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Abstract. Optimal control problems in measure spaces lead to controls that have small support,
which is desirable, e.g., in the context of optimal actuator placement. For problems governed by
parabolic partial differential equations, well-posedness is guaranteed in the space of square-integrable
measure-valued functions, which leads to controls with a spatial sparsity structure. A conforming
approximation framework allows one to derive numerically accessible optimality conditions as well
as convergence rates. In particular, although the state is discretized, the control problem can still be
formulated and solved in the measure space. Numerical examples illustrate the structural features
of the optimal controls.
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1. Introduction. This paper is concerned with the analysis and approximation
of the optimal control problem

(P)

. 1 2
ey 70 = 51— vallzacar) + ez,

where I = [0,7T] and y is the unique solution to the initial-boundary value problem

Oy —Ay=wu in Qpr=0x(0,T),
(1.1) y=0 onXp=1x(0,T),
y(x,0) =yo in Q

for given yo € L?(Q2). We assume that a > 0, yg € L*(Qr), and Q is a bounded
domain in R”, 1 < n < 3, which is supposed to either be convex or have a chl
boundary I'. Hereafter M(Q2) denotes the space of regular Borel measures in {2, and
lul|L2(a1) denotes the norm of u in the space L*(I, M(f2)); see section 2 below for
details.

Formulating the control problem in a measure space is motivated by the obser-
vation that the resulting optimal controls possess sparsity properties (i.e., have small
support), which is desirable in many applications such as optimal sensor or actuator
placement; see [5, 2] in the context of elliptic equations. Although similar features
can be achieved using L' control costs, the corresponding control problem in general
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does not admit a solution in the absence of further regularization because L! spaces
lack the necessary compactness properties. For parabolic problems, the situation is
even more delicate since (1.1) is not well-posed for right-hand sides in M(Q¢) (which
would require C(§2r) regularity for the adjoint equation; see Definition 2.1 below).
This leads to considering controls in L?(1, M(£)). The associated norm ||ul| 2
for the control is a natural one from the point of view of well-posedness of the state
equation (1.1) and allows for sparsity in space. The numerical results will illustrate
precisely this property of our formulation. The spatiotemporal coupling of the cor-
responding control cost, however, presents a challenge for deriving numerically useful
optimality conditions.

Besides the analysis of the control problem (P), the main focus of this paper
consists in providing an approximation framework which, in spite of the difficulties
due to the measure space setting, leads to implementable schemes for which a priori
error estimates can be provided. We show that the optimal measure controls can be
approximated efficiently by linear combinations of Dirac measures in space which are
piecewise constant in time. We point out that even after discretization, the control
problem is formulated and solved in the measure space.

Let us mention some related works. A similar approximation framework for el-
liptic control problems in measure spaces was proposed in [2]. Differently from the
elliptic case, parabolic control problems with sparsity-promoting constraints have re-
ceived very little attention. In [3], the approximate control of y(7') by measures
u € M(Jto,t1] x Q) with 0 < t9 < t; < T is discussed (using the smoothing
property of the heat equation to ensure y(T) € L?(Q2)); finite-dimensional approx-
imation and numerical solution are not addressed. Although not specifically con-
cerned with parabolic equations, the approach of [9] covers control problems with
LY(Q, L%(]0,T))) control costs (together with additional pointwise control constraints).
The resulting optimal controls have directional sparsity; i.e., their support is constant
in time. In contrast, we will show that solutions to (P) have a nonseparable sparsity
structure.

This paper is organized as follows. In the next section, we discuss the func-
tional analytic setting of the control problem and analyze well-posedness of the state
equation. Section 3 is concerned with existence of and optimality conditions for
solutions to (P), the latter implying a sparsity property of the optimal controls.
The proposed approximation framework is the subject of section 4, where we in-
troduce the discretization (section4.1) and show convergence of solutions to the
discretized state equation (section4.2) and to the discrete optimal control problem
(section4.3). Convergence rates are derived in section 5. Section 6 addresses the
numerical solution of the discrete control problem, for which we derive a reformulated
optimality system that is amenable to solution by a semismooth Newton method.
(The continuous counterpart of this optimality system is sketched in the appendix.)
Finally, section 7 illustrates the structure of the optimal controls with some numerical
examples.

2. Function spaces and well-posedness of the state equation. In this
section we first define the control space and give some of its properties. Then we turn
to the analysis of the state equation.

2.1. Control space. We denote by Cy(€2) the space of continuous functions in

Q) vanishing on I' = 99, endowed with the supremum norm || - |o. Its topological
dual is identified with the space of regular Borel measures in €2, denoted by M ().
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Moreover, we have

lullm = sup{/ zdu:z € Co(Q) and ||z||oc < 1} = |u|(£2),
Q

where |u| denotes the total variation measure.

Associated to the interval I = [0,7] we define the spaces L*(I,Cy(Q)) and
L3(I, M(Q)), where L?(I,Co(f2)) is the space of measurable functions z : [0,7] —
Co(€?) for which the associated norm given by

T
2l 2y = ( / ()% dt)

is finite. Due to the fact that Cp() is a separable Banach space, L*(I, Cp(Q2)) is also
a separable Banach space; see, e.g., [18, Theorem 1.5.18].

As a consequence of the nonseparability of M(Q), the definition of the space
L?(I, M(RQ)) is more delicate. Indeed, we need to distinguish between weakly and
strongly measurable functions u : [0, 7] — M (). Hereafter we denote by L?(I, M(£2))
the space of weakly measurable functions u for which the norm

T
llullz2(any) = (/o l|w(t)]|34 dt)

is finite. This choice makes L?(I, M(f2)) a Banach space and guarantees that it can
be identified with the dual of L?(I,Cy(£2)), where the duality relation is given by

1/2

1/2

T
(0, 2) 200 L2(Cy = / (u(t), =(t)) dt,

with (-,-) denoting the duality between M(Q) and Cy(Q2). The reader is referred to
[6, section 8.14.1 and Proposition 8.15.3] for the different notions of measurability
and [6, Theorem 8.20.3] for the duality identification. (The distinction between weak
and strong measurability is not required for the space L?(I, Cy(£2)) because Co() is
separable, and hence both notions are equivalent; see [6, Theorem 8.15.2].)

2.2. Analysis of the state equation. Given 1 < p < 0o, we denote by WOLP(Q)
the Sobolev space of functions of LP(€2) with distributional derivatives in LP(2) and
having a zero trace on ', and we set W~ (Q) to be the dual of W,?(Q), where
1/p+1 /p = 1. These spaces are reflexive and separable, and hence the spaces
L2(I,W,P(Q)) formed by the measurable functions y : [0,T] — Wy?(€) for which

the norm
T 1/2
HyHLz(WOLP) = <A ”y(t)”‘%volp dt)

is finite are separable and reflexive Banach spaces whose dual is identified with
L2(I, W=17'(Q)); see [6, Theorem 8.25.5].

The notion of solution to the state equation makes use of the following space of
test functions:

Z={2€ H*'(Qr):2=00n Y7 and 2(T) = 0 in Q},
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where

olBl,
918
is endowed with the graph norm. By the Rellich—-Kondrachov theorem, Z embeds
compactly into L?(I,Co(12)).

DEFINITION 2.1. We say that y € L*(Qr) is a solution to (1.1) if

H>Y(Qr) = {z € L2(Qr) : 8,2, € L*(Qr), with B € N", || < 2}

T
(2.1) /Q y(—@tz—Az)da:dtzfo (u(t),z(t)>dt+/Qyo(a:)z(a:,())dx Vz e Z.

THEOREM 2.2. For all (u,yo) € L*(I, M(Q)) x L*(Q), (1.1) has a unique solu-
tion y. Moreover, y € L*(I, Wy P(Q)) for every p € [1, —7), and there exist constants
Cp such that

(2:2) [Yll 2wy < Cp (Il zean) + lyoll2ce) -

Proof. We adapt the proof of [1]. Let {ux}x be a sequence in C(Qr) satisfying
(2.3) up = u in L*(I, M(Q)) and |uk|p2nyy < llullpzom)-
Let yi € L2(I, H3(9)) denote the variational solution to

8tyk - Ayk = Uk in QT,
(2.4) yr =0 on X,
yr(2,0) = yo(x) in Q.
For ¢ = (o, ...,%n) € D(Qr)" ! we denote by z € Z the solution to
—8tz —Az= ’l/)o - E?:l (9zj1/)j in QT,

(2.5) z=0 on Y,
z2(x, T)=0 in €.

From the last two equations we get for any 1 < p < 5

/ Yoyk + Y 10, Ui dxdtz/

Qr =1 Qr

ugz dx dt + / yo(x)z(z,0) dz
Q

< Nurllza@n 121 oy, + ol 220 l12(0) 2oy

In the following estimate we use maximal regularity of the heat equation in an
essential way. If ) is convex, its boundary is of Lipschitz class, and hence there exists
a p with p > 4 if n = 2 and p > 3 when n = 3 such that A : WP (Q) — W-12(Q)
is an isomorphism for each p’ < p < p, where 1/p' + 1/p = 1; see [10]. (If n =1
or if  has a C*! boundary, A : W, ** () — W~1?(Q) is an isomorphism for every
1 < p < 4+00.) In particular, combining [8, Theorem 5.4] and (2.3), we obtain for
every p < p < -5 < p the existence of a constant C'p such that

/ Yk ’l/)o—zarjlﬁj dx dt = / ¢0yk+z¢j8xjyk dx dt
Qr j=1

Qr j=1

< Gy (lyoll 2 + lullpzan) D il 2oy
7=0
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From the density of {1y — 37— 0x,0; : ¢ € D(Qr)"*'} in L*(I, W17 (Q)) and the
duality identification L2(I, W, *(Q))* = L2(I, W~2#'(Q)), we deduce the bounded-
ness of {yx}5>, in L2(I, W, "*(2)) and the existence of a constant C}, such that

(2.6) 1yrll 2wz ey < Cp (Ilull Lz + Ilvollzace)) -

Using the reflexivity of L2(I, W, (), we can obtain a subsequence, denoted in the
same way, and an element y € L*(I, WP (Q)) such that g, — y in L*(I, Wy?(Q)).

For 1y € L?(Qr) arbitrary and z € Z solution to (2.5) for ¢; =0, 1 < j <mn, it
follows from (2.4) and (2.5) that

/ yk(—atz—Az)dxdtzf ym/)gdxdtz/ ukzda:dt—F/yo(x)z(x,O)da:.
Qr Qr Qr Q

Passing to the limit in this identity and in (2.6), we obtain (2.1) and (2.2). Using
the fact that 9; + A is an isomorphism from Z to L?(Qr) and (2.1), we conclude the
uniqueness of y € Wy?(Q).

Finally, independence of y with respect to p follows from the existence of a solu-
tion y in L2(I, Wol’p(Q)) for every p’ < p < -5 and its uniqueness in L?(Qr), since
Wy (Q) € Wy P2(Q) for py > pa. O

Remark 2.3. (i) The solution to (1.1) belongs to L2(I, W, **(2)) for every p < p <
—2-. and from (1.1) we know that &,y € L?(I, W~1P(Q)). Observe that WyP(Q)
L2(Q) for p > pg := max{p/, nQ—]:Z}, with p as in the proof of Theorem 2.2, and hence
y € L2(Q7). As a consequence, we deduce that y € C(I, L?()); see [16, Proposition
I11.1.2].

(ii) Under our regularity conditions, an equivalent definition for the solution
to (1.1) is the following. A function y € L2(I,Wy(Q)) with py < p < s
called a solution to (1.1) if

T
_ / (8. OO i yysr dt+ [ VyVzdadt
0 ’ Qr

T
:/ <u(t),z(t)>dt+/yo(x)Z(x,O)dﬂc
0 Q

for all z € L2(I, W2?' (Q)) such that ;2 € L2(I, W= (Q)) (which implies z(-,0) €
L?(Q); see (i)) and 2(T) = 0. This follows from (2.1) and the density of Z in this
new space of test functions. Theorem 2.2 remains valid with this definition if we
only assume that 2 has a Lipschitz boundary. This is the regularity of Q required to
have the maximal parabolic regularity; see [8]. We have chosen the above definition
because it is more convenient for the numerical analysis to be developed later in this
paper.

(iii) The preceding theorem as well as the rest of the results given in this paper
are valid if we replace the heat operator in (1.1) by a more general parabolic operator
J: + A that enjoys maximal parabolic regularity.

We finish this section by proving a continuity result of the states with respect to
the controls.

THEOREM 2.4. Let {ugx}$e, C L*(I, M(R)) be a sequence such that uy — u in
L2(I, M(2)). If yx and y denote the states associated to uy and u, respectively, then

lyx — vllz2r) — 0.
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Proof. For every k, let z; € Z satisfy

=0z — Azg =y —yp in Qr,
2z, =0 on X,
zp(x,T) =0 in Q.

Then, from Definition 2.1 and using the boundedness of {u}$2, in L?(I, M(Q)), we
have

T
ly = vl 2y = / (v — i) (—Bozi — Azy) dr dt = / (ult) — u(t), 2 (8)) de
T
< lw = w2 |2kl L2(co) < Cllzkllzicy)-

From Theorem 2.2, we know that y, — y in L?(Q7); therefore z;, — 0 in H>1(Q7).
Since the embedding H*'(Q7) C L?(1, Co(£2)) is compact, we get that ||zx || 2(c,) — 0.
This convergence and the above inequality conclude the proof. d

3. Analysis of the control problem. In this section we establish existence of
an optimal control and derive the optimality conditions.

PROPOSITION 3.1. The control problem (P) has a unique solution .

Proof. Let {u}$2; be a minimizing sequence, which is thus bounded in the space
L2(I, M(Q)). Since the predual L*(I,Cy()) is separable, there exists a subsequence,
denoted in the same way, converging weakly-* to some @ € L%(I, M(Q)). From
Theorem 2.4 we get that y(ux) — y(u) strongly in L?(27). Hence, the weakly-* lower
semicontinuity of the norm || - [[2(a¢) implies that @ is a solution. The uniqueness is
a consequence of the strict convexity of .J, which follows from the injectivity of the
control-to-state mapping. O

Hereafter @ will denote the solution to (P) and § the associated state. Now, we
give the first order optimality conditions, which are necessary and sufficient due to
the convexity of (P).

THEOREM 3.2. There exists a unique element ¢ € H*1(Qr) satisfying

—0p—Ap =9y —1yq in Qr,

(3.1) p=0 on X,
oz, T) =0 in Q,

such that

T
(3.2 |ttt ey e+l aan =

_ =a ifu#0,
(33) el { 2o SuZo
Proof. Let us introduce j(u) = |lul|p2(m) and F(u) = §ly(u) —de%z(QT), so that

J(u) = F(u) + aj(u). By the differentiability of F' and the convexity of j we obtain
F'(@)(u —a) + aj(u) —aj(@) >0 Yue L*(I, M(Q)),

and hence

/Q (5 — va) (y(x) — §) derdt + aj(u) — aj(@) > 0.
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Utilizing the adjoint equation (3.1) and the state equation (2.1), we deduce from the
above inequality

T
(3.4) /O (u(t) — a(t), (b)) dt + aj(u) — aj(@) = 0 Yu e LI, M()).

Taking u = 2t and u = @, respectively, in (3.4), we obtain (3.2). On the other hand,
setting w = @ — v in (3.4), it follows that

T
(3.5) /0 (u(t), o(1)) dt < a(j(a—v) - j(a) < allvllrzmy VYo € L3I, M(Q)).

By the duality L2(I, M(Q)) = L%(I,Cy(£2))* we have that

T
(36) Ieleeeg =, max [ 0. p0)dr <o

||UHL2(M)

Then (3.3) is an immediate consequence of (3.2) and (3.6). O

From now on, we will assume that the optimal control @ # 0. By using (3.2)
and (3.3) we can prove some sparsity property for @. Let us consider the Jordan
decomposition @(t) = @t (t) — a(t) for almost every ¢ € I. Then we have the
following theorem.

THEOREM 3.3. For almost every t € I the following embeddings hold:

(3.7) Supp(u (1)) C {z € Q: @z, 1) = —[|8(t) ]|},
Supp(a~ (1)) C {z € Q: @(z,1) = +[|@(1) [ 0 }-

Proof. Since ¢ : I x Q — R is a Carathéodory function, there exists a measurable
selection t € I + x; € Q such that @(z,t) = ||¢(t)| c; see [7, Chapter 8, Theorem
1.2]. Now, we define the element v € L?(I, M(Q)) by v(t) = sign(@(z¢))||u(t)|| mOz, -
We have to check that v : I — M(Q) is weakly measurable. To this end the only
delicate point is the weak measurability of t € I — §,, € M(Q). This follows from
the measurability of the mapping ¢ + z; and the continuity of x € Q + J§, € M(Q)
when M(9) is endowed with the weak-* topology. By definition of v we get

(3.9) (0(t), (1)) = la(®)llmllp®)llo = —(alt), #(2))

and
T
:</nwm%w>
0

1/2 1/2

T
(3.10) [oll 22 (v = (/0 () 1341102, 13 dt)

= [|@l|L2(a)-

From (3.2), (3.9), (3.5), and (3.10) we obtain

T T
allall 2y = —/0 (a(t), p(t)) dt < /o (v(t), p(t)) dt < allv]lLzam) = allal| L2y
As a consequence of these inequalities and (3.9) we conclude that

(3.11) [a@)mllp®)lleo = —(u(t), ¢(t)) for ae. t € I.
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Finally, (3.7) and (3.8) follow from (3.11) and Lemma 3.4 below applied to u =
—a(t). O
LEMMA 3.4. Let p € M(Q) and z € Cy(2), both of them not zero, be such that

(3.12) (1, 2) = [l mll2ll oo,

and let p = pu™ — u~ be the Jordan decomposition of u. Then we have

(3.13) Supp(ut) Cc Qp ={z € Q: 2(x) = +|2] o},
(3.14) Supp(u™) C Q- ={x € Q: 2(z) = —||2]lco}-

Proof. We will prove (3.13), the proof of (3.14) being analogous. First we observe
that due to (3.12) we obtain for all measures v € M(Q) with ||v||sm < ||u||m that

(3.15) (v, 2) < [vllmllzlloe < llllmllzlloo = (1, 2)-

We have as well that
(yz) = (uh 2"+ (u™,27) = (uh27) = (u7,2) < (uh 2 + (), 27).

Moreover, the inequality is strict unless u* and p~ are concentrated at the set of
points x € ) where z(x) > 0 and z(z) < 0, respectively. Let us define the sets

Ar={zeQ:2(zx) >0} and A_ ={ze€Q:z(zx) <0}

and the measures v = put |4, v~ =p~ |a_, and v = vt —v~. Then we have that

[Vllm < llullag and (v, z) > (u, 2) if Supp(u™) & Ay or Supp(u~) ¢ A-. Because of
(3.15) we conclude that Supp(ut) € A4 and Supp(p~) C A_. Now we distinguish
two cases in the proof of (3.13) depending on whether the norm bound is attained
from above.

Case 1. max,cq2(z) < [|z|lo. In this case we prove that y* = 0. Indeed,
let zp € Q such that z(zg) = —||z]|cc and define v = —p™(Q)d,, — p~. Then it
is obvious that ||v||m = ||pllm. If ut # 0, since the support of pt is in Ay and
max,cq 2(2) < ||2]co, we have that

<1/7 Z> = HZ||OOM+(Q) - </1'_7Z> > </1'+7Z> - <M_7Z> = </L,Z>,

which contradicts (3.15). Then (3.13) holds.
Case 2. max,eq 2(z) = ||2]|o- Let xo € Q be such that z(xg) = ||2]|c0. We argue
by contradiction and assume that p*(S) > 0, where

S={ze€Q:0<z2(x) <|2|loo}-
We take v = put(Q)d,, — 1~ and once again
[Vllm = llella and (v,2) = pH (Q)llzlloc = (17, 2) > (1, 2),

since p(S) > 0. Again this contradicts (3.15). Therefore, u*(S) = 0, and hence
(3.13) follows from the inclusion Supp(p™) Cc A,. 0

COROLLARY 3.5. There exists & > 0 such that uw = 0 for every a > a.

Proof. Let us denote by J, the cost functional associated to the parameter «.
Similarly, let (tq, Yo, Pa) denote the solution to the corresponding optimality system.
For each a > 0 we have the inequalities

1 1.
§Hya —YallF20r) < Ja(ta) < Ja(0) = 5”1/0 — Yall 720
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where o denotes the uncontrolled state, i.e., the solution to (1.1) with v = 0. Conse-
quently, ||Ya — vallz2(z) < 190 — Yall£2(or) holds for every o > 0. From the adjoint
state equation (3.1) and the embedding of H?1(Qr) < L*(I,C(f2)), we deduce the
existence of a constant C' > 0 such that

oallz2(coy < Cll@lla21 < Cllya — vallL2@r) < Cllgo — yallL20r)-

Setting & = C||9o — vdllr>(0r), we obtain from the above inequality and (3.3) that
uq = 0 for every a > a. 0

4. Approximation of the control problem. We consider a dG(0)cG(1) dis-
continuous Galerkin approximation of the state equation (1.1) (i.e., piecewise con-
stant in time and linear nodal basis finite elements in space; see, e.g., [17]). Associated
with a parameter h we consider a family of triangulations {K}n>o of Q. To every
element K € K}, we assign two parameters p(K) and 9(K), where p(K) denotes the
diameter of K and 9(K) is the diameter of the biggest ball contained in K. The size of
the grid is given by h = maxgex, p(K). We will denote by {xz; };V:hl the interior nodes
of the triangulation K. In this section €2 will be assumed to be convex. In addition,
the following usual regularity assumptions on the triangulation are assumed:

(i) There exist two positive constants po and ¥ such that
p(K)
() <po and I(EK) <da

hold for every K € Kj, and all h > 0.

(ii) Let us set Q) = Ugex, K with ), and T, being its interior and boundary,
respectively. We assume that the vertices of Kj, placed on the boundary

T'j, are also points of I' and that there exists a constant Cr > 0 such that

dist(z,T") < Crh? for every x € I',. This always holds if ' is a C? boundary.

In the case of polygonal or polyhedral domains, it is reasonable to assume

that the triangulation satisfies that I', = I'. From this assumption we know

[14, section 5.2] that

(4.1) 1\ Q] < Ch2,

where | - | denotes the Lebesgue measure.
We also introduce a temporal grid0 = tp < t; < --- < tn, =T with 7, =t —tr_1
and set 7 = maxi<p<n, Tk. We assume that there exist pr > 0, Cqr > 0, and
ca,r > 0 independent of h and 7 such that

(42)  T<prmfor 1 <k<N, and cqrh™®{m2 <7< Cophmaxin2h
We will use the notation ¢ = (7, h) and Qpp = Qp, x (0,7).

4.1. Discretization of the controls and states. We first discuss the spatial
discretization, which follows [2]. Associated to the interior nodes {x; };V:hl of Ky, we
consider the spaces

Np,
Up =< up € M(Q) :uyp = Zujémj, where {Uj};\f:hl CcR
j=1
and

Np,

Yi=qyn €Co(Q) :yn = Zyjeja where {y; ;‘vzhl CRp,
j=1
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where {e; j-V:hl is the nodal basis formed by the continuous piecewise linear functions
such that e;(z;) = d;; for every 1 <4, j < Nj. Such functions attain their maximum
and minimum at one of the nodes, and thus for all y, € Y3,

lynlloe = | Jnax [yi| = |9n]oos
where we have identified y;, with the vector i, = (y1,...,yn, )T € R¥» of its expansion

coefficients, and | - |, denotes the usual p-norm in RM». Similarly, we have for all
up € Up, that

Nh Nh
llunl|m = ‘ Sllup 1Zug'<5mj,v> = lujl = linly Vun € Up.
Ulleo=1 j=1 j=1

Hence endowed with these norms, U}, is the topological dual of Y}, with respect to the
duality pairing

Np,
(wnyn) = Y wsy; = i Gin-
j=1

For every o we define the space of discrete controls and states by
Uy, = {uy € L*(I,Up) : uglr, € Up, 1<k < N}
and
Yo = {yo € L*(1,Y4) : Yol1,€ Ya, 1 <k < Ny},

where I, = (tg—1,tx]. The elements u, € U, and y, € Y, can be represented in the
form

N, N,
Us = E Ug,pXe and Yy, = E Yk, h Xk
k=1 k=1

where xj is the indicator function of Iy, urn € Up, and yrn € Ys. Moreover, by
definition of Uj, and Y}, we can write

N, N, N, Ny
Us = E E UkjXk0z; and Yy, = E E YkjXkEj-
k=1j=1 k=1 j=1

Thus U, and ), are finite-dimensional spaces of dimension N, X Nj, and bases are
given by {xx0z, }x,; and {xre;}r,;. Identifying again u, with the vector i, of expan-
sion coefficients uy;, we have for all u, € U, that

T  N: Np

2 N N 2
fueleonn = |30 wsads, [ at =3 [ || 3wt
0 "k=1j=1 M k=171k " j=1 M
2
N Np, N,
=D | D lul | =Dl
k=1 j=1 k=1
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for @y, = (uk1,...,ukrn, )T, and similarly for all y, € Y, that
N- 2 N,
bl = 3o (ma, ool ) = o
k=1 k=1

It is thus straightforward to verify that, endowed with these norms, U, is the topo-
logical dual of ), with respect to the duality pairing

N~ Np

N,
(4.3) (Uos Yo) Zmzumykg > 7l gi)
k=1

Next we define the linear operators Ay, : M(Q) = Up C M(Q) and 11, : Co(2) —
Y;, € Co(2) by

Ny, Nn
Apu = Z<u7 )0z, and Ily = Zy(%‘)ej
i=1 =t

The operator IIj, is the nodal interpolation operator for Y;,. Concerning the operator
Ay, we have the following result.

THEOREM 4.1 (see [2, Theorem 3.1]). The following properties hold:

(i) For every u € M(Q) and every y € Co(QL) and yn, € Yi, we have

(
< 7 > <Ahuﬂyh>7
(u, Mpy) = (Apu, y).
(ii) For every uw € M(Q2) we have
[Anul e < flullag;
Apu 2w in M(Q) and || Apul|a — ||ullag as b — 0.

(iii) There exists a constant C > 0 such that for every u € M(Q) we have

)y n
= Antllw @) < CR =" Jull g, 1<p<—,

lJu— AhuH(WOl’”(Q))* < Chljullam,

with 1/p" +1/p = 1.
Similarly to Ay and II;, we define the linear operators

®, : L*(I, M(Q)) = U, C L*(I, M())
and

U, 0 L(1,Co(Q)) — Vo € L2(I,Co(Q))

N, N

P U_ZTk thk—ZZ ~/1k e] d/th(sac]a

kl—l

N. N,

gy—z / I (y thk—ZZ / y(xj,t) dt xre;.

kl]l
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Analogously to Theorem 4.1 we obtain the following result concerning ®, and V¥, .

THEOREM 4.2. The following properties hold:
(i) For every u, € U, and every y, € V, we have

(44) oty = Uy and Voyo = Yo.

(ii) For every u € L*(I, M(2)) and every y € L*(I,Co(Q)) and y, € Y, we have

(4.5) (U, Yo) = (Pou, yo),
(4.6) (U, Woy) = (Pou,y).

(iii) For every u € L*(I, M(Q)) and y € L*(I,Cy(2)) we have

(4.7) [®oull2a) < llullL2(rm),
(4.8) IWoyllL2(co) < NllLz(co)-
(iv) For every u € L*(I, M(2)) and y € L*(I,Co(Q)) we have

(4.9) ®ou = uin L*(I, M(Q)) and || ®oull2(my = [|ullzom),
(4.10) W,y — y in L*(I,Co(Q)).

Proof. The formulas of (4.4) follow from the linearity of the operators and the
identities @, (X10z;) = X102, and ¥, (yie;) = xye; for all 1 < < N, and 1 < i < Np,.
Identity (4.5) is a consequence of (4.4) and (4.6). Let us prove the latter. First

we observe that

N, Ny
(4.11) S u= ZZumxmz], with ug; = (u(t), e;) dt,
k=1j=1 Ik
N, N,
(4.12) U,y = Zzyijkeﬂ’ with yi; = —/ y(xj,t)dt.
k=1 j=1
From (4.11) and (4.12) we have
T N Nh
@an = [ (@000t =3 s [ (xuty o)
0 k=1 j=1
N Nh NT Nh
=33, / )t = 33
k=1 j=1 k=1j=1
Analogously we get
T N, Ny
o) = [ ), o) =35 s [ ) v
0 k=1j=1
N, N N, N
S / 0 =33
k=1 j=1 k=1 j=1

as desired.
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We turn to (4.7). First we recall that the norm of ®,u is given by

o\ 1/2

N, Ny,
1@tz = [ D7 [ D lunsl
k=1 j=1
Next we define y, € ), by

Np,
Yrj = <Z |um'|> sign(u;),
=1

where we set sign(0) = 0. For y, we compute the expressions

T
(4.13) (o) = [ ult) v (0) i = Z / S ), ) di

k] 1
2
N Np, N, Np,
=T > ykukg = YTk | Y k]
k=1 j=1 k=1 j=1
= [ @oull72(an)

and

T
414)  lyollzaco) = (/0 o (#)12 dt)

N, Na
D7 | Dl
k=1 j=1

1/2 1/2

N- 2
Z/ Zykjej dt
k=

o\ 1/2

= [[®oull 2(rm)-
From (4.13) and (4.14) we deduce
[@oull72any = (U, y0) < llull2alyollL2co) = l1ull L2 | ol L2y,

which implies (4.7).
To establish (4.8) we choose y € L%(I,Cy(Q)) and estimate

N, 1/2
[(Toy)(t)]|% dt)
>/

1

||\Ildy||L2(Co)

Il
ES
%
\1|._A
VRS
;\
N
—~
S
<
N
QL
~
~__
o
o

/2

IN
O
1]z
SHES
N
;\
=
=
2
U
~
~—
v
IN

(Z /o dt)

= 1yllL2co)-
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Before proving (4.9), we will consider (4.10). It is well known that (4.10) holds
for functions in C*°(Qr) vanishing on Y7. From the density of these functions in
L3(I,Co(f2)) and from inequality (4.8) we deduce (4.10).

Finally, we prove (4.9). From (4.7) we know that {®,u}, is bounded in the
space L?(I, M(Q)). Then there exists a subsequence, denoted in the same way, and

an element 4 € L?(I, M(Q)) such that ®,u = @ in L?(I, M(R)). Then for every
y € L?(I1,Cy(Q)) it holds that
T T
i [ (@0 de = [ (@le). ) at.
0

o—0 0

Using (4.6) and (4.10), we find

T T T
lim [ (ou)(t) y(t)) dt = Tim [ (u(t), (Poy)(t)) dt = / (ult), y(t)) dt.

o—0 0 o—0 0

Combining these two equalities, we have that

T T
|ty it= [y vy e 1. com))
0 0

and therefore u = @ and the whole sequence {®,u}, converges weakly-* to w.
By the convergence ®,u — u and (4.7) we obtain

[ull2agy < lminf [ @oul[L2p < limsup [@oullL2 ) < flull2m),
4 o—0

which concludes the proof of (4.9). O

We finish this section by proving the following approximation result.

THEOREM 4.3. Let y and y° be the solutions to (1.1) corresponding to u and
d,u, respectively. Then there exists a constant C > 0 independent of u and o such
that

(4.15) ly =yl 2(07) < CR* "% |lull2m) Y € L2(I, M(S)).
Proof. Let f € L?(Q2r) be arbitrary and take z € Z satisfying

—0iz— Az=f in Qrp,

(4.16) z=0 on X,
2(x, T)=0 in Q.
Due to the convexity of ), there exists a constant C independent of f such that
2l 2107y < Cllfllz2(0r)- By (2.1) and (4.6) we get
T
(4.17) | w=vrdede= [t - @u0).0) @
T 0

T
= [tttz = (w2 e
<Hullzzop 12 = Yozl L2(cy)-
Now, we will prove that

(418) ||Z — \IJG'ZHLz(Co) S Ch27% HZ||H21(QT)
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From the error estimates of the interpolation in Sobolev spaces [4, Chapter 3] we get
(4.19)
T
< o3 (/ ECIE. dt)
0

T
Iz = Mzl L2(cy) = </ l2(t) = Maz(t)II3 dt)
0
< CR* % ||z]| g2 () -
Here and below, C' denotes a constant independent of 0. By an inverse inequality (see
[4, Theorem 17.2]) and using (4.2) for the last inequality in the following estimate,

we obtain
) 1/2
dt>

(420) [Tz = Wo2llz2(cy) = <§; /
< <§:i/ ITn2(t) — Iz (s)]|2 dsdt) -
i1 kL I
1/2
= hn/Z\/— (Z/ 1L 2(2) th(s)Hiz(Q) ds dt)
1/2
= hn/z\/— ( / / IMnz(t) = 2(D)]|72(0) dsdt>
1/2
h“/2\/— (Z/I [Tz (s) (S)H%2(Q) det)
1/2
h”/2f (Z/ — 2(s)[172(q) ds dt)

1/2 1/2

Hpz2(t / I, 2(s) ds
Iy,

C 2
< el ey + // 020 d6||  dsdr
hn/2 a2 () hn/Q\/_ Z I, J Iy, I ! L2(Q)
h? + -
SC—rpm /2 ||ZHH21(QT) < Ch™ 2 ||2]| g2 )

Inequality (4.18) follows from (4.19) and (4.20). Finally, (4.17) and (4.18) lead to
/ (y —y7)fdedt < Ch*7% |z g2a(ar < CR*7 5| fllraor) VS € L?(Q),
Qr

which implies (4.15). O

4.2. Discrete state equation. In this section we approximate the state equa-
tion and provide error estimates. We recall that I, was defined as (ty_1,t;] and
consequently yxn = Yo (tk) = Yolr,, 1 < k < N,. To approximate the state equa-
tion in time we use a dG(0) discontinuous Galerkin method, which can be formulated
as an implicit Euler time stepping scheme. Given a control u € L*(I, M(Q)), for
k=1,...,N, and z, € Y} we set

Yk,h — Yk—1,h 1/
"2 | + a(Yr,h, 2n) = — u(t), zp) dt,
o) (28t )ty o) = o [ e )
Yo,h = Yoh,
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where (-,-) denotes the scalar product in L?(Q), a is the bilinear form associated to
the operator —A, i.e.,

aly,z) = / VyVzdz,
Q
and yop, is an element of Y}, satisfying for some Cy > 0

(4.22) lyo — vonll -1 < Cohllyollz2(o)-

For instance, we can choose for yg, the projection Pryg of yo on Y, given by the
variational equation

(Pryo, zn) = (Yo, 2n) Vzn € Y.

For any such choice of yop, the estimate (4.22) implies that there exists a constant
C > 0 independent of h such that

(4.23) lyonllz2y < Cillyollz2(q)-

Indeed, by using an inverse inequality and the well-known estimates for the projection
operator P : L?(2) — Y},, we obtain

lyonll2) < llyon — Prvollz2(0) + | Pryoll 2 (o)

C
< EH?JOh — Pryoll 1) + lvoll2 (o)

C
< 7 (Ilyon = woll zr-1(e) + lvo = Pavoll -1 () + lwoll 2o
<(C+ Dllyollz2(y-

Obviously (4.21) defines a unique solution y,. Let us observe that from (4.5) we
have the following important consequence.

LEMMA 4.4. Lety, and g, denote the solutions to (4.21) associated to the controls
u and ®,u, respectively. Then the identity y, = y, holds.

The rest of the section is devoted to the proof of the stability of the scheme (4.21)
and to the derivation of error estimates for ||y — yo | r2(r), where y and y, are the
solutions to (1.1) and (4.21) associated to a given control u € L%(I, M(f2)). To this
end, we introduce some operators that will be used in the proof of the theorems. For
every h we consider the Ritz projection Ry, : Hi () — Y}, given by

a(yn, Rnz) = alyn, z) Vyp € Y.
From the theory of finite elements we know that for all z € H?(Q) N Hg (),

(4.24) { Iz = Ruzllzz) + hllz — Razllan ) < Ch2 2],

|2 — Rnz|po() < CR*™%||2] g2

Now, for every o = (7, h) we define R, : L?(I, H}(2)) — Y, by

N. N
T 1 T
Roz = E —/ ha(t) thk = E Zk,h Xk-
i1 kS k=1
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The operator R, enjoys for all z € L?(I, H}(Q)) and y, € Y, the property

T N,
(4.25) / a(yo (1), 2(t) — Ro2(t)) dt = Z/ a(ghons 2(t) — ze) dt = 0.
0 k=1"1x
Indeed, for every k = 1,..., N; we have

[ aton =) dt= [ alvn Rizo)ae

Ik Ik

1
= TrQ (yk7h, E ha(t) dt)

Iy
= / a(yh_,k, Zh,k) dt.

I,

THEOREM 4.5. Given a control u € L*(I, M(Q)), let y, be the solution to (4.21)
corresponding to w. Then there exist constants C; > 0, ¢ = 1,2, independent of u and
o such that

N,
(4.26) > llyen — ye—1nlli2i) + T Dax IVyk,nll 720
k=1 -
< C1 (Jyolleqe + lullizan)
(4.27) 190l 2(r) < C2 (lyoll L2 + lullL2(r) -

Proof. Let us set zn, = yYr,n — Yr—1,n in (4.21). Then we obtain for 1 < k < N,
that

1 1
—llykn — ve—1nll720) + aWrhs Ykoh — Yr—1,n) = —/ (w(t), Y,n — Yk—1,n) dt.
Tk Tk J1,

From here we get with the aid of an inverse estimate [4, Theorem 17.2]
1 , 1
“llyen = yr-rnllz20) + Flalen, yen) = a(yr-1.n, yr-1.1)]
1 1
< T—kHyk,h — Yr—1nll7200) + Sl yrn) — alyk—1,n: Yr-1,0)
+ a(Yr,n — Yk—1,hs Yk,h — Yk—1,h)]

1 2
= T_kHyk,h — Ye—1,hll72(0) + A(Yk,hs Yo,b — Yk—1,n)

1
=— [ (u(t),yr,n — Yr—1,n) dt
1
< —ﬁ”u||L2(Ik7M)”yk,h — Yk—1,h]| oo
Ohfn/2
< = lwll L2z, m 1950 — Yr—1,0ll22(0)
< C?h="r 1 9
< THUHL%I;C,M) + ZHZ/k,h — Uk—1,nll22(0)
C?prCar 2 1 5
< o HUHL2(I,C7M) + ZHyk,h - yk—l,hHLz(Q).
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In the last inequality we used (4.2). Summing from k& = 1 to m and using (4.2), it
follows that

C?prCa.r

1 m
- D en = v 1l 2() + alym.hs Ym,n) — ayon, yon) < [l Z2an)-

k=1
Hence
(428) > llykn — vk-1l2) + TIVYmal T2 < Cllvoll 2y + 1l 2um)-
k=1

Here we have used an inverse inequality, (4.2), and (4.23) to get

Cr
TllyonlF o) < ﬁ”yOhH?Lz(Q) < CllyollF2q

Finally, since 1 < m < N, is arbitrary, (4.26) follows from (4.28).
Now we prove (4.27). Given f € L?(Qr), we take z € Z satisfying (4.16).
Integrating by parts, we get

/ Yo f dxdt = Z/ /ykh (x,t) dzdt
Qr k=1 Iy

N,
= {=0t(k,n, 2(t)) + a(yn,n, 2(t))} dt

Iy

{(yk,h,z(tk—l) — 2(tr)) +/ a(Yr,n, 2(t)) dt}

Iy,

Il
Eol Eol
2=

- {<y YIS ) dt} + (yons 2(0).

1

~
Il

Taking z, = R,z, we get from the above identity and (4.25) that

N,

(4.29) / Yo f dxdt = Z {(Wr,n = Yk—1,h, 2k,n) + TR0 Yk by Z,1) } + (Yon, 2(0))
Qr k=1
N,
+ Z {(ylm — Yk—1,h, Z(th—1) — Z,n) + / a(Y,n, 2(t) — Zk,n) dt}
=1 I
T N,
= / (u(t), 2o (t)) dt + (yon, 2(0)) + Z Yk,h — Yh—1,h, 2(th—1) — Zk,n)-
0 k=1

Let us estimate each of these terms. From the definition of z, and (4.23) we obtain

(4.30)
T
/0 (u(t), 2 (t)) dt + (yon, 2(0)) < [[ull L2 120l 22(co) + lyonll L2 12(0) | L2()

< Cllzll 2@ Ulull L2y + lyoll 2 o)),

where we have used that there exists a constant C' > 0 independent of o such that

(4.31) IRov] L2(coy < Cllvllioaany Yo € H2Y( Q).
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Indeed,

N, 1/2 N.
[Rovllz2(cy) = <Z/ [Rov(t)]|% dt) - <Z/
k=1"1k 1/ I
N, 1/2
< (Z [ Ro(s)1% ds) :

k=1 1Tk

Rpv(s)ds

5 1/2
dt>

1
Tk J1 &

Using (4.24), we deduce that
[Brwlloo < [[Brw — wlloo + [[w]lee < Ch™[Jw]|m2(0) + [[w]loe < Cllwl[m2(q)

for every w € H?(Q) N Hy (), with k = 1if n <2 and k = 1/2 if n = 3. Then (4.31)
follows from the above inequalities.
Concerning the last term of (4.29), we will prove

N,

(4.32) Yk — Yk—1,0, 2(tk—1) — 2k,n) < Ch% | 2|l g2 p) (JullL2(m) + Y0l 2 @),
k=1

where & is defined as above. First we observe that (4.26) implies

N

(433) > 1Wkn — Y10, 2(tk-1) — 2e0)]
k=1
1/2

N, 12 /N,
< (Z llyr,n — ykmll%z(nh)) (Z |2(tk—1) — Zk,h||2L2(Qh)>
k=1

k=1

N, 1/2
< C(llull L2y + llyoll L2 () (Z |2(tk—1) — ZkJL”QL?(Qh)) :
k=1

9 1/2
da:)

- (Tik /Qh . |2(th-1) _ha(5)|2dsdx)1/2
: (i/ |Z(tk—1)—z(s)|2d8dm>l/2

Tk

Q Iy
1 1/2
2
- - d
# (5 [ 1266) = st s

1/2
g(/ //|8tz(9)|2d9dsdx)
Qp JI JIg

1 1/2
+Ch? (T—k ||z(s)||§p(9)ds)

th\/PT
<VTl0: 2| 21y, L2 (0)) + T|\Z||L2(1k,H2(Q))

From the definition of z, and (4.24) we deduce

— | {z(tk—1) — Rpz(s)} ds

1
lz(tk—1) = zr,nllL2 () = (/
Qh T

k J1,

Iy,

< Ch* (|02 L2y 22y + 122210 2 (92)))-
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Inserting this estimate into (4.33), we infer (4.32). Finally, (4.29), (4.30), and (4.32)
imply that

/Q yof dadt < Cllfl|z2am (Il 2on + ool o) VF € L2(Qr),

which is equivalent to (4.27). O

In the next theorem we show error estimates for the discretization of the state
equation.

THEOREM 4.6. Given u € L?>(I, M(S2)), lety and y, be the solutions to (1.1) and
(4.21). Then there exists a constant C' independent of u € L*(I, M(R)), yo € L*(),
and o such that

(4.34) 1Y = YollL2ar) < CR*([[ullL2a) + lvoll L2 (@)

where k =14fn <2 and k =1/2 if n = 3.
Proof. As in the proof of Theorem 4.5, we take an arbitrary element f € L?(Qr),
z € Z solution to (4.16), and z, = R,2. Then from (2.1) we obtain

T
(4.35) /Q (y—yg)fdxdt:/O (u(t),z(t)>dt+/yo(x)z(x,O)dx

Z —Won, De2(t)) + alypn, 2(t))} dt.

Integrating by parts, we get

N,

Z / (e 002(0)) it = (o 2(051) — 2(82)

<1

.

= > (Wk,h = Yk—1,hs 2(tk—1)) + (Yon, 2(0)).

k
From this identity, (4.21), and (4.25) we deduce

N,
> [ - 0ix(0) + alunn. () e
k=17 1k

z

=Z [ =zt + [ atwn =) fat+ o 200)

N,
= Z { Yk,h — Yk—1,h, Zk,h) +/ a(Yk,hs Zk,h)} dt

Iy,

k‘

N,
Z/ Ykh = Yr=1,h 2(tk-1) = 2kn) + (Yon, 2(0))
k=1
T
= [Ty [ g0
0 Q
N,
3 [ =i ttn) =)
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Inserting this identity in (4.35), we infer
(4.36)
T
l/ Q/—yﬁfdxdt=”/ @KU74U-—RvZ@»dt+l/(MK$)—ymK$DZ@Jﬂd$
Qr 0 Q

N,
- Z/ (Yk,h — Yk—1,h> 2(tk—1) — Zk,n)-
k=1" 1k

Let us estimate each of these three terms. For the first term we observe that

||Z — RUZHLz(Co) S ChHHZ||H21(QT)
The proof of this inequality is the same as that of (4.18); it is enough to replace IIj,
by Ry, and to use (4.24). Using this inequality, we obtain the first estimate as follows:

(4.37) < lullzza Iz = Rozll 22(c0)

T
A<Mmaw—nﬂ@wt

< ch"lull 2o |21 5201 (00) -

For the second term we proceed with the aid of (4.23):

(4.38) < llyo — yonllz-1(2) 120 2 o)

/@ww—%WWAmmm
Q

< Chllyoll2(o 12l 2.1 () -

Finally, the third term of (4.36) was estimated in (4.32). Thus, using (4.37), (4.38),
and (4.32) in (4.36), the inequality

/Q (Y = Yo ) f dxdt < Ch™(||lull L2(m) + lvollzz) |2l H21 ()
T

< Ch([JullL2omy + ol 2@ fll 2 )
is obtained, which leads to (4.34). O

4.3. Discrete optimal control problem. The approximation of the optimal
control problem (P) is defined as

1
(Po) o () = 51y = yallZ2(r) + allull 2o

min
weL2(I,M(Q))
where gy, is the discrete state associated to u, i.e., the solution to (4.21). Let us observe
that, analogously to J, the functional J, is convex. However, it is not strictly convex
due to the noninjectivity of the control-to-discrete-state mapping and the nonstrict
convexity of the norm of L?(I, M()). Although the existence of a solution can be
shown in the same way as for problem (P), we therefore cannot deduce its uniqueness.
On the other hand, if 4, is a solution to (P,) and if we take @, = ®,4,, then Lemma
4.4 and the inequality (4.7) imply that J,(4,) < J,(4s), and hence @, is also a
solution to (P,). Since for u, € U, the mapping u, — y,(us), with y,(us) the
solution to (4.21) for u = u,, is linear, injective, and dimU, = dim ), this mapping
is bijective. Therefore, the cost functional J,, is strictly convex on U,,, and hence (P,)
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has a unique solution in U,, which will be denoted by @, hereafter. We summarize
this discussion in the following theorem.

THEOREM 4.7. Problem (P,) admits at least one solution. Among all solutions,
there exists a unique solution u, belonging to U,. Moreover, any other solution u €
L3I, M(Q)) to (P,) satisfies ,ii = i, .

Remark 4.8. The fact that (P,) has exactly one solution in U, is of practical
interest. Indeed, recall that @,, as an element of U,,, can be uniquely represented as

N, Np

Uy = Z Z ﬂijk(swj .

k=1 j=1

The numerical computation of 4, therefore is equivalent to the computation of the
coefficients {uy; : 1 <k < N, 1 <j < N}; see section 6.

We finish this section by analyzing the convergence of the solution in U, to (P,)
to the solution to (P).

THEOREM 4.9. For every o, let U, be the unique solution to (P,) belonging to
U, and let w be the solution to (P). Then the following convergence properties hold
foro — 0%

) Uy =@ in L*(I, M(Q)),
4.40) ltollz2aty = 1Tl 2,
) 19 = YollL2(r) — 0,

) Jo (o) — J(u),

where § and §, are the continuous and discrete states associated to 4 and U,, respec-
tively.
Proof. First of all, let us show that

(4.43) Uy = win LA(1,M(Q)) implies  ||yo — yllz2(p) — 0,

where y, and y are the discrete and continuous states associated to the controls u,

and u, respectively. Indeed, let us write y —yo = (y —y?) + (¥° — y» ), where 3 is the

continuous state associated to u,. Then by Theorems 2.4 and 4.6 we deduce (4.43).
Turning to the verification of (4.39), we observe that

_ _ 1. 1,
olloll2ay < Jo(lie) < Jo(0) = 5ldo0 = YalT2ur) < 51900 = vallZ2(or),

with 9,0 denoting the uncontrolled discrete state, which implies the boundedness
of {i,}, in L*(I,M(Q)). By taking a subsequence, we have that @, — w in
L*(I, M(£2)). Then using (4.1), (4.43), lower semicontinuity of the norm || - || 2 (a4),
and (4.9), we obtain

J(u) < lim iglf Jo(ty) < limsup J,(t,) < limsup J, (¥, u) = J(u).
o—r

o—0 o—0

Hence u = @ by the uniqueness of the solution to (P), and the whole sequence {@, }
converges weakly-x to 4. In addition, the above inequality implies (4.42). Using
again (4.43), we deduce (4.41). Finally, (4.40) follows immediately from (4.41) and
(4.42). O
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5. Error estimates. We now turn to the proof of error estimates for the optimal
costs and for the optimal states. We still require €2 to be convex and assume in addition

2 ifn=1,
(5.1) ya € L*(I,L"(Q)) withr=4{ 4 ifn=2,
8 ifn=3.

Recall that ¥ and ¥, denote the continuous and discrete states associated to the
optimal controls @ and u,, respectively.
THEOREM 5.1. There exists a constant C' > 0 independent of o such that

(5.2) |J(@) — Jo(Us)| < Ch",

where k =14fn<2and k=1/2 if n =3.
Proof. Taking r as in (5.1) and using Holder’s inequality and (4.1), we deduce
that for all ¢ € L2(I, L"(Q)) and n = 2 or 3,

r—2 K
(5.3)  Méllrer,2@\an)) < N@llee, @2\ Qnl 2 < CllollLz,Lr@\0n))h?

holds. Observe that = €y, for n = 1; consequently (5.3) holds with C = 0.
Let y and y, be the continuous and discrete states associated to a given control
u. As a consequence of (4.34) and (5.3), with ¢ = y — yq, we obtain

(5:4)  [lly = 9all2am) — 1o — val3a(m | < 19 = valer 2@
+ (Hy - yd||L2(QhT) + Hyo' - yd||L2(QhT)) Hy - yU”L2(QhT)

< C (I = allte(r ey + Nl + lollzee ) 1
Now, by the optimality of & and 4, we have
J(w) = Jo(u) < J(@) = Jo(ts) < J(Uo) — Jo(Uo),
and hence
(5.5) I (@) = Jo(Ug)| < max{[J(a) = Jo(@)], ] (ts) = Jo(ts)|} -

From (4.40) we deduce that {i,}, is bounded in L?(I, M(Q)). Therefore, (2.2)

implies that the continuous associated states {ya, }» are bounded in L2(I, W, *())

for every 1 < p < -, and therefore in L*(I, L"(Q)) as well. We now apply (5.4)

with u = @, and u = @, respectively. Together with (5.5) this establishes (5.2). O
In the following theorem we establish a rate of convergence for the states.

THEOREM 5.2. There exists a constant C' > 0 independent of h such that
(5.6) 15 = Joll2(0r) < Ch?,
with K as defined in Theorem 4.1.
Proof. Let S : L*(I, M(2)) — L*(Qr) and S, : L*(I, M(Q2)) — L*(Qr) be the

solution operators associated to (1.1) and (4.21), respectively. From (4.34) it follows
that

(5.7) [Su — Soul| L2070 < CR™([JullL2(ay + 1Yol L2(e))-
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By the optimality of @ we have for all u € L?(I, M(f2)) that
(St — ya, Su— Su) + alllullL2v = 1wl 2] = 0,

where (-,-) now denotes the scalar product in L?(Q7). In particular, taking u = i,
we get

(5.8) (5% = ya, Stic — Su) + aflltollL2(my — [[all 2] 2 0.

Analogously, the optimality of @, implies that

(5.9) (Solie = Y, Soli = Solia) + afl[llL2(am) = lUsl L2(a0)] = 0.

We point out that by definition of Y, we have Sou = 0 in I x (2\ ). Then the

scalar product above in L?(27) coincides with that in L?(Qs7). Now, we rearrange
terms in (5.9) as follows:
(5.10) (Stuy — yda, St — Sty) + (Sotiy — Sy, Sott — Syliy)
+ (yda, St — Syt + Spliy — Sty) + (StUe, Sott — Su + Sty — Syliy)
+ ofllull Lz m) = el 2] = 0.
Adding (5.8) and (5.10), we obtain
(5.11) 150 — Sylig||72(0p) = (ST — Solis, St — Soiiy)
< (Sptiy — Stiy, Syt — Syly)
+ (ya — Sty, St — Syt + Sytie — Sts).

Let us estimate the right-hand terms. For the first one we apply the Cauchy—Schwarz
inequality and use (5.7) to deduce

(5.12) (Sotic — STy, Soli—Solis) < ||Sotiy — St || 12(0p) || Soth— Sotis || L2(0r) < CR™,

where we have used that {t¢ }o, {SoU}s, and {S,%, }o are bounded due to (4.40) and
(4.27). For the second term we use once again (5.7) to obtain
(5.13)  (yq — Sty, St — Syt + Sytiy — Sty)
+ llya = Stoll L2 (@) (S = So) (@ = Uo) | 22 (0r)
+ Ol = o llL2(my + llyollL2(e))h™ < CRT,

where we have also used that y4 € L*(I, L"(2)) and (2.2). Finally, (5.11), (5.12), and
(5.13) prove (5.6). O
Remark 5.3. Let us observe that (5.2) and (5.6) imply that
Nl L2my = ol L2 (rny| < Ch2
for some constant C' > 0 independent of o.

6. Numerical solution. We now address the computation of minimizers @, of
problem (P,). First of all, we note that if we define yq, as the L?(Q1) projection
of y4 on )V, then

1 1
Jo(u) = 5”?40 - yd,0||2L2(QhT) + O‘”“”H(M) + §||yd - yd,0||2L2(QnT)'
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Therefore, problems (P,) and

~ 1
(@) ety T 1) = 3l = BNz + ellelaacan
are equivalent. In this section we present a numerical algorithm to solve (Q,) as an
alternative formulation to (P,).

Due to the spatiotemporal coupling of the norm in L?(I, M(Q)), its subdiffer-
ential is difficult to characterize. However, using Fenchel duality combined with an
equivalent reformulation that decouples the spatiotemporal structure, we can obtain
optimality conditions that can be solved using a semismooth Newton method.

For the reader’s convenience, we recall the Fenchel duality theory, e.g., from
[7, Chapter 4]. Let V and Y be Banach spaces with topological duals V* and Y™,
respectively, and let A : V — Y be a continuous linear operator. Setting R = RU{oc},
let F: V=R, G:Y — R be convex lower semicontinuous functionals which are
not identically equal to co and for which there exists a v € V such that F(vg) < oo,
G(Avg) < oo, and G is continuous at Avg. Let F* : V* — R denote the Fenchel
conjugate of F defined by

F*(q) = sup(q,v)v-,v — F(v),
veV

which we can calculate using the fact that
(6.1) F*(q) = (g, v)y=v — F(v) if and only if ¢ € OF(v).

Here, 0F denotes the subdifferential of the convex function F, which reduces to the
Gateaux derivative if it exists, and the left-hand side arises from differentiating the
duality pairing.
The Fenchel duality theorem states that under the assumptions given above,
(6.2) inf F(v) + G(Av) = sup —F*(A*q) — G*(—q)
veV qEY *

holds, and that the right-hand side of (6.2) has at least one solution. Furthermore,
the equality in (6.2) is attained at (v, q) if and only if

A*'qg e 0F(v),
(6.3) 7€ 0710)
g€ 0G(A),
where the derivative of the duality pairing again enters the left-hand side.
We now apply the Fenchel duality theorem to (Q,), which we express in terms
of the expansion coefficients #@y;. Let N, = N, X N, and identify as above u, € U,
with the vector @, = (U11,...,UIN, ;- -, UN+N, )L € RV of coefficients, and similarly
Yd,o € YVo; see section 4.1. To keep the notation simple, we will omit the vector
arrows from here on. Denote by M}, = ((e;, €k>)§\,f;f§:1 the mass matrix and by A;, =
(a(ej, ek))é\f r_, the stiffness matrix corresponding to Y},. For the sake of presentation,

we fix yo = 0. Then the discrete state equation (4.21) can be expressed as Loy, = U,
with

My, + Ay, 0 0
Ly=| -7 "My 75 My+A4, 0| cRNoxNo,
0 : :
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(Note that the “mass matrix” corresponding to (<5zj,ek>)fg:1 is the identity.) In-

troducing for v, € RNe the vectors vy = (vp1, ..., v, )T € RV 1 < k < N,, the
discrete optimal control problem (Q,) can be stated in reduced form as

LN . 1/2
min ZTkL Uy — ydg] Mh[L Uy — ydg]k+oc<ZTk|uk|1> .

u, €ERNo 2 Pt
We now set A : RNVe — RN Ay = L1,
N 1/2
F:RY 5 R, a(ZTﬂvkﬁ) ,
k=1
G:RY 5 R, G(v) = % Tk('Uk — Ya k)" Mn (v — yak),

=1

and calculate the Fenchel conjugates with respect to the topology induced by the
duality pairing (4.3). For G, we have by direct calculation that

N, N,
G*(g) = sup > mhaivi— > ZTk (0% = Ya k)" Mn(vr = ya,r)
vERN. T 1 k 1
1 &
~3 > 7 ((ak + Miyar)" My (g + Miyar) — i Mayak)
k=1

since the supremum is attained if and only if g, = My (v —ya,x) for each 1 <k < N,
due to (6.1) and the definition of the duality pairing. For F, we appeal to the fact that
in any Banach space the Fenchel conjugate (with respect to the weak-* topology) of a
norm is the indicator function of the unit ball with respect to the dual norm (see, e.g.,
[15, Example 2.2.6]), and to the duality between U, and Y, to obtain

0 if (3N 2 \'/2
F@) = ralgy = 10 (Shamdad) <a
oo otherwise.

The adjoint A* : RNe — R¥e (with respect to the above duality pairing) is given by
L;T. Dropping the constant term in G* and substituting p, = A*q,, i.e., ¢» = LLp,,
we obtain the dual problem

(6.4) min ZTk Lapolk = Muyar)" My H([Lpolk — Mayak) + ta(po)-

po ERNo

Since vg = 0 = Avg satisfies the regular point condition, the Fenchel duality theorem
is applicable, implying the existence of a solution p, which is unique due to the strict
convexity in (6.4).

While the second relation of (6.3),

(6.5) (Lo ) = oMy (L io — Yao)r V1< k < N,

can in principle be used to obtain %@, from p,, the first relation remains impractical
for numerical computation. We thus consider the following equivalent reformulation
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of (6.4), which decouples the spatiotemporal constraint given by the term ¢n (ps):

N,

—_

LIpolk — Myyar)" My ' (ILXpolk — Muyax)

paeRNa cgeRN 5
st |PEloo < VI<Ek <N, and Zchi =a?,

where ¢, = (c1,...,cn. )T € RN, Since the constraints satisfy a Slater condition
(take p, = 0 and ¢ = T~'/2a, 1 < k < N,), we obtain (e.g., from [12]) existence of
Lagrange multipliers pu}, p2 € RV¥» 1 < k < N,, and A € R such that the (unique)
solution (pe, ¢, ) satisfies the optimality conditions

Tk[LoMg_l(L?;f)o - Uyd,cy)]k = ,ullg + ,u’zv 1 S k S NT)

Np,

> (—phy + p3) + 226, =0, 1<k <N,

j=1

()" (e — &) =0, (up)"(pr+ex) =0, pp <0, pp >0, 1<k<N,,

N,
E Tkéi —a? = 0,
k=1

where M, € RV-*N+ is a block diagonal matrix containing N, copies of Mj,.

We now rewrite the optimality system in a form amenable to the numerical so-
lution using a semismooth Newton method. First, uj and u} are scaled by 75, > 0
to eliminate this factor from the first and second relations (which does not affect the
complementarity conditions). Using the componentwise max and min functions, the
complementarity conditions for u}, u? and py can be expressed equivalently for any
v >0 as

pk + max(0, —pg + Pk — &) =0, g +min(0, 4 +y(Pr + ¢x)) = 0.
Since pj = 0 if p > —¢ and pj = 0 if P < ¢, we have by componentwise inspection
max (0, —p +v(Pr — €)) = max(0, —py, — pi +v(Pr — &))-

We argue similarly for the min term. Furthermore, comparing the first relation of
(6.6) with (6.5), we deduce that @y, = uj, + p2 for all 1 < k < N,. Finally, to avoid

having to form M !, we introduce g, € RVv satisfying
L:};ﬁo = Mo(ga - yd,a)~
Inserting these relations into (6.6), we obtain for every v > 0 the optimality system
(6.7)
Loga — ity =0,
Lzﬁa - Mo(go - ydp) = 0,
ay, + max(0, =y, + (P, — &)) +min(0, —ay +y(px + &) =0, 1<k <N,
Nh
> [=max(0, —tix + Y(Px — @) + min(0, —u + ¥(Pk + ))]; + 2Aek =0,
= 1<k<N,

N,
E Tkéi —a?=0.
k=1
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Since the max and min functions are globally Lipschitz mappings in finite dimen-
sions, this defines a semismooth equation which can be solved using a generalized
Newton method; see, e.g., [13, 11]. Here we recall that the Newton derivative of
max(0,v) with respect to v is given componentwise by

hk if Vi 2 0,

0  otherwise,

[Dy max(0,v)h], = {

and similarly that of min(0,v). In practice, we have to account for the possibly local
convergence of the Newton method. To compute a suitable starting point, as an
initialization step we successively solve a sequence of approximating problems that
are obtained from (6.7) by replacing the max and min terms with

ma’X(Oa ’Y(pk - Ek)) and min(ov V(pk + Ek))a

respectively, and letting + tend to infinity. (This can be interpreted as a Moreau—
Yosida regularization of the complementarity conditions.) Since now uy no longer
appears in the argument of the max and min functions, it can be eliminated from
the optimality system using the third equation (which also allows computing @ given

(Pk, Ck)), yielding
(6.8)

Lgpw - Mo(y'y - yd,a) =0,
Loy, + vy[max(0, py — ¢y) +min(0, py + ¢4)] =0,

Np,
D A [=max(0, py g — ¢y,k) + min(0, py g + Cyk)]; + 20008 =0, 1<k <N,
j=1

N,
2 2 _

E TRCy ) — O = 0.

k=1

Starting with v = 1 and p° = 3° = 0, &® = T~/2qa, and \° = 1, we solve (6.8) using a
semismooth Newton method, increase 7, and compute a new solution for increased -y
with the previous solution as starting point. Once a solution satisfies the constraints
(or a stopping value v* is reached), we use it as a starting point for the solution of
(6.7) with v = 1.

Remark 6.1. By virtue of the chosen discretization (specifically, the adjoint con-
sistency of discontinuous Galerkin methods and the discrete topology mirroring the
continuous one), the discrete optimality system (6.8) coincides with the discretization
of the continuous optimality system obtained by applying Fenchel duality, the relax-
ation approach, and a Moreau—Yosida approximation to problem (P). Since the con-
tinuous optimality system may be of independent interest, the derivation is sketched
in the appendix.

7. Numerical examples. We illustrate the structure of the optimal controls
with some one-dimensional examples. For this purpose we set Q = (—1,1), T = 2,
v = 107! and consider the state equation

yr — vAy = u,
y(0) =0,
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(a) 21 (b) z2 (c) 23

Fic. 7.1. Targets for numerical experiments.

with homogeneous Dirichlet conditions. The spatial domain is discretized using N;, =
128 uniformly distributed nodes (which corresponds to h &~ 0.0156). Following (4.2),
we take N, = 1024 time steps (which corresponds to 7 = 0.00195). The targets are
chosen as (see Figure 7.1)

z1 =t(1—|2|),
1 if025<t<0.75and 0.25 < z < 0.75,
z=¢1 if1.25<t<1.75and —0.25 > = > —0.75,
0 otherwise,
1 if |2 —0.25 —t/4] < (0.2 4 /20),
z3 =141 if |z +0.25+t/4] < (0.2 — t/20),
0 otherwise.

The semismooth Newton method for the solution of the optimality system (6.7)
is implemented in MATLAB, where the initialization is calculated as discussed in
section 6 with vx+1; = 10y, and v* = 10'2. For each target the optimal control is
computed for o = 1073 and a = 10~ L. In every case, the discrete optimality system
is solved to an accuracy below 107'2, and the bounds on p, and on ¢, are attained
within machine precision.

The respective optimal controls u, (in the form of linearly interpolated expan-
sion coefficients uy; ), optimal states y,, and bounds ¢, are shown in Figures 7.2-7.4.
The predicted sparsity structure of the optimal controls can be observed clearly: The
spatiotemporal coupling of the control cost predominantly promotes spatial sparsity;
see Figure 7.3(b) in particular. The structural features of the norm ||u||z2(rq) are fur-
ther illustrated by the fact that larger values of « lead to both increased sparsity in
space and increased smoothness in time. It is instructive to compare the optimal con-
trols obtained with our |lu||z2(r) regularization to those obtained numerically using a
(Moreau—Yosida approximation of an) M (r)-norm penalty term. Figure 7.5 shows
the latter for all considered targets and values of a. While for o = 1073 both types of
control have comparable structure, for « = 107! the controls in M(Q7) demonstrate
strong temporal sparsity, which is absent in the case of controls in L2(I, M()).

We now investigate the convergence behavior as h — 0. In the absence of a
known exact solution, we take as a reference solution the computed optimal discrete
control and optimal discrete state on the finest grid with Ny« = 256 and N, = 4096,
corresponding to h* ~ 0.00781 and 7* = 0.000488. As a representative example,
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0 L L L L L L L L L 0 L L L L L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 12 14 1.6 18 2
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FIG. 7.2. Optimal control us, state y,, and bound c, for target z1 and o = 1072 (left),
a=10""1 (right).
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FIG. 7.3. Optimal control us, state y,, and bound c, for target zo and o = 1072 (left),
a=10""1 (right).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/20/13 to 193.144.185.39. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journa s/ojsa.php

PARABOLIC CONTROL PROBLEMS IN MEASURE SPACES 59

co(t)
m

(e) co () co

FIG. 7.4. Optimal control us, state yo, and bound c, for target z3 and o = 1072 (left),
a=10""1 (right).
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(a) target z1, o = 1073 (b) target z1, @ = 10~1

(c) target z2, a = 1073 (d) target z2, a = 1071

(e) target z3, a = 1073 (f) target 23, a = 10~1

F1a. 7.5. Optimal controls with M(Qr) penalty.
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h h

(a) Functional value Jj, (b) L? norm of state yy,

F1G. 7.6. Illustration of convergence order for target z1 and a = 0.1.

we consider the target z; and a = 0.1. Figure 7.6(a) shows the difference |J}, — Jp«|
for a series of successively refined grids with Nj = 32,40,...,128 and N, ) = %Nﬁ.
The observed approximately linear convergence rate agrees with the rate obtained in
Theorem 5.1. The corresponding L? error |lyn — yn«||z2 of the discrete states also
decays with a linear rate, which is faster than predicted by Theorem 5.2. A similar
behavior was observed in the elliptic case; see [2].

8. Conclusion. For the appropriate functional-analytic setting of parabolic
optimal control problems in measure spaces, there exists a straightforward approxi-
mation framework that retains the structural properties of the norm in the measure-
valued Banach space and allows deriving numerically accessible optimality conditions
as well as convergence rates. In particular, although the state is discretized, the con-
trol problem is still formulated and solved in measure space. The numerical results
demonstrate that the optimal controls exhibit the expected sparsity pattern.

Appendix. Continuous optimality system. In this section we sketch the
derivation of the continuous optimality system using Fenchel duality and the relax-
ation approach. Let S : L2(I, M(Q)) — L?(Qr) denote the solution operator corre-
sponding to the state equation (1.1) with homogeneous initial conditions. It will be
convenient to introduce the parabolic differential operator L such that the solution y
to (1.1) satisfies Ly = u. Then we can express problem (P) in reduced form as

weL (1M(©)) 2 H = yalliz(am) +allull 2 M)

To apply Fenchel duality, we set

F:L*(I, M(Q) - R, F(v) = allvllLz,m@)s
1

G:L*Qr) =R, G(v) = §||U —vallZ2rys

A L2(I,M(Q) — L*(Qr), Au = Su.
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Similarly to the discrete case, the Fenchel conjugates (with respect to the weak-x
topology) are given by

F i LA(1,C0(9) = R, Fa) = tala),
G*: L*(Qr) = R, G*(q) = 5lla + vall12or) — §Hyd||2L2(QT)v

where

L (q) _ 0 if HQHLz(I,Co(Q)) < «,
“ oo otherwise.

Due to the definition of the solution to (1.1) via duality (see Definition 2.1), we obtain
the existence of a weak-* adjoint operator A* := S* : L?(Qr) — L?(I,Co(£2)) defined
via the solution to (2.5). Furthermore, there exists a weak-* adjoint L* of L such
that, for given 1o € L?(Q27), the solution z € L*(I, Cy(Q)) of (2.5) satisfies L*2z = ).
The dual problem is then found to be

1 2
in  =|lq— «(5%q).
qeggl(gTﬂHq YallZ2(op) +ta(S7q)

We again substitute p = S*q € LZ(LCO(Q)>7 ie., ¢ = L*p, introduce ¢ € L2(I) by
c(t) = llp(t) ]l for a.e. 0 <t < T,

and consider

min 1||L* — HZ
per2(r,co(oycerany 2 P Yl @r)
(A1) st [[p(t)|loc < c(t) forae 0<t<T

T
and / c(t)?dt = o?.
0

The Moreau—Yosida regularization of (A.1) is given by

1 Y
NL*p — 2 s 0 _ 2
PEL2(1,Co(0) € L2(1) S IE°P = vallz2(ar) + 5 | max(0.p = 0)llz2(qn)

+ [l min(0,p + o)1,

T
s.t. / c(t)?dt = o?,
0

where the max and min functions should be understood pointwise in € for almost
every 0 <t < T. Its solution is denoted by (p,cy) € L2(I,Co(2)) x L3(I). Since the
cost functional is Fréchet differentiable and a Slater condition is again satisfied for
the constraint on ¢ (take ¢ = T~ /2q), we obtain existence of a Lagrange multiplier
Ay € R. Introducing once more y., satisfying L*p, = y,—yaq, this yields the continuous
optimality system

L*py = (yy — ya) =0,
Ly'y —+ ’yrnaX(O,p»y - C'y) + ’Ymin(oap'y + C’Y) = 0’

’y/ —max(0, py — ¢y) +min(0, py + ¢y) dz + 2A,cy =0,
Q

T
/ czdt—a2:0.
0
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By approximating p, and y, in ), using the fact that for linear finite elements the
pointwise maximum and minimum is attained at the nodes, and the adjoint consis-
tency of discontinuous Galerkin methods (i.e., (L*), = LL), we recover (6.8).

[13]
[14]
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