w̄(s,z,ρ) :=
w(s,z,η(s,z)ρ)
η(s,z)vz(s,z)

, ā(s,z) :=
a(s,z)

η(s,z)vz(s,z)
, ᾱ(s,z) :=

α(s,z)
η(s,z)

.

Then, the corrector equations in this context is the following pair of equations.

Definition 3.1 (Corrector Equations) For a given point(s,z) ∈ R
d
+× R+, the first corrector

equationis for the unknown pair(ā(s,z), w̄(s,z, ·)) ∈ R×C2(Rd),

max
0≤i, j≤d

max
{

−
|σT(s)ρ |2

2
−

1
2

Tr
[

ᾱᾱT(s,z)w̄ρρ (s,z,ρ)
]

+ ā(s,z) , (3.11)

−λ i, j +(ei −ej) · D̂ρw̄(s,z,ρ)
}

= 0, ∀ ρ ∈R
d,

together with the normalization ¯w(s,z,0) = 0.
Thesecond corrector equationuses the constant term ¯a(s,z) from the first corrector equation

and it is a simple linear equation for the functionu : Rd
+×R

+ 7→R
1,

A u(s,z) = a(s,z) = vz(s,z)η(s,z)ā(s,z), ∀ s∈ R
d
+, z∈R

+. (3.12)

We say that the pair(u,w) is the solution of the corrector equationsfor a given utility function
or equivalently for a given Merton value function. ⊔⊓

We summarize our formal calculations in the following.

Formal Expansion Theorem. The value function has the expansion(3.1) where(u,w) is the
unique solution of the corrector equations.
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Remark 3.1 The functionu introduced in (1.2) is a solution of the second corrector equation
(3.12), provided that it is finite. Then, assuming that uniqueness holds for the linear PDE (3.12)
in a convenient class, it follows thatu is given by the stochastic representation (1.2).

Remark 3.2 Usually a second order equation like (3.12) in(0,∞) needs to be completed by a
boundary condition at the origin. However, as we have already remarked, the operatorA is the
infinitesimal generator of the optimal wealth process in theMerton problem. Then, under the
Inada conditions satisfied by the utility functionU , we expect that this process does not reach
the origin. Hence, we only need appropriate growth conditions near the origin and at infinity to
ensure uniqueness. ⊔⊓

Remark 3.3 The first corrector equation has the following stochastic representation as the dy-
namic programming equation of an ergodic control problem. For this representation we fix(s,z)
and let{Mi, j

t , t ≥ 0} be non-decreasing control processes, for eachi, j = 0, . . . ,d. Let ρ be the
controlled process defined by,

ρ i
t = ρ i

0+
d

∑
j=1

ᾱ i, j(s,z)B j
t +

d

∑
j=0

(

M j ,i
t −Mi, j

t

)

,

for some arbitrary initial conditionρ0 and ad dimensional standard Brownian motionB. Then,
the ergodic control problem is

ā(s,z) := inf
M

J(s,z,M),

where

J(s,z,M) := limsup
T→∞

1
T

E

[1
2

∫ T

0

∣

∣σT(s)ρt
∣

∣

2
dt+

d

∑
i, j=0

λ i, jMi, j
T

]

.

In the scalar case, this problem is closely related to the classical finite fuel problem introduced
by Benes, Shepp & Withenhaussen [4]. We refer to the paper by Menaldi, Robin and Taksar
[27] for the present multidimensional setting.

The functionw̄ is the so-called potential function in ergodic control. We refer the reader
to the book and the manuscript of Borkar [7, 8] for information on the dynamic programming
approach for the ergodic control problems. ⊔⊓

Remark 3.4 The calculation leading to (3.7) is used several times in thepaper. Therefore, for
future reference, we summarize it once again. Letv, z andξ be as above. Forany smooth
functions

φ : Rd
+×R+ 7→ R, ϖ : Rd

+×R+×R
d 7→ R,

andε ∈ (0,1] set
Ψε(s,x,y) := v(s,z)− ε2φ(s,z)− ε4ϖ(s,z,ξ ).

In the above calculations, we obtained an expansion for the second order nonlinear operator

J (Ψε ) := β Ψε −L Ψε −Ũ(Ψε
x)

= ε2
(

−
vzz

2
|σTξ |2+

1
2

Tr
[

ααTϖξ ξ
]

−A φ +Rε
)

, (3.13)

whereα, A are as before andRε(s,x,y) is the remainder term. Moreover,Rε is locally
bounded by aε times a constant depending only on the values of the Merton functionv, φ and
ϖ . Indeed, a more detailed description and an estimate will beproved in one space dimension
in Section 6. ⊔⊓
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4 Corrector Equation in one dimension

In this section, we solve the first corrector equation explicitly in the one-dimensional case.
Then, we provide some estimates for the remainder introduced in Remark 3.4.

4.1 Closed-form solution of the first corrector equation

Recall thatw = ηvzw̄, a = ηvzā, and the solution of the corrector equations is a pair(w̄, ā)
satisfying,

max
{

−
1
2

σ2ρ2−
1
2

ᾱ2w̄ρρ + ā,−λ 1,0+ w̄ρ ,−λ 0,1− w̄ρ

}

= 0, w̄(s,z,0) = 0, (4.1)

whereᾱ = α/η andα(s,z) is given in (3.8). We also recall that the variables(s,z) are fixed
parameters in this equation. Therefore, throughout this section, we suppress the dependences
of σ ,α andw̄ on these variables.

In order to compute the solution explicitly in terms ofη , we postulate a solution of the form

w̄(ρ) =







k4ρ4+ k2ρ2+ k1ρ , ρ1 ≤ ρ ≤ ρ0,
w̄(ρ1)−λ 0,1(ρ −ρ1), ρ ≤ ρ1,
w̄(ρ0)+λ 1,0(ρ −ρ0), ρ ≥ ρ0.

(4.2)

We first determinek4 andk2 by imposing that the fourth order polynomial solves the second
order equation in(ρ0,ρ1). A direct calculation yields,

k4 =
−σ2

12ᾱ2 and k2 =
ā

ᾱ2 .

We now impose the smooth pasting condition, namely assume that w̄ is C2 at the pointsρ0 and
ρ1. Then, the continuity of the second derivatives yield,

ρ2
0 = ρ2

1 =
2ā
σ2 implying that ā≥ 0 and ρ0 =−ρ1 =

( 2ā
σ2

)1/2
. (4.3)

The continuity of the first derivatives of ¯w at the pointsρ0 andρ1 yield,

4k4(ρ0)
3+2k2ρ0+ k1 = −λ 0,1,

4k4(ρ1)
3+2k2ρ1+ k1 = λ 1,0.

Sinceρ0 =−ρ1, we determine the value ofk1 by summing the two equations,

k1 =
λ 1,0−λ 0,1

2
.

Finally, we obtain the value of ¯a by further substituting the values ofk4, k2 andρ0 =−ρ1. The
result is

ā=
σ2

2
ρ2

0 and ρ0 =
(3ᾱ2

4σ2 (λ
1,0+λ 0,1)

)1/3
. (4.4)

All coefficients of our candidate are now uniquely determined. Moreover, we verify that the
gradient constraint

−λ 1,0 ≤ w̄ρ ≤ λ 0,1 (4.5)

holds true for allρ ∈R. Hence, ¯w constructed above is a solution of the corrector equation. One
may also prove that it is the unique solution. However, in thesubsequent analysis we simply
use the function ¯w defined in (4.2) with the constants determined above. Therefore, we do not
study the question of uniqueness of the corrector equation.
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Remark 4.1 In the homothetic case with constant coefficientsr,µ , andσ , one can explicitly
calculate all the functions, see Section 8. Here we only report that, in that case, all functions are
independent of thes−variable andρ0, ā(z) are constants. Therefore,a(z) is a positive constant
times the Merton value function. ⊔⊓

Remark 4.2 Pointwise estimates on the derivatives ofw will be used in the subsequent sections.
So we record them here for future references. Indeed, by (4.5) and the fact thatw(·,0) = 0,

|w(s,z,ξ )| ≤ λ vz(s,z)|ξ |, |wξ (s,z,ξ )| ≤ λ vz(s,z), where λ := λ 0,1∨λ 1,0. (4.6)

Moreover, under the smoothness assumption onv, we obtain the following pointwise estimates
(

|w|+ |ws|+ |wss|+ |wz|+ |wzz|
)

(z,ξ )≤C(s,z)(1+ |ξ |), (4.7)
(

|wξ |+ |wzξ |+ |wsξ |
)

(s,z)≤C(s,z) and|wξ ξ | ≤
(

C1[ξ0,ξ1]

)

(s,z), (4.8)

whereC is an appropriate continuous function inR2
+, depending on the Merton value function

and its derivatives. ⊔⊓

4.2 Remainder Estimate

In this subsection, we estimate the remainder term in Remark3.4. So, letΨε be as in Remark
3.4 withϖ satisfying the same estimates (4.7)-(4.8) asw. We have seen in (3.13) that

J (Ψε)(s,x,y) :=
(

β Ψε −L Ψε −Ũ(Ψε
x)
)

(s,x,y)

= ε2
[

−
1
2

vzz(s,z)ξ 2+
1
2

α2(s,z)ϖξ ξ (s,z,ξ )−A φ(s,z)+Rε(s,z,ξ )
]

,

whereα, A are defined in (3.8)-(3.9), andRε is the remainder. By a direct (tedious) calcula-
tion, the remainder term can be obtained explicitly. In viewof our previous bounds (4.7)-(4.8)
on the derivatives ofw, we obtain the estimate,

∣

∣Rε(s,z,ξ )
∣

∣ ≤ ε
(

|ξ ||µ − r||φz|+
1
2

σ2(εξ 2+2|ξ ||y|)|φzz|+σ2|ξ ||φsz|
)

(s,z)

+εC(s,z)
(

1+ ε|ξ |+ ε2|ξ |2+ ε3|ξ |3
)

,

+ε−2
∣

∣Ũ(ψε
x )−Ũ(vz)− (ψε

x − vz)Ũ
′(vz)

∣

∣

for some continuous functionC(s,z). SinceŨ is C1 and convex,

∣

∣Rε(s,z,ξ )
∣

∣ ≤ ε
(

|ξ ||µ − r||φz|+
1
2

σ2(εξ 2+2|ξ ||y|)|φzz|+σ2|ξ ||φsz|
)

(s,z)

+εC(s,z)
(

1+ ε|ξ |+ ε2|ξ |2+ ε3|ξ |3
)

,

+(|φz|+ ε2|φz|+ εyz|ϖξ |)
∣

∣Ũ ′(vz)+ ε2|φz|+ ε4|ϖz|+ ε3yz|ϖξ |)−Ũ ′(vz)
∣

∣

Suppose thatϖ satisfies the same estimates (4.7)-(4.8) asw. Then,

∣

∣Rε(s,z,ξ )
∣

∣ ≤ ε
(

|ξ ||µ − r||φz|+
1
2

σ2(εξ 2+2|ξ ||y|)|φzz|+σ2|ξ ||φsz|
)

(s,z)

+εC(s,z)
(

1+ ε|ξ |+ ε2|ξ |2+ ε3|ξ |3
)

,

+ε2(|φz|+ εC(s,z)(1+ ε|ξ |)
)2

Ũ ′′
(

vz+ ε2|φz|+ ε3C(s,z)(1+ ε|ξ |)
)

.
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5 Assumptions

The main objective of this paper is to characterize the limitof the following sequence,

ūε(s,x,y) :=
v(s,z)− vε(s,x,y)

ε2 , s≥ 0, (x,y) ∈ Kε .

Our proof follows the general methodology developed by Barles & Perthame in the context
of viscosity solutions. Hence, we first define relaxed semi-limits by,

u∗(ζ ) := limsup
(ε,ζ ′)→(0,ζ )

ūε(ζ ′), u∗(ζ ) := lim inf
(ε,ζ ′)→(0,ζ )

ūε(ζ ′)

Then, we show under appropriate conditions that they are viscosity sub-solution and super-
solution, respectively, of the second corrector equation (3.12).

We shall now formulate some conditions which guarantee that

i. the relaxed semi-limits are finite,

ii. the second corrector equation (3.12) verifies comparison for viscosity solutions.

We may then conclude thatu∗ ≤ u∗. Since the opposite inequality is obvious, this shows that
u= u∗ = u∗ is the unique solution of the second corrector equation (3.12).

In this short subsection, for the convenience of the reader,we collect all the assumptions
needed for the convergence proof, including the ones that were already used.

We first focus on the finiteness of the relaxed semi-limitsu∗ andu∗. A local lower bound
is easy to obtain in view of the obvious inequalityvε(s,x,y) ≤ v(s,x+ y) which implies that
ūε ≥ 0. Our first assumption complements this with a local upper bound.

Assumption 5.1 (Uniform Local Bound) The family of functions̄uε is locally uniformly bounded
from above.

The above assumption states that for any(s0,x0,y0) ∈R+×R
2 with x0+y0 > 0, there exist

r0 = r0(s0,x0,y0)> 0 andε0 = ε0(s0,x0,y0)> 0 so that

b(s0,x0,y0) := sup{ uε(s,x,y) : (s,x,y) ∈ Br0(s0,x0,y0), ε ∈ (0,ε0] }< ∞, (5.1)

whereBr0(s0,x0,y0) denotes the open ball with radiusr0, centered at(s0,x0,y0).
This assumption is verified in Section 7 under some conditions onv and its derivatives by

constructing an appropriate sub-solution to the dynamic programming equation (2.2). However,
the sub-solution does not need to have the exactε2 behavior as needed in other approaches to
this problem starting from [36, 22]. Indeed, in these earlier approaches, both the sub and the
super-solution must be sharp enough to have the exact limiting behavior in the leadingε2 term.
For the above estimate, however, this term needs to be only locally bounded.

The next assumption is a regularity condition on the Merton problem.

Assumption 5.2 (Smoothness)The Merton value function v and the Merton optimal invest-
ment strategyy are twice continuously differentiable in the open domain(0,∞)2 and vz(s,z)> 0
for all s,z> 0. Moreover, there exist c1 ≥ c0 > 0 such that

c0z≤ [y(1− yz)− sy](s,z)≤ c1z for all s,z∈ R+. (5.2)
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In particular, together with our condition standing assumption on the volatility functionσ ,
the above assumption implies that the diffusion coefficientα(s,z) in the first corrector equation
is non-degenerate away from the origin. For later use we record that there exist two constants
0< α∗ ≤ α∗ so that

0< α∗ ≤
α(s,z)

z
≤ α∗, ∀ s,z∈R+. (5.3)

We will not attempt to verify the above hypothesis. However,in the power utility case, the
value function is always smooth and the condition (5.2) can be directly checked as the optimal
investment policyy is explicitly available.

We next assume that the second corrector equation (3.12) hascomparison. Recall the func-
tion u introduced in (1.2), letb be as in (5.1), and set

B(s,z) := b
(

s,z− y(z),y(z)
)

, s,z∈ R+. (5.4)

Assumption 5.3 (Comparison)For any upper-semicontinuous(resp. lower-semicontinuous)
viscosity sub-solution(resp. super-solution) u1 (resp. u2) of (3.12) in (0,∞)2 satisfying the
growth condition|ui | ≤ B on(0,∞)2, i = 1,2, we have u1 ≤ u≤ u2 in (0,∞)2.

In the above comparison, notice that the growth of the supersolution and the subsolution is
controlled by the functionB which is defined in (5.4) by means of the local bound functionb. In
particular,B controls the growth both at infinity and near the origin. Thisobservation is further
detailed in Remark 7.1 below.

We observe however that, as discussed earlier, the operatorA is the infinitesimal generator
of the optimal wealth process in the limiting Merton problem. In view of our Assumption 5.2,
we implicitly assume that this process does not reach the origin with probability one.

We finally formulate a natural assumption which was verified in [36], Remark 11.3, in the
context of power utility functions. This assumption will beused for the proof of the sub-solution
property. To state this assumption, we first introduce theno-transaction regiondefined by,

N ε :=
{

(s,x,y) ∈ Kε : Λε
0,1 ·Dvε(s,x,y) > 0, andΛε

1,0 ·Dvε(s,x,y) > 0
}

. (5.5)

By the dynamic programming equation (2.2), the value functionvε is a viscosity solution of

βvε −L vε −Ũ(vε
x) = 0 on N ε .

Assumption 5.4 (No transaction region)The no-transaction regionN ε contains the Merton
line M := {(s,z− y(z),y(z)) : s,z∈ R+ }.

Remark 5.1 In our accompanying paper [31], the expansion result in thed−dimensional con-
text is proved without Assumption 5.4. However, this induces an important additional technical
effort. Therefore, for the sake of simplicity, we refrainedfrom including this improvement in
the present one-dimensional paper.

6 Convergence in one dimension

For the convergence proof, we introduce the following “corrected” version of ¯uε ,

uε(s,x,y) := ūε(s,x,y)− ε2w(s,z,ξ ), s≥ 0, (x,y) ∈ Kε .

Notice that both families ¯uε anduε have the same relaxed semi-limitsu∗ andu∗.

Theorem 6.1 Under Assumptions 5.1, 5.2, 5.3, and 5.4 the sequence{uε}ε>0 converges locally
uniformly to the function u defined in(1.2).
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Proof. In the next subsections, we will show that, the semi-limitsu∗ and u∗ are viscosity
super-solution and sub-solution, respectively, of (3.12). Then, by the comparison Assumption
5.3, we conclude thatu∗ ≤ u ≤ u∗. Since the opposite inequality is obvious, this implies that
u∗ = u∗ = u. The local uniform convergence follows immediately from this and the definitions.

⊔⊓

6.1 First properties

In this subsection, we only use the assumptions on the smoothness of the limiting Merton prob-
lem and the local boundedness of{uε}ε . We first recall that

λ := λ 0,1∨λ 1,0.

Lemma 6.1 (i) For all ε,s> 0, (x,y) ∈ Kε , uε(s,x,y) ≥−ελvz(s,z)|y− y(s,z)|. In particular,
u∗ ≥ 0.
(ii) If in addition Assumption 5.1 holds, then

0≤ u∗(s,x,y) ≤ u∗(s,x,y) < ∞ for all s,x,y> 0.

Proof.Since (ii) is a direct consequence, we focus on (i). From the obvious inequalityvε(s,x,y)≤
v(s,x+y), it follows thatuε(s,x,y)≥−ε2w(s,z,ξ ), so that the required result follows from the
bound (4.5) onwξ together withw(·,0) = 0. ⊔⊓

We next show that the relaxed semi-limitsu∗ andu∗ depend on the pair(x,y) only through
the aggregate variablez= x+ y.

Lemma 6.2 Let Assumptions 5.1 and 5.2 hold true. Then, u∗ and u∗ are functions of(s,z) only.
Moreover, for all s,z≥ 0,

u∗(s,z) = lim inf
(ε,s′,z′)→(0,s,z)

uε(s′,z′− y(z′),y(z′)
)

,

and
u∗(s,z) = limsup

(ε,s′,z′)→(0,s,z)
uε(s′,z′− y(z′),y(z′)

)

.

Proof. This result is a consequence of the gradient constraints in the dynamic programming
equation (2.2),

Λε
1,0 · (v

ε
x,v

ε
y)≥ 0 and Λε

0,1 · (v
ε
x,v

ε
y)≥ 0 in the viscosity sense.

1. We change variables and use the above inequalities to obtain
(

1+λ 1,0ε3(1− yz)
)

v̂ε
ξ ≥−λ 1,0ε4v̂ε

z,
(

1+λ 0,1ε3yz
)

v̂ε
ξ ≤ λ 0,1ε4v̂ε

z, (6.1)

in the viscosity sense. Sincevε is concave in(x,y), the partial gradientsvε
x andvε

y exist almost
everywhere. By the smoothness of the Merton optimal investment strategyy, this implies that
the partial gradient ˆvε

z also exists almost everywhere. Then, by the definition ofuε , we conclude
that the partial gradients ˆuε

z and ûε
ξ exist almost everywhere. In view of Condition (5.2) in

Assumption 5.2, we conclude from (6.1) and the fact that ˆvε
z ≥ 0 that

∣

∣

∣
v̂ε

ξ

∣

∣

∣
≤ λ ε4v̂ε

z. (6.2)
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We now claim that

v̂ε
z(s,z,ξ ) ≤ γε(s,x,y)

:= vz(s,z− ε)+ ε
(

uε(s,x− ε,y)+uε(s,x,y− ε)
)

(6.3)

+ε3λvz(s,z)
(

1+ |yz(s,z)|+ |ξ |+
|y(s,z)− y(s,z− ε)|

ε

)

.

We postpone the justification of this claim to the next step and continue with the proof. Then, it
follows from (6.2), (6.3) together with Assumption 5.2 and (4.5),

∣

∣ûε
ξ (s,z,ξ )

∣

∣ ≤ ε2λ̄
(

vz(s,z)+ v̂ε
z(s,z,ξ )

)

≤ ε2λ̄ (vz(s,z)+ γε(s,z,ξ )) . (6.4)

Hence,

(e1−e0) · (u
ε
x,u

ε
y) =−

1
ε

ûε
ξ ≤ ελ̄ (vz(s,z)+ γε(s,z,ξ )) .

By the local boundedness of{uε}ε , for any(s,x,y), there is an open neighborhood of(s,x,y)
and a constantK, both independent ofε, such that the maps

t 7→ uε(s,x− t,y+ t)+ εKt and t 7→ −uε(s,x− t,y+ t)+ εKt

are nondecreasing for allε > 0. Then, it follows from the definition of the relaxed semi-limits
thatû∗ andû∗ are independent of theξ -variable.
2. We now prove (6.3). Forε > 0 and(x,y),(x− ε,y),(x,y− ε) ∈ Kε , we denote as usual
z= x+ y andξ = (y− y(s,z))/ε. By the concavity ofvε in the pair(x,y) and the concavity of
the Merton functionv in z that:

vε
x(s,x,y) ≤

1
ε
(

vε(s,x,y)− vε(s,x− ε,y)
)

≤
1
ε
(

v(s,z)− v(s,z− ε)
)

+
1
ε
(

v(s,z− ε)− vε(s,x− ε,y)
)

≤ vz(s,z− ε)+
1
ε
(

v(s,z− ε)− vε(s,x− ε,y)
)

.

By the definition ofuε ,

vε
x(s,x,y) ≤ vz(s,z− ε)+ ε

(

uε(s,x− ε,y)+ ε2w(s,z− ε,ξε )
)

whereξε := (y− y(s,z− ε))/ε = ξ +(y(s,z)− y(s,z− ε))/ε. We use the bound (4.6) onw, to
arrive at,

vε
x(s,x,y) ≤ vz(s,z− ε)+ εuε(s,x− ε,y)+ ε3λvz(s,z)

(

1+ |ξ |+
|y(s,z)− y(s,z− ε)|

ε

)

.

By exactly the same argument, we also conclude that

vε
y(s,x,y) ≤ vz(s,z− ε)+ εuε(s,x,y− ε)+ ε3λvz(s,z)

(

1+ |ξ |+
|− ε + y(s,z)− y(s,z− ε)|

ε

)

.

Then, using the bounds onyz from Assumption 5.2,

v̂ε
z(s,z,ξ ) = ∂zv

ε(s,z− εξ − y(s,z),εξ + y(s,z)
)

=
(

1− yz(s,z)
)

vε
x(s,x,y)+ yz(s,z)v

ε
y(s,x,y)

≤ vz(s,z− ε)+ ε
(

uε(s,x− ε,y)+uε(s,x,y− ε)
)

+ε3λvz(s,z)
(

1+ |yz(s,z)|+ |ξ |+
|y(s,z)− y(s,z− ε)|

ε

)

.

3. The final statement in the lemma follows from (6.4), the expression ofγε in (6.3), and
Assumption 5.1. ⊔⊓
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6.2 Viscosity sub-solution property

In this section, we prove

Proposition 6.1 Under Assumptions 5.1 and 5.2, the function u∗ is a viscosity sub-solution of
the second corrector equation(3.12).

Proof. Let (s0,z0,ϕ) ∈ (0,∞)2×C2(R2
+) be such that

0= (u∗−ϕ)(s0,z0)> (u∗−ϕ)(s,z) for all s,z≥ 0, (s,z) 6= (s0,z0). (6.5)

Our objective in the following steps is to prove that

A ϕ(s0,z0)−a(s0,z0)≤ 0. (6.6)

1. By the definition ofu∗ and Lemma 6.2, there exists a sequence(sε ,zε) so that

(sε ,zε)→ (s0,z0) and ûε(sε ,zε ,0)→ u∗(s0,z0), as ε ↓ 0,

where we used the notation (3.2). Then, it is clear that

ℓε
∗ := ûε(sε ,zε ,0)−ϕ(sε ,zε )→ 0 (6.7)

and

(xε ,yε) =
(

zε − y(sε ,zε ),y(sε ,zε )
)

−→ (x0,y0) :=
(

z0− y(s0,z0),y(s0,z0)
)

.

Since(uε) is locally bounded from above (Assumption 5.1), there arer0 := r0(s0,x0,y0) > 0
andε0 := ε0(s0,x0,y0)> 0 so that

b∗ := sup{uε(s,x,y) : (s,x,y) ∈ B0,ε ∈ (0,ε0]}< ∞, where B0 := Br0(s0,x0,y0) (6.8)

is the open ball centered at(s0,x0,y0) with radiusr0. We may chooser0 ≤ z0/2 so thatB0 does
not intersect the linez= 0. Forε,δ ∈ (0,1], set

ψ̂ε,δ (s,z,ξ ) := v(s,z)− ε2ℓε
∗− ε2ϕ(s,z)− ε4(1+ δ )w(s,z,ξ )− ε2φ̂ ε (s,z,ξ ),

where, following our standard notation (3.2),φ̂ ε is determined from the function,

φ ε(s,x,y) := C
[

(s− sε)4+(x+ y− zε)4+(y− y(s,x+ y))4] ,

andC> 0 is a large constant that is chosen so that for all sufficiently smallε > 0,

φ ε ≥ 1+b∗−ϕ , on B0 \B1 with B1 := Br0/2(s0,x0,y0). (6.9)

The constantC chosen above may depend on many things including the test functionϕ , s0,z0,δ ,
but not onε. The convergence of(sε ,zε) to (s0,z0) determines how smallε should be for (6.9)
to hold.
2. We first show that, for all sufficiently smallε > 0, δ > 0, the difference(vε −ψε,δ ), or
equivalently,

I ε,δ (s,x,y) :=
vε(s,x,y)−ψε,δ (s,x,y)

ε2

= −uε(s,x,y)+ϕ(s,z)+ ℓε
∗+φ ε(s,x,y)+ ε2δw(s,z,ξ ),
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has a local minimizer inB0. Indeed, by the definition ofuε , ψε,δ andℓε
∗, (6.9), (6.8), and the

fact thatw≥ 0 that, for any(s,x,y) ∈ ∂B0,

I ε,δ (s,x,y) ≥ −uε(s,x,y)+ ℓε
∗+1+b∗+ ε2δw(s,z,ξ ) ≥ 1+ ℓε

∗ > 0,

for sufficiently smallε in view of (6.7). SinceI ε,δ (sε ,xε ,yε ) = 0, we conclude thatI ε,δ has a
local minimizer(s̃ε , x̃ε , ỹε) in B0 with z̃ε := x̃ε + ỹε , ξ̃ ε := (ỹε − y(s̃ε , z̃ε ))/ε satisfying,

min
(s,z,ξ )∈B1

(v̂ε − ψ̂ε,δ ) = (v̂ε − ψ̂ε,δ )(z̃ε , ξ̃ε)≤ 0, |s̃ε − s0|+ |z̃ε − z0|< r0, |ξε |< r1/ε,

for some constantr1. Sincevε is a viscosity super-solution of the dynamic programming equa-
tion (2.2), we conclude that

(

βvε −L ψε,δ −Ũ
(

ψε,δ
x

)

)

(s̃ε , x̃ε , ỹε ) ≥ 0, (6.10)

and

Λε
1,0 ·

(

ψε,δ
x ,ψε,δ

y

)

(s̃ε , x̃ε , ỹε) =
(

ψε,δ
x − (1−λ 1,0ε3)ψε,δ

y

)

(s̃ε , x̃ε , ỹε ) ≥ 0,

Λε
0,1 ·

(

ψε,δ
x ,ψε,δ

y

)

(s̃ε , x̃ε , ỹε) =
(

ψε,δ
y − (1−λ 0,1ε3)ψε,δ

x

)

(s̃ε , x̃ε , ỹε ) ≥ 0.

By a direct calculation using the boundedness of(s̃ε , z̃ε ,εξ̃ ε), we rewrite the last gradient in-
equalities as follows,

−4ε2(εξ̃ ε)3+ ε3vz(s̃
ε , z̃ε)

[

λ 1,0− (1+ δ )wρ(s̃
ε , z̃ε , ρ̃ε)

]

+ ◦(ε3) ≥ 0, (6.11)

4ε2(εξ̃ ε)3+ ε3vz(s̃
ε , z̃ε)

[

λ 0,1+(1+ δ )wρ(s̃
ε , z̃ε , ρ̃ε)

]

+ ◦(ε3) ≥ 0, (6.12)

whereρ̃ε := ξ̃ ε/η(s̃ε , z̃ε ).
3. Let ρ0(s,z) be as in (4.3). In this step, we show that

|ρ̃ε |< ρ0(s̃
ε , z̃ε) for all sufficiently small ε ∈ (0,1]. (6.13)

Indeed, assume thatρ̃εn ≤−ρ0(s̃εn, z̃εn) = ρ1(s̃εn, z̃εn) for some sequenceεn ∈ (0,1]with εn → 0.
Then,wρ(s̃εn, z̃εn, ρ̃εn) = −λ 0,1, and it follows from inequality (6.12), together with the fact
ρ̃εn ≤ ρ1(s̃εn, z̃εn)≤ 0, that

0≤ 4ε2
n(εnξ̃ εn)3− ε3

nvz(s̃
εn, z̃εn)δλ 0,1+ ◦(ε3

n)≤−εn
3vz(s̃

εn, z̃εn)δλ 0,1+ ◦(εn
3).

Sinceδ > 0, this can not happen for largen. Similarly, if ρ̃εn ≥ ρ0(s̃εn, z̃εn) for some sequence
εn → 0, we havewρ(s̃εn, z̃εn, ρ̃εn) = λ 1,0, and it follows from inequality (6.11), together with the
fact thatρ̃εn ≥ ρ0(s̃εn, z̃εn)≥ 0, that

0≤−4ε2
n(εnξ̃ εn)3+ ε3

nvz(s̃
εn, z̃εn)(−δλ 1,0)+ ◦(εn

3)≤−ε3
nvz(s̃

εn, z̃εn)δλ 1,0+ ◦(ε3
n),

which leads again to a contradiction for largen, completing the proof of (6.13).
4. Since(s̃ε , z̃ε ) is bounded and(s,z) 7→ ρ0(s,z) is continuous, we conclude from (6.13) that
the sequence(ξ̃ ε)ε is bounded. Hence, there exists a sequenceεn → 0 so that

(sn,zn,ξn) := (s̃εn, z̃εn, ξ̃ εn) −→ (ŝ, ẑ, ξ̂ ) = (s0,z0, ξ̂ )

for someξ̂ ∈ R. The fact that the limit of(sn,zn) is equal to(s0,z0) follows from standard
arguments using the strict minimum property of(s0,z0) in (6.5). We now take the limit in (6.10)
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along the sequenceεn. Since the functionψε,δ has the form as in Remark 3.4, we do not repeat
the computations given in Section 3 and, given the remainderestimate of section 4.2, we directly
conclude that

0 ≤ lim
εn→0

ε−2
n

(

βvεn −L ψεn,δ −Ũ
(

ψεn,δ
x

)

)

(sn,zn,ξn)

=
1
2
(ησ2)(s0,z0)ξ̂ 2+

1
2
(1+ δ )α2(s0,z0)wξ ξ (s0,z0, ξ̂ )−A ϕ(s0,z0) (6.14)

In the above, we also used the fact that all derivatives ofφ ε vanish at the origin asε tends to
zero.
5. In Step 3, we have proved that|ρε | ≤ ρ0(zε ). Hence,|ξ̂ | ≤ (ηρ0)(s0,z0). Sincew= ηvzw̄,
a= ηvzā, the first corrector equation (3.11) implies that

a(s0,z0) =
1
2
(σ2η)(s0,z0)ξ̂ 2+

1
2

α2(s0,z0)wξ ξ (s0,z0, ξ̂ ).

We use the above identity in (6.14). The result is

A ϕ(s0,z0) ≤
1
2
(σ2η)(s0,z0)ξ̂ 2+

1
2
(1+ δ )α2(s0,z0)wξ ξ (s0,z0, ξ̂ )

= a(s0,z0)+
1
2

δα2(s0,z0)wξ ξ (s0,z0, ξ̂ ).

Finally, we letδ go to zero. However,̂ξ = ξ̂ δ depends onδ and care must be taken. But since
|ξn| ≤ (ηρ0)(sn,zn), it follows thatξ̂ δ is uniformly bounded inδ . Hence the second term in the
above equation goes to zero withδ , and we obtain the desired inequality (6.6). ⊔⊓

6.3 Viscosity super-solution property

In this section, we prove

Proposition 6.2 Let Assumptions 5.1, 5.2, and 5.4 hold true. Then, the function u∗ is a viscosity
super-solution of the second corrector equation(3.12).

As remarked earlier, the above result holds true without theAssumption 5.4 as proved in our
forthcoming paper [31]. However, in this paper we utilize itprovide a somehow shorter proof.
We first need the following consequence of Assumption 5.4 andthe convexity ofvε . Similar
arguments are also used in [36].

Lemma 6.3 Assume the hypothesis of Proposition 6.2. Let(x,y) be an arbitrary element of Kε .
Then,
(i) for y≥ y(s,z) (or equivalently,ξ ≥ 0), we haveΛε

0,1 · (v
ε
x(s,x,y),v

ε
y(s,x,y)) > 0,

(ii) for y≤ y(s,z) (or equivalently,ξ ≤ 0), we haveΛε
1,0 · (v

ε
x(s,x,y),v

ε
y(s,x,y)) > 0.

Proof. Forz∈R+ set

yε
+(s,z) := sup

{

y : (z− y,y) ∈ Kε , and Λε
0,1 · (v

ε
x,v

ε
y)(s,z− y,y) = 0

}

.

In view of the form ofKε , we havey≥−z/(ε3λ 0,1) and by convention the above supremum is
equal to this lower bound if the set is empty. By the concavityof vε , we conclude that

Λε
0,1 · (v

ε
x,v

ε
y)(s,x,y)

{

= 0 for all y≤ yε
+(s,z),

> 0 for all y> yε
+(s,z).
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Let N ε be as in (5.5). Therefore it is included in the set{(s,x,y) : y> yε
+(s,z)}. Since As-

sumption 5.4 states that the Merton line{(s,x,y) : y= y(s,z)} is included inN ε , we conclude
thaty(s,z)> yε

+(s,z). This proves the statement (i). The other assertion is proved similarly. ⊔⊓

Proof of Proposition 6.2.Let (s0,z0,ϕ) ∈ (0,∞)2×C2(R+) be such that

0= (u∗−ϕ)(s0,z0)< (u∗−ϕ)(s,z) for all s,z≥ 0, (s,z) 6= (s0,z0). (6.15)

We proceed to prove that
A ϕ(s0,z0)−a(s0,z0)≥ 0. (6.16)

1. By the definition ofu∗ and Lemma 6.2, there exists a sequence(sε ,zε) so that

(sε ,zε)→ (s0,z0) and ûε(sε ,zε ,0)→ u∗(s0,z0), as ε ↓ 0,

where we used the notation (3.2). Then, it is clear that

ℓ∗ε := ûε(sε ,zε ,0)−ϕ(sε ,zε )−→ 0

and
(xε ,yε) =

(

zε − y(sε ,zε ),y(sε ,zε )
)

−→ (x0,y0) :=
(

z0− y(s0,z0),y(s0,z0)
)

.

Sinceuε(s,x,y)≥−ε2w(s,z,ξ )≥−εC(s,z)|y−y(s,z)|, for some continuous functionC, there
arer0 := r0(s0,x0,y0)> 0 andε0 := ε0(s0,x0,y0)> 0 so that

b∗ := inf
(s,x,y)∈B0

uε(s,x,y) >−∞, where B0 := Br0(s0,x0,y0).

We also chooser0 sufficiently small so thatB0 does not intersect the linez= 0. Forε ∈ (0,1]
andδ > 0, define

ψ̂ε,δ (s,z,ξ ) := v(s,z)− ε2ℓ∗ε − ε2ϕ(s,z)− ε4(1− δ )w(s,z,ξ )+ ε2φ̂ ε (s,z,ξ ),

where, following our notation convention (3.2), the function φ̂ ε is obtained from the function
φ ε defined by,

φ ε(s,x,y) :=C
[

(s− sε)4+(x+ y− zε)4+(y− y(s,x+ y))4]]

and, similar to the proof of the super-solution property,C> 0 is a constant chosen so that,

−b∗+ ℓ∗ε +
(

ϕ −φ ε)(s,x,y) < 0 on ∂B0. (6.17)

2. Set

I ε,δ (s,z,ξ ) := ε−2(vε −ψε,δ)(s,x,y)

= −uε(s,x,y)+ϕ(s,z)+ ℓ∗ε −φ ε(s,x,y)− ε2δw(s,z,ξ ).

Sincew(s,z,0) = 0, we haveI ε,δ (sε ,zε ,0) = 0. On the other hand, it follows from (6.17) that

I ε,δ (s,z,ξ )≤−b∗+ ℓ∗ε +
(

ϕ −φ ε)(s,x,y)− ε2δw(s,z,ξ ) < 0 on ∂B0.

Then, the differencevε −ψε,δ has an interior maximizer(s̃ε , z̃ε , ξ̃ ε) in B0,

max
B0

(

vε −ψλ ,ε)= (vε −ψλ ,ε)(s̃ε , x̃ε , ỹ
ε), and|s̃ε − s0|+ |z̃ε − z0|+ |εξ̃ε | ≤ r1, (6.18)
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for some constantr1. By the sub-solution property ofvε , at(s̃ε , x̃ε , ỹε),

min
{

βvε −L ψε,δ −Ũ
(

ψε,δ
x

)

,Λε
0,1 · (ψ

ε,δ
x ,ψε,δ

y ),Λε
1,0 · (ψ

ε,δ
x ,ψε,δ

y )
}

≤ 0. (6.19)

3. In this step, we show that for all sufficiently smallε > 0,

Λε
0,1 · (ψ

ε,δ
x ,ψε,δ

y )(s̃ε , x̃ε , ỹε)> 0 and Λε
1,0 · (ψ

ε,δ
x ,ψε,δ

y )(s̃ε , x̃ε , ỹε)> 0. (6.20)

By Lemma 6.3, it suffices to prove that

D0,1 := Λε
0,1 · (ψ

ε,δ
x ,ψε,δ

y )(s̃ε , x̃ε , ỹε)> 0 for ξ̃ < 0,

D1,0 := Λε
1,0 · (ψ

ε,δ
x ,ψε,δ

y )(s̃ε , x̃ε , ỹε)> 0 for ξ̃ > 0.
(6.21)

We directly compute that

ψε,δ
x = vz− ε2ϕz− ε4(1− δ )

(

wz−
yz

ε
wξ

)

+4ε2C
(

(z− zε)3− yz(y− y)3),

ψε,δ
y = vz− ε2ϕz− ε4(1− δ )

(

wz+
1− yz

ε
wξ

)

+4ε2C
(

(z− zε)3+(1− yz)(y− y)3).

Then, it follows from the estimates (6.18) that

D0,1 = ε3((1− δ )wξ +λ 0,1vz
)

(s̃ε , z̃ε , ξ̃ ε)−4Cε2(εξ̃ ε)3+ ◦(ε3)

D1,0 = ε3(− (1− δ )wξ +λ 1,0vz
)

(s̃ε , z̃ε , ξ̃ ε)+4Cε2(εξ̃ ε )3+ ◦(ε3).

Sincew solves (4.1),wξ +λ 0,1vz ≥ 0 and−wξ +λ 1,0vz ≥ 0. Then,

D0,1 ≥ −ε3δvz(s̃
ε , z̃ε)−4Cε2(εξ̃ ε)3+ ◦(ε3)

≥ −ε3δvz(s̃
ε , z̃ε)+ ◦(ε3) for ξ̃ ≤ 0,

and

D1,0 ≥ ε3δvz(s̃
ε , z̃ε )+4Cε2(εξ̃ ε)3+ ◦(ε3).

≥ ε3δvz(s̃
ε , z̃ε )+ ◦(ε3) for ξ̃ ≥ 0.

Sincevz > 0, (6.21) holds for all sufficiently smallε > 0.
4. In this step, we prove that̃ξε is bounded inε ∈ (0,1]. Indeed, in view of (6.19) and (6.20),

0 ≥
(

βvε −L ψε,δ −Ũ
(

ψε,δ
x

)

)

(s̃ε , x̃ε , ỹε)

= ε2
[ (−σ2vzz)(sε , z̃ε )

2
|ξε |

2+
1− δ

2
α2(s̃ε , z̃ε )wξ ξ (z̃ε , ξ̃ε )

−A u(s̃ε , z̃ε )+Rε(s̃ε , x̃ε , ỹε)
]

, (6.22)

where we used the fact that the functionψε,δ is exactly as in the form assumed in Remark 3.4.
Then, by the remainder estimate of section 4.2, we deduce that,

|Rε(s̃ε , x̃ε , ỹε)| ≤C(s̃ε , z̃ε )
[

ε + ε|ξ̃ε |+ ε2|ξ̃ε |
2
]

. (6.23)

In Section 4, the functionw is explicitly constructed. Sincew is linear inξ for large values of
ξ , there is a continuous function̂C(s,z) so that

0≤ wξ ξ (s,z,ξ )≤ Ĉ(s,z), for all (s,z,ξ ) ∈ R
2
+×R

1.
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Then, since(s̃ε , z̃ε) is uniformly bounded inε ∈ (0,1], there are constantsC,C̃> 0 so that,

0≥ ε2C̃
[

ξ̃ 2
ε −C

(

1+ ε|ξ̃ε |+ ε2|ξ̃ε |
2
)]

.

Hence(ξ̃ε )ε is also uniformly bounded inε ∈ (0,1] by a constant depending only on the test
functions.
5. Since(zε ,ξε )ε∈(0,1] is bounded, there exists a sequence(εn)n such that

εn ↓ 0 and (zn,ξn) :=
(

zεn,ξεn

)

−→ (ẑ, ξ̂ ) = (z0, ξ̂ ) ∈ (0,∞)×R,

where the fact that ˆz= z0 follows from the strict maximum property in (6.15) and classical
arguments from the theory of viscosity solutions. We finallyconclude from (6.22) and (6.23)
that

0 ≥ −
1
2
(σ2vzz)(s0,z0)ξ̂ 2−A ϕ(s0,z0)−A φ(0)+

1
2
(1− δ )α2(s0,z0)wξ ξ (s0,z0, ξ̂ )

= −A ϕ(s0,z0)−
1
2
(σ2vzz)(s0,z0)ξ̂ 2+

1
2
(1− δ )α2(s0,z0)wξ ξ (s0,z0, ξ̂ ),

sinceA φ(0) = 0. Now, in view of the first corrector equation (3.11),

0 ≥ −A ϕ(s0,z0)+a(s0,z0)+
1
2

δα2(s0,z0)wξ ξ (s0,z0, ξ̂ ).

Finally, we conclude thatA ϕ(s0,z0)−a(s0,z0)≥ 0, by sendingδ to zero. ⊔⊓

7 Verifying Assumption 5.1

In this section, we verify Assumption (5.1). This is done by constructing an appropriate sub-
solution of the dynamic programming equation (2.2). Clearly, this construction requires as-
sumptions and here we present only one possible set of assumptions. To simplify the presenta-
tion, we suppose that the coefficients are independent of thes-variable. Next, we assume that
there exist constants 0< k∗ ≤ k∗ so that the limit Merton value function satisfies

0< k∗z≤ η(z)≤ k∗z. (7.1)

Let c be the optimal Merton consumption policy given as in (2.6). We assume that

U(c(z))≥ k∗zv′(z), (7.2)

for some constantk∗ > 0. Notice that all the above assumptions hold in the power utility case.
First, using (5.3) and the explicit representation ofa, one may directly verify that there is a
constanta∗ > 0 so that

a(z)≤ a∗zv′(z).

Then, the definition ofA and the above assumptions imply that

A v(z) =U(c(z))≥ k∗zv′(z)≥
k∗
a∗

a(z) =
k∗
a∗

A u(z). (7.3)

Let u be the function defined in (1.2). Sincev is assumed to be smooth, we may apply Itô’s
formula in a standard way to conclude from the last inequality that

0≤ u(z)≤
a∗

k∗
v(z). (7.4)
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Moreover, since we assume that coefficients are independentof thesvariable, (2.7) is equivalent
to y(z) = η(z)(µ − r)/σ2. Hence, (5.3) implies that

− v′′(z)≤ η(z) v′′′ ≤−2v′′(z). (7.5)

We now use these observations to construct a sub-solution ofthe dynamic programming
equation of the form

Vε(x,y) := v(z)−Kε2v(z)+ ε4W̃(z,ξ ), (7.6)

with a sufficiently large constantK ≥ a∗/k∗ and a slightly modified corrector,

W̃(z,ξ ) := zv′(z)w̃(ξ/z),

where the function ˜w(z) and the constant ˜a> 0 are the unique solution of ˜w(0) = 0 and

max

{

−
k∗σ2

2
ρ2−

(α∗k∗)2

2
w̃ρρ + ã ; −2λ 1,0+ w̃ρ ; −2λ 0,1− w̃ρ

}

. (7.7)

The solution of the above equation is explicitly available through the general solution obtained
earlier in Section 4.1.

The fact thatVε is a sub-solution of (2.2) follows from tedious but otherwise direct calcula-
tions. To streamline these calculations, we first state an estimate that follows from the explicit
form of W̃.

Lemma 7.1 There is a constant k∗ > 0 so that

z
∣

∣W̃ξ ξ (z,ξ )
∣

∣ ≤ k∗v′(z),
∣

∣W̃z(z,ξ )
∣

∣ ≤ k∗v′(z)
(

1+ |ξ |
z

)

,

z
∣

∣∂xW̃(z,ξ )
∣

∣+ z
∣

∣∂yW̃(z,ξ )
∣

∣ ≤ k∗zv′(z)
(

1
ε +

|ξ |
z

)

,

z2
∣

∣

∣
∂yyW̃(z,ξ )− (1−y′(z))2

ε2 W̃ξ ξ (z,ξ )
∣

∣

∣
≤ k∗zv′(z)

(

1
ε +

|ξ |
z

)

.

Proof. These estimates follow directly from straightforward differentiation and the estimates
(7.1), (7.5). ⊔⊓

Lemma 7.2 (Lower Bound) Assume(7.1), (7.2) and(5.2). Then, for sufficiently large K> 0,
Vε defined in(7.6) is a sub-solution of(2.2) in R

2
+. Moreover,

ūε(x,y)≤ Kv(z)+ ε2W̃(z,ξ )

onR2
+ and Assumption 5.1 holds.

Proof. We need to show that at any point(x,y) ∈ R
2
+ one of the three terms in (2.2) is non-

positive. Since(x,y) ∈ R
2
+, by assumption (5.2), we have

|ξ |=
|y− y(z)|

ε
≤

z
ε
, ⇒ Ξ :=

ξ
z
∈

1
ε
[−1,1].

Let ρ0 > 0 be the threshold in the equation (7.7). We analyze several cases separately.
Case 1. ρ0 ≤ Ξ ≤ 1/ε.
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In this case,W̃ξ (z,ξ ) = 2λ 1,0v′(z). We use the previous Lemma and (5.2), to arrive at,

Λε
1,0 · (V

ε
x ,V

ε
y ) =

1
ε

V̂ε
ξ + ε2λ 1,0(1− y′)V̂ε

ξ + ε3λ 1,0V̂ε
z

= ε3 [(1− ε3λ 1,0(1− y′))W̃ξ +(1−Cε2)v′−λ 1,0ε4W̃z
]

≤ ε3λ 1,0v′
(

−1+ k∗ε3)≤ 0,

provided thatε is sufficiently small.

Case 2. −1/ε ≤ Ξ ≤−ρ0.
A similar calculation, shows thatΛε

0,1 · (V
ε
x ,V

ε
y )≤ 0, for all sufficiently smallε.

Case 3. |Ξ| ≤ ρ0. We now use Remark 3.4 to conclude that

J (Vε) = ε2
[

−
σ2v′′(z)

2
ξ 2+

α2(z)
2

W̃ξ ξ (z,ξ )−KA v(z)+Rε(z,ξ )
]

.

We first use (7.1), (5.2), (7.7), (7.3) and setρ := ξ/z. The result is

I :=
J (Vε)

ε2

≤ ε2v′(z)η(z)
[

k∗σ2

2
ρ2+

(α∗k∗)2

2
w̃ρρ(ρ)−K(k∗)

2
]

+ ε2Rε(z,ξ )

= ε2v′(z)η(z)
[

ã−K(k∗)
2]+ ε2Rε(z,ξ ).

If K is sufficiently large thenK(k∗)2 is larger than ˜a and by (7.1), the above estimate implies
that

I ≤−zv′(z)+Rε(z,ξ ).

We now estimateRε by recalling the results of subsection 4.2. We split this in three terms
coming from the value functionv, the correctorW̃ and from the utility function,

|Rε | := Rε
v +Rε

w+Rε
U .

We estimate each one using Lemma 7.1. Then,

Rε
v ≤ K

[

εΞ(µ − r)zv′(z)+
σ2

2

(

ε2Ξ2+2εΞ(y/z)
)

z2v′′(z)

]

≤ εKk∗zv′(z).

Also

Rε
w ≤ ε2

[

βW̃− rz((1− (y/z))+ εΞ)W̃x− µz(εΞ+(y/z))W̃y

−
σ2

2
z2 (εΞ+(y/z))2

(

W̃yy−W̃ξ ξ (1− yz)
2/ε2)

σ2

2
z2W̃ξ ξ

(1− yz)
2

ε2

(

ε2Ξ2+2εΞ(y/z)
)

≤ k∗zv′(z).

Finally

Rε
U = Ũ(v′)−Ũ(Vε

x )

≤ Ũ(v′)−Ũ(v′[1− ε2K+ k∗ε4])≤ 0.
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Hence, there isk∗ so that.
|Rε | ≤ εk∗zv′(z).

Hence ifK is sufficiently large,Vε is a sub-solution of (2.2) for all smallε.

Boundary y= 0.
Then, again by (5.2), for all sufficiently smallε > 0,

Ξ =
y− y(z)

ε
=

−y(z)
ε

<−ρ0.

Hence, by the second case, and Lemma 6.3

Λε
1,0 · (V

ε
x ,V

ε
y )(x,0)≤ 0= Λε

1,0 · (v
ε
x,v

ε
y)(x,0), ∀ x> 0.

Boundary x= 0.
By a similar analysis, we can show that

Λε
0,1 · (V

ε
x ,V

ε
y )(0,y)≤ 0= Λε

0,1 · (v
ε
x,v

ε
y)(0,y), ∀ y> 0.

Then, onR2
+, Vε is a sub-solution of (2.2) whilevε is a solution. Also on the boundary ofR2

+

againVε is a sub-solution of an oblique Neumann condition andvε is a super-solution. Then,
by comparison (or by a verification argument), we conclude thatvε ≥ φ onR2

+. This proves the
lower bound onuε on the positive orthant. ⊔⊓

Remark 7.1 In view of Lemma 7.2, it follows that the local upper boundingfunctionB, defined
in (5.4), is bounded by the functionKv(z). In particular, this implies that the growth ofu∗ and
u∗, both at infinity and at the origin, is the same as that of the zero-transaction cost Merton
value functionv. By introducing the logarithmic variable, we observe that the behavior near the
origin transforms into a growth condition at minus infinity.

8 Homothetic case

In this short section, we consider the classical CRRA utility function

U(c) :=
c1−γ

1− γ
, c> 0, (8.1)

for someγ > 0 with γ = 1 corresponding to the logarithmic utility. Our objective is to reproduce
the results of Janecek and Shreve [22] by directly applying our explicit expansion result of
Theorem 6.1. Also these calculations show how one may use ourresults to obtain the asymptotic
formulae for problems with power utility that have explicitly known Merton value functions,
such as factor models.

In the context of the power utility (8.1), the Merton value function is explicitly given by,

v(z) =
1

(1− γ)
z1−γ

vγ
M

,

with the Merton constant

vM =
β − r(1− γ)

γ
−

1
2
(µ − r)2

γ2σ2 (1− γ).
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Hence the risk tolerance function and the optimal strategies are given by,

η(z) =
z
γ
, y(z) =

µ − r
γσ2 z := πMz, c(z) = vMz.

In particular, sincey and c are linear inz, the comparison Assumption 5.3 is immediately
checked to hold true. Indeed, by introducing the logarithmic variablez′ = lnz, the second
corrector equation (3.12) becomes linear with constant coefficients on(−∞,∞). The growth
condition as discussed in Remark 7.1 transforms into an exponential sublinear growth. It is well-
known that this condition is sufficient to prove comparison.The corresponding probabilistic
argument refers to the integrability of exponential sublinear growth with respect to the Gaussian
density.

Moreover, since the conditions of Section 7 are satisfied in the present context, it follows
that Assumptions 5.1 holds true in our power utility case, provided thatπM ∈ (0,1). Finally, by
Remark 11.3 in Shreve and Soner [36], the last condition alsoimplies the validity of Assumption
5.4. We have then verified the following.

Lemma 8.1 AssumeπM ∈ (0,1). Then, Assumptions 5.1, 5.2, 5.3 and 5.4 hold true in the
context of the power utility function(8.1).

Since the diffusion coefficientα(z) = σy(z)[1− yz(z)], it follows that

ᾱ =
α(z)
η(z)

= γσπM(1−πM).

The constants in the solution of the corrector equation are given by,

ρ0 =

(

3ᾱ2

4σ2

(

λ 1,0+λ 0,1)
)1/3

,

a(z) = η(z)v′(z)ā=
σ2(1− γ)

2γ
ρ2

0 v(z).

Since

A v(z) =U(c(z)) =
1

1− γ
(vMz)1−γ = vMv(z),

the unique solutionu(z) of the second corrector equation

A u(z) = a(z) =
σ2(1− γ)

2γ
ρ2

0 v(z)

is given by

u(z) =
σ2(1− γ)

2γ
ρ2

0v−1
M v(z) = u0z1−γ ,

where
u0 := (πM(1−πM))

4/3v−(1+γ)
M .

Finally, we summarize the expansion result in the following.

Lemma 8.2 For the power utility function U in(8.1),

vε(x,y) = v(z)− ε2u0z1−γ +O(ε3).

The width of the transaction region for the first correction equation2ξ0 = 2η(z)ρ0 is given by

2ξ0 =

(

6
γ
(λ 0,1+λ 1,0)

)1/3

(πM(1−πM))
2/3 .

The above formulae withλ i, j = 1 are exactly the same as equation (3.13) in Janecek and Shreve
[22] .
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