
A PARALLEL SWEEPING PRECONDITIONER FOR
HETEROGENEOUS 3D HELMHOLTZ EQUATIONS∗

JACK POULSON† , BJÖRN ENGQUIST‡ , SIWEI LI§ , AND LEXING YING¶

Abstract. A parallelization of a sweeping preconditioner for 3D Helmholtz equations without
large cavities is introduced and benchmarked for several challenging velocity models. The setup
and application costs of the sequential preconditioner are shown to be O(γ2N4/3) and O(γN logN),
where γ(ω) denotes the modestly frequency-dependent number of grid points per Perfectly Matched
Layer. Several computational and memory improvements are introduced relative to using black-box
sparse-direct solvers for the auxiliary problems, and competitive runtimes and iteration counts are
reported for high-frequency problems distributed over thousands of cores. Two open-source packages
are released along with this paper: Parallel Sweeping Preconditioner (PSP) and the underlying
distributed multifrontal solver, Clique.

Key words. Helmholtz, time-harmonic, sweeping, preconditioner, parallel

AMS subject classifications. 15A15, 15A09, 15A23

1. Introduction. While definite elliptic partial differential equations can be ef-
ficiently solved by a wide variety of techniques (e.g., multigrid, ILU, or structured
matrix factorizations), indefinite elliptic equations tend to be more challenging. This
paper is concerned with three-dimensional heterogeneous Helmholtz equations of the
form,

Au ≡
[
−∆− ω2

c2(x)

]
u(x) = f(x), (1.1)

where c(x) is the spatially varying wave speed, and u(x)e−iωt is the time-harmonic
response to an acoustic wave equation with forcing function f(x)e−iωt. It is important
to recognize that −∆ is positive-definite and that its combination with the negative-

definite −ω2

c2 term results in an indefinite system.
Before discussing the overall asymptotic complexity of solution techniques, it

is helpful to first motivate why high frequency problems require large numbers of
degrees of freedom: Given the wave speed bounds cmin ≤ c(x) ≤ cmax, we can define
the minimum wavelength as λmin = 2πcmin/ω. In order to resolve oscillations in the
solution using piecewise polynomial basis functions, e.g., with finite-difference and
finite-element methods, it is necessary to increase the number of degrees of freedom in
each direction at least linearly with the number of wavelengths spanned by the domain.
In order to combat pollution effects [4], which are closely related to phase errors in
the discrete solution, one must use asymptotically more than a constant number of

∗This work was partially supported by the sponsors of the Texas Consortium for Computational
Seismology.
†ICES, University of Texas at Austin, 1 University Station C0200, Austin, TX, 78712

(jack.poulson@gmail.com). This author was also supported by a CAM fellowship.
‡Department of Mathematics and ICES, University of Texas at Austin, 1 University Station

C1200, Austin, TX, 78712 (engquist@ices.utexas.edu). This author was also supported by NSF
grant DMS-1016577.
§Jackson School of Geosciences, University of Texas at Austin, 1 University Station C1160, Austin,

TX, 78712 (siwei.li@utexas.edu).
¶Department of Mathematics and ICES, University of Texas at Austin, 1 University Station

C1200, Austin, TX, 78712 (lexing@math.utexas.edu). This author was supported by NSF CAREER
grant DMS-0846501, NSF grant DMS-1016577, and funding from KAUST.

1

ar
X

iv
:1

20
4.

01
11

v4
 [

cs
.N

A
]

 5
 F

eb
 2

01
3

2 J. POULSON ET AL.

grid points per wavelength with standard discretization schemes. Nevertheless, it is
common practice to resolve the domain to as few as ten points per wavelength. In
any case, piecewise polynomial discretizations require Ω(ωd) degrees of freedom in d
dimensions.

Until recently, doubling the frequency of Eq. (1.1) not only increased the size of
the linear system by at least a factor of 2d, it also doubled the number of iterations
required for convergence with standard preconditioned Krylov methods [6, 17, 18].
Thus, denoting the number of degrees of freedom in a three-dimensional finite-element
or finite-difference discretization as N = Ω(ω3), every linear solve required Ω(ω4) work
with traditional iterative techniques. Engquist and Ying recently introduced two
classes of sweeping preconditioners for Helmholtz equations without large cavities [14,
15]: Both approaches approximate a block LDLT factorization of the Helmholtz
operator in block tridiagonal form in a manner which exploits a radiation boundary
condition. The first approach performs a block tridiagonal factorization algorithm
in H-matrix arithmetic [25, 22], while the second approach approximates the Schur
complements of the factorization using auxiliary problems with artificial radiation
boundary conditions. Though the H-matrix sweeping preconditioner has theoretical
support for two-dimensional problems [14, 28], there is not yet justification for three-
dimensional problems.

This paper therefore focuses on the second approach, which relies on multifrontal
factorizations [27, 34, 12, 21] of the approximate auxiliary problems in order to achieve
an O(γ2N4/3) setup cost and an O(γN logN) application cost, where γ(ω) denotes the
number of grid points used for each Perfectly Matched Layer (PML) [29]. While the
sweeping preconditioner is competitive with existing techniques even for a single right-
hand side, its main advantage is for problems with large numbers of right-hand sides,
as the preconditioner appears to converge in O(1) iterations for problems without
large cavities. Thus, after setting up the preconditioner, typically only O(γN logN)
work is required for each solution.

1.1. Moving PML sweeping preconditioner. The focus of this paper is on
parallelization of the second class of sweeping preconditioners mentioned above, which
makes use of auxiliary problems with artificial radiation boundary conditions in order
to approximate the Schur complements that arise during block LDLT factorization.
The approach is referred to as a moving PML preconditioner since the introductory
paper represented the artificial radiation boundary conditions using PML.

One interpretation of radiation conditions is that they allow for the analysis of a
finite portion of an infinite domain, as their purpose is to enforce the condition that
waves propagate outwards and not reflect at the boundary of the truncated domain.
This concept is crucial to understanding the Schur complement approximations that
take place within the moving PML sweeping preconditioner which is reintroduced in
this paper for the sake of completeness.

For the sake of simplicity, we will describe the preconditioner in the context of
a second-order finite-difference discretization over the unit cube, with PML used to
approximate a radiation boundary condition on the x3 = 0 face and homogeneous
Dirichlet boundary conditions applied on all other boundaries (an x1x3 cross-section
is shown in Fig. 1.1). If the domain is discretized into an n×n×n grid, then ordering
the vertices in the grid such that vertex (i1, i2, i3) is assigned index i1 + i2n + i3n

2

PARALLEL SWEEPING PRECONDITIONER 3

x1

x3

region of
interest

PML

Fig. 1.1. An x1x3 cross section of a cube with PML on its x3 = 0 face. The domain is shaded
in a manner which loosely corresponds to its extension into the complex plane.

results in a block tridiagonal system of equations, say

A0,0 AT
1,0

A1,0 A1,1
. . .

. . .
. . .

. . .

. . .
. . . AT

n−1,n−2
An−1,n−2 An−1,n−1

u0
u1
...

un−2
un−1

 =

f0
f1
...

fn−2
fn−1

 , (1.2)

where Ai,j propagates sources from the i’th x1x2 plane into the j’th x1x2 plane, and
the overall linear system is complex symmetric (not Hermitian) due to the imaginary
terms introduced by the PML [15].

If we were to ignore the sparsity within each block, then the following näıve
factorization and solve algorithms would be appropriate for a direct solver, where the
application of S−1i implicitly makes use of the factorization of Si.

Algorithm 1.1: Näıve block tridiagonal LDLT factorization. O(n7) =
O(N7/3) work is required.

S0 := A0,0

Factor S0

for i = 0, ..., n− 2 do
Si+1 := Ai+1,i+1 −Ai+1,iS

−1
i AT

i+1,i

Factor Si+1

While the computational complexities of Algs. 1.1 and 1.2 are significantly higher
than multifrontal algorithms [27, 12, 21], which have O(N2) factorization complexity
and O(N4/3) solve complexity for regular three-dimensional meshes, they are the
conceptual starting points of the sweeping preconditioner.1

Suppose that we paused Alg. 1.1 after computing the i’th Schur complement, Si,
where the i’th x1x2 plane is in the interior of the domain (i.e., it is not in a PML re-
gion). Due to the ordering imposed on the degrees of freedom of the discretization, the

1In fact, they are the starting points of both classes of sweeping preconditioners. The H-matrix
approach essentially executes these algorithms with H-matrix arithmetic.

4 J. POULSON ET AL.

Algorithm 1.2: Näıve block LDLT solve. O(n5) = O(N5/3) work is required.

// Apply L−1

for i = 0, ..., n− 2 do
ui+1 := ui+1 −Ai+1,i(S

−1
i ui)

// Apply D−1

for i = 0, ..., n− 1 do
ui := S−1i ui

// Apply L−T

for i = n− 2, ..., 0 do
ui := ui − S−1i (AT

i+1,iui+1)

x1

x3

=

x1

x3

≈

x1

x3

Fig. 1.2. (Left) A depiction of the portion of the domain involved in the computation of the
Schur complement of an x1x2 plane (marked with the dashed line) with respect to all of the planes
to its left during execution of Alg. 1.1. (Middle) An equivalent auxiliary problem which generates
the same Schur complement; the original domain is truncated just to the right of the marked plane
and a homogeneous Dirichlet boundary condition is placed on the cut. (Right) A local auxiliary
problem for generating an approximation to the relevant Schur complement; the radiation boundary
condition of the exact auxiliary problem is moved next to the marked plane.

first i Schur complements are equivalent to those that would have been produced from
applying Alg. 1.1 to an auxiliary problem formed by placing a homogeneous Dirichlet
boundary condition on the (i + 1)’th x1x2 plane and ignoring all of the successive
planes (see the left half of Fig. 1.2). While this observation does not immediately
yield any computational savings, it does allow for a qualitative description of the in-
verse of the i’th Schur complement, S−1i : it is the restriction of the half-space Green’s
function of the exact auxiliary problem onto the i’th x1x2 plane (recall that PML can
be interpreted as approximating the effect of a domain extending to infinity).

The main approximation made in the sweeping preconditioner can now be suc-
cinctly described: since S−1i is a restricted half-space Green’s function which incorpo-
rates the velocity field of the first i planes, it is natural to approximate it with another
restricted half-space Green’s function which only takes into account the local velocity
field, i.e., by moving the PML next to the i’th plane (see the right half of Fig. 1.2).

If we use γ(ω) to denote the number of grid points of PML as a function of the
frequency, ω, then it is important to recognize that the depth of the approximate aux-

PARALLEL SWEEPING PRECONDITIONER 5

iliary problems in the x3 direction is Ω(γ).2 If the depth of the approximate auxiliary
problems was O(1), then combining nested dissection with the multifrontal method
over the regular n × n × O(1) mesh would only require O(n3) work and O(n2 log n)
storage [21]. However, if the PML size is a slowly growing function of frequency, then
applying 2D nested dissection to the quasi-2D domain requires O(γ3n3) work and
O(γ2n2 log n) storage, as the number of degrees of freedom in each front increases by
a factor of γ and dense factorizations have cubic complexity.

Let us denote the quasi-2D discretization of the local auxiliary problem for the i’th
plane as Hi, and its corresponding approximation to the Schur complement Si as S̃i.
Since S̃i is essentially a dense matrix, it is advantageous to come up with an abstract
scheme for applying S̃−1i : Assuming that Hi was ordered in a manner consistent with
the (i1, i2, i3) 7→ i1 + i2n+ i3n

2 global ordering, the degrees of freedom corresponding
to the i’th plane come last and we find that

H−1i =

(
? ?

? S̃−1i

)
, (1.3)

where the irrelevant portions of the inverse have been marked with a ?. Then, trivially,

H−1i

(
0
ui

)
=

(
? ?

? S̃−1i

)(
0
ui

)
=

(
?

S̃−1i ui

)
, (1.4)

which implies a method for quickly computing S̃−1i ui given a factorization of Hi:

Algorithm 1.3: Application of S̃−1i to ui given a multifrontal factorization of
Hi. O(γ2n2 log n) work is required.

Form ûi as the extension of ui by zero over the artificial PML

Form v̂i := H−1i ûi
Extract S̃−1i ui from the relevant entries of v̂i

From now on, we write Ti to refer to the application of the (approximate) inverse
of the Schur complement for the i’th plane.

There are two more points to discuss before defining the full serial algorithm.
The first is that, rather than performing an approximate LDLT factorization using
a discretization of A, the preconditioner is instead built from a discretization of an
artificially damped version of the Helmholtz operator, say

J ≡
[
−∆− (ω + iα)2

c2(x)

]
, (1.5)

where α ≈ 2π is responsible for the artificial damping. This is in contrast to shifted
Laplacian preconditioners [5, 16], where α is typically O(ω) [18], and our motivation
is to avoid introducing large long-range dispersion error by damping the long range
interactions in the preconditioner. Just as A refers to the discretization of the original
Helmholtz operator, A, we will use J to refer to the discretization of the artificially
damped operator, J .

2In all of the experiments in this paper, γ(ω) was either 5 or 6, and the subdomain depth never
exceeded 10.

6 J. POULSON ET AL.

The second point is much easier to motivate: since the artificial PML in each ap-
proximate auxiliary problem is of depth γ(ω), processing a single plane at a time would
require processing O(n) subdomains with O(γ3n3) work each. Clearly, processing
O(γ) planes at once has the same asymptotic complexity as processing a single plane,
and so combining O(γ) planes reduces the setup cost from O(γ3N4/3) to O(γ2N4/3).
Similarly, the memory usage becomes O(γN logN) instead of O(γ2N logN).3 If we
refer to these sets of O(γ) contiguous planes as panels, which we label from 0 to m−1,
where m = O(n/γ), and correspondingly redefine {ui}, {fi}, {Si}, {Ti}, and {Hi}, we
have the following algorithm for setting up an approximate block LDLT factorization
of the discrete artificially damped Helmholtz operator:

Algorithm 1.4: Setup phase of the sweeping preconditioner. O(γ2N4/3) work
is required.

S0 := J0,0
Factor S0

for i = 1, ...,m− 1 do
Form Hi by prefixing PML to Ji,i
Factor Hi

Once the preconditioner is set up, it can be applied using a straightforward mod-
ification of Alg. 1.2 which avoids redundant solves by combining the application of
L−1 and D−1:

Algorithm 1.5: Application of the sweeping preconditioner. O(γN logN)
work is required.

// Apply L−1 and D−1

for i = 0, ...,m− 2 do
ui := Tiui
ui+1 := ui+1 − Ji+1,iui

um−1 := Tm−1um−1
// Apply L−T

for i = m− 2, ..., 0 do
ui := ui − Ti(JT

i+1,iui+1)

Given that the preconditioner can be set up with O(γ2N4/3) work, and applied
with O(γN logN) work, it provides a near-linear scheme for solving Helmholtz equa-
tions if only O(1) iterations are required for convergence. The experiments in this
paper seem to indicate that, as long as the velocity model does not include a large
cavity, the sweeping preconditioner indeed only requires O(1) iterations.

Though this paper is focused on the parallel solution of Helmholtz equations,
which are the time-harmonic form of acoustic wave equations, Tsuji et al. have shown
that the moving PML sweeping preconditioner is equally effective for time-harmonic
Maxwell’s equations [38, 39], and we believe that the same will hold true for time-
harmonic linear elasticity. The rest of the paper will be presented in the context of

3Note that increasing the number of planes per panel provides a mechanism for interpolating
between the sweeping preconditioner and a full multifrontal factorization.

PARALLEL SWEEPING PRECONDITIONER 7

the Helmholtz equation, but we emphasize that the parallelization should carry over
to more general wave equations in a conceptually trivial way.

1.2. Related work. A domain decomposition variant of the sweeping precon-
ditioner was recently introduced [37] which results in fast convergence rates, albeit at
the expense of requiring PML padding on both sides of each subdomain. Recalling our
previous analysis with respect to the PML size, γ, the memory usage of the precon-
ditioner scales linearly with the PML size, while the setup cost scales quadratically.
Thus, the domain decomposition approach should be expected to use twice as much
memory and require four times as much work for the setup phase. On the other hand,
doubling the subdomain sizes allows for more parallelism in both the setup and solve
phases, and less sweeps seem to be required.

Another closely related method is the Analytic ILU factorization [19]. Like the
sweeping preconditioner, it uses local approximations of the Schur complements of the
block LDLT factorization of the Helmholtz matrix represented in block tridiagonal
form. There are two crucial differences between the two methods:

• Roughly speaking, AILU can be viewed as using Absorbing Boundary Con-
ditions (ABC’s) [13] instead of PML when forming approximate subdomain
auxiliary problems. While ABC’s result in strictly 2D local subproblems,
versus the quasi-2D subdomain problems which result from using PML, they
are well-known to be less effective approximations of the Sommerfeld radia-
tion condition (and thus the local Schur complement approximations are less
effective). The sweeping preconditioner handles its non-trivial subdomain
factorizations via a multifrontal algorithm.

• Rather than preconditioning with an approximate LDLT factorization of the
original Helmholtz operator, the sweeping preconditioner sets up an approx-
imate factorization of a slightly damped Helmholtz operator in order to mit-
igate the dispersion error which would result from the Schur complement
approximations.

These two improvements are responsible for transitioning from the O(ω) iterations
required with AILU to the O(1) iterations needed with the sweeping preconditioner
(for problems without large cavities).

Two other iterative methods warrant mentioning: the two-grid shifted-Laplacian
approach of [8] and the multilevel-ILU approach of [6]. Though both require O(ω)
iterations for convergence, they have very modest memory requirements. In par-
ticular, [8] demonstrates that, with a properly tuned two-grid approach, large-scale
heterogeneous 3D problems can be solved with impressive timings.

There has also been a recent effort to extend the fast-direct methods presented
in [43] from definite elliptic problems into the realm of low-to-moderate frequency
time-harmonic wave equations [40, 41]. In particular, their experiments (see Table 3
of [40]) suggest an asymptotic complexity of roughly O(N1.8), which is a noticeable
improvement over the O(N2) complexity of traditional 3D sparse-direct methods.

2. Parallel sweeping preconditioner. The setup and application stages of
the sweeping preconditioner (Algs. 1.4 and 1.5) essentially consist of m = O(n/γ)
multifrontal factorizations and solves, respectively. The most important detail is that
the subdomain factorizations can be performed in parallel, while the subdomain solves
must happen sequentially.4 When we also consider that each subdomain factorization

4While it is tempting to try to expose more parallelism with techniques like cyclic reduction
(which is a special case of a multifrontal algorithm), their straightforward application destroys the

8 J. POULSON ET AL.

3014 29

6 21

13 28

2 5

9 12

17 20

24 27

0

1

3

4

7

8

10

11

15

16

18

19

22

23

25

26

0 1 3 4 7 8 10 11 15 16 18 19 22 23 25 26

2 5 9 12 17 20 24 27

6 13 21 28

14 29

30

Fig. 2.1. A separator-based supernodal elimination tree (right) over a quasi-2D subdomain (left).

000 000 001 001 010 010 011 011 100 100 101 101 110 110 111 111

000 001 010 011 100 101 110 111

00∗ 01∗ 10∗ 11∗

0 ∗ ∗ 1 ∗ ∗

∗ ∗ ∗

Fig. 2.2. Overlay of the process ranks (in binary) of the owning subteams of each supernode
from the elimination tree in Fig. 2.1 when the tree is assigned to eight processes using a subtree-to-
subteam mapping; a ‘*’ is used to denote both 0 and 1, so that ‘00∗’ represents processes 0 and 1,
‘01∗’ represents processes 2 and 3, and ‘∗ ∗ ∗’ represents all eight processes.

requires O(γ3n3) work, while subdomain solves only require O(γ2n2 log n) work, we
see that, relative to the subdomain factorizations, subdomain solves must extract a
factor of m = O(n/γ) more parallelism from a factor of O(γn/ log n) less operations.
We thus have a strong hint that, unless the subdomain solves are carefully handled,
they will be the limiting factor in the scalability of the sweeping preconditioner.

2.1. Parallel multifrontal algorithms. While a large number of techniques
exist for parallelizing multifrontal factorizations and triangular solves, we focus on
parallelizations which combine subtree-to-subteam [20] mappings of processes to the
elimination tree [34] that also make use of two-dimensional distributions of the frontal
matrices [35].5 More specifically, we make use of supernodal [3] elimination trees
defined through nested dissection (see Figs. 2.1 and 2.2), which have been shown
to result in highly scalable factorizations [24, 23] and moderately scalable triangular
solutions [26].

Roughly speaking, the analysis in [26] shows that, if pF processes are used in the
multifrontal factorization of our quasi-2D subdomain problems, then we must have

γn = Ω(p
1/2
F) in order to maintain constant efficiency as pF is increased; similarly, if pS

processes are used in the multifrontal triangular solves for a subdomain, then we must
have γn ≈ Ω(pS) (where we use ≈ to denote that the equality holds within logarithmic
factors). Since we can simultaneously factor the m = O(n/γ) subdomain matrices, we

Schur complement properties that we exploit for our fast algorithm.
5Cf. [1], which advocates for only distributing the root frontal matrix two-dimensionally and

using a one-dimensional distribution for all other fronts.

PARALLEL SWEEPING PRECONDITIONER 9

denote the total number of processes as p and set pS = p and pF = O(p/m); then the
subdomain factorizations only require that n3 = Ω(p/γ), while the subdomain solves
have the much stronger constraint that n ≈ Ω(p/γ). This last constraint should be
considered unacceptable, as we have the conflicting requirement that n3 ≈ O(p/γ) in
order to store the factorizations in memory. It is therefore advantageous to consider
more scalable alternatives to standard multifrontal triangular solves, even if they
require additional computation.

2.2. Selective inversion. The lackluster scalability of dense triangular solves
is well known and a scheme known as selective inversion was introduced in [32] and
implemented in [31] specifically to avoid the issue; the approach is characterized by
directly inverting every distributed dense triangular matrix which would have been
solved against in a normal multifrontal triangular solve. Thus, after performing selec-
tive inversion, every parallel dense triangular solve can be translated into a parallel
dense triangular matrix-vector multiply.

Suppose that we have paused a multifrontal LDLT factorization just before pro-
cessing a particular front, F , which corresponds to some supernode, S. Then all of the
fronts for the descendants of S have already been handled, and F can be partitioned
as

F =

(
FTL ?
FBL FBR

)
, (2.1)

where FTL holds the Schur complement of supernode S with respect to all of its
descendants, FBL represents the coupling of S and its descendants to S’s ancestors,
and FBR holds the Schur complement updates from the descendants of S for the
ancestors of S. Using hats to denote input states, e.g., F̂TL to denote the input state
of FTL, the first step in processing the frontal matrix F is to overwrite FTL with its
LDLT factorization, which is to say that F̂TL is overwritten with the strictly lower
portion of a unit lower triangular matrix LF and a diagonal matrix DF such that
F̂TL = LFDFL

T
F .

The partial factorization of F can then be completed via the following steps:
1. Solve against LT

F to form FBL := FBLL
−T
F .

2. Form the temporary copy ZBL := FBL.
3. Finalize the coupling matrix as FBL := FBLD

−1
F .

4. Finalize the update matrix as FBR := FBR− F̂BLF̂
−1
TLF̂

T
BL = FBR−ZBLF

T
BL.

After adding FBR onto the parent frontal matrix, only FTL and FBL are needed in
order to perform a multifrontal solve. For instance, applying L−1 to some vector x
proceeds up the elimination tree (starting from the leaves) in a manner similar to the
factorization; after handling all of the work for the descendants of some supernode S,
only a few dense linear algebra operations with S’s corresponding frontal matrix, say
F , are required. Denoting the portion of x corresponding to the degrees of freedom
in supernode S by xS , we must perform:

1. xS := L−1F xS
2. xU ≡ −FBLxS
3. Add xU onto the entries of x corresponding to the parent supernode.

The key insight of selective inversion is that, if we invert each distributed dense unit
lower triangular matrix LF in place, all of the parallel dense triangular solves in a
multifrontal triangular solve are replaced by parallel dense matrix-vector multiplies. It
is also observed in [32] that the work required for the selective inversion is typically
only a modest percentage of the work required for the multifrontal factorization, and

10 J. POULSON ET AL.

that the overhead of the selective inversion is easily recouped if there are several
right-hand sides to solve against.

Since each application of the sweeping preconditioner requires two multifrontal
solves for each of the m = O(n/γ) subdomains, which are relatively small and likely
distributed over a large number of processes, selective inversion will be shown to
yield a very large performance improvement. We also note that, while it is widely
believed that direct inversion is numerically unstable, in [11] Druinsky and Toledo
provide a review of (apparently obscure) results dating back to Wilkinson (in [42])
which show that x := inv(A)∗b is as accurate as a backwards stable solve if reasonable
assumptions are met on the accuracy of inv(A). Since inv(A)∗b is argued to be more
accurate when the columns of inv(A) have been computed with a backwards-stable
solver, and both inv(FTL) and inv(FT

TL) must be applied after selective inversion, it
might be worthwhile to modify selective inversion to compute and store two different
inverses of each FTL: one by columns and one by rows.

2.3. Global vector distributions. The goal of this subsection is to determine
an appropriate scheme for distributing global vectors, i.e., ones representing a function
over the entire domain (as opposed to only over a panel). And while the factorizations
themselves may have occurred on subteams ofO(p/m) processes each, in order to make
use of all available processes for every subdomain solve, at this point we assume that
each auxiliary problem’s frontal tree has been selectively inverted and is distributed
using a subtree-to-subteam mapping (recall Fig. 2.2) over the entire set of p processes.6

Since a subtree-to-subteam mapping will assign each supernode of an auxiliary
problem to a team of processes, and each panel of the original 3D domain is by
construction a subset of the domain of an auxiliary problem, it is straightforward to
extend the supernodal subteam assignments to the full domain. We should then be
able to distribute global vectors so that no communication is required for readying
panel subvectors for subdomain solves (via extension by zero for interior panels, and
trivially for the first panel). Since our nested dissection process does not partition
in the shallow dimension of quasi-2D subdomains (see Fig. 2.1), extending a vector
defined over a panel of the original domain onto the PML-padded auxiliary domain
simply requires individually extending each supernodal subvector by zero in the x3
direction.

Consider an element-wise two-dimensional cyclic distribution [30] of a frontal
matrix F over q processes using an r× c process grid, where r and c are O(

√
q). Then

the (i, j) entry will be stored by the process in the (i mod r, j mod c) position in the
process grid. Using the notation from [30], this distributed front would be denoted
as F [MC ,MR], while its top-left quadrant would be referred to as FTL[MC ,MR] (see
Fig. 2.3 for a depiction of an [MC ,MR] matrix distribution).

Loosely speaking, F [X,Y] means that each column of F is distributed using the
scheme denoted by X, and each row is distributed using the scheme denoted by Y .
For the element-wise two-dimensional distribution used for F , [MC ,MR], we have that
the columns of F are distributed like Matrix Columns (MC), and the rows of F are
distributed like Matrix Rows (MR). While this notation may seem vapid when only
working with a single distributed matrix, it is useful when working with products of
distributed matrices. For instance, if a ‘?’ is used to represent rows/columns being
redundantly stored (i.e., not distributed), then the result of every process multiplying

6In cases where the available solve parallelism has been exhausted but the problem cannot be
solved on less processes due to memory constraints, it would be preferable to solve with subdomains
stored on subsets of processes.

PARALLEL SWEEPING PRECONDITIONER 11

0 2 4 0 2 4 0
1 3 5 1 3 5 1
0 2 4 0 2 4 0
1 3 5 1 3 5 1
0 2 4 0 2 4 0
1 3 5 1 3 5 1
0 2 4 0 2 4 0

0 − 2 − 4
| | |
1 − 3 − 5

Fig. 2.3. Overlay of the owning process ranks of an 7 × 7 matrix distributed over a 2 × 3
process grid in the [MC ,MR] distribution, where MC assigns row i to process row i mod 2, and MR

assigns column j to process column i mod 3 (left). The process grid is shown on the right.

0
1
2
3
4
5
0

,

0
2
4
1
3
5
0

Fig. 2.4. Overlay of the owning process ranks of a vector of height 7 distributed over a 2 × 3

process grid in the [VC , ?] vector distribution (left) and the [VR, ?] vector distribution (right).

its local submatrix of A[X, ?] with its local submatrix of B[?, Y] forms a distributed
matrix C[X,Y] = (AB)[X,Y] = A[X, ?]B[?, Y], where the last expression refers to
the local multiplication process.

We can now decide on a distribution for each supernodal subvector, say xS ,
based on the criteria that it should be fast to form FTLxS and FT

TLxS in the same
distribution as xS , given that FTL is distributed as FTL[MC ,MR]. Suppose that we
define a Column-major Vector distribution (VC) of xS , say xS [VC , ?], to mean that
entry i is owned by process i mod q, which corresponds to position (i mod r, bi/rc mod
c) in the process grid (if the grid is constructed with a column-major ordering of the
process ranks; see the left side of Fig. 2.4). Then a call to MPI_Allgather [10] within
each row of the process grid would allow for each process to collect all of the data
necessary to form xS [MC , ?], as for any process row index s ∈ {0, 1, ..., r − 1},

{i ∈ N0 : i mod r = s} =

c−1⋃
t=0

{i ∈ N0 : i mod q = s+ tr}. (2.2)

See the left side of Fig. 2.5 for an example of an [MC , ?] distribution of a 7×3 matrix.

Similarly, if xS was distributed with a Row-major Vector distribution (VR), as
shown on the right side of Fig. 2.4, say xS [VR, ?], so that entry i is owned by the process
in position (bi/cc mod r, i mod c) of the process grid, then a call to MPI_Allgather

within each column of the process grid would provide each process with the data nec-
essary to form xS [MR, ?]. Under reasonable assumptions, both of these redistributions
can be shown to have per-process communication volume lower bounds of Ω(n/

√
p)

(if FTL is n × n) and latency lower bounds of Ω(log2(
√
p)) [9]. We also note that

translating between xS [VC , ?] and xS [VR, ?] simply requires permuting which process
owns each local subvector, so the communication volume would be O(n/p), while the
latency cost is O(1).

12 J. POULSON ET AL.

{0, 2, 4}
{1, 3, 5}
{0, 2, 4}
{1, 3, 5}
{0, 2, 4}
{1, 3, 5}
{0, 2, 4}

,

{0, 1}
{2, 3}
{4, 5}
{0, 1}
{2, 3}
{4, 5}
{0, 1}

Fig. 2.5. Overlay of the owning process ranks of a vector of height 7 distributed over a 2 × 3

process grid in the [MC , ?] distribution (left) and the [MR, ?] distribution (right).

We have thus described efficient techniques for redistributing xS [VC , ?] to both
the xS [MR, ?] and xS [MC , ?] distributions, which are the first steps for our parallel
algorithms for forming FTLxS and FT

TLxS , respectively: Denoting the distributed
result of each process in process column t ∈ {0, 1, ..., c− 1} multiplying its local sub-
matrix of FTL[MC ,MR] by its local subvector of xS [MR, ?] as z(t)[MC , ?], it holds

that (FTLxS)[MC , ?] =
∑c−1

t=0 z
(t)[MC , ?]. Since Eq. (2.2) also implies that each pro-

cess’s local data from a [VC , ?] distribution is a subset of its local data from a [MC , ?]
distribution, a simultaneous summation and scattering of {z(t)[MC , ?]}c−1t=0 within pro-
cess rows, perhaps via MPI_Reduce_scatter or MPI_Reduce_scatter_block, yields
the desired result, (FTLxS)[VC , ?]. An analogous process with (FTL[MC ,MR])T =
FT
TL[MR,MC] and xS [MC , ?] yields (FT

TLxS)[VR, ?], which can then be cheaply per-
muted to form (FT

TLxS)[VC , ?]. Both calls to MPI_Reduce_scatter_block can be
shown to have the same communication lower bounds as the previously discussed
MPI_Allgather calls [9].

As discussed at the beginning of this section, defining the distribution of each
supernodal subvector specifies a distribution for a global vector, say [G, ?]. While
the [VC , ?] distribution shown in the left half of Fig. 2.4 simply assigns entry i of
a supernodal subvector xS , distributed over q processes, to process i mod q, we can
instead choose an alignment parameter, σ, where 0 ≤ σ < q, and assign entry i to
process (i + σ) mod q. If we simply set σ = 0 for every supernode, as the discussion
at the beginning of this subsection implied, then at most O(γn) processes will store
data for the root separator supernodes of a global vector, as each root separator only
has O(γn) degrees of freedom by construction. However, there are m = O(n/γ) root
separators, so we can easily allow for up to O(n2) processes to share the storage of
a global vector if the alignments are carefully chosen. It is important to notice that
the top-left quadrants of the frontal matrices for the root separators can each be
distributed over O(γ2n2) processes, so O(γ2n2) processes can actively participate in
the corresponding triangular matrix-vector multiplications.

2.4. Parallel preconditioned GMRES(k). Since, by hypothesis, only O(1)
iterations of GMRES(k) will be required for convergence with the sweeping precon-
ditioner, a cursory inspection of Algorithm 1.5 reveal that most of the work in a
preconditioned iterative method, such as GMRES(k), will be performed in the mul-
tifrontal solves during the preconditioner application, but a modest portion will also
be spent in sparse matrix-vector multiplication with the discrete Helmholtz operator,
A, and the off-diagonal blocks of the discrete artificially damped Helmholtz operator,
J . It is thus important to parallelize the sparse matrix-vector multiplies, but it is
not crucial that the scheme be optimal, and so we simply distribute A and J in the
same manner as vectors, i.e., with the [G, ?] distribution derived from the auxiliary

PARALLEL SWEEPING PRECONDITIONER 13

problems’ frontal distributions.
For performance reasons, it is beneficial to solve as many right-hand sides simul-

taneously as possible: both the communication latency and the costs of loading the
local data from frontal and sparse matrices from main memory can be amortized over
all of the right-hand sides. Another idea is to extend the so-called trsm algorithm
for triangular solves with many right-hand sides (i.e., more right-hand sides than pro-
cesses), which is well-known in the field of dense linear algebra [30], into the realm of
sparse-direct solvers via the dense frontal triangular solves. This approach was not
pursued in this paper due to the modest storage space available on Lonestar and is
left for future work. Another performance improvement might come from exploiting
block variants of GMRES [36], which can potentially lower the number of required
iterations.

2.5. Clique. In order to implement the previously discussed techniques for scal-
able multifrontal factorizations and solves (via selective inversion), an open-source
distributed multifrontal solver named Clique was built on top of Elemental [30], a
library for distributed-memory dense linear algebra. In addition to being designed to
support the techniques we discussed above: selective inversion, subtree-to-submesh
mappings, and two-dimensional frontal matrix distributions, it was also written with
a strong emphasis on memory scalability. This is because the sweeping preconditioner
requires large numbers of factorizations of relatively small sparse matrices, and so it is
crucial that the per-process memory usage for each subdomain factorization decreases
inversely with the total number of processes.

We note that Clique was designed specifically to provide a memory-scalable mul-
tifrontal implementation for our parallel sweeping preconditioner, and so there is not
yet support for pivoting. We plan to add a pivoted LU factorization in the near future.

2.6. Parallel Sweeping Preconditioner (PSP). Given the discussion in Sec-
tion 2, it is most convenient to describe our prototype implementation of a parallel
sweeping preconditioner based upon its deviations from our proposed approach. The
primary difference is that there is not yet support for simultaneously factoring the
subdomain auxiliary problems and then redistributing each frontal tree to the entire
set of processes. This will certainly lead to large improvements in the scalability of
the setup phase, but it is left for future work.

3. Experimental results. Our experiments were performed on the Texas Ad-
vanced Computing Center (TACC) machine, Lonestar, which is comprised of 1,888
compute nodes, each equipped with two hex-core 3.33 GHz processors and 24 GB of
memory, which are connected with QDR InfiniBand using a fat-tree topology. Our
tests launched eight MPI processes per node in order to provide each MPI process
with 3 GB of memory.

Our experiments took place over five different 3D velocity models:
• A uniform background with a high-contrast barrier. The domain is the unit

cube and the wave speed is 1 except in [0, 1]× [0.25, 0.3]× [0, 0.75], where it
is 1010.

• A wedge problem over the unit cube, where the wave speed is set to 2 if
Z ≤ 0.4 + 0.1x2, 1.5 if otherwise Z ≤ 0.8− 0.2x2, and 3 in all other cases.

• A two-layer model defined over the unit cube, where c = 4 if x2 < 0.5, and
c = 1 otherwise.

• A waveguide over the unit cube: c(x) = 1.25(1− 0.4e−32(|x1−0.5|2+|x2−0.5|2)).
• The SEG/EAGE Overthrust model [2], see Fig. 3.2.

14 J. POULSON ET AL.

velocity model
barrier wedge two-layers waveguide

Hz 50 75 50 37.5

PML amplitude 3.0 4.0 4.0 2.0

iterations 28 49 48 52
Table 3.1

The number of iterations required for convergence for four model problems (with four forcing
functions per model). The grid sizes were 5003 and roughly 50 wavelengths were spanned in each
direction. Five grid points were used for all PML discretizations, four planes were processed per
panel, and the damping factors were all set to 7.

In all of the following experiments, the shortest wavelength of each model is
resolved with roughly ten grid points and the performance of the preconditioner is
tested using the following four forcing functions:

• a single shot centered at x0, f0(x) = ne−10n‖x−x0‖2 ,

• three shots, f1(x) =
∑2

i=0 ne
−10n‖x−xi‖2 ,

• a Gaussian beam centered at x2 in direction d, f2(x) = eiωx·de−4ω‖x−x2‖2 ,
and

• a plane wave in direction d, f3(x) = eiωx·d,

where x0 = (0.5, 0.5, 0.1), x1 = (0.25, 0.25, 0.1), x2 = (0.75, 0.75, 0.5), and d =
(1, 1,−1)/

√
3. Note that, in the case of the Overthrust model, these source loca-

tions should be interpreted proportionally (e.g., an x3 value of 0.1 means a depth
which is 10% of the total depth of the model). Due to the oscillatory nature of the
solution, we simply choose the zero vector as our initial guess in all experiments.

The first experiment was meant to test the convergence rate of the sweeping
preconditioner over domains spanning 50 wavelengths in each direction (resolved to
ten points per wavelength) and each test made use of 256 nodes of Lonestar. During
the course of the tests, it was noticed that a significant amount of care must be taken
when setting the amplitude of the derivative of the PML takeoff function (i.e., the
“C” variable in Eq. (2.1) from [15]). For the sake of brevity, hereafter we refer to
this variable as the PML amplitude. A modest search was performed in order to
find a near-optimal value for the PML amplitude for each problem. These values are
reported in Table 3.1 along with the number of iterations required for the relative
residuals for all four forcing functions to reduce to less than 10−5.

It was also observed that, at least for the waveguide problem, the convergence
rate would be significantly improved if 6 grid points of PML were used instead of
5. In particular, the 52 iterations reported in Table 3.1 reduce to 27 if the PML
size is increased by one. Interestingly, the same number of iterations are required for
convergence of the waveguide problem at half the frequency (and half the resolution)
with five grid points of PML. Thus, it appears that the optimal PML size is a slowly
growing function of the frequency.7 We also note that, though it was not intentional,
each of the these first four velocity models is invariant in one or more direction, and
so it would be straightforward to sweep in a direction such that only O(1) panel
factorizations would need to be performed, effectively reducing the complexity of the
setup phase to O(γ2N).

The last experiment was meant to simultaneously test the convergence rates and
scalability of the new sweeping preconditioner using the Overthrust velocity model

7A similar observation is also made in [37].

PARALLEL SWEEPING PRECONDITIONER 15

-8e-05

-6e-05

-4e-05

-2e-05

0

2e-05

4e-05

6e-05

8e-05

-0.0002

-0.00015

-0.0001

-5e-05

0

5e-05

0.0001

0.00015

0.0002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

-6e-05

-4e-05

-2e-05

0

2e-05

4e-05

6e-05

Fig. 3.1. A single x2x3 plane from each of the four analytical velocity models over a 5003

grid with the smallest wavelength resolved with ten grid points. (Top-left) the three-shot solution for
the barrier model near x1 = 0.7, (bottom-left) the three-shot solution for the two-layer model near
x1 = 0.7, (top-right) the single-shot solution for the wedge model near x1 = 0.7, and (bottom-right)
the single-shot solution for the waveguide model near x1 = 0.55.

(see Fig. 3.2) at various frequencies, and the results are reported in Table 3.2. It
is important to notice that this is not a typical weak scaling test, as the number of
grid points per process was fixed, not the local memory usage or computational load,
which both grow superlinearly with respect to the total number of degrees of freedom.
Nevertheless, including the setup phase, it took less than three minutes to solve the
3.175 Hz problem with four right-hand sides with 128 cores, and just under seven and
a half minutes to solve the corresponding 8 Hz problem using 2048 cores. Also, while
it is by no means the main message of this paper, the timings without making use
of selective inversion are also reported in parentheses, as the technique is not widely
implemented.8

4. Conclusions. A parallelization of the moving PML sweeping preconditioner
has been presented which has allowed us to efficiently solve 3D Helmholtz equations in
parallel with essentially O(1) iterations, with the only observed frequency-dependence
arising from a moderate growth in the PML size with increasing frequency. This size of
the PML, γ(ω) was explained to result in a linear growth in the memory requirements
of the preconditioner and a quadratic growth in the setup cost. Results were then
presented for a variety of models, one of which had a velocity field which varied by

8Other than Clique, the only other implementation appears to be in DSCPACK [31].

16 J. POULSON ET AL.

Fig. 3.2. Three cross-sections of the SEG/EAGE Overthrust velocity model, which represents
an artificial 20 km × 20 km × 4.65 km domain, containing an overthrust fault, using samples ev-
ery 25 m. The result is an 801 × 801 × 187 grid of wave speeds varying discontinuously between
2.179 km/sec (blue) and 6.000 km/sec (red).

number of processes
128 256 512 1024 2048

Hz 3.175 4 5.04 6.35 8
grid 3192×75 4012×94 5052×118 6352×145 8012×187

setup (sec) 48.40 (46.23) 66.33 (63.41) 92.95 (86.90) 130.4 (120.6) 193.0 (175.2)
apply (sec/rhs) 0.468 (1.07) 0.550 (1.28) 0.645 (2.40) 0.700 (3.33) 0.880 (6.13)
3 digits (iter’s) 42 44 42 39 40
4 digits (iter’s) 54 57 57 58 58
5 digits (iter’s) 63 69 70 68 72

Table 3.2
Convergence rates and timings on TACC’s Lonestar for the SEG/EAGE Overthrust model,

where timings in parentheses do not make use of selective inversion. All cases used a double-
precision second-order stencil with five grid spacings for all PML (with an amplitude of 7.5), and
a damping parameter of 2.25π. The preconditioner was configured with four planes per panel and
eight processes per node, and the ‘apply’ timings are with respect to a single application of the
preconditioner to four right-hand sides.

ten orders of magnitude, and convergence was shown to be essentially independent of
frequency for the challenging Overthrust model.

Also, despite the requirement that each panel must be solved against one at a
time when applying the preconditioner, a custom approach was introduced and imple-
mented which eliminates most of the communication associated with performing tra-
ditional black-box sparse-direct factorizations and solves over each subdomain. These
implementations are now released as part of the open-source packages Clique and
Parallel Sweeping Preconditioner (PSP). There are at least five important directions
for future work:

• developing a heuristic for tailoring the PML profile to the velocity field,
• extending the preconditioner to more general discretizations and time-harmonic

PARALLEL SWEEPING PRECONDITIONER 17

Fig. 3.3. Three planes from an 8 Hz solution with the Overthrust model at its native resolution,
801 × 801 × 187, with a single localized shot at the center of the x1x2 plane at a depth of 456 m:
(top) a x2x3 plane near x1 = 14 km, (middle) an x1x3 plane near x2 = 14 km, and (bottom) an
x1x2 plane near x3 = 0.9 km.

18 J. POULSON ET AL.

wave equations,
• finding a fast preconditioner for problems with large cavities (perhaps through

more general local auxiliary problems),
• testing the performance improvements resulting from simultaneously factor-

ing the subdomain problems and then redistributing the frontal trees, as well
as a trsm approach to solving many right-hand sides, and

• carefully studying the spectrum of the preconditioned operator for various
classes of velocity models.

Availability. The distributed dense linear algebra library, Elemental, is available
under the New BSD License at http://code.google.com/p/elemental. The dis-
tributed multifrontal solver, Clique, is available under the GPLv3 at http://github.
com/poulson/Clique. The Parallel Sweeping Preconditioner (PSP) code is available
under the GPLv3 at http://github.com/poulson/PSP.

Acknowledgments. The authors acknowledge TACC for usage of their com-
puting resources and thank Bill Barth for suggesting the tacc_affinity option and
Tommy Minyard for helping with several large runs. We also thank Anshul Gupta for
WSMP details and the referees for their insightful comments.

REFERENCES

[1] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent, A fully asynchronous mul-
tifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal., 23 (2001),
no. 1, pp. 15–41.

[2] F. Aminzadeh, J. Brac, and T. Kunz, 3-D Salt and Overthrust Models, SEG/EAGE 3-D
Modeling Series 1, Society of Exploration Geophysicists, Tulsa, OK, 1997.

[3] C. Ashcraft, R. Grimes, J. Lewis, B. Peyton, and H. Simon, Progress in sparse matrix
methods for large sparse linear systems on vector supercomputers, Internat. J. Supercom-
puter Applications, 1 (1987), pp. 10–30.

[4] I. M. Babuška and S. A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz
equation considering high wave numbers?, SIAM Review, 42 (2000), no. 3, pp. 451–484.

[5] A. Bayliss, C. Goldstein, and E. Turkel, An iterative method for the Helmholtz equation,
J. Comput. Phys., 49 (1983), pp. 443–457.

[6] M. Bollhoefer, M. Grote, and O. Schenk, Algebraic multilevel preconditioner for the
Helmholtz equation in heterogeneous media, SIAM J. Sci. Comp., 31 (2009), pp. 3781–
3805.

[7] M. Bollhoefer and Y. Saad, Multilevel preconditioners constructed from inverse-based ILUs,
SIAM J. Sci. Comp., 27 (2006), pp. 1627–1650.

[8] H. Calandra, S. Gratton, X. Pinel, and X. Vasseur, An improved two-grid precondi-
tioner for the solution of three-dimensional Helmholtz problems in heterogeneous me-
dia, CERFACS, Toulouse, France, Technical Report, 2012, TR/PA/12/2. Available at:
http://www.cerfacs.fr/algor/reports/2012/TR_PA_12_2.pdf.

[9] E. Chan, M. Heimlich, A. Purkayastha, and R. A. van de Geijn, Collective communication:
theory, practice, and experience, Concurrency and Computation: Practice and Experience,
19 (2007), no. 13, pp. 1749–1783.

[10] J. J. Dongarra and D. W. Walker, MPI: A standard message passing interface, Supercom-
puter, 12 (1996), no. 1, pp. 56–68.

[11] A. Druinsky and S. Toledo, How accurate is inv(A) ∗ b?, CoRR, abs/1201.6035 (2012), 9
pages. Available at: http://arxiv.org/abs/1201.6035.

[12] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear
equations, ACM Trans. Math. Software, 9 (1983), pp. 302–325.

[13] B. Engquist and A. Majda, Absorbing Boundary Conditions for the numerical simulation of
waves, Mathematics of Computation, 31 (1977), pp. 629–651.

[14] B. Engquist and L. Ying, Sweeping preconditioner for the Helmholtz equation: hierarchical
matrix representation, Commun. on Pure and App. Math., 64 (2011), pp. 697–735.

[15] B. Engquist and L. Ying, Sweeping preconditioner for the Helmholtz equation: moving per-
fectly matched layers, SIAM J. Multiscale Modeling and Simulation, 9 (2011), pp. 686–710.

http://code.google.com/p/elemental
http://github.com/poulson/Clique
http://github.com/poulson/Clique
http://github.com/poulson/PSP
http://www.cerfacs.fr/algor/reports/2012/TR_PA_12_2.pdf
http://arxiv.org/abs/1201.6035

PARALLEL SWEEPING PRECONDITIONER 19

[16] Y. Erlangga, C. Vuik, and C. Oosterlee, On a class of preconditioners for solving the
Helmholtz equation, Applied Numer. Math., 50 (2004), pp. 409–425.

[17] Y. Erlangga, Advances in iterative methods and preconditioners for the Helmholtz equation,
Archives Comput. Methods in Engin., 15 (2008), pp. 37-66.

[18] O. G. Ernst and M. J. Gander, Why it is difficult to solve Helmholtz problems with classi-
cal iterative methods, in Numerical Analysis of Multiscale Problems, I. Graham, T. Hou,
O. Lakkis, and R. Scheichl, eds., Springer-Verlag, New York, NY, 2011, pp. 325–363.

[19] M. J. Gander and F. Nataf, AILU for Helmholtz problems: a new preconditioner based on
the analytic parabolic factorization, in J. Comput. Acoustics, 9 (2001), pp. 1499–1506.

[20] A. George, J. W. H. Liu, and E. Ng, Communication reduction in parallel sparse cholesky
factorization on a hypercube, in Hypercube Multiprocessors, M. T. Heath, ed., SIAM,
Philadelphia, PA, 1987, pp. 576–586.

[21] A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10
(1973), pp. 345–363.

[22] L. Grasedyck and W. Hackbusch, Construction and arithmetics of H-matrices, Computing,
70 (2003), no. 4, pp. 295–334.

[23] A. Gupta, S. Koric, and T. George, Sparse matrix factorization on massively parallel com-
puters, Proc. of Conf. on High Perf. Comp. Networking, Storage, and Anal. (SC ’09),
ACM, New York, NY, 2009. Article 1, 12 pages. Available at: http://doi.acm.org/10.

1145/1654059.1654061.
[24] A. Gupta, G. Karypis, and V. Kumar, A highly scalable parallel algorithm for sparse matrix

factorization, IEEE Trans. Parallel and Dist. Systems, 8 (1997), no. 5, pp. 502–520.
[25] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. I. Introduction to H-

matrices, Computing, 62 (1999), no. 2, pp. 89–108.
[26] M. Joshi, A. Gupta, G. Karypis, and V. Kumar, A high-performance two dimensional

scalable parallel algorithm for solving sparse triangular systems, Proc. of Internat. Conf.
on High Perf. Comp. (HiPC), (1997), pp. 137–143.

[27] J. W. H. Liu, The multifrontal method for sparse matrix solution: theory and practice, SIAM
Rev., 34 (1992), no. 1, pp. 82–109.

[28] P.-G. Martinsson and V. Rokhlin, A fast direct solver for scattering problems involving
elongated structures, J. Comput. Phys., 221 (2007), no. 1, pp. 288–302.

[29] S. G. Johnson, Notes on perfectly matched layers (PMLs), Massachusetts Institute of Tech-
nology, Technical Report, 2007; updated 2010. Available at: http://www-math.mit.edu/

~stevenj/18.369/pml.pdf.
[30] J. Poulson, B. Marker, R. A. van de Geijn, J. R. Hammond, and N. A. Romero, Elemen-

tal: a new framework for distributed memory dense matrix computations, ACM Trans.
Math. Software, Note: to appear.

[31] P. Raghavan, Domain-Separator Codes for the parallel solution of sparse linear systems, The
Pennsylvania State University, University Park, PA, Technical Report, 2002, CSE-02-004.

[32] P. Raghavan, Efficient parallel sparse triangular solution using selective inversion, Parallel
Processing Letters, 8 (1998), no. 1, pp. 29–40.

[33] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual method for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

[34] R. Schreiber, A new implementation of sparse Gaussian elimination, ACM Trans. Math.
Software, 8 (1982), no. 3, pp. 256–276.

[35] R. Schreiber, Scalability of sparse direct solvers, in Graph Theory and Sparse Matrix Com-
putation, A. George, J. R. Gilbert, and J. W. H. Liu, eds., Springer-Verlag, New York,
NY, 1993, pp. 191–209.

[36] V. Simoncini and E. Gallopoulos, Convergence properties of block GMRES and matrix
polynomials, Linear Algebra and its Applications, 247 (1996), pp. 97–119.

[37] C. Stolk, A rapidly converging domain decomposition method for the Helmholtz equation,
CoRR, abs/1208.3956 (2012), 14 pages. Available at: http://arxiv.org/abs/1208.3956.

[38] P. Tsuji, B. Engquist, and L. Ying, A sweeping preconditioner for time-harmonic Maxwell’s
equations with finite elements, J. Comp. Phys, Note: to appear.

[39] P. Tsuji and L. Ying, A sweeping preconditioner for Yee’s finite difference approximation of
time-harmonic Maxwell’s Equations, J. Frontiers of Math. China, Note: to appear.

[40] S. Wang, M. V. de Hoop, and J. Xia, On 3D modeling of seismic wave propagation via a
structured parallel multifrontal direct Helmholtz solver, Geophysical Prospecting, 59 (2011),
pp. 857–873.

[41] S. Wang, X. S. Li, J. Xia, Y. Situ, and M. V. de Hoop, Efficient scalable algorithms for
hierarchically semiseparable matrices, Submitted to SIAM J. Sci. Comput., 2011. Available
at: http://www.math.purdue.edu/~xiaj/work/parhss.pdf.

http://doi.acm.org/10.1145/1654059.1654061
http://doi.acm.org/10.1145/1654059.1654061
http://www-math.mit.edu/~stevenj/18.369/pml.pdf
http://www-math.mit.edu/~stevenj/18.369/pml.pdf
http://arxiv.org/abs/1208.3956
http://www.math.purdue.edu/~xiaj/work/parhss.pdf

20 J. POULSON ET AL.

[42] J. H. Wilkinson, Rounding Errors in Algebraic Processes. Prentice-Hall, Englewood Cliffs, N.
J., 1963.

[43] J. Xia, S. Chandrasekaran, M. Gu, and X. Li, Superfast multifrontal method for large
structured linear systems of equations, SIAM J. Matrix Anal. Appl., 31 (2009), no. 3,
pp. 1382–1411.

