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ON THE NUMBER OF ITERATIONS FOR DANTZIG-WOLFE
OPTIMIZATION AND PACKING-COVERING APPROXIMATION
ALGORITHMS*

PHILIP KLEINT AND NEAL E. YOUNGH

Abstract. We give a lower bound on the iteration complexity of a natural class of Lagrangean-
relaxation algorithms for approximately solving packing/covering linear programs. We show that,
given an input with m random 0/1-constraints on n variables, with high probability, any such
algorithm requires (plog(m)/€?) iterations to compute a (1 4 €)-approximate solution, where p is
the width of the input. The bound is tight for a range of the parameters (m,n, p, €).

The algorithms in the class include Dantzig-Wolfe decomposition, Benders’ decomposition, La-
grangean relaxation as developed by Held and Karp [1971] for lower-bounding TSP, and many others
(e.g. by Plotkin, Shmoys, and Tardos [1988] and Grigoriadis and Khachiyan [1996]). To prove the
bound, we use a discrepancy argument to show an analogous lower bound on the support size of
(1 4 €)-approximate mixed strategies for random two-player zero-sum 0/1-matrix games.

1. Background. We consider a class of algorithms that we call Dantzig- Wolfe-
type algorithms. The class encompasses algorithms from three lines of research. One
line began in 1958 with a method proposed by Ford and Fulkerson [9] for Multi-
commodity Flow. Dantzig and Wolfe [7] generalized it as follows. They suggested
decomposing an arbitrary linear program into two sets of constraints, as

min{c'z : Az > b, x € P}

where P is a polyhedron, and using an algorithm that solves the program iteratively.
In each iteration, the algorithm performs a single linear optimization over the poly-
hedron P — that is, in each iteration, the algorithm chooses a cost vector ¢, and
computes

argmin{q'x : x € P}.

This approach, now called Dantzig- Wolfe decomposition, is especially useful when
P is a Cartesian product P; X --- X Pg and linear optimization over P decomposes
into independent optimizations over each P;.

Lagrangean relazation. In 1970, Held and Karp [17, 18] proposed a now well-
known lower bound for Traveling Salesman Tour, which they formulated (for some
(A, b, ¢)) as the mathematical program

max [uTb + min(c — uTA)x} .
u reP

Here P is the polyhedron whose vertices are 1-trees (spanning trees plus one edge; a

relaxation of traveling salesman tours). To compute an approximate solution, they

suggested starting with an arbitrary assignment to u, then iterating as follows: find

a minimum-cost 1-tree T' € P with respect to the edge costs ¢ = ¢ — u" A; increase u,

for each node v of degree 3 or more in T', then repeat.

*A conference version of this paper appeared in the proceedings of IPCO, 1999 [22].
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As in Dantzig-Wolfe decomposition, their algorithm interacts with the polyhedron
P only by repeatedly choosing a cost vector ¢ and solving for 7' = argmin{q'z : = €
P}. The method has been applied to a variety of other problems, and has come to
be known as Lagrangean relaxation. It turns out to be the subgradient method, which
dates back to the early sixties.

Fractional packing and covering. In 1979, Shapiro [33] referred to the “the correct
combination of artistic expertise and luck” needed to make progress in subgradient
optimization — although Dantzig-Wolfe decomposition and Lagrangean relaxation
could sometimes be proved to converge in the limit, in practice, finding a way to
compute and use queries that gave a reasonable convergence rate was an art.

In contrast, the third line of research provided guaranteed convergence rates. In
1990, Shahrokhi and Matula [32] gave an approximation algorithm for a special case of
Multicommodity Flow, which was improved by Klein, Plotkin, Stein, and Tardos [21],
by Leighton et al. [24], and others. Plotkin, Shmoys, and Tardos [31] generalized it to
approximate fractional packing (defined below); Grigoriadis and Khachiyan obtained
similar results independently [13]. Many subsequent algorithms (too many to list
here) build on these results, extending them to fractional covering and to mixed
packing/covering, and improving the convergence bounds in various ways. Generally,
these algorithms are also of the Dantzig-Wolfe type: in each iteration, they do a single
linear optimization over the polyhedron P.

This research direction is still active. Bienstock gives an implementation-oriented,
operations-research perspective [3]. Arora et al. give a computer-science perspective,
highlighting connections to other fields such as learning theory [2]. An overview by
Todd places them in the context of general linear programming [34].

In many applications, the total time for the algorithm is the number of iterations
times the time per iteration. In most applications, the time per iteration (to solve
the subproblem) is large (e.g. linear or more). Hence, a main research goal is to find
algorithms that take as few iterations as possible. This paper concerns the following
question: How many iterations (i.e., linear optimizations over the underlying polyhe-
dron P) do Dantzig- Wolfe-type algorithms require in order to compute approximate
solutions to packing and covering problems? We give lower bounds (worst-case and
average-case) that match known worst-case upper bounds for a range of the relevant
parameters.

Definition of Dantzig- Wolfe-type algorithms for packing/covering. We start with
a formal definition of packing and covering.

DEFINITION 1.1 (fractional packing and covering [31]). An instance of fractional
packing (or fractional covering) is a triple (A, b, P), where A is in R™*" b is in R
and P is a polyhedron in R™ such that Az > 0 for all x € P. A feasible solution
is any member of the set {x € R™ : Az < b, x € P}. (For covering, the constraint
Ax < b is replaced by Az > b.)

If such an x exists, the instance (A, b, P) is called feasible. A (14 €)-approximate
solution is an x € P such that Az < (1+¢€)b (for covering, such that Az > b/(1+¢)).

Informally, a Dantzig-Wolfe-type algorithm, given a packing instance (A4,b, P),
computes a (1+ €)-approximate solution, interacting with P only via linear optimiza-
tions of the following form:

Given some q € R}, find an x € P minimizing q"x. (1.1)

In our formal model, instead of P, the algorithm is given an optimization oracle for
P, defined as follows.
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DEFINITION 1.2 (Dantzig-Wolfe-type algorithm for packing). For any polyhedron
P C R%, an optimization oracle Xp for P is a function Xp : R} — P such that, for
every input ¢ € R}, the output z* = Xp(q) satisfies x* € P and ¢"z* = min{q"z :
x € P}.

An algorithm is of Dantzig-Wolfe type if, for each triple (A, b, Xp) where (A, b, P)
is a packing instance and X p is an optimization oracle for P, the algorithm (given in-
put (A, b, Xp)) either decides correctly that the input (A, b, P) is infeasible, or outputs
a (1 + €)-approxzimate solution. The algorithm accesses P only by linear optimization
via Xp: in each iteration, the algorithm computes one oracle input q € R}, then re-
ceives the oracle output Xp(g) For covering, the definition is the same, with “max”
replacing “min”.

The oracle Xp above models how most Dantzig-Wolfe-type algorithms in the
literature work, and how they are analyzed: their analyses show that they finish
within the desired time bound given any optimization oracle Xp for the polyhedron
P. This paper studies the limits of such algorithms, or, more precisely, such analyses.
For our lower bounds, all parts of the input (4, b, Xp), including X p, are chosen by
an adversary to the algorithm. Although the oracle Xp is not completely determined
by the polyhedron P, the distinction between Xp and P is a minor technical issue.’

In the Held-Karp computation (for bounding the optimal traveling-salesman tour)
each oracle call Xp(q) reduces to a minimum-spanning-tree computation with edge-
weights given by ¢. For multicommodity-flow problems, each oracle call typically
reduces (depending on the underlying polyhedron) to either a shortest-path compu-
tation with edge weights given by ¢, a minimum-cost single-commodity-flow compu-
tation with edge costs given by ¢, or several such computations (one per commodity).

2. Main result: lower bound on iteration complexity. Recall our main
question: how many iterations (i.e., oracle calls) does a Dantzig- Wolfe-type algorithm
require in order to compute (1 + €)-approzimate solution to a packing and covering
problem? Each call reveals some information about P. The algorithm must force
the oracle to eventually reveal enough information to determine an x € P such that
Az < (1 4 €)b. In the worst case (for an adversarial oracle), how many calls does
an optimal algorithm require? For fractional packing, the algorithm of [31] gives an
upper bound of

O(pe?logm),

where p, the width of the input is p(A, b, P) = max,¢c p max; A;x/b; (where A; denotes
the i" row of A). Our main result (Theorem 6.3) is a lower bound that matches this
upper bound for a range of parameters. Here is a simplified form of that lower bound:

COROLLARY 2.1 (iteration bound, simple form). For every 6 € (0,1/2), there
exist positive ks, cs > 0 such that the following holds. For every two integers m,n > ks
and every p > 2, there exists an input (A,b, Xp) (packing or covering, as desired)
having m constraints, n variables, and width O(p), with the following property:

For every e € (0,1/10), every deterministic Dantzig- Wolfe-type algorithm, and
every Las-Vegas-style?> randomized Dantzig- Wolfe-type algorithm, requires at least

¢s -min(pe 2logm, m'/?7% n)

1The value of Xp(q) is determined by the polyhedron P for all oracle inputs q € R? except those
that happen to be orthogonal to an edge of P, for which min{¢'z : z € P} has multiple minima,
where X p(q) can break the tie arbitrarily.

2 An algorithm having zero probability of error.
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iterations to compute a (14 €)-approzimate solution, given input (A,b, Xp). That is,
for every 6 € (0,1/2), the worst-case iteration complexity of every Dantzig-Wolfe-type
algorithm is at least Qg(min(p e 2logm, m'/?79, n)) Here we use the notation s
to signify that the constant factor hidden by the € notation is allowed to depend on
d (but no other parameters).

Section 4 sketches the proof idea. Section 6 gives a more detailed version (The-
orem 6.3) with full proof. Theorem 6.3 shows that in fact the bound holds with
probability 1 — O(1/m?) for random inputs drawn from a natural class: the polyhe-
dron P is the regular n-simplex, P = {x € R} : >~ x; = 1}, and the constraint matrix
A is a random 0/1 matrix with i.i.d. entries. The resulting problem instance (A, b, P)
is equivalent to finding an optimal mixed strategy for the column player of the two-
player zero-sum game with payoff matrix A. (As a packing problem, the instance
models the column player being the min player; as a covering problem, it models
the column player being the max player.) The basic idea of the proof is to prove a
corresponding lower bound on the minimum support size of any (1 + €)-approximate
solution &, and then to argue that (for the inputs in question) each iteration increases
the support size of & by at most 1.

Extending to products of polyhedra. Following one of the original models for
Dantzig-Wolfe decomposition, many algorithms in the literature specialize when the
polyhedron P is a Cartesian product P = Py X - - - X P of K polyhedra and optimiza-
tion over P decomposes into independent optimizations over the individual polyhedra
P;. Tt is straightforward to extend our lower bound to this model by making A block-
diagonal, thus forcing each subproblem to be solved independently. Extended in this
way, the lower bound shows that the number of iterations (each optimizing over some
individual polyhedron P;) must be Q(3", min(e2p; log mi,mg/%é,ni)), where poly-
hedron P; has n; variables and width p;, and A has m; constraints on P;’s variables.
This lower bound matches known upper bounds (e.g. O(>", e ?p;logm;)) for a range
of the parameters.

2.1. Comparison with previous and related works. Recall the known up-
per bound of O(pe~2logm) iterations in the worst case (e.g. [31]). It follows that
the lower bound here is tight for a certain range of the parameters: roughly, in the
regime pe~2 < min(y/m,n). This suggests two directions for proving stronger upper
bounds. The first direction is to look for better upper bounds outside of the regime
pe~? < min(y/m,n). A few such bounds are known (e.g. O(min(p, m)e=2logm) it-
erations [11, 36] and O(m(e~2 + logm)) iterations [14]) but these leave a large gap
w.r.t. any known lower bound. The second direction is to consider non-Dantzig- Wolfe-
type algorithms, as discussed later.

Dantzig- Wolfe-type algorithms that allow approximate oracles. Many Dantzig-
Wolfe-type algorithms in the literature are known to work even if run with an ap-
prozimate optimization oracle. Define a (1 4 €)-approzimate oracle to be a function
Xp : R — P such that, for all ¢ € R,

the output ' = Xp(q) satisfies ©' € P and ¢"z' < (1 + ¢)min{q"z : z € P},

A typical analysis proves a worst-case performance guarantee such as the following: for
every input (A,b, X}) such that X is a (14 ¢/10)-approzimate oracle, the algorithm
computes a correct output using O(plog(m)/€?) oracle calls. A common motivation
is that approximate oracles can require less time per iteration, leading to faster total
run times.
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Such an algorithm is, formally, of Dantzig-Wolfe-type per Definition 1.2. (The
reason is trivial: every exact optimization oracle Xp per Definition 1.2 is also a valid
approximate oracle as defined above, so such an algorithm necessarily works with every
exact oracle as well.) Hence, the lower bounds in Corollary 2.1 and Theorem 6.3 apply
to every such algorithm.

As we discuss next, our lower bounds imply that to obtain a better upper bound
requires not only (i) an algorithm that uses an optimization oracle that does something
other than pure linear optimization over P, but also (ii) an analysis that makes use
of that additional requirement.

Non-Dantzig- Wolfe-type algorithms. To obtain better general upper bounds for
the parameter regime where the lower bound is tight, one has to consider non-Dantzig-
Wolfe-type algorithms. Indeed, since the appearance of the conference version of
this paper [22], researchers [6, 4, 19, 30] have built on the methods of Nesterov [29]
(see also Nemirovsky [28]) to obtain polynomial-time approximation schemes whose
running times have better dependence on €. These algorithms bypass the lower bound
by optimizing nonlinear convex functions instead of linear functions (or by linear
optimization over P but with side constraints).

Bienstock and Iyengar [4] give an algorithm that, for a given € > 0 and packing
input

{r eR": Az < b, z € P}

finds a (14 ¢)-approximate solution by using calls to a convex quadratic program over
a set of the form

{z eP:Vj.0<z; <A}

where the value of A can be adjusted by the algorithm in each iteration. Such an algo-
rithm violates the assumption of our lower bound in two ways: the objective function
is nonlinear, and the optimization takes place not over P but over the intersection
of P with a hypercube of specified side-lengths. Bienstock and Iyengar also give an
algorithm for covering; it similarly violates the assumptions of our lower bound. For
their algorithms, the number of iterations is bounded by O(e~!\/Knlogm), where K
is the maximum number of nonzero elements in any row of A. Each iteration calls
the quadratic-programming oracle.

How difficult is convex quadratic programming? Using the ellipsoid algorithm
(see [27, 15]), quadratic programming over an n-dimensional convex set can be re-
duced to a polynomial number of calls to a linear-optimization oracle for that set.
However, the polynomial is quite large. Bienstock and Iyengar also show that it suf-
fices to approximate the convex quadratic objective function by a piecewise linear
objective function. In either case, the required oracle is generally more expensive
computationally than linear optimization over the original convex set.

Bienstock and Iyengar illustrate their method with an application to variants of
Multicommodity Flow. Nesterov [30] also gives an approximation algorithm for a
variant of Multicommodity Flow. In both cases, the number of iterations is propor-
tional to e~ ! instead of e~2. However, the dependence of the overall running time on
the size of the problem is worse, by a factor of at least the number of commodities.

Chudak and Eleutério build on the techniques of Nesterov to give an approxima-
tion scheme for a linear-programming relaxation of Facility Location [6]. The running

time of their algorithm is O((nm)3/ ? /€), where nm is the number of facilities times the
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number of clients. In contrast, a Dantzig-Wolfe-type algorithm can be implemented
to run in time O(N/e?), where N < nm is the input size — the number of (facility,
client) pairs with finite distance [37].

Iyengar, Phillips, and Stein [19] use the method of Nesterov to obtain approxi-
mation schemes for certain semidefinite programs. For problems previously addressed
using the method of Plotkin, Shmoys, and Tardos [31], their running times, while
proportional to e~ !, have worse dependence on problem size.

For the important special case when the polyhedron P is the positive orthant (e.g.,
problems of the form max{c'z : Ax < b,x > 0}), a recent breakthrough by Allen-Zhu
and Orecchia runs in O(N/€) time for packing, or O(N/e'®) time for covering, where
N is the number of non-zeros in the constraint matrix [1]. The algorithms are not
Dantzig-Wolfe-type algorithms.

Does the regime in which the bound is tight contain interesting problems?. Recall
that the bound is tight in (roughly) the regime pe~? < min(y/m,n). For some
interesting classes of problems, the width p is either constant (for example, zero-sum
games with payoffs in [0, 1] and value bounded away from 0 and 1) or a function of
m and/or n that grows slowly (a celebrated recent example is for Maximum Flow
in undirected graphs [5], in which, for n-node graphs, the width is O(n'/?)). “Small
width” problems such as these (with, say, constant ¢) lie in the regime.

Related lower bounds. Khachiyan [20] proves an Q(e~!) lower bound on the num-
ber of iterations to achieve an error of e.  Grigoriadis and Khachiyan [13, §2.8]
observe that for the packing problem “find x € A™ such that Iz < 1/m” (where
A™ is the m-simplex, I is the identity matrix, and 1 is the all-ones vector in R™)
any 0.5-approximate solution z has to have support of size at least m/2, and that
this gives an m/2 lower bound on the number of oracle calls for any Dantzig-Wolfe-
type algorithm to return a 0.5-approximate solution. (Consider also that the covering
problem “find x € A™ such that Ix > 1/m” requires at least m iterations to return
any approximate solution.) These inputs have large width, ©(m), complementing our
lower bound.

Grigoriadis and Khachiyan [13, §3.3] generalize their observation above to give
a lower bound on the number of calls required by any algorithm in a class they call
restricted price-directed-decomposition (PDD). Their model, different from the one
studied here, focuses on product-of-polyhedra packing inputs, of the form z € P =
Py x Py x -+ x Pg and Ax < b. In eachAiteration, the algorithm computes a single
vector y and the oracle returns an « € P minimizing (y"A)z, where P = {z € P :
Vj. x; < p;}, for some vector p (subject, crucially, to restrictions on p). They show
that any such algorithm must use at least min(m, k)/polylog m iterations to compute
a 0.5-approximate solution.

Freund and Schapire [10], in independent work in the context of learning theory,
prove a lower bound on the net “regret” of any adaptive strategy that plays repeated
zero-sum games against an adversary. Their proof is based on repeated random games.
They study a wider class of problems (giving the adversary more power), so their lower
bound does not apply to Dantzig-Wolfe-type algorithms as defined here.

Sublinear-time randomized algorithms for explicit packing and covering. In the
special case of two-player zero-sum games with payoff matrix A where each payoff
A;; is in [0,1] randomized algorithms can compute solutions with additive error € in
sublinear time [12] (see also [23]). Deterministic algorithms cannot [12].

3. Small-support mixed strategies for zero-sum games. To prove the
lower bound on iteration complexity, we prove an analogous lower bound (Theo-
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rem 5.6) on the minimum support size® of any (1 + ¢)-approximate mixed strategy x
for two-player zero-sum games.* Here is a simplified form of the support-size lower
bound:

COROLLARY 3.1 (support bound, simple form). For every § € (0,1/2), there
exist ks > 0,c5 > 0 such that, for every two integers m,n > ks and every p € (0,1/2),
there exists a two-player zero-sum matriz game A with m rows, n columns, and value
Q(p), having the following property:

For every e € (0,1/10), every (1 + €)-approximate mized strategy for the column
player of A (as either the maz player or the min player) has support size at least

1 1/2—6
)

cs -min(p~t e 2logm, m n).

Section 4 sketches the proof idea. Section 5 fully proves a more detailed version
(Theorem 5.6), showing that in fact the bound holds with probability 1 — O(1/m?)
when the payoff matrix A is a random 0/1 matrix with i.i.d. entries.

Matching upper bound. The lower bound in Theorem 5.6 matches (up to constant
factors) a previous small-support upper bound by Lipton and Young [26]: For every
two-player zero-sum game with payoffs in [0,1] and value p, each player has a (1+¢)-
approzimate mived strategy with support of size at most O(p~te~2logm), where m is
the number of pure strategies available to the opponent The proof is simple.® Deran-
domizing the proof via the method of conditional probabilities gives a Dantzig- Wolfe-
type algorithm to compute the (1 + €)-approximate strategy using O(p~! e~2logm)
oracle calls [35].

In the context of Nash equilibria, similar small-support upper bounds have sub-
sequently been shown and used for algorithmic upper bounds (e.g. [25, 8, 16]).

4. Proof ideas. This section sketches how a support-size bound (Corollary 3.1)
implies an iteration-complexity bound (Corollary 2.1), and how we prove a support-
size bound such as Corollary 3.1. See § 5 and § 6 for the more detailed theorems that
imply these corollaries, with detailed proofs based on the ideas sketched here.

How a support-size bound implies an iteration bound. We sketch the idea for pack-
ing. The idea also works for covering. Fix the parameters m, n, p as in Corollary 2.1.
Let probability p = 1/p. Let A be the m x n payoff matrix for any zero-sum game
with the properties described in Corollary 3.1.

Let Viin(A) denote the value of the game with MIN (the min player) as the
column player. Let packing(A) denote the packing problem (A, b, A™), where each
bi = Vmin(4) and A" = {z € R} : }7 x; = 1} is the simplex. This is equivalent to
the zero-sum game with payoff matrix A and MIN as the column player. Via this equiv-
alence, any (1 + €)-approximate solution Z for packing(A) is also a (1 + ¢)-approximate
mixed strategy for MIN as the column player of the game. Assuming Corollary 3.1,

3The support of z is the set {j : x; # 0}.

4A mized strategy for the column player of A is an € A", where A" = {z € RY - Zj x; =1}
is the regular n-simplex. The ezpected payoff (or wvalue) of x (for MAX as the column player) is
min; A;z. The value of the game A (with MAX as the column player), is maxzean min; A;x, i.e., the
maximum expected payoff of any mixed strategy. With MIN as the column player, the value of the
game is mingecan max; A;x. A (1 + €)-approzimate mixed strategy z is one whose expected payoff
is within a factor of 1 4 € of the value of the game.

5Consider a mixed strategy that plays a pure strategy chosen uniformly from a multiset S of s
pure strategies, where S is formed by sampling s times i.i.d. from the optimal mixed strategy. Use
a standard Chernoff bound and the union bound to show that this mixed strategy has the desired
properties with positive probability.
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1/2—6
3

any such solution # must have support of size Q5(min(pe=2logm, m n)), where

p=1/p.

Whenever the Dantzig-Wolfe-type algorithm queries the oracle for A", the oracle
can respond to the query g with a vertex of A™. Each such vertex has just one non-
zero coordinate. For the algorithm to be correct, the final solution & must be a convex
combination of these vertices, so the number of queries must be at least the size of
the support of Z. To finish, note that the width of packing(A) is O(p) because the
width is 1/Vinin(A4) = 1/Q(p).

Proving the support-size bounds (e.g. Corollary 3.1). We sketch a proof of Corol-
lary 3.1 when the column player is MIN. (The other case is similar.) Fix the parameters
m, n, p as in Corollary 3.1. Let £ = p~'e~2logm be the desired lower bound.

Take A to be a random 0/1 matrix with i.i.d. entries, where each entry A;; is
1 with probability p. W.h.p., the value of A is at least (1 — ¢)p. (This is easily
proven by considering MAX’s uniform mixed strategy.) Now consider any subgame
B of A induced by just ¢ columns. The subgame B is highly skewed — there are
many more rows for MAX than columns for MIN — so, by a discrepancy argument,
w.h.p., the value of B is high: at least (1 + 3¢)p. (Here is a sketch of the discrepancy
argument. B is a random 0/1 matrix where each entry is 1 with probability p. Since
the number of rows m is much higher than the number of columns ¢, w.h.p. B has a
substantial number of rows that have a relatively large number — at least (1 4 5¢)p/
— of ones, and, w.h.p., if MAX (the row player) plays uniformly on just these rows,
MAX guarantees a payoff of at least (1 + 3¢)p for the subgame B.)

Then subgame B has value at least (1 + 3¢)p, while A has value at most (1 + €)p.
Since (1 + e)2p < (143¢)p, no (14 ¢)-approximate mixed strategy & can be supported
by just the columns of B. By a union bound over the (’Z’) submatrices B with /¢
columns, w.h.p., there is no such B that can support any (1 + €)-approximate mixed
strategy &, in which case there is no (1 + €)-approximate strategy & with support of
size /.

This yields the corollary for any single € € (0,1). To complete the argument, we
extend the bound to all e € (0,1) simultaneously (for the given A) by applying the
single-e case for € in a geometrically increasing sequence {eg, 2€g, 4€2,...,1/10}, then
appealing to monotonicity for the remaining e.

5. Theorem 5.6 (support bound). In the rest of this section, we state and
prove Theorem 5.6. Theorem 5.6 implies Corollary 3.1. We first give a few self-
contained utility lemmas. The first is a standard Chernoff bound, which we give
without proof.

LEMMA 5.1 (Chernoff bound). Let X be the average of t independent, 0/1 random
variables, each with expectation p € (0,1]. For every e € (0,1],

(i) PrlX < (1 —e)p] < exp (—€°pt/3),
(i) Pr[X > (14 €)p] > exp (—€°pt/3).

The next utility lemma states that the Chernoff bound above is tight up to con-
stant factors in the exponent, as long as the bound is below 1/e. That the Chernoff
bound is tight (in most cases) is standard folklore.

LEMMA 5.2 (tightness of Chernoff bound). Let X be the average of s independent,
0/1 random variables (r.v.). For every e € (0,1/2] and p € (0,1/2], if e2ps > 3,

(i) If each r.v. is 1 with probability at most p, then Pr[X < (1—e€)p] > exp (—9¢°ps).

(ii) If each r.v. is 1 with probability at least p, then Pr[X > (1+€)p] > exp (—9¢’ps).
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A detailed proof is in the appendix.

The third utility lemma leverages the Chernoff bound to give straightforward
bounds on the likely value of random matrix games. Note that independence of the
entries of the matrix is assumed only within each individual row.

LEMMA 5.3 (naive bounds on Viyax() and Vinin()). Let M be a random 0/1
r X ¢ payoff matriz such that within each row of M the entries are independent. Let
e,p € (0,1].

(i) If each entry of M is 1 with probability at least p, then

IX}[Vmin(MT) <(1-—¢€)p = ILr[Vmax(M) <(1—ep] < rexp(—ce’p/3).

(ii) If each entry of M is 1 with probability at most p, then

Pr[Vinax(M") > (14 €)p] = Pr{Vain(M) > (1+€)p] < 7 exp(—ce’p/3).

Proof. (i) The equality in (i) holds because, by von Neumann’s min-max theorem
(strong LP duality), Vinin(M") = Vinax(M). We prove the inequality. MAX can play
a uniform mixed strategy on the ¢ columns. By the Chernoff bound, the probability
that any given row then gives MIN expected payoff less than (1 — €)p is at most
exp(—e2pc/3). By the union bound, the probability that any of the r rows gives MIN
expected payoff less than (1 — €)p is at most r exp(—e’pc/3).

(#) Similar (MIN can play a uniform mixed strategy on the ¢ columns). O

The next lemma uses the discrepancy argument outlined in the proof sketch in
Section 4 to quantify the disadvantage to the column player for playing a random
game with many fewer columns than rows. The reader may wish to review Fig. 5.2
for the notation.

LEMMA 5.4 (skewed game 1). Let B be a random 0/1 m X s payoff matriz whose
entries are i.i.d., each being 1 with probability p € (0,1/2]. Let € € (0,1/10]. Assume
that €2ps > 1. Then, for t = m exp(—250€?ps), and B = sexp(—e3tp/15),

(1) I;r[vmax(B) > (1 - 36)]9] < 26;

(i) Pr{Viin(B) < (1+30)p] < 26

(When we apply the bound, s will be chosen so that ¢ is large and 3 is small.)

Proof. (i) Let D be the submatrix formed by the [t/2] rows of B that have the
fewest ones, as shown in Fig. 5.1. Say that a row of B is deviant if the average of
its entries is at most p’ = (1 — 5¢)p. We claim that the probability that D has a
non-deviant row is at most [3.

To prove the claim, let random variable d be the number of deviant rows in
B. By Lemma 5.2 (tightness of the Chernoff bound, with ¢ = 5e¢, using here the
assumption e?ps > 1 and that ¢ < 1/10), the probability that a given row of B is
deviant is at least exp(—9(5¢)°ps) > t/m (by the choice of t). Thus, by the choice
of ¢, the expected number of deviant rows is at least t. Since the rows of B are
independent, by the Chernoff bound (with ¢ = 1/2), the probability that d < t/2 is
at most exp(—(1/2)°t/3) = exp(—t/12) which (using € < 1/10, p < 1/2, and s > 1)
is less than 3 = sexp(—e%tp/15). This proves the claim, because if d > t/2, then all
rows in D are deviant.
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MAX or MIN
plays columns
S

other
player B
plays
rows

12

Fic. 5.1. Given skewed matriz B, submatriz D contains the t/2 rows with the most (or least)
1’s. By playing uniformly on the rows of D, MAX (or MIN) forces value at most (1—3e€)p (or at least
(14 3¢)p) w.h.p..

Conditioned on all [¢/2] rows in D being deviant, within each row of D, by
symmetry, the probability that any given entry equals 1 is at most p’ = (1 — 5e)p.
Also, within any column of D the entries are independent. Thus, Lemma 5.3 part
(ii) (the naive bounds) applied to the value of the transpose, Vinin(DT), implies that
Prg[Vmin(DT) > (1 + €)p' | all rows of D are deviant] is at most sexp(—(t/2)e?p’/3),
which (using € < 1/10 and the choice of p') is at most 3 = sexp(—e>tp/15).

The latter bound and previous claim imply that, unconditionally, Prg[Viin (D) >
(14 ¢€)p'] is at most S+ (1 — 3)B, which is less than 2.

By von Neumann’s min-max theorem Viax(D) = Vipin (D). Since D consists
of a subset of B’s rows, and MIN is the row player, Viax(B) < Viax(D). Tran-
sitively, Vinax(B) < Vmin(DT). With the preceding paragraph, this implies that
Prp[Vimax(B) > (14€)p'] is at most 2. To finish, note that (1+€)p’ = (14¢€)(1—5¢)p <
(1 —3¢)p, as e < 1/5.

(Part ii) Say that a row of B is deviant if the average of its entries is at least p’ =
(14 5€)p. Let D be the [t/2] rows of B with the most ones. Now proceed exactly as
in part (i). To finish, note that (1 —e)p’ = (1 —€)(1 + 5¢)p > (1 + 3€)p, as e < 1/5. O

We use Lemma 5.4 only to prove the next lemma, which just specializes it to a
convenient choice of s (the number of columns). Namely, we take s = |[4/], where
¢=36pte2In(m)/ 1000 is the lower bound we will seek later.

LEMMA 5.5 (skewed game 2). Let B be a random m x s 0/1 payoff matriz
whose entries are i.i.d., each entry being 1 with the same probability p € (0,1/2]. Let
e € (0,1/10] and 6 € (0,1/2). Let s = [d1In(m)/250e*p|. Assume that s < m'/?79,
that n < m/%, and that m is sufficiently large (exceeding some constant that depends
only on 0). Then

(i) I;r[vmaX(B) > (1=3e)p] < 1/'”25;

(ii) PBY[Vmin(B) < (1+3e)p] < 1/n*.

Proof. We check the technical assumptions necessary to apply Lemma 5.4, and
check that the upper bound from that lemma implies the upper bound claimed in
this lemma. By inspection of s, the condition e?ps > 1 of Lemma 5.4 is satisfied
for m = exp(2(1/§)). To finish, we show, for this s and ¢ = m exp(—250€>ps) from
Lemma 5.4, that the upper bound 2s exp(—e?tp/15) from that lemma is at most 1/n?*
(for large enough m).
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given parameters determined from given

m = number of constraints (rows) A =m xn, 0/1 matrix w/ i.i.d. entries

n = number of variables (columns) packing(A) = “find x € A™ minimizing max; Ax”
0 = constant in (0,1/2) covering(A) = “find v € A" mazimizing min; Az”
p = approximate width, p > 2 Vmin(A) = value of game A if MIN plays cols
p=1/p="Pr[A;; =1], p€ (0,1/2) Vmax (A) = value of game A if MAX plays cols

Fic. 5.2. notation for Theorem 5.6 and Theorem 6.3.

If s = 0, the corollary is trivial, so assume without loss of generality that s > 1. Then

51n(m)/ 50062p < s < (5ln(m)/ 25062]9 By the choice of s and s > 1. (5.1)

t > m!=0 By substituting the right-hand (5.2)
side (RHS) of (5.1) for s in the
definition of ¢ and simplifying.

m!=2 > 2 Squaring both sides of (5.3)
assumption s < ml/2-9,
m*=° > 50 x 500 m1_25/52 For sufficiently large m (5.4)
(depending only on §).
m'—? > 50 x 500 82/62 Substituting RHS of (5.3) for (5.5)
m'~2% in (5.4).
t > 50 x 500 82/62 By transitivity on (5.2) and (5.5). (5.6)
t > 50s ln(m)/562p By substituting the left-hand side (5.7)

(LHS) of (5.1) for one s in (5.6)
and simplifying.

t > 15[25 ln(m)/5 + In 25]/62p By (5.7) and calculation, for large (5.8)

enough m.
t > 152slnn+In 25]/62]) By (5.8) and assumption (5.9)
_ 151n(25n25)/62p n < m'% that is, Inn < In(m)/s.
62tp/15 > 1n(23n25) Rearranging (5.9). (5.10)
2s eXp(—EQtp/15) < 1/7128 By (5.10), taking exponentials

and rearranging.

This concludes the utility lemmas. Next we state and prove Theorem 5.6.
THEOREM 5.6 (support-size bound). For every constant § € (0,1/2), there exists

constant ks > 0 such that the following holds. Fiz arbitrary integers m,n > ks and
arbitrary p € (0,1/2). Let €o be such that p~* e5? In(m) = min(m'/?7%,n/9). Assume
n < m/% and €0 < 1/10. Let A be a random m x n 0/1 matriz with i.i.d. entries,
where each entry A;; is 1 with probability p. Then, with probability 1 — O(1/m?),
1. both Vipax(A) and Viyin(A) lie in the interval [(1 — eo)p, (1 + €0)p], and
2. for all € € [eg, 1/10], every (1 + €)-approzimate mized strategy for the column
player (as MIN or as MAX) has support of size at least  p~' e~ 21n(m) / 1000.
Proof. All probabilities in the proof are with respect to the random choice of A.
Part 1, bounds on Vipin(A) and Viax(A): By the naive bound (Lemma 5.3), the
probability that either Vipin(A) or Vinax(A) fall either before or after the interval is
at most

2m exp(—neip/3) +2n exp(—mei p/3).

The first of the two terms is at most 2/m? because the definition of €y implies e2p >
91n(m)/n.
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MAX or MIN plays columns
n

other
player m A B
plays
TOWsS

Fic. 5.3. The matriz A, and one submatriz B consisting of £(€) columns.

Likewise, the second of the first two terms is at most 2/m?, because, using the
definition of ¢ again, e2p > m!'/?27% so

me%p > m!/2+0 > ml/? >3Inn + 6lnm

(using that m is large enough so that 0.9y/m > 36 'lnm > 3lnn and 0.1y/m >
61lnm).

Part 2. Define r.v. S%, (¢) to be the minimum support size of any mixed strategy
that achieves value (1 + €)p or less for MIN as the column player of A. Analogously
let S .. (€) be the minimum support size that achieves value at least (1 — €)p for MAX
as the column player.

Next we use the skewed-game lemma (Lemma 5.4) and the union bound to bound
the probability that either player (playing the columns of A) has a good strategy with
small support. Let £(¢) = § p~te=21n(m)/1000 denote the desired lower bound on the
support size for a given e.

OBSERVATION 5.6.1. Let € € [eg,1/10]. Let s = [4£(e)] = [§In(m)/ 250¢?p]|. If
s<mY?7% gndn < ml/‘;, then

(i) Pra[Sf..(3¢) <s] < 1/n®, and

max

(ii) Pra[Si;,(3e) <s] < 1/n°.

(Note that S .. (3€) < s iff MAX can get value (1 — 3€)p or more using at most s
columns.)

Proof. (i) If MAX has a mixed strategy with support of size s that has value at
least (1 — 3€¢)p, then A has an m X s submatrix B with Vipax(B) > (1 — 3¢)p.

Consider all (7;) possible such submatrices B. By Lemma 5.5, given any one
of these submatrices B, the probability of Viax(B) > (1 — 3¢)p is at most 1/n?%.
Thus, by the union bound, the probability that any such submatrix B of A has
Vinax(B) = (1 — 3e)p is at most (7)/n?* < 1/n’.

The proof for (i) is essentially the same. O

Observation 5.6.1 bounds the probability of failure for a single given e. We want
to show that w.h.p. the bound holds for all ¢ € (0,1/10] simultaneously. We start
by considering a sequence @ of geometrically increasing e values: Q = {2%q : i =
0,1,2,..., |logy(0.1/€0)]}.

The maximum € in @ is just less than 0.1.

OBSERVATION 5.6.2. With probability 1 — O(1/m?), for all € € Q, support of
size 4€(€) is necessary for MAX to achieve value (1 — 3e)p or for MIN to achieve value
(1+3€)p. Specifically, for n and m large enough (as a function of 6), with probability
1—0(1/m?), for all e € Q, Sk ..(3¢) > 4L(e) and S}, (3€) > 4L(e).

min
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Proof. By Observation 5.6.1, for every € in the set @), the probability of the event
S . (3¢) < 40(e) is at most 1/nl*()]. By the union bound, the probability that there
exists an € € Q with 57, (3¢) < 4£(e) isat most 3_ 1/nl4)] Using that £(2%¢,) =

max
{(e0)/4" for i > 0, and the definition of @, this sum is at most > 52 1/nl1 D], The
terms in this sum decrease super-geometrically, so the sum is proportional to its first
term, which is at most 1/nd(m)/102=1" which is O(1/m?) as long as n and m are
large enough (as a function of ¢).
The proof for MIN is similar. O

To complete the proof of Theorem 5.6, we extend the previous observation to all
€ € [eo,1/10]:

OBSERVATION 5.6.3. With probability 1 — O(1/m?), for all € € [eo, 1/10], support
of size L(€) is necessary for MAX to achieve value (1 — 3€)p and for MIN to achieve
value (1 4+ 3€)p. Specifically, for n and m large enough (as a function of §), with
probability 1 — O(1/m?), for all € € [eg,1/10], Sk (3€) > L(€) and Sk, (3€) > £(e).

Proof. We show that if the event in Observation 5.6.2 happens, then the event
desired above happens. Assume the former event happens, i.e., Ve’ € Q, Sk .. (3€¢/) >
40(€").

Now consider any € € [eg, 1/10]. By the choice of @Q, there is some ¢’ € @ such
that € € (¢//2,¢/]. Then we have

(i) S&..(3e) > Sk .. (3€¢) (since S% .. (+) is monotone decreasing and € <€),
(i) S} ax(3€') > 40(€") (since € € Q), and
(iii) (") > £(€)/4 (by the definition of £(-) and € > €'/2).
By transitivity, we conclude that S¥ .. (3¢) > £(€) for all € € [¢g,1/10].

The proof for S (e) is similar. O

We now finish the proof of Theorem 5.6, Part (ii). From Part 1 of the theorem,
with probability 1 — O(1/m?), for all € € [eg, 1/10], to achieve (1 + €)-approximation,
MAX must achieve absolute value at least (1 — eg)p/(1 4 €) > (1 — 3¢)p. By Observa-
tion 5.6.3, with probability 1 — O(1/m?), for all € € [eg, 1/10], support size at least
£(€) is needed for MAX to achieve this absolute value. By the union bound, with prob-
ability 1 — O(2/m?), every (1 + €)-approximate strategy for MAX has support size at
least £(€). By a similar argument (using (14 €p)(1+¢€)p < (14 3€)p), with probability
1—0(1/m?), every (1+ ¢)-approximate strategy for MIN also has support size at least
£(€). This completes the proof of Theorem 5.6. O

Before we prove Theorem 6.3, we observe that Corollary 3.1 is indeed just a
simplified (and somewhat weaker) statement of Theorem 5.6:

Proof. (Corollary 3.1) Fix any §, m, n and p as in the corollary. (Take ks in the
corollary to be the same as in the theorem.) Assume without loss of generality that
n < mb/9. (Otherwise, decrease n to n’ = Lm1/5J > m?2, apply the corollary to get a
game with m x n’ payoff matrix A’, then duplicate any of the columns n — n’ times
to get an equivalent m x n game with the desired properties.)

Redefine ¢(¢) = p~le 2logm. Fix ¢y as in the theorem. The choice of ¢ im-
plies £(ep) = O(min(m'/?27% n)), so the support bound desired for the corollary is
equivalent to

Ve € (0,1/10], any (1 + €)-approzimate mized strateqy has support size s (Z(max(eo7 e)))

Assume without loss of generality that g < 1/10. (If ¢g > 1/10, raise p until the
corresponding ¢y decreases to 1/10; the corollary for the smaller p follows from the
corollary for the larger p, because in both cases the lower bound in question is the
same: Qs(min(m'/279 n)), Ve € (0,1/10).)
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Now we have ¢y < 1/10 and n < m'/%. Applying Theorem 5.6, there are (many)
m X n zero-sum matrix games with value (p) such that, for all € € [eg,1/10], any
(1 + e)-approximate strategy for the column player requires support of size at least
Q5(€(e)). To finish, note that, for the remaining € € (0, €], any (1 + ¢)-approximate
strategy is also a (1 4 €p)-approximate strategy, so must have support size at least
Qs(L(eg)) = Qs(min(m!/2=9 n)), proving the corollary. O

6. Theorem 6.3 (iteration bound). Before we state and prove Theorem 6.3,
we prove two utility lemmas. The first says that the output & of any Dantzig-Wolfe-
type algorithm has to be a convex combination of the vectors output by the oracle.

LEMMA 6.1. Suppose that a deterministic Dantzig- Wolfe-type algorithm, given
some input (A, b, Xp), returns a solution & € P. Then & must be a convex combination
of the outputs returned by the oracle Xp during the computation. The same holds if
the algorithm is randomized (and has zero probability of error).

Proof. First we consider the deterministic case. Let @ denote the set of oracle
inputs generated by the algorithm on input (A, b, Xp). Define polyhedron P’ C P to
be the convex hull of the vectors output by Xp during the algorithm. That is P’ is
the polyhedron whose vertices are {Xp(q) : ¢ € Q}. Suppose for contradiction that
% ¢ P’ and consider the modified input (A, b, P’), with polyhedron P’ instead of P.
Define the oracle X%, for the polyhedron P’ such that X%, (¢) outputs a minimizer of
q"x among x € P’. For q € Q, break any ties among the minimizers for ¢ by choosing
X5/ (q) = Xp(q). This X, optimizes correctly over P’. Observe that it also has the
following key property: Let ¢ € @ be any input that the algorithm gave to oracle Xp
on input (A,b, Xp). Then, on input q, oracle X', gives the same output, Xp(q), that
Xp did.

Consider rerunning the Dantzig-Wolfe-type algorithm, this time on the input
(A,b, Xp,). The Dantzig-Wolfe-type algorithm is deterministic, and, as observed
above, Xp(q) = X% (q) for all inputs ¢ € @ that the algorithm gave to the ora-
cle when the algorithm ran on input (A,b, Xp). Recall that the algorithm interacts
with the polyhedron only via the oracle (Xp or X5/). By induction on the number of
queries, when run on (A,b, X}, ), the algorithm behaves the same — that is, it makes
the same sequence of queries and computes the same final answer & — as it did when
run on (A,b, X,). But this is an incorrect output, as & is not in the polyhedron P’
for the second input. This proves the lemma for the deterministic case.

Now consider running any (error-free) randomized Dantzig-Wolfe-type algorithm
on (A,b, Xp). Suppose for contradiction that the algorithm has non-zero probability
of producing an output Z that is not a convex combination of the oracle outputs made
during the run. Fix any such outcome that has positive probability, say p’ > 0. Let
@, P' and X}, be as in the proof above, and consider running the algorithm on input
(A, b, Xp,). With probability at least p/, the algorithm will make the same random
choices that it made in the first run. When this happens, then (as in the proof for the
deterministic case) it returns the same vector &, which is (just as for the deterministic
case) an error, because & ¢ P’. Hence, the algorithm has positive probability of error
on input (4,b, X}/). O

The next lemma is a convenient restatement of Theorem 5.6 in terms of packing(A)
and covering(A).

LEMMA 6.2. For every constant 6 € (0,1/2), there exists constant ks > 0 such
that the following holds. Fiz any integers m,n > ks and any desired width p > 2. Let
€0 be such that pey?In(m) = min(m'/279,n/9). Assume n < m'/% and ¢y < 1/10.
Let A be a random m x n 0/1 matriz with i.3.d. entries, where each entry A;; is 1
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with probability p = 1/p. Then, with probability 1 —O(1/m?), for both packing(A) and
covering(A),

1. the instance has width at most 2p,

2. for all € € [eg,1/10], every (1 + €)-approzimate solution has support size at
least

§pe?1n(m) /1000.

Proof. Note that we take p =1/p.

The (1+€)-approximate solutions to packing(A4) and covering(A) are, respectively,
the (1 + €)-approximate mixed strategies for MIN and MAX (as the column player of
the game with payoff matrix A). Thus, Part 2 of Theorem 5.6 implies Part 2 of the
lemma.

Regarding Part 1 of the lemma, suppose that Part 1 of the theorem holds, so
Vinin(A) and Vipax(A) are both at least (1—¢€g)p. By definition of packing(A), each b; is
Vinin(A4), so the width is max, ; A;2/Vimin(A), where x ranges over the simplex. Since
Ais a0/1 matrix and 37, 2; =1 (and A is not all zeros, as Vimin(A4) > (1 —€o)p > 0)
we have max, ; A;x = max;; A;; = 1, so the width is 1/Vinin(A4) < 2/p = 2p. The
same argument shows that covering(A) has width 1/Vipax(A) < 2p. 0

Next we state and prove Theorem 6.3.
THEOREM 6.3 (iteration bound). For every constant 6 € (0,1/2), there exists

constant ks > 0 such that the following holds. Fiz arbitrary integers m,n > ks and
an arbitrary desired width p > 2. Let ¢y be such that pey® In(m) = min(m'/27=% n/9).
Assume n < m'/9 and ey < 1/10. Let A be a random m X n 0/1 matriz with
i.i.d. entries, where each entry A;; is 1 with probability p = 1/p. Then, with probability
1 —O(1/m?), for both packing(A) and covering(A),

1. the instance has width at most 2p,

2. for all € € [eg,1/10], all deterministic Dantzig- Wolfe-type algorithms, and
all Las-Vegas-style randomized Dantzig- Wolfe-type algorithms, must make at least
§pe=2In(m) /1000 iterations to find a (1 + €)-approzimate solution.

Proof. Fix any values of the parameters §, m,n, p,p = 1/p. Let A be as described.
Assume the events 1 and 2 in Lemma 6.2 happen for A (as they do with probability
1—0(1/m?)).

Part 1. Part 1 of the theorem is immediate from event 1 of Lemma 6.2.

Part 2. Let e; denote the jth standard basis vector for R", that is, the vector that
is 1 in the jth coordinate and zero elsewhere, so that the set of vertices of A" is
{e; 1 j € [n]}.

Fix any oracle X,, whose output X,(¢) for each input ¢ is some vertex e; of
A" (one minimizing ¢'e;; breaking ties consistently). For any € € [¢p,1/10], run the
(deterministic or randomized) Dantzig-Wolfe-type algorithm on input (A, b, X,,). Let
Z be the (1 + €)-approximate solution it returns.

By Lemma 6.1, & is a convex combination of the vectors returned by the oracle.
Each such vector has just one non-zero coordinate. Thus, the number of non-zero
coordinates in & is at most the number of iterations made by the algorithm. On the
other hand, Z is a (1 + ¢)-approximate solution, so by event (2) of Lemma 6.2, the
number of non-zero coordinates is at least the desired lower bound 6 pe~21n(m) / 1000.
d

Finally, we observe that Corollary 2.1 is indeed just a simplified and somewhat
weaker statement of Theorem 6.3. The proof is identical to the proof that Corollary 3.1
follows from Theorem 5.6.
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Proof. (Corollary 2.1) Fix any §, m, n and p as in the corollary. (Take ks in the
corollary to be the same as in the theorem.) Assume without loss of generality that
n < m'%. (Otherwise, decrease n to n’ = |m'/?| > m?, apply the corollary to get
m x n’ packing or covering instances, then duplicate any of the columns n —n’ times
to get equivalent m x n instances with the desired properties.)

Let £(e) = p~'e 2 logm. Fix g as in the theorem. As £(ep) = O(min(m'/?7% n)),
the support bound desired for the corollary is equivalent to

Ve € (0,1/10], any (1 + €)-approzimate solution has support size s (ﬁ(max(eo, e)))

Assume without loss of generality that e¢g < 1/10. (If ¢g > 1/10, lower p until
the corresponding ey decreases to 1/10; the corollary for the larger p follows from the
corollary for the smaller p, because in both cases the lower bound in question is the
same: Qs(min(m'/279 n)), Ve € (0,1/10).)

Now we have ¢p < 1/10 and n < m!/%. Applying Theorem 6.3, there are (many)
m x n packing/covering instances with width O(p) such that, for all € € [eg, 1/10],
every (1 + €)-approximate solution has support of size at least Qs(¢(¢)). To fin-
ish, note that, for the remaining ¢ € (0,¢p], any (1 + €)-approximate solution is
also a (1 + €)-approximate solution, so must have support size at least Q5(€(eo)) =
Qs(min(m'/27% n)), proving the corollary. O
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Appendix — Lemma 5.2 (tightness of Chernoff bound). Here is the proof
of Lemma 5.2 — that a standard Chernoff bound is tight up to constant factors in
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the exponent for a particular range of the parameters. (In particular, whenever the
variables are 0 or 1, and 1 with probability 1/2 or less, and ¢ € (0,1/2), and the
Chernoff upper bound is less than a particular constant.) First we prove the following
useful inequality:
k 1 kN k
LEMMA 6.4. If1<(<Fk—1, then > —(—) (—)
! (f) eV 2ml lf k—1¢
Proof. By Stirling’s approximation, i! = v/2mi(i/e)'e* where \ € [12i1+1, =
Thus, (];) is

k—t

B Vark (5 1 1 1
Ak =00 yzmt (L) /an(h =) (h=t)™ P (m +1 120 12k - E))
1 k 4 k k—£ B
- > ——(7) =) <"

LEMMA 5.2 (tightness of Chernoff bound). Let X be the average of s independent,
0/1 random variables (r.v.). For every e € (0,1/2] and p € (0,1/2], if €2ps > 3,

(i) If each r.v. is 1 with probability at most p, then Pr[X < (1—e€)p] > exp (—9¢°ps).

(ii) If each r.v. is 1 with probability at least p, then Pr[X > (1+¢€)p] > exp (—962ps).
Proof. Part (i). Without loss of generality assume each 0/1 random variable in
the sum X is 1 with probability exzactly p. Note Pr[X < (1 — ¢)p] equals the sum

S PHPLX = i/k], and Pr[X =i/k] = (")pi(1 - p)* "

Fix ¢ = | (1 — 2¢)pk] + 1. The terms in the sum are increasing, so the terms with
index @ > ¢ each have value at least Pr[X = ¢/k], so their sum has total value at least
(epk — 2) Pr[X = £/k]. To complete the proof, we show that

(epk —2)Pr[X = (/K] > exp(—9¢°pk).

The assumptions e?pk > 3 and € < 1/2 give epk > 6, so the left-hand side above
is at least %epk (ﬁ)pé(l —p)k_g. Using Lemma 6.4 to bound (IZ), this is in turn at
least A B where A = B—Qeepk/\/m and B = (%)é(%)k_épf(l —p)*7*. To finish we
show A > exp(—e?pk) and B > exp(—8¢e?pk).

OBSERVATION 5.2.1. A > exp(—e?pk)

Proof. The assumption e?pk > 3 implies exp(—eZpk) < exp(—3) < 0.04. To finish
we show A > 0.1:

12 < pk By assumptions e2pk > 3 and (5.1)
€< 1/2.
{ < 1.1pk From (5.1) and ¢ < pk + 1 (from (5.2)
0’s definition).
2
A > —e/pk/2.2m Using (5.2) to substitute for £ in (5.3)
3e definition of A.
2
A > —+/3/227 > 0.1 From (5.3) and ey/pk > v/3 (from
3e e2pk > 3).

OBSERVATION 5.2.2. B > exp(—8¢€%pk).
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Proof. Fix ¢ such that ¢ = (1 — §)pk. The choice of ¢ implies 6 < 2¢, so the
observation will hold as long as B > exp(—2§2?pk). Taking each side of this latter
inequality to the power —1/¢ and simplifying, it is equivalent to

B k/e—1
]%((f— pg)k) S exp (%Zpk)'

Substituting ¢ = (1 — §)pk and simplifying, it is equivalent to

1
1

(1—5)(1+15_pp)(1—5)p_ < exp(12i25).

Taking the logarithm of both sides and using In(1 + z) < z twice, it will hold as long
as

2
15—p ((1—15)p_1) = 1215'

The left-hand side above simplifies to 62/ (1 — p)(1 —d), which is less than 252 /(1 — §)
because p < 1/2. O

—5 +

Observations 5.2.1 and 5.2.2 imply AB > exp(—e2pk) exp(—8¢2pk). This implies
Part (i) of Lemma 5.2.

Part (ii). Without loss of generality assume each random variable is 1 with probability
exactly p.
Note Pr[X > (1 + €)p] = E?:[(l_e)pm Pr[X =i/k]. F [(1+2e)pk] — 1.

ix { =
The last epk terms in the sum total at least (epk — 2) Pr[X = ¢/k], which is at
least exp(—9¢?pk). (The proof of that is the same as for (i), except with ¢ replaced
by ¢ and & replaced by —4 such that £ = (1 + §)pk.) O



