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Many problems can be solved by preparing a specific eigenstate of some Hamiltonian H. The
generic cost of quantum algorithms for these problems is determined by the inverse spectral gap of
H for that eigenstate and the cost of evolving with H for some fixed time. The goal of spectral gap
amplification is to construct a Hamiltonian H ′ with the same eigenstate as H but a bigger spectral
gap, requiring that constant-time evolutions with H ′ and H are implemented with nearly the same
cost. We show that a quadratic spectral gap amplification is possible when H satisfies a frustration-
free property and give H ′ for these cases. This results in quantum speedups for optimization
problems. It also yields improved constructions for adiabatic simulations of quantum circuits and
for the preparation of projected entangled pair states (PEPS), which play an important role in
quantum many-body physics. Defining a suitable black-box model, we establish that the quadratic
amplification is optimal for frustration-free Hamiltonians and that no spectral gap amplification is
possible, in general, if the frustration-free property is removed. A corollary is that finding a similarity
transformation between a stoquastic Hamiltonian and the corresponding stochastic matrix is hard
in the black-box model, setting limits to the power of some classical methods that simulate quantum
adiabatic evolutions.
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I. INTRODUCTION AND SUMMARY OF RESULTS

Many problems in physics and optimization, such as describing quantum phases of matter or solving satisfiability,
can be reduced to the computation of low-energy states of Hamiltonians (see, e.g.[19, 31]). Methods to compute such
states exist, with adiabatic state transformation (AST) being one of the most acknowledged and powerful heuristics
for that goal [4, 18–20, 22, 24]. The problem in AST involves transforming a pure quantum state |ψ0〉 into |ψ1〉; these
being the endpoints of a state path |ψs〉, 0 ≤ s ≤ 1, where each |ψs〉 is an eigenstate of a Hamiltonian H(s). Quantum
strategies to solve the AST problem typically require evolving with the Hamiltonians for time T > 0, which determines
the cost of the method. A well-known example is given by the quantum adiabatic theorem and requires changing the
interaction parameter s sufficiently slowly in time [23, 27], but more efficient strategies exist [9, 10, 43]. When direct
access to Hamiltonian evolutions is not possible, such evolutions can be simulated in the standard quantum circuit
model by means of Trotter-Suzuki-like formulas [8, 29, 42]. For these cases, the cost of the method does not only
depend on T , but also depends on the additional cost of approximating fixed-time Hamiltonian evolutions by quantum
circuits. For this reason, it is standard to restrict to those H(s) whose fixed-time evolutions can be approximated by
quantum circuits of small size (e.g., size bounded by constant-degree polynomials).

Let L be the angular length determined by {|ψs〉}0≤s≤1 and ∆s ≥ ∆ the spectral gap to the other nearest eigenvalue
of H(s). Recently, we provided fast quantum methods for eigenpath traversal that do not exploit the structure of the
Hamiltonians and solve the AST problem in time T ∈ Ω(L/∆) [10]. Such methods were shown to be optimal in a
black-box model [11]. However, the results in Ref. [11] do not forbid the existence of faster methods for solving the
AST problem if additional knowledge about the structure of H(s) is available. Our paper focuses on this observation
and introduces the spectral gap amplification problem or GAP. Basically, we intend to answer: Can we construct a
Hamiltonian H ′(s) that also has |ψs〉 as eigenstate, but spectral gap ∆′s � ∆s?

When spectral gap amplification is possible, it can be used as a technique to find new quantum speedups in both,
the Hamiltonian-based model and the quantum circuit model. In Refs. [34, 36], for example, we constructed the so-
called quantum simulated annealing algorithm that provided speedups of the well-known simulated annealing method
implemented using Monte-Carlo. The reason for such speedups is a gap amplification step: if ∆ is the spectral gap of
the stochastic matrix S used in Monte-Carlo, there is a Hamiltonian H ′ with spectral gap ∆′ ≥

√
∆ and eigenstate that

allows to sample from the fixed point of S. To build H ′ we used previously-developed tools for quantum walks [5, 38].
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Motivated by the results in Refs. [34, 36] we study the GAP in different scenarios. We first show that, for Hamil-
tonians that satisfy a frustration-free property [13, 17, 30, 44], a quadratic spectral gap amplification is possible and
optimal in some suitable black-box model. Quadratic spectral gap amplification was previously known only for Hamil-
tonians that result from a similarity transformation of stochastic matrices [34, 36, 38]. These Hamiltonians, which
are the so-called discriminants, are also stoquastic, i.e. the off-diagonal entries are non-positive. A direct consequence
of our new construction is that spectral gap amplification can now be achieved for any frustration-free Hamiltonian
as those used in quantum adiabatic simulations of quantum circuits, improving upon the results in Refs. [1, 3, 28].
The eigenstate in our construction is not the lowest-energy state of the Hamiltonian induced by the quantum circuit
(which was the case in Refs. [1, 3, 28]). Nevertheless, techniques for AST work for any eigenstate and still apply to
our case, giving more efficient quantum adiabatic simulations to prepare the circuit’s output state. In addition, some
low-energy eigenstates of general frustration-free Hamiltonians (termed PEPS) were shown to play an important role
in physics, renormalization, and optimization [30, 40, 44]: PEPS are useful variational states reproducing the local
physics with high accuracy [39, 40]. Our method for spectral gap amplification can be used to speedup the preparation
of PEPS on a quantum computer, with an expected improvement of other methods for this goal (e.g., [32]).

Interestingly, it is hard to achieve spectral gap amplification for general Hamiltonians that do not satisfy the
frustration-free property. It would otherwise imply fast quantum methods for some problems, contradicting known
complexity bounds in the oracle setting [7]. In addition, a natural generalization of our technique for spectral gap
amplification would output a Hermitian operator only if the input Hamiltonian H is semidefinite positive (as is the
case for frustration-free Hamiltonians). Such a generalization could then be used to solve the decision problem of
whether a given H is semidefinite positive or not (with some small error bound), and provide an estimate to the
lowest eigenvalue of H. This is a complete problem for the class QMA [26], and finding its solution may require a
quantum circuit of undesirably large size.

The result on the impossibility of general spectral gap amplification has additional implications on the power
of classical methods that solve the AST problem. For example, some stoquastic Hamiltonians can be mapped to
stochastic matrices through a similarity transformation [12, 13, 33]. The fixed point of the stochastic matrix coincides
with the distribution induced by the ground state of the Hamiltonian. The stochastic matrix would allow us to build
a Monte-Carlo method to sample from the fixed point and classically solve the AST problem in this case. The same
similarity transformation could then be used to give a frustration-free representation of the Hamiltonian [33, 40],
allowing us to use the results for frustration-free Hamiltonians to amplify the gap. This contradicts the impossibility
result, implying that finding the transformation is hard (in the black-box setting).

We organize the manuscript as follows. First, in Sec. II we define the GAP in more detail and present some methods
for the proofs of the quadratic amplification in the frustration-free case, and for the impossibility of amplification in
general. In Sec. III we show the construction of H ′ for frustration-free Hamiltonians. In Sec. III A we prove that
the cost of implementing evolutions under H ′ is nearly the same as the cost of implementing evolutions under H
in the black-box model, and present a simulation method. In Sec. III B we prove that the quadratic amplification
is optimal for frustration-free Hamiltonians in this black-box model. In Sec. IV we comment on the advantages of
our gap amplification construction for the adiabatic simulation of quantum circuits and give a local Hamiltonian. In
Sec. V we prove that no gap amplification is possible for general Hamiltonians in the black-box model. This results
in limits on the power of classical simulations for quantum systems, that are discussed in Sec. VI. We conclude in
Sec. VII.

II. DEFINITIONS AND METHODS

We first comment on the implementation cost of Hamiltonian evolutions. Ignoring precision, we assume Hamil-
tonians H given as black boxes that implement the evolution exp{−iHt} on ancilliary input |t〉, satisfying |t| ≤ π.
When we write H =

∑
k Λk for the Hamiltonian, we assume a modified black-box that implements exp{−iΛkt} on

ancilliary input |k〉|t〉. Such a black box is typically an efficient quantum circuit in applications. We write OH for the
black-box. The implementation cost of exp{−iH ′s} in the black-box model, where H ′ is the Hamiltonian resulting
from the gap amplification construction applied to H, will be the number of times OH is called to implement the
operation in either case.

Definition 1 Let H =
∑
k Λk ∈ CN × CN be a finite-dimensional Hamiltonian, |ψ〉 a (unique) eigenstate of H with

eigenvalue λ, and ∆ the gap to the other nearest eigenvalue of λ; i.e. ∆ is the spectral gap. The goal of the GAP is
to find a new Hamiltonian H ′ that has |ψ〉 ⊗ |0〉 as (unique) eigenstate and spectral gap ∆′ ∈ Ω(∆1−ε), for ε > 0. |0〉
is any subsystem’s state for which an efficient quantum circuit is known. The implementation cost of exp{−iH ′t} in
the black-box model must be of the same order as the implementation cost of exp{−iHt}.



Spectral Gap Amplification 3

The last requirement forbids naive constructions such asH ′ = cH for c� 1 and is needed to carry quantum speedups
from the Hamiltonian-based model, in which the cost is the evolution time, to the black-box model, in which the
cost is the number of black boxes. If both H and H ′ are sparse with a bounded number of (efficiently computable)
non-zero entries per row and matrix oracles for the Λk are provided, the last requirement can be satisfied [2, 8, 15, 35].

Definition 2 A Hamiltonian H ∈ CN ×CN is frustration free if it can be written as H =
∑L
k=1 akΠk, with (known)

0 ≤ ak ≤ 1, (Πk)2 = Πk projectors, and L ∈ O[polylog(N)]. Further, if |ψ〉 is a lowest-eigenvalue eigenstate (ground
state ) of H, then Πk|ψ〉 = 0 ∀ k.

|ψ〉 is then a ground state of every term in the decomposition of H. We will assume that ak = 1 ∀k when there is
no loss of generality. Then H =

∑
k Πk is still frustration free, it has |ψ〉 as ground state, it has at least the spectral

gap of
∑
k akΠk, and ‖H‖ ≤ L. While the Πk’s may be local operators, we do not make that assumption here. It will

suffice to have access to the black box OH .
We consider the unstructured search problem or SEARCH to prove the optimality of quadratic gap amplification for

frustration-free Hamiltonians and also the impossibility of gap amplification for general Hamiltonians. We introduce
SEARCH and describe a simple variant of Grover’s algorithm to solve it.

Definition 3 Consider a family of Boolean functions or oracles {fx}, with domain [0, ..,M − 1], that satisfy fx(y) =
δxy. The goal of SEARCH is to find the unknown word x, with high probability, by querying fx the least possible
number of times.

For quantum algorithms, we use a reversible version of fx defined as

Qx|y〉|b〉 = |y〉|b⊕ fx(y)〉 , (1)

with b ∈ {0, 1}. We refer to Qx as the search oracle. Quantum algorithms that solve SEARCH with Θ(
√
M) uses of

Qx, and other x-independent operations, exist [7, 21]. Classical algorithms require Θ(M) queries to fx.
From Ref. [16] we can give a quantum algorithm to solve SEARCH using projective measurements.

Lemma 1 Let {Hx} be a family of Hamiltonians with unique eigenstates |ψx〉 satisfying px = |〈x|ψx〉|2 ∈ O(1) and

ps = |〈s|ψx〉|2 ∈ O(1), where |s〉 = 1√
M

∑M−1
y=0 |y〉 is the equal superposition state. A quantum algorithm can find x

with cost O(1/∆), where ∆ is a bound on the eigenvalue gap of Hx.

Proof 1 The probabilities px and ps are bounded independently of M . If we initialize a quantum computer in |s〉 and
next we perform two projective measurements of |ψx〉 and |x〉, respectively, we can find x with probability no smaller
than px.ps. The cost of this method is measured by T , the time of evolving with Hx. This is needed to simulate
the measurement of |ψx〉, with high accuracy, using the well-known phase estimation algorithm [16, 25] or by phase

randomization [9]. The cost T is dominated by the inverse gap of Hx. In optimal constructions, ∆ ∈ O(1/
√
M) so

that T ∈ O(
√
M).

III. GAP: FRUSTRATION-FREE HAMILTONIANS

When a Hamiltonian H =
∑
k Πk is frustration free, local, and stoquastic [12], we could use the results in Ref. [13]

and Refs. [34, 36] to build a Hamiltonian H ′ with a quadratically bigger spectral gap. In that case, H is the so-called
discriminant of a Markov process or stochastic matrix. Such a construction uses tools from quantum walks [38] to
speed up Markov chain based algorithms and requires full knowledge of each Πk. Here, we present a novel and
more efficient technique that allows for quadratic gap amplification of any frustration-free Hamiltonian, without the
requirement of H being local and stoquastic. Later we show that this technique provides the optimal amplification
and present a black-box simulation method for the evolution with H ′ that does not require full knowledge of each Πk.

Theorem 1 Let H =
∑L
k=1 Πk ∈ CN ×CN be a frustration-free Hamiltonian, |ψ〉 a ground state, and ∆ the spectral

gap or smallest nonzero eigenvalue. Then, there exists H ′ satisfying H ′|ψ〉|0〉 = 0 and eigenvalue gap ∆′ ∈ Ω(
√

∆L).
The dimension of the null space of H ′ is that of the null space of H.

Proof 2 The proof is constructive. We let

X =

L∑
k=1

Πk ⊗Υk (2)
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be a Hamiltonian, and Υk = |k〉〈k| a rank-one projector acting on CL. It is easy to show that Xn = X for n ≥ 1.
We define the unitary operator

U = e−iπX = 1l− 2

L∑
k=1

Πk ⊗Υk , (3)

with 1l the identity matrix whose dimension will be clear from context (here it is NL×NL). The implementation of U

requires a single black box OH and U2 = 1l. In addition, |0〉 = 1√
L

∑L
k=1 |k〉 is an ancilliary state and P = 1l⊗ |0〉〈0|

its projector. Because L ∈ O[polylog(N)], quantum circuits that prepare |0〉 efficiently exist (e.g. [35]).
We define the Hamiltonian

G = UPU − P . (4)

If {|ψj〉}1≤j≤N are the eigenstates of H with eigenvalues λ1 = 0 ≤ λ2 ≤ . . . ≤ λN ≤ L, G leaves invariant the at most
two-dimensional subspace Vj spanned by {|ψj〉|0〉, U |ψj〉|0〉}, for all j. To show this, we need an important property
that is a consequence of our construction:

PUP =

(
1l− 2

L
H

)
⊗ |0〉〈0| = A⊗ |0〉〈0| . (5)

The eigenvalues of A are γj = 1− 2λj/L and the eigenstates are also the |ψj〉. To avoid technical issues we assume
that γN ≥ 0. If this were not the case, the projector P could be easily modified so that γj = 1− λj/L instead, and the
assumption is fulfilled. We can think of γj as being cosαj = 〈ψj |〈0|PUP |ψj〉|0〉, so that αj is the angular distance
between the states |ψj〉|0〉 and U |ψj〉|0〉 (Fig. 1). When j is such that λj = 0, we have U |ψj〉|0〉 = |ψj〉|0〉 and Vj
is one dimensional. This implies that |ψj〉|0〉 is an eigenstate of G of eigenvalue 0. When λj 6= 0, Eq. (5) gives
G|ψj〉|0〉 = γjU |ψj〉|0〉 − |ψj〉|0〉, and G is invariant in Vj.

|ψj〉|0〉

U |ψj〉|0〉

PU |ψj〉|0〉

U
P
U
|ψ j
〉|0〉

| ⊥j〉

αj

− sin2 αj |ψj〉|0〉

(UPU − P )|ψj〉|0〉

αj

sinαj cosαj | ⊥j〉

FIG. 1: Geometric representation of the action of G on |ψj〉|0〉.

When λj 6= 0 (or αj 6= 0), we define |⊥j〉 as the unit state orthogonal to |ψj〉|0〉 in the subspace Vj. We can use
simple geometry arguments (Fig. 1) to show that the two-dimensional block of G in the basis {|ψj〉|0〉, |⊥j〉} is

Gj =

(
− sin2 αj sinαj cosαj

sinαj cosαj sin2 αj

)
. (6)

The eigenvalues of G in this subspace are ± sinαj. Because sinαj ≥
√

2λj/L, a quadratic amplification in the spectral
gap follows.

We need to account for a small technical issue to obtain H ′. G acts trivially on any other eigenstate |φ〉 orthogonal
to ⊕jVj. The dimension of the null space of G is much larger than the dimension of the null space of H. Usually,
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this poses no difficulty in the AST problem because G does not generate transitions between the states |ψj〉|0〉 and
any other state in the null space of G. In those cases we can assume H ′ = LG so that ‖H ′‖ ≤ L. Otherwise, since
P |φ〉 = (

∑
j |ψj〉〈ψj | ⊗ |0〉〈0|)|φ〉 = 0, we can easily remove the unwanted degeneracy of G by adding a “penalty term”

to those states whose ancilliary register is not in |0〉. That is,

H ′ = LG+ δ(1l− P ) (7)

for some δ > 0 determined below. Note that, if λj = 0, |ψj〉|0〉 is still in the null space of H ′. For λj 6= 0, the matrix
of H ′ in Vj is

H ′j = L

(
− sin2 αj sinαj cosαj

sinαj cosαj δ/L+ sin2 αj

)
. (8)

It suffices to choose δ =
√

∆L to guarantee that ξ±j , the eigenvalues of H ′ in this subspace, satisfy |ξ±j | ≥ (1/6)
√
λjL.

The gap of H ′ is then ∆′ ∈ O(
√

∆L) and the dimension of the null space of H ′ coincides with that of the null space
of H.

Our choice of δ uses ∆, which may be unknown. We can then safely use a lower bound on the spectral gap of
H, ∆̄ ≤ ∆, and build H ′ using ∆̄ instead. The loss is that the resulting gap of H ′ may not be the largest possible.
However, this is not a drawback if we use H ′ (or LG) for the AST problem. As mentioned, the relevant spectral gap

is of order
√

∆L even if ∆ is unknown, and the role of ∆̄ is unimportant in this case.

A. Black-box simulation

In a Hamiltonian-based model of quantum computation, a gain on the spectral gap readily provides a quantum
speedup for the AST problem. This model assumes the ability of evolving under H ′, i.e. applying V (t) = exp{−iH ′t}
directly. To carry those speedups to the quantum circuit model, we need a way of approximating a fixed-time evolution
by a short sequence of gates. Usually, such a sequence is obtained by using Trotter-Suzuki-like approximations [8, 42].
In those approximations, the evolution of a Hamiltonian H =

∑
k Λk is built upon short-time evolutions under each

Λk, and each such evolution is written as a constant-size sequence of gates [35]. In other words, what determines the
size of the circuit that approximates V (t) is the implementation cost as given by the number of uses of OH , the black
box described in Sec. II. Here we describe a simulation method for V (t) whose overall cost is almost linear in L|t|.
In most cases this result implies a quantum speed-up, in the circuit model, for those methods that solve the AST
problem using paths of frustration-free Hamiltonians.

Lemma 2 For any κ and ε, there is a black-box simulation W (t) of V (t) that requires using the black box
O
(
|Lt|1+1/(2κ)

)
times, κ ∈ N∗, and satisfies ‖W (t)− V (t)‖ ≤ ε.

Proof 3 Up to a trivial offset, H ′ = A1 − (L + δ)P , with A1 = LUPU , ‖A1‖ = L, and ‖P‖ = 1. We can then use
known results on Hamiltonian simulations [2, 8, 15, 29] to approximate exp{−iH ′t} at precision ε by a sequence of
c(ε, κ)|Lt|1+1/κ concatenated evolutions under A1 and P . For fixed ε and κ, c(ε, κ) is constant. The proof follows by
noticing that

e−iA1s = Ue−iLPsU , (9)

i.e. it requires two uses of U , and each U can be implemented using OH once on input |π〉. Evolutions under P for
any time do not require the black box and can be implemented with a quantum circuit of size L or smaller.

B. Optimal amplification

We are interested in finding the biggest spectral gap amplification possible for frustration-free H. To this end, we
consider the set F of all those H ′ that have |ψ〉|0〉 as eigenstate and such that evolving with H ′ for time t can be done
using O(|t|) black boxes OH ; i.e. L is constant. Under these assumptions, the quadratic spectral gap amplification is
optimal in the black-box model:

Theorem 2 ∆′ ∈ Θ(
√

∆).



Spectral Gap Amplification 6

Proof 4 We sketch the proof here and leave the full version in Appendix A. We consider instances {H̃x}, x ∈
{0, 1, . . .M − 1} unknown, that can be used to solve SEARCH as described in Lemma 1. Each H̃x is frustration free
and the spectral gap is of order 1/M . The corresponding black box OH̃x

can be implemented with a single call to the

search oracle of Eq. (1). If H̃ ′x is the Hamiltonian with the amplified gap ∆′, SEARCH can be solved by evolving with

H̃ ′x for time Ω(1/∆′). By assumption, this would require using Ω(1/∆′) black boxes OHx and thus Ω(1/∆′) search

oracles. The lower bound on SEARCH implies ∆′ ∈ Θ(
√

∆), with
√

∆ ∈ O(1/
√
M).

IV. GAP AMPLIFICATION AND ADIABATIC QUANTUM COMPUTATION

A property of our spectral gap amplification method is that it yields quantum speed-ups for the AST problem. It
is also important to describe additional advantages of the method, including the simulation of quantum circuits. It
is known that any quantum circuit specified by quantum gates U1, . . . , UQ can be simulated, in a Hamiltonian-based

model, by an adiabatic quantum evolution involving frustration-free Hamiltonians H(s) =
∑L
k=1 ak(s)Πk(s). For

s = 1, the ground state of H(1) has large overlap with the state output by the quantum circuit. In some constructions,
L ∈ O[poly(Q)] and Πk denotes nearest-neighbor (two-body) interactions between spins of corresponding many-body
systems in one or two-dimensional lattices [1, 3].

The cost of the adiabatic simulation depends on the inverse minimum gap of H(s), ∆. We can therefore use our
gap amplification construction for frustration-free Hamiltonians to speed-up the adiabatic simulation. However, in
doing so, we encounter difficulties regarding the locality of H ′. For example, the projector P can be interpreted as
an interaction term involving log2(L) qubits and this is undesired if we want to find a physical H ′ whose interactions
address a limited number of subsystems. A simple procedure to avoid many-body terms is to consider each state |k〉
in |0〉 as a state of L qubits of the form

|k〉 → |0 . . . 0 1︸︷︷︸
kth position

0 . . . 0〉 . (10)

The subspace defined by Eq. (10) is typically termed the single-particle subspace. The terms |k〉〈k′| appearing in P
map to σ+

k σ
−
k′ , with σ± = (σx± iσy)/2, and σα the corresponding Pauli operator. The terms |k〉〈k| map to (1l−σzk)/2.

In this subspace,

G =
1

L

∑
k,k′

eiπΠk(1l−σz
k)/2σ+

k σ
−
k′e
−iπΠk′ (1l−σz

k′ )/2 − σ+
k σ
−
k′

 . (11)

If the Πk are two-subsystem interaction terms, H ′ = LG + δ(1l − P ) will map to a combination of four-subsystem
terms. This makes H ′ local but not spatially local. We also note that, while the overall spectrum of H ′ may have
changed because of the mapping, the spectrum of H ′ in the single-particle subspace corresponds to the one analyzed
in Sec. III.

We note that our construction to amplify the gap is not unique. Indeed, as seen in Appendix B, the Hamiltonian

G̃ =

L∑
k=1

Πk ⊗ (|k〉〈0|+ |0〉〈k|) (12)

has a similar property: its eigenvalues are ±
√
λj . Note that if ak 6= 1 we can modify it as G̃ =

∑L
k=1

√
ak Πk ⊗

(|k〉〈0|+ |0〉〈k|). The action of G̃ in the single-particle subspace is equivalent to that of [45]

G̃ =

L∑
k=1

Πk ⊗ (σ+
k σ
−
0 + σ−k σ

+
0 ) . (13)

To eliminate the degeneracy of the null eigenvalue in this subspace, we can proceed as in Sec. III and add a term
proportional to (1l− |0〉〈0|)→ (1 + σz0)/2, so that

G̃→ Ḡ =

L∑
k=1

Πk ⊗ (σ+
k σ
−
0 + σ−k σ

+
0 ) +

√
∆

2

(1 + σz0)

2
. (14)

The relevant spectral gap of Ḡ in the single-particle subspace is still of order
√

∆.
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Nevertheless, an unwanted degeneracy of the null eigenvalue from other (many-particle) states is possible. (Note

that any eigenstate in the 0-particle subspace has eigenvalue exactly
√

∆/2). To remove such a degeneracy we set
“penalties” to states that belong to different particle subspaces. To this end, we note that

0 ≤ G̃2 =
∑
k,k′

ΠkΠk′(σ
+
k σ
−
k′σ
−
0 σ

+
0 +H.c.)

≤ S+S−σ−0 σ
+
0 +H.c. , (15)

where S+ =
∑L
k=1 σ

+
k is proportional to the so-called SU(2) spin raising operator. Let |S,m〉 be the eigenstates

of Sz =
∑L
k=1 σ

z
k, with eigenvalue m, and total SU(2) spin proportional to S. Then, m ∈ {−L,−L + 2, . . . , L},

0 ≤ S ≤ L, and

S+|S,m− 2〉 = N(S,m)|S,m〉 ,

N(S,m) =
1

2

√
(S +m)(S −m+ 2) . (16)

It implies (
S+S−σ−0 σ

+
0 +H.c.

)
|b〉0 ⊗ |S,m〉 = (17)

=
(
δb,0N(S,m+ 2)2 + δb,1N(S,m)2

)
|b〉0 ⊗ |S,m〉 ,

where b ∈ {0, 1} denotes the state of the qubit in the 0-th position. The operator G̃2 leaves the a-particle subspace

invariant, and we write a = (L−m)/2. From Eqs. (16) and (17), the eigenvalues of G̃2 in that subspace are bounded
from above by (L+m+2)(L−m+2)/4 = (L+1−a)(1+a). The upper bound to the absolute value of the eigenvalues

of G̃, in that subspace, is
√

(L+ 1− a)(1 + a).

We define Z = L−2−∑L
k=0 σ

z
k and note that Z acts trivially in the single-particle space and nontrivially elsewhere.

We also define

H ′ =
1

L
Ḡ+ 2Z , (18)

d > 0. H ′ acts invariantly in the a-particle subspaces. The eigenvalues of H ′ are then bounded from below by

− 1

L1/d

√
(L+ 1− a)(1 + a) + 4(a− 1) . (19)

For the specific case of d = 2, a = 1, we already know that the eigenvalues of H ′ are in the range [−1, 1]; this
case corresponds to the single-particle one whose spectrum was analyzed previously. Also, for d ≤ 2, a ≥ 2, all the
eigenvalues coming from the a-particle subspaces do not mix with the eigenvalues of the single-particle subspace, and
the potentially high degeneracy of the null space is avoided. For a = 0 the exact eigenvalues ofH ′ are

√
∆/(2L1/d)−4 ≤

−7/2 if d ≤ 2.
Summarizing, the Hamiltonian

H ′ =
1

L1/d

[
L∑
k=1

Πk(σ+
k σ
−
0 + σ−k σ

+
0 ) +

√
∆

2

(1 + σ0
z)

2

]
+ 2Z (20)

has |ψ0〉|10 . . . 0〉 as unique eigenstate of eigenvalue 0, and all other eigenvalues are at distance at least
√

∆/L1/d if
d ≤ 2. H ′ can be regarded as a physical Hamiltonian. In Fig. 2 we represent H ′ for the case in which H is the
frustration-free Hamiltonian of a system in one spatial dimension, and d = 1.

The construction in Ref. [1] leads indeed a family of frustration-free Hamiltonians in one spatial dimension. For a
quantum circuit with Q gates, the spectral gap of H in Ref. [1] can be made of order 1/Q2 [46]. H ′ in Eq. (20) allows
us to amplify the gap up to order 1/Q1+1/d, with an important gain if d = 2 and Q� 1.

V. GAP: GENERAL HAMILTONIANS

We show that spectral gap amplification is not possible for general Hamiltonians in the black-box model. Again,
we consider instances Hx whose unique ground states |ψx〉 can be used to solve SEARCH as in Lemma 1. As before,
the cost of an evolution with Hx is the number of black boxes OHx

required to implement it. We obtain:
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FIG. 2: A physically local representation of H ′. Each additional qubit 1, . . . , L has assigned a color and interacts with a
particular term Πk in the Hamiltonian and the centered qubit. In a one dimensional construction, Πk represents a nearest-
neighbor interaction. Therefore, Πk and Πk+1 have support overlapping on a single body that is represented by lines of color
that match that of the additional qubit.

Theorem 3 There are stoquastic (sparse) Hamiltonians for which spectral gap amplification is not possible.

Proof 5 The result will follow again from the known lower bound on SEARCH. We consider the family {Hx}0≤x≤M−1

with

Hx = −|x〉〈x| − cA , (21)

and x unknown. The constant c > 0 will be specified later and A is a M ×M symmetric matrix proportional to the
adjacency matrix of a square lattice in five spatial dimensions. The matrix entries of A are ay′y = 1 if (y, y′) is an
edge in the lattice and ay′y = 0 otherwise. A is sparse and independent of the unknown x. In this case we assume a
matrix oracle Wx for Hx. This is stronger than OHx in the sense that OHx can be implemented with a single call to
Wx. Further, by construction, Wx requires calling the search oracle of Eq. (1) only once.

We present some useful properties of Hx and refer to Ref. [14] for details. There is a phase transition point at
c = c∗ > 0 where the spectral gap is

∆→ I1

2
√
I2M

∈ O(1/
√
M) , (22)

and

px = |〈x|ψx〉|2 → 0.37 , (23)

ps = |〈s|ψx〉|2 →
1

2
. (24)

Then, the ground state |ψx〉 has good overlap with both |x〉 and |s〉 as in Lemma 1. SEARCH can be solved with cost

O(
√
M) using the black boxes OHx

or, similarly, the search oracles. If gap amplification for Hx were possible, this
would yield a faster method to solve SEARCH. The proof follows by contradiction.

VI. STOQUASTIC VS. STOCHASTIC MATRICES

Because stoquastic Hamiltonians do not suffer from the so-called sign problem [37], an important task is to devise
classical probabilistic methods to solve the AST problem by sampling from the distribution as determined by the
ground state. A well-known method for this purpose is quantum Monte-Carlo (QMC) [6]. Another method may be
obtained by finding a diagonal similarity transformation that maps stoquastic Hamiltonians to stochastic matrices [13].
The fixed point of the resulting Markov chain is the desired distribution. Contrary to QMC, this second method
requires knowledge of the ratio of amplitudes of the ground state for the mapping. Our result on no gap amplification
for all stoquastic Hamiltonians implies that finding the transformation to stochastic matrices should be hard in the
black-box model. Otherwise it would imply a method to amplify the gap by following the results on frustration-free
Hamiltonians.
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We can go further and give a family of stoquastic Hamiltonians for which classical probabilistic methods, that solve
the AST by sampling from the ground state, has a large black-box implementation cost. For some QMC algorithms,
our result implies that the spectral gap of the constructed stochastic matrix rapidly decreases with the problem size.
Once more, our proof considers a family of Hamiltonians {Hx}0≤x≤M−1 such that sampling from the ground state of
Hx outputs the unknown x with large probability.

Lemma 3 Consider the family of Hamiltonians

Hx = −|x〉〈x|+ F/4 , (25)

where F ∈ CM × CM is independent of x and ‖F‖ ≤ 1. Then, the lowest eigenvalue is bounded as E0 ≤ −3/4, the
spectral gap satisfies ∆ ≥ 1/2, and the ground state has large support on |x〉, i.e. |〈x|ψx〉|2 ∈ O(1).

Proof 6 (Sketched) All results can be simply proved by considering −|x〉〈x|+ gF/4 and using perturbation theory in
the range [0, 1] for g.

If F is stoquastic and irreducible, the ground state of Hx is |ψx〉 =
∑
y

√
πy|y〉, with πy > 0. In this case we let

Sx be a stochastic matrix whose fixed point is almost the distribution π. We assume that a matrix oracle for Sx
follows from a matrix oracle for Hx. The latter requires using the (classical) search oracle only once: for input y, the
matrix elements of Hx in the yth row depend on whether x = y or not. In path integral QMC, for example, Sx can
be constructed efficiently as follows. For sufficiently large β the probability πy is (almost) proportional to

〈y|e−βHx |y〉 . (26)

Because ∆ ≥ 1/2, it suffices to choose β ∈ O(logM) to bound the approximation error. Next, because the expo-
nentiation of Hx might be hard to compute, we write e−βHx =

∏p
l=1 e

−ηHx , with η ∈ O(1/β), and approximate
e−ηHx = 1l− ηHx +O(η2). We can relate

∏p
l=1(1l− ηHx) with a “classical system” Hc (diagonal Hamiltonian) that

acts on a larger Hilbert space of dimension ML. More precisely, we define

Hc = −
∑

log(fr−1,r)|z(r−1)〉|z(r)〉〈z(r−1)|〈z(r)| , (27)

with fr−1,r = 〈z(r−1)|1l − ηHx|z(r)〉. Note that tr (e−βHx) ≈ tr (e−Hc). The computation of any diagonal entry
of Hc requires evaluating p ∈ O[polylog(M)] matrix elements of Hx and thus the same number of search oracles.
Sampling from the distribution determined by Hc requires choosing an appropriate Markov chain, like the one in the
Metropolis algorithm. From known complexity bounds on the search problem, any choice of Markov chain will lead,
in the black-box model, to a mixing time

τmix ∈ O
[

M

polylog(M)

]
. (28)

VII. CONCLUSIONS

We introduced and studied the spectral gap amplification problem or GAP. The goal is to efficiently construct
a Hamiltonian that has the ground state of a given Hamiltonian as eigenstate, but a bigger spectral gap. This
problem is motivated by the results in Ref. [36], where we showed quantum speedups of Monte-Carlo methods by
giving a quadratic gap amplification for a specific family of Hamiltonians. The GAP has important applications in
adiabatic quantum computing and other methods for adiabatic state transformations, where the implementation cost
is dominated by the inverse gap: If gap amplification is possible, this results in a quantum speedup.

We showed that a quadratic spectral gap amplification is indeed possible for frustration-free Hamiltonians. This
generalizes the results in Ref. [36] and gives a more efficient construction to speedup classical Markov-chain based
methods. In a suitable black-box model, we proved that our method provides the biggest amplification possible. The
result for frustration-free Hamiltonians also provides more efficient quantum adiabatic methods to simulate quantum
circuits and for the preparation of projected entangled pair states or PEPS.

We presented a family of Hamiltonians for which spectral gap amplification is not possible under some assumptions.
The Hamiltonians in this case can be sparse and stoquastic. They are constructed so that by preparing their ground
states one can solve the unstructured search problem, and then use known lower complexity bounds to prove the
impossibility result by contradiction. A corollary is that classical probabilistic methods that sample from the ground
state distribution of some Hamiltonians may require a large implementation cost.
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Appendix A: Proof of optimal amplification

Each Hx is a symmetric matrix related to the adjacency matrix A of a sparse expander graph G = (M,d, λ). M is
the number of vertexes, d ∈ O(1) is the degree of G, and λd is the second largest eigenvalue of A. WLOG, λ ≤ 1/2
(e.g., a Ramanujan graph). Before specifying Hx in a frustration-free form, we define Hx by its matrix elements as
follows:

〈y|Hx|z〉 =



1
M−1 if y = z = x
−1

d
√
M−1

if {y, z} ∈ E and either y = x or z = x
−1
d if {y, z} ∈ E and x 6= y 6= z 6= x
1 if y = z 6= x
0 otherwise.

(A1)

E is the set of edges of the graph G. Hx has the following unique ground state of eigenvalue 0:

|ψx〉 =
1√
2
|x〉+

1√
2(M − 1)

∑
y 6=x

|y〉 . (A2)

This state satisfies the requirements of the algorithm in Lemma 1: |ψx〉 has constant overlap with |x〉 and the equal
superposition state. Since x is unknown, the preparation of |ψx〉 will allow us to solve SEARCH.

We can bound the spectral gap ∆ of Hx in terms of M . We define Zx = 1l −Hx − |ψx〉〈ψx|. Because ‖Hx‖ ≤ 1,

the norm of Zx is ‖Zx‖ = sup|φ〉〈φ|Zx|φ〉 = 1 −∆. We can write |φ〉 = β|x〉 +
√

1− β2|x⊥〉, with β > 0 and |x⊥〉 a

unit state orthogonal to |x〉, to obtain

|〈φ|Zx|φ〉| ≤ 2β
√

1− β2|〈x|Zx|x⊥〉| +
+ β2|〈x|Zx|x〉|+ (1− β2)|〈x⊥|Zx|x⊥〉| . (A3)

An upper bound on the rhs of Eq. (A3) implies a lower bound on the gap. We write |x⊥〉 =
∑
y 6=x ly|y〉. The first

term on the rhs of Eq. (A3) is

2β
√

1− β2
∑
y 6=x

|ly|
∣∣∣ [〈x|Hx|y〉+

1

2
√
M − 1

] ∣∣∣ . (A4)

We use ∣∣∣∣〈x|Hx|y〉+
1

2
√
M − 1

∣∣∣∣ ≤ 1

2
√
M − 1

∀ y (A5)

and ∑
y 6=x

|ly| = ‖|x⊥〉‖1 ≤
√
M − 1‖|x⊥〉‖2 =

√
M − 1 (A6)

to show

|2β
√

1− β2〈x|Zx|x⊥〉| ≤ |2β
√

1− β2|1
2
. (A7)
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Further, from the diagonal matrix elements of Zx, we have (M ≥ 3):

β2|〈x|Zx|x〉| ≤ β2

[
1

2
− 1

M − 1

]
. (A8)

Finally, if Px̄ =
∑
y 6=x |y〉〈y| is the projector onto the orthogonal subspace of |x〉, then the third term in the rhs of

Eq. (A3) is bounded by (1− β2)‖Px̄ZxPx̄‖. In addition,

Px̄HxPx̄ = Px̄(1l−A/d)Px̄ , (A9)

where A is the adjacency matrix of G(M,d, λ). If |s〉 is the equal superposition state, A|s〉 = d|s〉, and this is the only
eigenstate of A with largest eigenvalue d. We can write

Px̄|ψx〉 =

√
M√

2(M − 1)
Px̄|s〉 , (A10)

and consequently,

‖Px̄ZxPx̄‖ =
∥∥∥Px̄(A/d− M

2(M − 1)
|s〉〈s|

)
Px̄

∥∥∥
≤
∥∥∥(A/d− M

2(M − 1)
|s〉〈s|

)∥∥∥ .
Because the second largest eigenvalue of A/d is λ ≤ 1/2, we obtain

‖Px̄ZxPx̄‖ ≤ 1− M

2(M − 1)
≤ 1

2
. (A11)

Using Eqs. (A7), (A8), and (A11), we get

〈φ|Zx|φ〉 ≤
1

2
+ β

√
1− β2 − β2

M − 1
. (A12)

The maximum is found when β satisfies

− β2

M − 1
=
β
√

1− β2

(M − 1)2
− 1

2(M − 1)
. (A13)

Inserting Eq. (A13) in Eq. (A12), and since β
√

1− β2 ≤ 1/2, yields

〈φ|Zx|φ〉 ≤ 1− 1

2(M − 1)
+

1

2(M − 1)2
(A14)

≤ 1− 1

4(M − 1)
. (A15)

for M ≥ 3. This implies

∆ ≥ 1

4(M − 1)
. (A16)

We now focus on the specification of Hx (or a modified version H̃x) as a frustration-free Hamiltonian. To this end,
we first describe a particular choice for the projectors appearing in Hx. We define the function

c(y) =

{
1√

d(M−1)
if y = x

1√
d

e.o.c.
(A17)

We also define Eo as the set of ordered pairs (y, z) of edges in G, where each edge appears only once. That is, if
{y, z} ∈ E, then either (y, z) or (z, y) appears in Eo. For each edge (y, z) ∈ E0 we define the (unnormalized) state

|φ(y,z)〉 = c(y)|y〉 − c(z)|z〉 . (A18)
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Then,

Hx =
∑

(y,z)∈Eo

|φ(y,z)〉〈φ(y,z)| , (A19)

as the matrix entries coincide with those in Eq. (A1). Because 〈φ(y,z)|ψx〉 = 0 for all edges, Hx is frustration free.
For consistency with the definitions in previous sections, we define the projectors

Π(y,z) =
|φ(y,z)〉〈φ(y,z)|
〈φ(y,z)|φ(y,z)〉

(A20)

and the corresponding modified Hamiltonian

H̃x =
∑

(y,z)∈Eo

Π(y,z) . (A21)

|ψx〉 is still the unique ground state of H̃x . Since

〈ϕ|H̃x|ϕ〉 =
∑

(y,z)∈Eo

〈ϕ|Π(y,z)|ϕ〉 >
∑

(y,z)∈Eo

〈ϕ|φ(y,z)〉〈φ(y,z)|ϕ〉 = 〈ϕ|Hx|ϕ〉 , (A22)

the spectral gap of H̃x is also bounded from below as ∆ ≥ 1
4(M−1) .

The number of terms in Eq. (A21) grows with the number of edges in the graph, dM/2. It is convenient to reduce
the number of projectors so that L ∈ O(1), and L playing no significant role in the scaling of the amplified gap. We
then assume a given edge coloring of the graph G with edge chromatic number χ of order d [41] [i.e., χ ∈ O(1)].
Let c1, . . . , cχ be the different colors. All the projectors Π(y,z) belonging to one of the colors are, by construction,
orthogonal to each other as they don’t share a vertex. For each k ∈ {1, . . . , χ}, we define the projectors

Πk =
∑

(y,z)∈ck

Π(y,z) , (A23)

Then, H̃x =
∑χ
k=1 Πk.

The specification of H̃x in this proof is as follows. For each k we assume the existence of a reversible version of
the matrix oracle W that, on input (k, y), it outputs (z, 〈z|Πk|y〉), where z is the only vertex that shares an edge of
coloring ck with y. Note that all the matrix elements 〈z|Πk|y〉 are equal unless y = x or z = x. The implementation
of W requires then deciding whether its input y is the marked vertex x or not. It implies that the reversible version
of W can be implemented using a single call to the search oracle of Eq. (1). Further, the black box OH̃x

, which

implements exp{−iΠkt} on ancilliary input |k〉|t〉, can be constructed using O(1) oracles W . This follows from the
simple observation that exp{−iΠkt} induces rotations in the two-dimensional subspaces spanned by {|y〉, |z〉}, where
z is the only vertex that shares an edge of ck with y. The implementation of a reversible OH̃x

requires then using the

search oracle at most two times (y
?
= x or z

?
= x).

Let H̃ ′x be the Hamiltonian that has |ψx〉|0〉 as a non-degenerate eigenstate and spectral gap ∆′. SEARCH can then

be solved using the technique in Sec. II which requires evolving with H̃ ′x for time O(1/∆′). By assumption, it implies
that SEARCH can be solved using O(1/∆′) black boxes OH̃x

or, similarly, O(1/∆′) search oracles. Therefore, the

known complexity bound on SEARCH implies that ∆′ ≤ 1/
√
M ∈ O(

√
∆). In this black-box model, our construction

in Sec. III gives the biggest gap amplification possible for frustration-free Hamiltonians.

Appendix B: Spectral properties of G̃

The first property to notice is that if |ψ0〉 is in the null space of H, then Πk|ψ0〉 = 0. Therefore G̃|ψ0〉|0〉 = 0 and

|ψ0〉|0〉 is an eigenstate in the null space of G̃.

As in Sec. III, we label the eigenvalues of H by λj . Assume now λj 6= 0, and consider the action of G̃ on the state
|ψj0〉

G̃|ψj0〉 =
∑
k

Πk|ψjk〉 . (B1)
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Notice that

〈ψj0|G̃|ψj0〉 =
∑
k

〈ψjk|Πk|ψj0〉 = 0 (B2)

and that

‖G̃|ψj0〉‖2 =
∑
k

〈ψjk|Πk|ψjk〉 = λj . (B3)

We denote by

|⊥j〉 =
1√
λj
G̃|ψj0〉 (B4)

the corresponding normalized state. Next note that

G̃|⊥j〉 =
1√
λj

∑
k

Πk|ψj0〉 =
√
λj |ψj0〉 . (B5)

Therefore, the Hamiltonian G̃ is invariant in the subspace Vj = {|ψj0〉, |⊥j〉}. Define G̃j = G̃|Vj the projection of G̃
in this invariant subspace. In the basis {|ψj0〉, |⊥j〉} we can write

G̃j =

(
0

√
λj√

λj 0

)
, (B6)

with eigenvalues ±
√
λj .

Finally, we note that because the |ψj〉 form a complete basis, G̃ acts trivially on any other state orthogonal to

⊕jṼj . While the dimension of the null space of G̃ is larger than that of the null space of H, this has no effects when
solving the AST problem: transitions between |ψj〉|0〉 and any other orthogonal state in the null space are forbidden.
We can also use the trick in Sec. III to reduce such a degeneracy, if necessary.
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