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A NOTE ON ADJOINT ERROR ESTIMATION FOR

ONE-DIMENSIONAL STATIONARY BALANCE LAWS WITH

SHOCKS.

JOCHEN SCHÜTZ, SEBASTIAN NOELLE, CHRISTINA STEINER AND GEORG MAY

Abstract. We consider one-dimensional steady-state balance laws with discontinuous solutions.
Giles and Pierce [7] realized that a shock leads to a new term in the adjoint error representation
for target functionals. This term disappears if and only if the adjoint solution satisfies an internal
boundary condition. Curiously, most computer codes implementing adjoint error estimation ignore
the new term in the functional, as well as the internal adjoint boundary condition. The purpose of this
note is to justify this omission as follows: if one represents the exact forward and adjoint solutions as
vanishing viscosity limits of the corresponding viscous problems, then the internal boundary condition
is naturally satisfied in the limit.
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1. Introduction. We consider stationary one-dimensional conservation laws with
source term, also called balance laws [10],

f(w)x + S(w) = 0 ∀x ∈ Ω, (1.1)

equipped with in- and outflow boundary conditions. Both f : R
d → R

d and S :
R

d → R
d are given smooth functions, and Ω ⊂ R is a one-dimensional domain. One

particular example of (1.1) is one-dimensional nozzle flow [1]. In many applications,
the user is interested in the value of so-called target functionals, such as lift and
drag coefficients in aerodynamics. In this context, for a given smooth function p of
the solution w, we consider the functional Ĵ(w) :=

∫
Ω
p(w) dx. For smooth exact,

respectively approximate, solutions w and v, the error

E(v, w) := Ĵ(v) − Ĵ(w) (1.2)

in the target functional Ĵ is given by

E(v, w) = R(z(w), v) +H(z(w), v, w), (1.3)

where H(z(w), v, w) is a higher order term to be discussed in section 2 below, and

R(z, v) :=

∫

Ω

zT (f(v)x + S(v)) dx (1.4)

is the inner product of the residual of the approximate solution v and an adjoint
solution z ≡ z(w), which is implicitly defined by the system of equations

−f ′(w)T zx + S′(w)T z = p′(w) ∀x ∈ Ω, (1.5)

subject to suitable boundary conditions. The clue of this error representation is
that R(z, v) does not (directly) depend on the unknown solution w and can thus be
evaluated numerically, provided one approximates z suitably. Therefore, neglecting
H, and localizing the terms in the inner product R, one obtains an a-posteriori error
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estimate, which can be used to refine the grid in such a way that the target functional
is computed accurately at low cost. This strategy has been used by many authors,
in particular for steady state computations (see, e.g., [2, 8, 13] and the references
therein).

Giles and Pierce [6, 7] generalized this framework to solutions w and v with shocks,
and found the error representation

E(v, w) = R(z, v) + ᾱ I(z, w) +H(z, v, w) (1.6)

where the new term consists of the product of the error in the shock location α ≡
α(w, v) and the jump term

I(z, w) := −zT (α)[f(w)x]− [p(w)]. (1.7)

Here α ≡ α(w) is the shock location, and [·] denotes the jump of a quantity across
the shock.

It is not obvious whether (1.7) is zero. In the context of time-dependent conser-
vation laws, Giles and Ulbrich [4, 5] proved convergence of a numerically computed zh
towards z in the framework of a Finite Volume scheme, while in the stationary case,
Schütz et al. [11] studied convergence in the context of a Discontinuous Galerkin
scheme. The latter result indicates that at least I(zh, wh) converges to zero. In this
paper, we will show that under certain conditions, I(z, w) is indeed zero.

The internal error term presents a serious obstacle to a-posteriori adjoint error
control, since the exact solution, the shock position and the error in the shock location
are not known from the data of the computation, and hence the internal error cannot
be evaluated. Therefore, in practical computations, ᾱ I is usually neglected. Perhaps
surprisingly, this leads to successful adaptive schemes. The aim of this paper is to
show analytically that this omission is justified.

The paper proceeds as follows: In section 2 we present an alternative, and more
detailed, derivation of the rather subtle error representation (1.6) for piecewise smooth
solutions. In section 3, we prove that vanishing viscosity solutions w and z, provided
that z is smooth, satisfy what is called the internal boundary condition

zT (α)[f(w)x] = −[p(w)]. (1.8)

Therefore, the internal error term ᾱ I vanishes identically, and the a-posteriori error
representation is justified for stationary conservation laws with shocks.

2. Adjoint Error Control in the Discontinuous Case. In this section, we
give an alternative derivation of Giles’ and Pierce’s [6, 7] adjoint error representation
(1.6) for a non-smooth solution w and a non-smooth function v approximating w in a
certain sense we make more precise below. Giles and Pierce use a very short, formal
calculus. But the differentiation of nonsmooth solutions, whose discontinuities are
in different locations, is rather subtle. Here we confirm their calculation by a more
detailed argument: we introduce a one-parameter family of coordinates, which links
the smooth regions of both solutions. This helps us to formulate the distance of two
such solutions, and to differentiate with respect to the new grid parameter.

We consider the domain Ω = [0, 1]. For suitable boundary conditions, it is well-
known that solutions to nonlinear conservation laws exhibit jump discontinuities. The
location of such a discontinuity (the shock location) is denoted by x = α. We assume
that w is discontinuous in x = α, while it is sufficiently smooth away from α, which in
particular means that limε→0+ w(α± ε) =: w± exists. This is a standard setting and
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in no way a restriction. Now assume w is perturbed in such a way that the resulting
function v := w + w has one (and only one) discontinuity at x = β =: α + α, and is
also smooth away from β. In the case of a non-smooth function w, being approximated
by some other non-smooth function v, we cannot simply say that ‖v −w‖∞ is small,
say O(ν) for some small parameter ν, because if α and β do not coincide, we always
have an O(1) approximation error in the ∞−norm in the region between α and β.

As a consequence, in the following definition, we state what we mean by a suffi-
ciently small perturbation w:

Definition 2.1 (Sufficiently close approximation of a discontinuous function).
We say that w is approximated by v to order ν if

• There exist α, β ∈ R, 0 < α < 1, 0 < β < 1 and smooth, invertible functions

ξ1 : [0, α] → [0, β], (2.1)

ξ2 : [α, 1] → [β, 1] (2.2)

such that we have

w(x) = v(ξ1(x))
− +O(ν), x < α (2.3)

w(x) = v(ξ2(x))
+ +O(ν), x > α, (2.4)

with the O(ν)−bound assumed to be uniform.
• The ξi have to fulfill the properties

d

dx
ξ1 = 1 +O(ν), (2.5)

d

dx
ξ2 = 1 +O(ν), (2.6)

ξ1(α) = ξ2(α) = β (2.7)

and the second derivatives of ξi are bounded.
• The residual r(v) is sufficiently small, meaning that we have the property

r(v) := f(v)x + S(v) = O(µ) (2.8)

pointwise except at the discontinuity of v, where µ is another parameter going
to zero. Usually, µ tends much slower to zero than ν does.

Assumption 2.2. The results we obtain in this section are independent of the
relative position of α and β. However, for the sake of simplicity, we assume without
loss of generality that α < β.

A visualization of the relevant quantities can be seen in figure 2.1. Let us make the
remark that functions w and v according to definition 2.1 fulfill ‖w(·) − v(ξ(·))‖∞ =
O(ν).

Lemma 2.3. Let ξ1 and ξ2 be smooth, invertible functions fulfilling the properties
(2.5), (2.6) and (2.7) with domains as given in (2.1) and (2.2). Then

ξi(x)− x = O(ν) ∀i = 1, 2, (2.9)

which, as a special case, implies β − α = O(ν).
Proof. (We consider only the case i = 1. The case i = 2 is completely analogous

with the obvious interchange of 0 and 1.) We have that

ξ1(0)− 0 = 0 due to the invertibility of ξ1 and

d

dx
(ξ1(x)− x) = O(ν) due to (2.5).
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Fig. 2.1. v approximates w sufficiently close in the sense of definition 2.1. First plot: The
given functions w and v. Second plot: The coordinate transformation ξ and its derivative. Third

plot: v(ξ(x)) approximates w(x) pointwise. In this picture, we chose ξ(x) := β
α
x+x(x−α)

(1−β/α)
1−α

.

This proves the claim because we can write

ξ1(x)− x = ξ1(0)− 0 +

∫ x

0

d

dx
(ξ1(τ) − τ) dτ = O(ν).

Lemma 2.4. Let w be a piecewise smooth function with a jump in x = α, and let
v be sufficiently close to w in the sense of definition 2.1. Then

v(x)− w(x) = O(ν) ∀x ∈ Ω\[α, β]. (2.10)
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Proof. (Without loss of generality, x < α)

v(x) − w(x) = v(ξ1(x)) − w(x) + v(x)− v(ξ1(x))

(2.3)
= O(ν) + v(x) − v(ξ1(x))

= O(ν) + v′(ξ1(x)) · (x − ξ1(x)) +O(‖x− ξ1(x)‖
2)

(2.9)
= O(ν).

2.1. Linearization of the Rankine-Hugoniot Condition. Not every dis-
continuity of w is permissible. A very basic restriction following directly from the
weak formulation of a hyperbolic conservation law is the Rankine-Hugoniot condi-
tion, which states that the flux has a (weak) divergence, even in the vicinity of a
shock, more precisely,

[f(w)] := f(w(α))+ − f(w(α))− = 0. (2.11)

Let us again assume that we are interested in a perturbed solution v = w+w (in the
sense of definition 2.1) which has its only shock at x = β = α+α. In this section, we
investigate how the Rankine-Hugoniot condition changes for such a v.

Let us first state the following lemma:
Lemma 2.5. Let w be a piecewise smooth function with a jump in x = α, and let

v be sufficiently close to w in the sense of definition 2.1. Furthermore, let f ≡ f(w)
be a smooth function. Then

[f(v)] =[f(w)] + f ′(w(β))(v(β) − w(β))+ − f ′(w(α))−(v(α) − w(α))− (2.12)

+ α[
d

dx
f(w(x))] + o(ν).

Note that [f(v)] denotes a jump at x = β, while [f(w)] and [ d
dx
f(w(x))] denote jumps

at x = α.
Proof. We have that

f(v(β))− = f(w(α))− + f(v(β))− − f(w(α))−

= f(w(α))− + f(v(α))− − f(w(α))− + f(v(β))− − f(v(α))−

= f(w(α))− + f ′(w(α))−(v(α) − w(α))− +
d(f ◦ v)

dx
(α)− · α+O(ν2)

= f(w(α))− + f ′(w(α))−(v(α) − w(α))− +
d(f ◦ w)

dx
(α)− · α+ o(ν).

The last step is true because by replacing d(f◦v)
dx

by d(f◦w)
dx

we make an O(µ) error
which is augmented to O(µν) = o(ν) by multiplying it with α. By treating f(v(β))+ in
an analog manner, and then subtracting f(v(β))− from f(v(β))+, we get the claimed
identity (2.12).

Let us, for the ease of notation, define

[f ′(w)w] := f ′(w(β))(v(β) − w(β))+ − f ′(w(α))−(v(α)− w(α))−. (2.13)

Inserting (2.13) into (2.12), exploiting the Rankine-Hugoniot condition as given in
(2.11), and assuming that w solves (1.1), the jump in f(v) can be linearized as

[f(v)] = [f ′(w)w] + α[
d

dx
f(w(x))] + o(ν). (2.14)
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2.2. Linearization of the Functional. We are interested in computing the
changes in the functional

Ĵ(w) :=

∫

Ω

p(w) dx, (2.15)

with p being sufficiently regular. Again, we assume that v is sufficiently close to w.
We can then compute

Ĵ(v)− Ĵ(w) =

∫

Ω

p(v)− p(w) dx

=

∫

Ω\[α,β]

p′(w)(v − w) dx +O(ν2) +

∫ β

α

p(v)− p(w) dx

=

∫

Ω\[α,β]

p′(w)(v − w) dx +O(ν2) + (β − α)(p(v(α)) − p(w(α))+)

+O(ν2)

(2.10)
=

∫

Ω\[α,β]

p′(w)(v − w) dx + α(p(w(α))− − p(w(α))+) +O(ν2)

=

∫

Ω\[α,β]

p′(w)(v − w) dx − α[p(w)] +O(ν2),

and in summary, we have the following lemma:
Lemma 2.6. Let w be a piecewise smooth function with a jump in x = α, and let

v be sufficiently close to w in the sense of definition 2.1. Let Ĵ be given by (2.15).
Then

Ĵ(v)− Ĵ(w) =

∫

Ω\[α,β]

p′(w)(v − w) dx − α[p(w)] +O(ν2). (2.16)

2.3. Adjoint Approach. In this section, we put together the information from
the previous subsections, and show that the adjoint error control works under suitable
assumptions as usual. We make the following consistent modification to the functional
Ĵ and consider

J(w) := Ĵ(w) − zTα [f(w)] (2.17)

instead of Ĵ as in (2.15). zα ∈ R
d is a parameter that will be determined later. The

modification is consistent, as Ĵ(w) = J(w) for a solution w to (1.1). The latter is due
to the fact that [f(w)] vanishes. The same modification has already been done in [7].

We assume that the dual solution z is given as in (1.5), and we additionally
assume that it is at least Lipschitz-continuous. This is in good agreement with both
our numerical experiences and Tadmor’s theory for scalar conservation laws proposed
in [12]. In this section, we do not care about boundary conditions at all, as the focus
is just on the behavior of the adjoint in the shock. We thus assume that all terms
occurring at the (physical) boundary vanish, more precisely,

v(0)− w(0) = v(1)− w(1) = 0. (2.18)

Putting all our information together, we can state the following theorem:
Theorem 1. Let w be a piecewise smooth, exact solution to (1.1) with a jump

at x = α, and v be an approximation to w in the sense of definition 2.1, for which
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additionally holds v = w at the boundary, i.e., w = v−w vanishes at x = 0 and x = 1.
Furthermore, let z be a smooth (at least Lipschitz-continuous) solution to (1.5). The
functional J is defined as in (2.17) for a sufficiently smooth function p ≡ p(w). Upon
choosing zα := z(α), we can write

J(v) − J(w) =

∫

Ω

zT (f(v)x + S(v)) dx+ α

(
−zT (α)[

d

dx
f(w)] − [p(w)]

)
+ o(ν).

(2.19)

Proof. The proof is a direct computation, it exploits the already known lineariza-
tions of both [f(w)] and Ĵ(w):

Ĵ(v)− Ĵ(w)
(2.16)
=

∫

Ω\[α,β]

p′(w)(v − w) dx− α[p(w)] + o(ν)

(1.5)
=

∫

Ω\[α,β]

(−f ′(w)T zx + S′(w)T z)(v − w) dx− α[p(w)] + o(ν)

=

∫

Ω\[α,β]

(zTx (f(w) − f(v)) + zT (S(v)− S(w)) dx− α[p(w)] + o(ν)

(1.1)
=

∫

Ω\[α,β]

zT (f(v)x + S(v)) dx

− zT (α)f ′(w(α))(v(α) − w(α))− + zT (β)f ′(w(β))(v(β) − w(β))+

− α[p(w)] + o(ν)

(2.13)
=

∫

Ω\[α,β]

zT (f(v)x + S(v)) dx+ zT (α)[f ′(w)w]− α[p(w)] + o(ν),

where the last step is allowed due to the assumed Lipschitz-continuity of z, i.e.,
z(β) = z(α) +O(ν); and the fact that [f ′(w)w] is of order ν.

Based on this computation, we can conclude that

J(v)− J(w)
(2.14)
=

∫

Ω

zT (f(v)x + S(v)) dx −

∫ β

α

zT (f(v)x + S(v)) dx + zT (α)[f ′(w)w]

(2.20)

− zTα

(
[f ′(w)w] + α[

d

dx
f(w)]

)
− α[p(w)] + o(ν)

=

∫

Ω

zT (f(v)x + S(v)) dx + zT (α)[f ′(w)w] (2.21)

− zTα

(
[f ′(w)w] + α[

d

dx
f(w)]

)
− α[p(w)] + o(ν) +O(νµ),

where the last step is true because f(v)x + S(v) is of order µ. Now upon choosing
zα := z(α), we proved our claim (2.19) as the terms involving [f ′(w)w] cancel each
other.

Let us now make the following definition of what we mean by interior boundary
condition:

Definition 2.7. A function z fulfills the interior boundary condition with
respect to p and the shock position α, iff

zT (α)[f(w)x] = −[p(w)] (2.22)
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for the solution w to (1.1).
In the next section (section 3), we prove that the solution z to (1.5), under

standard assumptions, fulfills (2.22).
Corollary 2.8. Suppose that the adjoint solution z as given in (1.5) fulfills the

interior boundary condition (2.22), we have under the assumptions of Theorem 1 the
usual adjoint error representation

J(v)− J(w) =

∫

Ω

zT (f(v)x + S(v)) dx+ o(ν).

2.4. Interior Boundary Condition for the Euler Equations. A prototype
of (1.1) with d = 3 are the steady-state quasi one-dimensional Euler equations, which
are a model for compressible nozzle flow. w, f and S are defined as

w = (ρ, ρu,E)T ,

f(w) = (ρu, ρu2 + p, u(E + p))T , (2.23)

S(w) =
A′

A
(ρu, ρu2, u(E + p))T ,

respectively. The conservative variables ρ, ρu,E are density, momentum (which equals
density times velocity) and total energy. Furthermore, A ≡ A(x) describes the nozzle
geometry (assumed to be rotational-symmetric, so A(x) does in fact describe the
diameter) and

p(w) := (γ − 1)(E −
1

2
ρu2) (2.24)

is the pressure, where we have used a specific equation of state for p that holds for a
polytropic ideal gas, and γ is the ratio of specific heats, a gas-specific constant, which
takes γ = 1.4 for an ideal di-atomic gas, of which air is a specific example.

Boundary conditions U∂Ω can, for example, be set as

0 = U∂Ω(w) :=

{
p− p0 on the outflow boundary

(s, h)− (s0, h0) on the inflow boundary
(2.25)

where s = α0 log(
p
ργ ) +α1 denotes entropy and h = c2

γ−1 +
u2

2 total enthalpy, i.e., one
prescribes the pressure p0 at the outflow, enthalpy h0 and entropy s0 at the inflow.
Here αi are constants, and c denotes the speed of sound.

We consider the target functional as in (2.15), where p denotes pressure as defined
in (2.24). For the Euler equations, i.e., eq. (1.1) with f and S defined as in (2.23), one
can make (2.22) more explicit as follows (of course, this has already been done, for
example in [6]): Due to the underlying equation (1.1), we have for w = (w1, w2, w3) =
(ρ, ρu,E)

[f(w)x] = −[S(w)], (2.26)

[S(w)] =
A′(α)

A(α)
([ρu], [ρu2], [u(E + p(w))]) (2.27)

and due to Rankine-Hugoniot, we have that

[f(w)] = ([ρu], [ρu2 + p(w)], [u(E + p(w))]) = 0 (2.28)
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which yields

[S(w)] =
A′(α)

A(α)
(0, [ρu2], 0). (2.29)

Substituting all this information into the interior boundary condition (2.22), we get
for z = (z1, z2, z3)

T

z2(α)
−A′(α)

A(α)
[ρu2] = −[p(w)], (2.30)

which yields

z2(α) =
A(α)

A′(α)

[p(w)]

[ρu2]
. (2.31)

Again, thanks to Rankine-Hugoniot, we have

[ρu2] = −[p(w)], (2.32)

which in all yields the internal adjoint boundary condition for the Euler equations,

z2(α) = −
A(α)

A′(α)
. (2.33)

Usually, (2.33) is of course not enforced in a numerical procedure, as for example
α is in general not known. Due to the fact that numerical schemes in general approx-
imate the solution w by a viscous regularization, it has been argued that neglecting
(2.33) is reasonable, because in the vanishing viscosity limit, z is supposed to fulfill
(2.33). This, however, has to our knowledge not been proven. In the following sec-
tion, we therefore show that, assuming the adjoint solution can be seen as a limit of a
viscous adjoint (to be defined below), the exact adjoint fulfills the interior boundary
condition.

3. Convergence of the Interior Boundary Condition. In this section, we
assume that the exact adjoint solution can be given as the small-viscosity limit of a
viscous adjoint solution. This is a reasonable assumption as already indicated in [3].
Using a viscosity parameter ε > 0, the viscous primal equation can be written as

f(wε)x + S(wε) = εwε
xx (3.1)

including again boundary conditions which are not relevant to this investigation. Stan-
dard theory [9] shows that in the scalar case, given that ε → 0, one has wε → w in
L1. The corresponding dual equation is then

−f ′(wε)T zεx + S′(wε)T zε = εzεxx + p′(wε). (3.2)

Standard assumptions, which can be proven in the scalar one-dimensional case,
on the behavior of wε are that it is smooth all over the domain, albeit having in a
transition region [α−, α+] := [α − α, α+ α] a gradient that scales as 1

ε
. Outside this

region, we state that the gradient is of order unity, i.e., its order of magnitude is
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independent of ε. Here α is a parameter that goes, in dependency of ε, to zero. We
furthermore assume, in the spirit of Tadmor [12], that the adjoint solution is Lipschitz-
continuous at x = α. This is in good agreement with the results found by Giles and
Pierce [6] for the quasi one-dimensional Euler equations. With respect to the interior
boundary conditions, it is thus interesting what happens with the expression

lim
ε→0+

(
[p(wε)]− [(zε)TS(wε)]

)
, (3.3)

which, in the limit, should be equivalent to (2.22) and thus yield zero. Of course,
only involving smooth functions, (3.3) does not make sense unless we define what we
mean by a jump. A reasonable definition is

[wε] :=

∫ α+

α−

(
d

dx
wε

)
dx, (3.4)

which, if wε converges towards a function w that is discontinuous at x = α, converges
towards the jump of w.

Let us state the following theorem:
Theorem 2. Given that both wε and zε, solutions to (3.1) and (3.2), respectively,

are smooth, and that outside a transition region [α−, α+], both zεx and wε
x have orders

of magnitude independent of ε, it holds that

lim
ε→0+

(
[p(wε]− [(zε)TS(wε)]

)
= 0. (3.5)

Proof. The proof exploits both the equations defining wε and zε, and can in
principle in a straightforward manner be written as

[p(wε)]− [(zε)TS(wε)]
(3.4)
=

∫ α+

α−

d

dx

(
p(wε)− (zε)TS(wε)

)
dx

=

∫ α+

α−

(
p′(wε)− S′(wε)T zε

)
wε

x − (zεx)
TS(wε) dx

(3.2)
=

∫ α+

α−

(
−f ′(wε)T zεx − εzεxx

)
wε

x − (zεx)
TS(wε) dx

=

∫ α+

α−

(zεx)
T (−f(wε)x + εwε

xx − S(wε)) dx− [ε(zεx)
Twε

x]
α+

α−

(3.1)
= −ε[(zεx)

Twε
x]

α+

α−
= O(ε).

Because we are outside the transition region, the term [(zεx)
Twε

x] scales independently
of ε. This proves our claim.

Corollary 3.1. Under the assumptions that both wε and zε converge towards
w and z pointwise, z fulfills the interior boundary condition in the sense of definition
2.7, given that the conditions of Theorem 2 are met.

4. Conclusions and Outlook. We have given a general framework for the
derivation of the interior boundary condition in the presence of shocks. We have
furthermore proven that for those stationary balance laws whose solutions can be
defined as small-viscosity limits, the adjoint equation fulfills this interior boundary
condition. In particular, this might explain why low-order, i.e., very diffusive schemes,
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have no problem in converging towards the correct adjoint solution. It does, however,
not explain why some schemes need diffusion over-proportional to the mesh size (see
[4, 5] in the context of time-dependent equations). Numerical evidence shows [11] that
this problem also occurs in the steady-state case we are considering here. It might
be worth applying our concepts to numerical schemes to get more insight into the
behavior of the numerical adjoint procedure.

We see no major obstacles in carrying out the analysis of section 2 for both multi-
dimensional and time-dependent applications. Conceptually, it should be straightfor-
ward, although technically more involved as one has to account for merging and
forming shocks and multi-dimensional effects. The consistent augmentation of the
functional still relies on Rankine-Hugoniot’s condition, in the time-dependent as well
as in the steady-state case. Also in those settings, one derives interior boundary con-
ditions similar to the one given in definition 2.7 along the shock-curve. One non-trivial
point, however, is to prove Theorem 2 again in this setting.

We are aware that definition 2.1 only holds in very special cases and does not,
e.g., apply to viscous approximations of conservation laws. Ongoing work is concerned
with the extension of this framework to smooth functions with a steep gradient. This,
however, needs a different analysis and is beyond the scope of this paper.

REFERENCES

[1] J. D. Anderson. Fundamentals of Aerodynamics. McGraw-Hill New York, 3rd edition, 2001.
[2] R. Becker and R. Rannacher. Weighted a posteriori error control in FE methods. In Proc.

ENUMATH-97, 1997.
[3] F. Bouchut and F. James. One-dimensional transport equations with discontinuous coefficients.

Nonlinear Analysis, Theory, Methods and Applications, 32:891–933, 1998.
[4] M. Giles and S. Ulbrich. Convergence of Linearized and Adjoint Approximations for Discontin-

uous Solutions of Conservation Laws. Part 1: Linearized Approximations and Linearized
Output Functionals. SIAM J. Numer. Anal., 48:882–904, 2010.

[5] M. Giles and S. Ulbrich. Convergence of linearized and adjoint approximations for discontinuous
solutions of conservation laws. Part 2: Adjoint approximations and extensions. SIAM J.
Numer. Anal., 48(3):905–921, 2010.

[6] M. B. Giles and N. A. Pierce. Adjoint equations in CFD: duality, boundary conditions and
solution behaviour. AIAA Paper 97-1850, 1997.

[7] M. B. Giles and N. A. Pierce. Analytic adjoint solutions for the quasi-one-dimensional Euler
equations. Journal of Fluid Mechanics, 426:327–345, 2001.

[8] R. Hartmann. Adaptive Discontinuous Galerkin methods with shock-capturing for the com-
pressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids,
51:1131–1156, 2006.
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