
A MICRO-MACRO PARAREAL ALGORITHM: APPLICATION TO
SINGULARLY PERTURBED ORDINARY DIFFERENTIAL

EQUATIONS

FRÉDÉRIC LEGOLL∗, TONY LELIÈVRE† , AND GIOVANNI SAMAEY‡

Abstract. We introduce a micro-macro parareal algorithm for the time-parallel integration of
multiscale-in-time systems. The algorithm first computes a cheap, but inaccurate, solution using a
coarse propagator (simulating an approximate slow macroscopic model), which is iteratively corrected
using a fine-scale propagator (accurately simulating the full microscopic dynamics). This correction
is done in parallel over many subintervals, thereby reducing the wall-clock time needed to obtain the
solution, compared to the integration of the full microscopic model over the complete time interval.
We provide a numerical analysis of the algorithm for a prototypical example of a micro-macro model,
namely singularly perturbed ordinary differential equations. We show that the computed solution
are better and better approximations of the full microscopic solution (when the parareal iterations
proceed) only if special care is taken during the coupling of the microscopic and macroscopic levels of
description. The error bound depends on the modeling error of the approximate macroscopic model.
We illustrate these results with numerical experiments.

1. Introduction. In many applications, a system is modeled using a high-
dimensional system of differential equations that captures phenomena occurring at
multiple time scales. Unfortunately, the computational cost of simulating such fine-
scale systems (which we call microscopic in this work) on macroscopic time intervals
is prohibitive, and one often resorts to low-dimensional, coarse-grained, effective mod-
els (which we call macroscopic), in which the fast degrees of freedom are eliminated.
Many methods have been proposed to obtain such macroscopic models, either ana-
lytically (see e.g. [34] for a recent overview) or numerically. We refer, for instance,
to the work on equation-free [22, 23] or heterogeneous multiscale methods [8, 9], and
references therein. However, by construction, these macroscopic models only capture
the original full microscopic dynamics approximately.

Here, we present and analyze a numerical multiscale method that aims at ef-
ficiently simulating the full microscopic dynamics (and not a macroscopic approxi-
mation of it) over long time intervals, using an effective (approximate) macroscopic
model as a predictor and the microscopic model as a corrector. To this end, we pro-
pose a micro-macro version of the parareal algorithm [26]. The parareal algorithm was
originally proposed to solve time-dependent problems using computations in parallel,
aiming at exploiting the presence of multiple processors to reduce the real (wall-clock)
time needed to obtain a solution on a long time interval. It is based on a decompo-
sition of the time interval into subintervals, and makes use of a predictor-corrector
strategy, in which the calculation of the corrections is performed concurrently on the
different processors that are available. In what follows, we propose a version of this
algorithm well-adapted to our multiscale-in-time context.

For the sake of clarity, and to better describe our aim, we now present the parareal

∗Laboratoire Navier, École Nationale des Ponts et Chaussées, Université Paris-Est, 6 et 8 av-
enue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2, France; INRIA Rocquencourt, MICMAC team-
project, Domaine de Voluceau, B.P. 105, 78153 Le Chesnay Cedex, France
†CERMICS, École Nationale des Ponts et Chaussées, Université Paris-Est, 6 et 8 avenue Blaise

Pascal, 77455 Marne-La-Vallée Cedex 2, France; INRIA Rocquencourt, MICMAC team-project,
Domaine de Voluceau, B.P. 105, 78153 Le Chesnay Cedex, France
‡Scientific Computing, Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001

Leuven, Belgium Scientific Computing, Department of Computer Science, KU Leuven, Celestijnen-
laan 200A, 3001 Leuven, Belgium

1

ar
X

iv
:1

20
4.

59
26

v2
 [

m
at

h.
N

A
]

 8
 F

eb
 2

01
3

algorithm in some detail. To fix the ideas, assume that the problem at hand is

du

dt
= f(u), u(0) = u0, u(t) ∈ Rd, t ∈ [0, T], (1.1)

the exact flow of which is denoted u(t) = Et(u0). Suppose that we have at hand two
propagators to integrate (1.1), F∆t and G∆t. The propagator F∆t is a fine, expensive
propagator, which accurately approximates the exact flow E∆t over the time range
∆t, whereas the propagator G∆t is a coarse propagator, which is a less accurate
approximation of the exact flow. In turn, G∆t is less expensive to simulate than F∆t.
For example, F∆t and G∆t may correspond to integrating (1.1) over the time range
∆t with a given discretization scheme, using either a small time step (for F∆t) or a
large time step (for G∆t). The parareal algorithm iteratively constructs a sequence
of N -tuples uk ≡ {unk}1≤n≤N (with N = T/∆t), such that, at every iteration k ≥ 0,

unk is an approximation of u(n∆t). For k = 0, the initial approximation is obtained
using the coarse propagator G∆t:

un+1
k=0 = G∆t(u

n
k=0), u0

k=0 = u0.

In the subsequent parareal iterations, the approximation is corrected using

un+1
k+1 = G∆t(u

n
k+1) + F∆t(u

n
k)− G∆t(u

n
k), (1.2)

with the initial condition u0
k+1 = u0. The solution to (1.2) can be very efficiently

computed using the following procedure. Once the solution at parareal iteration k
has been computed, we first compute the corrections F∆t(u

n
k) − G∆t(u

n
k) in parallel

over each subinterval [n∆t, (n + 1)∆t], 0 ≤ n ≤ N − 1. We then only need to
propagate these corrections sequentially, by adding G∆t(u

n
k+1) to the stored correction

F∆t(u
n
k)− G∆t(u

n
k). This yields the solution at parareal iteration k + 1.

It has been shown (see e.g. [1, 4, 3, 26, 29]) that, when k goes to infinity, the
parareal solution converges to the reference solution, namely the solution given by
the fine-scale propagator F∆t used in a sequential fashion from the initial condition:

∀n, 0 ≤ n ≤ T/∆t, lim
k→∞

unk = F (n)
∆t (u0). (1.3)

The computational gain of the parareal algorithm stems from the fact that, in (1.2),
the accurate simulations (using the fine-scale propagator F∆t) are decoupled one from
each other, and can therefore be executed in parallel on different processors. Suppose
that the cost of a single evaluation of F∆t is much larger than the cost of propagating
the system according to G∆t over the complete time range [0, T]. Assuming the cost
of the fine-scale propagator F∆t to be proportional to ∆t, the cost of K iterations of
the parareal algorithm is proportional to K∆t. This cost is to be compared to the
cost of computing the reference solution using the fine-scale propagator sequentially,
which is proportional to N∆t. The computational speed-up is thus N/K, which is
larger than one if the number K of parareal iterations to obtain convergence in (1.3)
is small enough.

In this article, we propose and analyze a micro-macro version of the parareal
algorithm. We assume that the variables in the microscopic model can be split into
slow and fast components, and that we have at hand an approximate macroscopic
model for the slow components under some time scale separation assumption (see
Section 2 for the precise model we consider here). In this setting, we will use the

2

parareal algorithm where the fine-scale propagator F∆t is an integrator for the high-
dimensional microscopic model, whereas the coarse propagator, here denoted C∆t, is
an integrator of the low-dimensional, approximate macroscopic model (we use the
notation C∆t rather than G∆t to emphasize the fact that our coarse integrator acts
on a system of smaller dimension than the reference one). The novelty therefore is
to simultaneously use two models at different levels of description, rather than two
discretizations of the same model. The cost of the coarse propagator is typically neg-
ligible for two reasons: (i) the macroscopic model only contains the slow components
of the evolution, and therefore allows for a larger time step; and (ii) the macroscopic
model is low-dimensional, and therefore requires less work per time step. Again, the
aim of the micro-macro parareal method is to speed up the computations (compared
to a full microscopic simulation) by allowing the microscopic simulations starting from
the different intermediate time instances n∆t to be performed in parallel over each
subinterval [n∆t, (n+ 1)∆t], with 0 ≤ n ≤ N − 1.

As a model problem, we take the setting of singularly perturbed systems of ODEs.
Such a model problem is a widely accepted first test case when proposing algorithms
for problems with time-scale separation, see e.g. [20]. We perform a numerical analysis
of the algorithm we propose in a linear setting (see Section 2 for the description of the
model problem, and Section 4 for the numerical analysis), and illustrate these results
by numerical simulations in Section 5. However, our algorithm is not restricted to the
linear setting, and we numerically observe in Section 6 that it performs equally well
on a nonlinear test-case.

Since its introduction in [26], the parareal strategy has been applied to a wide
range of problems, including fluid-structure interaction [11], Navier–Stokes equation
simulation [12], reservoir simulation [15], etc. The algorithm has been further analyzed
in [30, 31]. Its stability has been investigated in [3, 35]. An alternative formulation of
the algorithm has been proposed in [4], or, equivalently, in [1] in a simplified setting.
We refer to [14] for a reformulation in a more general setting that relates the parareal
strategy to earlier time-parallel algorithms, such as multiple shooting (see e.g. [21, 33])
or multigrid waveform relaxation (see e.g. [27, 36]) approaches. Several variants of the
algorithm have been proposed, for instance in [7, 11, 16] (see also [2] in the context of
stochastic differential equations). The numerical analysis of the algorithm has been
first performed for linear initial-value problems. A numerical analysis in a nonlinear
context has been proposed in [13].

A micro-macro version of the parareal algorithm, similar to what is presented in
this article, has already been considered in a number of works. The authors of [5, 28]
consider a singularly perturbed system of ordinary differential equations (ODEs) at
the microscopic level and the limiting differential-algebraic equation (DAE) at the
macroscopic level. In these two works, the coarse propagator contains all degrees
of freedom in the system. The slow degrees of freedom are evolved according to
a differential equation, and the fast degrees of freedom are evolved using algebraic
constraints (they somehow instantaneously adapt to the values of the slow degrees of
freedom). In contrast, our approach completely eliminates the fast variables from the
coarse propagator, and only evolves the slow variables. This difference has a number
of consequences:

• The coarse propagator in the algorithms proposed here is cheaper than that
of [5, 28] (because it contains less degrees of freedom) and more convenient
(because the coarse propagator simulates an ODE rather than a DAE);

• The algorithms proposed here require operators to reconstruct microscopic

3

states from macroscopic ones, while the algorithm in [5, 28] can simply use
the parareal iteration (1.2). This also influences the convergence behavior.

A detailed comparison between our algorithms and that proposed in [5, 28] is given
in Section 3.3.

Other micro-macro parareal algorithms have also been proposed, in contexts dif-
ferent from ours. In [10], a parareal algorithm for multiscale stochastic chemical
kinetics is presented, in which the macroscopic level uses the mean-field limiting
ODE. In [32], the parareal algorithm is used with a kinetic Monte Carlo model at
the macroscopic level and molecular dynamics at the microscopic level.

Our article is organized as follows. In Section 2, we present the singularly per-
turbed ODE that is considered here as a model problem, and state some bounds on its
solution (The proof of these bounds is postponed until Appendix A). Subsequently,
in Section 3, we introduce two micro-macro parareal algorithms. The coupling be-
tween the microscopic and macroscopic levels of description is done using a restriction
operator (to go from the microscopic to the macroscopic level), and either a lifting
(Algorithm 1) or a matching (Algorithm 2) operator (to go from the macroscopic
to the microscopic level). This coupling ensures that the numerical solution remains
consistent across both levels of description (see Section 3). The two algorithms we
introduce in Section 3.2 only differ in how the levels of description are coupled to each
other. Algorithm 1 will turn out to be inaccurate, whereas Algorithm 2 is extremely
accurate. For the sake of comparison, we discuss in Section 3.3 the scheme proposed
in [5, 28], that we denote here Algorithm 3. Section 4 contains a detailed numerical
analysis of these three algorithms, when applied to the linear model problem presented
in Section 2, and when the dynamics at both microscopic and macroscopic levels of
description are exactly integrated. This setting enlightens the effect of how the two
levels of description are coupled on the convergence of the algorithms. We show how
the modeling error of the approximate macroscopic model affects the accuracy. In
particular, the micro-macro parareal algorithm we introduce is a precise approxima-
tion of the full microscopic solution only if special care is taken during the coupling
of the microscopic and macroscopic levels of description, as is done in Algorithm 2.
The analysis is illustrated by numerical experiments in Section 5, where, in addition,
we numerically investigate the effect of time discretization. Some numerical results
on nonlinear problems are presented in Section 6. We observe there the same good
properties of Algorithm 2 as on linear problems. We conclude in Section 7 with some
final remarks and a discussion of possible future research.

2. Model problem. In this section, we describe the microscopic model problem
considered in this work, as well as its macroscopic limit.

Consider the dynamics

ẋ = αx+ pT y, ẏ =
1

ε
(qx−Ay) , (2.1)

where x ∈ R and y ∈ Rd−1 are the state variables, and α ∈ R, p ∈ Rd−1, q ∈ Rd−1 and
A ∈ R(d−1)×(d−1) are parameters. This dynamics models the evolution of a system
described by the state variable u = (x, y) ∈ Rd, where the slow and fast components
are x and y, respectively. We denote the initial condition by u(0) = (x(0), y(0)) =
(x0, y0) = u0. The dynamics can be compactly written as

u̇ = Bεu, (2.2)

4

where

Bε =

[
α pT

q/ε −A/ε

]
.

In the following, we assume that the fast component of the system has a simple
dissipative structure:

We assume A to be a matrix with eigenvalues λi ∈ C (1 ≤ i ≤ d− 1)

satisfying Re(λi) ≥ λ− for any 1 ≤ i ≤ d− 1, for some λ− > 0.
(2.3)

Under this assumption, for each fixed value x = x? of the slow component, the
dynamics of y, obeying the equation

ẏ =
1

ε
(qx? −Ay) ,

satisfies

lim
t→∞

y(t) =
(
A−1q

)
x?.

The dynamics of the fast component y, for fixed slow component x = x?, is thus
exponentially stable for all x?. It is then known (see Lemma 2 below and, for example,
[34] and references therein) that, in the limit ε goes to zero, the solution x(t) to (2.1)
converges, on finite time intervals, to the solution X(t) of

Ẋ = λX, X(0) = x0, λ := α+ pTA−1q. (2.4)

Comparing (2.1) with (2.4), one can see that the microscopic time-scale (namely the
typical time-step required to integrate the full microscopic dynamics (2.1)) is of the
order of ε, whereas the macroscopic time-scale (namely the typical time-step required
to integrate the approximate macroscopic dynamics (2.4)) is independent of ε.

Remark 1. The asymptotic result that we mentioned above on the system (2.1)
holds for more general cases. For instance, consider the dynamics

ẋ = f(x, y), ẏ =
1

ε
(η(x)−Ay) , (2.5)

with again x ∈ R, y ∈ Rd−1 and A ∈ R(d−1)×(d−1), and where f : R× Rd−1 → R and
η : R → Rd−1 are two given, possibly nonlinear functions. Under Assumption (2.3),
the solution x(t) to (2.5) converges to X(t), solution to

Ẋ = F (X), X(0) = x0, F (X) = f(X,A−1η(X)).

This result can also be extended to more general nonlinear cases [34].

For future reference, we introduce the exact time evolution operators,

u(t∗ + ∆t) = Φ∆t (u(t∗)) , X(t∗ + ∆t) = ρ∆t (X(t∗)) ,

corresponding to (2.2) and (2.4), respectively. These equations are linear, hence the
operators Φ∆t and ρ∆t are linear:

Φ∆t = exp(Bε∆t) ∈ Rd×d, (2.6)

ρ∆t = exp(λ∆t) ∈ R. (2.7)

5

We now state some bounds on the solutions of (2.1), that will be useful in Sec-
tion 4, when proving error bounds on the algorithms we propose.

Lemma 2. Consider the linear system (2.1) over the time range [0, T], with the
initial condition x(0) = x0, y(0) = y0. Introduce z(t) = y(t)− A−1q x(t) ∈ Rd−1 and
z0 = z(0). Under Assumption (2.3), there exist ε0 ∈ (0, 1) and C > 0, that both only
depend on A, q, p, α and T , such that, for all ε < ε0,

sup
t∈[0,T]

|x(t)− x0 exp(λt)| ≤ Cε(|x0|+ ‖z0‖), (2.8)

sup
t∈[0,T]

‖z(t)− exp (−At/ε) z0‖ ≤ Cε (|x0|+ ‖z0‖) . (2.9)

Set

tBL
ε =

2ε

λ−
ln(1/ε). (2.10)

Then, for all ε < ε0, we have

sup
t∈[tBL

ε ,T]

‖z(t)‖ ≤ Cε (|x0|+ ‖z0‖) . (2.11)

Hence, up to a boundary layer of size tBL
ε , z(t) is of order ε, and the state u(t) of the

system is at a distance of the order of ε of the manifold

Σ :=
{
u = (x, y) ∈ Rd; y = A−1q x

}
. (2.12)

We call the manifold Σ the slow manifold. Note that the bound (2.11) is sharp
in the sense that, after the initial time boundary layer, z(t) is of order ε and not
smaller. This can be checked for example on the analytically solvable system ẋ = −x,
ẏ = (x− y)/ε.

An important consequence of the above lemma is that the microscopic solution
u(t) = (x(t), y(t)) remains bounded, independently of ε, on the time range [0, T]. The
following result, which will be used repeatedly in the sequel, follows immediately from
Lemma 2:

Corollary 3. Consider the linear system (2.1) over the time range [0, T], with
initial condition x(0) = x0, y(0) = y0. Under Assumption (2.3), there exist ε0 ∈ (0, 1)
and C > 0, that both only depend on A, q, p, α and T , such that, for all ε < ε0, we
have

sup
t∈[0,T]

|x(t)| ≤ C (|x0|+ ε‖y0‖) , (2.13)

sup
t∈[tBL

ε ,T]

‖y(t)‖ ≤ C (|x0|+ ε‖y0‖) , (2.14)

where the size tBL
ε of the boundary layer is defined by (2.10).

The proofs of these standard results are postponed until Appendix A. In view
of (2.8), we see that, in the limit when ε goes to zero, the macroscopic dynamics (2.4)
is exact. The aim of the algorithms we investigate below is to use these macroscopic
dynamics to speed up the computation of the solution of the original model (2.1), for
a fixed small but non-zero value of ε.

6

3. Micro-macro parareal algorithms. In this section, we describe two micro-
macro parareal algorithms. As will become clear from the analysis in the forthcoming
sections, the first one based on a lifting operator is inaccurate, whereas the second
one based on a matching operator is extremely accurate. Both are generalizations
of the parareal algorithm proposed in [26]. Our formulation follows most closely the
description in [1]. We first introduce the necessary notation in Section 3.1, and we
subsequently outline both algorithms in Section 3.2. For the sake of comparison, we
also discuss in Section 3.3 the scheme proposed in [5, 28]. Let us emphasize that the
two algorithms we introduce are not restricted to the linear system (2.1), and apply
to any system of the form

ẋ = f(x, y), ẏ =
1

ε
g(x, y),

where x ∈ Rs is a slow component (s ∈ N?), y ∈ Rm is a fast component (m ∈ N?),
and where the associated macroscopic dynamics (obtained in the limit of infinite time
scale separation between the slow and the fast components, namely in the limit when
ε goes to zero) reads Ẋ = F (X).

3.1. Notation. We introduce a time discretization (tn)Nn=0, with tn = n∆t and
N∆t = T . Let un = (xn, yn) ≈ u(tn) = (x(tn), y(tn)) be the numerical approximation
of the solution of the microscopic model (2.1), and let Xn ≈ X(tn) be that of the
solution to the macroscopic model (2.4).

Fine-scale and coarse propagators. The micro-macro parareal algorithm makes
use of two propagators. First, we need a fine-scale propagator, that advances the
microscopic model (2.1) over a time-range ∆t:

un+1 = F∆t(u
n). (3.1)

To perform this, we may consider that we have at hand the exact propagator of the
equation (2.1), in which case F∆t ≡ Φ∆t, where Φ∆t is defined by (2.6). Alternatively,
we may resort to a numerical integration of the dynamics (2.1) (using for example
forward or backward Euler discretizations) over the time range ∆t, using several steps
of size δt. Typically, in the context of a system like (2.1), one would need δt to be of
the order of ε to obtain accurate results.

Second, we need a coarse propagator for the macroscopic model (2.4),

Xn+1 = C∆t(Xn), (3.2)

where again we may assume that we can exactly integrate (2.4) and hence choose
C∆t ≡ ρ∆t, see (2.7). Alternatively, one may resort to a numerical integration of the
dynamics (2.4), for which we can use a time-step independent of ε to obtain accurate
results.

Restriction, lifting and matching operators. The parareal algorithm iteratively
uses the fine-scale and the coarse propagators. In this work, these two propagators
correspond to different descriptions of the system, either microscopic (using u ∈ Rd)
or macroscopic (using X ∈ R). We thus need a way to go from one description to the
other, as we discuss now.

We first introduce the restriction operator

R :

{
Rd → R

u = (x, y) 7→ x,

7

which maps a microscopic state to the corresponding macroscopic state. For nota-
tional convenience, we also introduce the complement of the restriction operator,

R⊥ :

{
Rd → Rd−1

u = (x, y) 7→ y,

such that we can write u = (x, y) = (Ru,R⊥u).
Conversely, we will also need to reconstruct a microscopic state from a given

macroscopic state. In contrast to the restriction operator, there is no unique obvious
way to define this operator. We introduce two such operators, a lifting operator and
a matching operator.

Definition 4. A lifting operator L is an operator

L :

{
R → Rd
X 7→ u = L(X)

that creates a microscopic state that is uniquely determined by a given macroscopic
state and satisfies the consistency property

R ◦ L = Id . (3.3)

A possible choice is to take L(X) such that

R(L(X)) = X and L(X) ∈ Σ, (3.4)

where Σ is the slow manifold associated to the multiscale problem.
In connection with the system (2.1), an example (and this is the choice we make

in this work) is to choose

L(X) = (X, (A−1q)X). (3.5)

This choice indeed satisfies (3.3) and (3.4), where the slow manifold Σ of the sys-
tem (2.1) is defined by (2.12).

Remark 5. Other lifting operators can be introduced, using for example the
constrained runs algorithm [18]. As soon as the lifting operator L is specified, u is
uniquely determined by X: the lifting operator enforces a closure approximation on
the microscopic state.

Alternatively, one may reconstruct a microscopic state using a matching operator.

Definition 6. A matching operator is an operator

P :

{
R× Rd → Rd
(X, v) 7→ PX(v),

that satisfies

X = (R ◦ P) (X, v) for any v ∈ Rd and X ∈ R, (3.6)

and

∀u ∈ Rd such that R(u) = X, PX(u) = u,

8

or, equivalently,

∀u ∈ Rd, P(R(u), u) = u. (3.7)

In contrast with a lifting operator, a matching operator requires a microscopic state
as an input, and not only a macroscopic state.

The consistency property (3.6) may be seen as the equivalent for P of the prop-
erty (3.3) for L. We also note that, in view of (3.7), a microscopic state u which
is already consistent with the macroscopic value X is unaltered by the operator
PX . Combining (3.6) and (3.7), we observe that PX ◦ PX = PX : the operator
PX : Rd → Rd is thus a projection operator onto microscopic states u ∈ Rd that
satisfy R(u) = X. One may thus think of PX as a projection operator that projects
a microscopic state v to a microscopic state u = PX(v), such that R(u) = X and u
is as close to v as possible, in a sense to be made precise for the problem at hand.

In the following, we require in addition the following continuity property on P:
there exists C > 0 such that, for all X ∈ R, Y ∈ R, u ∈ Rd and v ∈ Rd,

‖P(X,u)− P(Y, v)‖ ≤ C
[
‖u− v‖+ |X − Y |

]
. (3.8)

For the analysis of the algorithms described below, we only require P to sat-
isfy (3.6), (3.7) and (3.8), and do not make any additional assumptions (see Section 4).
For the numerical experiments reported on in Section 5, we choose, in the context of
the system (2.1),

PX(v) := (X,R⊥v), (3.9)

which consists in keeping the fast variables from v, while imposing the slow variable
to be equal to X. This choice fulfills all the above conditions (3.6), (3.7) and (3.8).

Remark 7. The term matching operator has been chosen in reminiscence of the
term “moment matching” that is commonly used in the Monte Carlo community, see
e.g. [6].

3.2. Algorithms 1 and 2. The parareal algorithm iteratively constructs ap-
proximations on the whole time domain [0, T]. We denote by unk , resp. Xn

k , the
approximate microscopic, resp. macroscopic, solution at time tn, obtained at the k-th
parareal iteration.

The first algorithm we consider is the following.

Algorithm 1. Let u(0) = u0 be the initial condition.

1. Initialization:
a) Compute {Xn

0 }0≤n≤N sequentially by using the coarse propagator:

X0
0 = R(u0), Xn+1

0 = C∆t(Xn
0).

b) Lift the macroscopic approximation to the microscopic level:

u0
0 = u0 and, for all 1 ≤ n ≤ N , un0 = L(Xn

0).

2. Assume that, for some k ≥ 0, the sequences {unk}0≤n≤N and {Xn
k }0≤n≤N are

known. Compute these sequences at the iteration k+ 1 by the following steps:

9

a) For all 0 ≤ n ≤ N − 1, compute (in parallel) using the coarse and the
fine-scale propagators

X
n+1

k = C∆t(Xn
k), un+1

k = F∆t(u
n
k). (3.10)

b) For all 0 ≤ n ≤ N − 1, evaluate the jumps (the difference between the two
propagated values) at the macroscopic level:

Jn+1
k = R(un+1

k)−Xn+1

k . (3.11)

c) Compute
{
Xn
k+1

}
0≤n≤N sequentially by

X0
k+1 = R(u0), Xn+1

k+1 = C∆t(Xn
k+1) + Jn+1

k . (3.12)

d) Compute
{
un+1
k+1

}
0≤n≤N−1

by lifting the macroscopic solution:

u0
k+1 = u0 and, for all 0 ≤ n ≤ N − 1, un+1

k+1 = L(Xn+1
k+1). (3.13)

We can recast the above algorithm as

un+1
k+1 = L

(
C∆t

(
R
(
unk+1

))
+R (F∆t (unk))− C∆t (R (unk))

)
. (3.14)

Notice that this cannot be recast in the form of the original parareal algorithm (1.2).
The above algorithm uses the following paradigm: each time we need to reconstruct
a full microscopic solution u from a given macroscopic state X, we use the lifting
operator L. For example, for the system (2.1) and L given by (3.5), this amounts to
creating a microscopic state exactly on the slow manifold (2.12).

We will see in the sequel that this algorithm leads to disappointing results. In
particular, Algorithm 1 does not retain one of the properties of the parareal algorithm
as originally proposed in [26], namely that the numerical trajectory is exact on the
first k subintervals in time after k iterations of the parareal algorithm.

A much better algorithm is the following:

Algorithm 2. Let u(0) = u0 be the initial condition.
1. Initialization: proceed as in Step 1 of Algorithm 1.
2. Assume that, for some k ≥ 0, the sequences {unk}0≤n≤N and {Xn

k }0≤n≤N are
known. To compute these sequences at the iteration k + 1,
• Proceed as in Steps 2a, 2b and 2c of Algorithm 1.
• Compute

{
un+1
k+1

}
0≤n≤N−1

by matching the result of the local microscopic

computation, un+1
k , on the corrected macroscopic state Xn+1

k+1 :

u0
k+1 = u0 and, for all 0 ≤ n ≤ N − 1, un+1

k+1 = P(Xn+1
k+1 , u

n+1
k).

(3.15)
The only difference between Algorithms 1 and 2 is how we reconstruct the micro-

scopic solution un+1
k+1 . In Algorithm 1, we simply choose un+1

k+1 on the slow manifold

defined by Xn+1
k+1 (see (3.13)). In Algorithm 2, we use the quantity un+1

k , which is the
end point of a microscopic trajectory between times n∆t and (n + 1)∆t, and match
this state onto the corrected macroscopic state Xn+1

k+1 , obtained at the latest parareal
iteration.

10

At the initial iteration k = 0, since no microscopic computation has been done,
we cannot use the matching operator P to reconstruct a fine-scale solution. We thus
resort to the lifting operator L.

Algorithm 2 can be recast as

un+1
k+1 = P

(
C∆t

(
R
(
unk+1

))
+R (F∆t (unk))− C∆t (R (unk)) ,F∆t(u

n
k)
)
, (3.16)

which is to be compared with the original parareal algorithm (1.2) and (3.14) for
Algorithm 1. For the linear system (2.1) and the choice (3.9) of matching operator,
the equation (3.16) can be further simplified to

un+1
k+1 = F∆t(u

n
k) + (1, 0)T

(
C∆t

(
R
(
unk+1

))
− C∆t (R (unk))

)
. (3.17)

This is exactly (1.2) with F∆t as the fine propagator and (1, 0)TC∆tR as the coarse
propagator.

Note that, in view of (3.3) and (3.13) (respectively (3.6) and (3.15)), the trajec-
tories computed using Algorithm 1 (respectively Algorithm 2) satisfy

∀k ≥ 0, ∀n ≥ 0, Xn
k = R(unk). (3.18)

At any parareal iteration k, the macroscopic trajectory is consistent with the micro-
scopic trajectory.

3.3. Comparison of Algorithms 1 and 2 with that of [5, 28]. As underlined
in the introduction, a micro-macro version of the parareal algorithm has already been
proposed in [28, 5]. In these works, the coarse propagator is an integrator of a reduced
(DAE) model that contains all degrees of freedom in the system (both the fast and
slow ones), in contrast to our algorithms, where the coarse propagator is an integrator
for the effective dynamics of the slow degrees of freedom.

For the model problem (2.1), the reduced DAE considered in [28, 5] takes the
form

ẋ = αx+ pT y, Ay = qx. (3.19)

The coarse propagator of [28, 5] is an integrator G∆t of (3.19). This coarse inte-
grator is combined with a fine-scale integrator F∆t of (2.1) in the parareal fashion,
following (1.2).

The obtained scheme, that we denote here Algorithm 3, differs from our Algo-
rithm 2 in its treatment of the fast degrees of freedom. To show this, we note that,
specifically for the model problem (2.1), an exact propagator for (3.19) can be ob-
tained by first solving (2.4) exactly, and second solving the algebraic equation for y.
Hence, we have

G∆t(u) = L ◦ ρ∆t ◦ R u = L ◦ C∆t ◦ R u (3.20)

where, we recall, C∆t is the coarse propagator used in Algorithms 1 and 2. Using (1.2),
we write Algorithm 3 as follows:

un+1
k+1 = F∆t(u

n
k) + G∆t

(
unk+1

)
− G∆t (unk)

= F∆t(u
n
k) + L

(
C∆t

(
R
(
unk+1

))
− C∆t (R (unk))

)
, (3.21)

11

which can be compared with (3.17) and with (3.14). Notice in particular that Algo-
rithm 2 differs from Algorithm 3 in the choice of the coarse propagator.

The three algorithms only differ in how the microscopic and macroscopic levels
of description are coupled in the parareal iterations. These differences, however, have
implications on (i) the computational complexity of the methods; (ii) the way they
generalize to more complex multiscale systems; and (iii) the convergence behavior.
The convergence properties of the three algorithms are analyzed in Section 4. We here
briefly comment on the other two aspects. First, the computational complexity of the
coarse propagator in Algorithm 3 is significantly higher than that of Algorithms 1
and 2, due to the presence of the fast degrees of freedom, which requires solving a
large linear system in addition to the time-stepping of the slow degrees of freedom.

Second, in more complex situations, for instance when the microscopic and macro-
scopic systems are nonlinear, Algorithm 3 may require the use of a time integrator
for DAEs. Although many such integrators exist, they are usually implicit, and less
convenient than ODE solvers. In those cases, Algorithms 1 and 2 only require a
reasonable model to propagate the macroscopic variables. In both cases, one may
resort to computational multiscale methods that approximate the evolution of the
approximate macroscopic model by using short microscopic simulations. The coarse
propagator required in Algorithms 1 and 2 can be replaced by a coarse projective
integration approach [22, 23]. The coarse propagator for the DAE system required
in Algorithm 3 can be replaced by a projective integration method [17, 19]. Remark
that the computational cost of both methods is not identical: projective integration
requires a computational cost of O(log(1/ε)), whereas the computational cost of coarse
projective integration is independent of ε. This shows again that Algorithms 1 and 2
are cheaper to implement than Algorithm 3. We will see in the next Section to what
extent the higher computational cost of Algorithm 3 allows for a better accuracy.

4. Analysis. In this section, we analyze the convergence of the two micro-macro
parareal algorithms introduced above on the linear model problem (2.1). We also give
a detailed analysis for Algorithm 3, introduced in [5, 28]. To keep the analysis simple,
we focus on the error due to the fact that the models are different at the macroscopic
and microscopic levels. We thus track the dependency of the error bounds on the
parameter ε, and consider, at both levels, the exact propagators (2.6) and (2.7).
Thus, the fine-scale and coarse propagators in (3.1) and (3.2) are given by

F∆t(u) = Φ∆tu, C∆t(X) = ρ∆tX,

for a fixed ∆t, which is chosen typically much larger than ε (so that ∆t is a macroscopic
time-scale). We recall that the lifting operator L is defined by (3.5), and that we work
with a matching operator P satisfying (3.6), (3.7) and (3.8).

We first derive an error recursion formula in Section 4.1. Using this formula,
we derive a sharp error bound on the trajectories computed by Algorithm 1, where
the microscopic state is reconstructed using the lifting operator L (see Section 4.2).
We next turn to Algorithm 2, where the microscopic state is reconstructed using
a matching operator P. We first show that, at a given parareal iteration k, the
computed trajectories (both at the macro and the micro scales) are exact up to the
time k∆t (see Section 4.3.1), reproducing thereby a property of the standard parareal
algorithm. We subsequently derive a sharp error bound in terms of ε, showing that,
at iteration k, Algorithm 2 converges to the exact solution of the full microscopic
system with an error of the order of εk/2 (see Section 4.3.2 for precise statements).

12

These two properties (exactness of the trajectories up to time k∆t after k iterations,
and improvement of the convergence rate to the exact solution as k increases) are not
satisfied for Algorithm 1. We eventually consider Algorithm 3. Being based on (1.2),
this algorithm automatically satisfies the local exactness property. We then prove a
sharp error bound in terms of ε, showing, in agreement with [28], that, at iteration
k, Algorithm 3 converges to the exact solution of the full microscopic system with an
error of the order of εk (see Section 4.4 for precise statements).

The analysis below closely follows that of [26], but is significantly extended. We
explicitly relate to the case considered in [26] when appropriate.

Before proceeding, we introduce two notions of error:

Definition 8 (Microscopic error). Let u(tn) be the exact microscopic solution
of (2.2) at time tn = n∆t, and let unk be the parareal microscopic solution after k
parareal iterations, using Algorithm 1 or 2. The microscopic error

enk = unk − u(tn) (4.1)

is defined as the difference of the solutions at the microscopic level.

Definition 9 (Macroscopic error). Let u(tn) be the exact microscopic solution
of (2.2) at time tn = n∆t, and let Xn

k be the parareal macroscopic solution after k
parareal iterations, using Algorithm 1 or 2. The macroscopic error

Enk = Xn
k −Ru(tn) (4.2)

is defined as the difference of the solutions at the macroscopic level.

Note that, in view of (3.18) and using the linearity of R, we have

Enk = Renk . (4.3)

4.1. Error recursion formula. A first step in the analysis of the algorithms
described above is the derivation of a recursion formula for the error, which is valid for
both algorithms and for any choice of the operators R, L and P. Starting from (3.12)
and (3.11), we write Xn

k+1 as a function of the microscopic and macroscopic solutions
at the parareal iteration k: for n ≥ 2,

Xn
k+1 = C∆t(Xn−1

k+1) + Jnk

= ρ∆tX
n−1
k+1 +

(
RΦ∆tu

n−1
k − ρ∆tX

n−1
k

)

= RΦ∆tu
n−1
k + ρ∆t

(
Xn−1
k+1 −Xn−1

k

)

= RΦ∆tu
n−1
k + ρ∆t

(
RΦ∆tu

n−2
k + ρ∆t

(
Xn−2
k+1 −Xn−2

k

)
−Xn−1

k

)

= RΦ∆tu
n−1
k + ρ∆t

(
RΦ∆tu

n−2
k −Xn−1

k

)
+ ρ2

∆t

(
Xn−2
k+1 −Xn−2

k

)

= RΦ∆tu
n−1
k +

n−1∑

p=1

ρp∆t

(
RΦ∆tu

n−p−1
k −Xn−p

k

)

= RΦ∆tu
n−1
k +

n−1∑

p=1

ρn−p∆t

(
RΦ∆tu

p−1
k −Xp

k

)
. (4.4)

This formula is also valid for n = 1 using the convention
∑0
p=1 · = 0. Note that we

have used the linearity of the coarse propagator. We then obtain a recursion for the

13

macroscopic error, using the linearity of the fine-scale propagator:

Enk+1 = Xn
k+1 −RΦn∆tu0

= RΦ∆tu
n−1
k −RΦn∆tu0 +

n−1∑

p=1

ρn−p∆t

(
RΦ∆tu

p−1
k −Xp

k

)

= RΦ∆te
n−1
k +

n−1∑

p=1

ρn−p∆t

(
RΦ∆tu

p−1
k −RΦp∆tu0 +RΦp∆tu0 −Xp

k

)

= RΦ∆te
n−1
k +

n−1∑

p=1

ρn−p∆t

(
RΦ∆te

p−1
k − Epk

)

= RΦ∆te
n−1
k +

n−2∑

p=0

ρn−p−1
∆t RΦ∆te

p
k −

n−1∑

p=1

ρn−p∆t E
p
k

=

n−1∑

p=1

ρn−p−1
∆t (RΦ∆te

p
k − ρ∆tE

p
k) , (4.5)

where, in the last line, we have used the fact that the microscopic error at t = 0
vanishes: e0

k = 0 for any k.
We remark that the formula (4.5) is not closed, in the sense that it couples

the macroscopic error at parareal iteration k + 1 to both the macroscopic and the
microscopic errors at parareal iteration k. To close the formula, and to transform it
into specific bounds on the errors, we will need to make use of specific properties of
Φ∆t and of the lifting, matching and restriction operators L, P and R. This is where
the analysis of Algorithms 1 and 2 differ.

Remark 10. Using (4.5), it is possible to recover standard error bounds on the
parareal algorithm, when the microscopic and the macroscopic models are linear and
written at the same level of description, using a common state variable u ∈ R, as
in [26] for example. In this case, we have R = L = P = Id (there is only one model,
and one level of description), and enk = Enk . The coarse and fine-scale propagators are
linear operators, denoted respectively by C∆t(u) = G∆t(u) = ρG∆tu and F∆t(u) = ρF∆tu.
Since u is scalar, the propagators are simply multiplications by two scalars ρG∆t and
ρF∆t. The equation (4.5) then reads

Enk+1 =

n−1∑

p=1

(ρG∆t)
n−p−1

(
ρF∆t − ρG∆t

)
Epk . (4.6)

Assume, as in the classical analysis of the parareal algorithm presented in [26], that the
fine-scale propagator is exact, whereas the coarse propagator is a scheme of order s:∣∣ρF∆t − ρG∆t

∣∣ = O(∆ts+1). We consider a range of ∆t such that ρG∆t > 0 (which is
possible since ρG∆t = 1 +O(∆t)). Fix a time range [0, T]. We show that, using (4.6),
one can recover the classical result of [26]: at any parareal iteration k, there exists ck
such that, for any ∆t,

sup
0≤n∆t≤T

|Enk | ≤ ck∆ts(k+1). (4.7)

This bound is satisfied at k = 0 since the coarse propagator is of order s. Assume now
that (4.7) holds at some parareal iteration k. We then deduce from (4.6) that, for all

14

n ≥ 0 such that n∆t ≤ T ,

∣∣Enk+1

∣∣ ≤ ck∆ts(k+1)
∣∣ρF∆t − ρG∆t

∣∣
n−1∑

p=1

(ρG∆t)
n−p−1 ≤ Cck∆ts(k+1)∆ts+1

N−1∑

p=0

(ρG∆t)
p.

(4.8)
Remark now that

N−1∑

p=0

(ρG∆t)
p =

(ρG∆t)
N − 1

ρG∆t − 1
=

(ρG∆t)
N − (ρF∆t)

N

ρG∆t − 1
+

(ρF∆t)
N − 1

ρG∆t − 1
.

Since the fine-scale propagator is exact, we have (ρF∆t)
N = ρFN∆t = ρFT , which is

independent of ∆t. Thus

∣∣∣∣∣
N−1∑

p=0

(ρG∆t)
p

∣∣∣∣∣ ≤
C∆ts + C∣∣ρG∆t − 1

∣∣ ≤
C

∆t
. (4.9)

Collecting (4.8) and (4.9), we deduce (4.7) at the parareal iteration k + 1. This
concludes the proof.

4.2. Error bounds for Algorithm 1. We consider Algorithm 1, where the
reconstruction at each parareal iteration is done using the lifting operator L defined
by (3.5). We show in this section that the accuracy of the numerical trajectory
does not improve (neither at the microscale nor at the macroscale) as the number of
parareal iterations k goes to infinity.

Theorem 11. Consider Algorithm 1, where F∆t is the exact propagator of the
microscopic problem (2.1), C∆t is the exact propagator of the associated macroscopic
problem (2.4), and L is the lifting operator defined by (3.5). We fix the time range
[0, T], and recall that the size of the boundary layer tBL

ε in (2.1) is defined by (2.10).
Then, there exists ε0 ∈ (0, 1), that only depends on A, q, p, α and T , such that,

for all ε < ε0 and all ∆t > tBL
ε , there exists C, that depends on A, q, p, α, ∆t and T

such that

sup
0≤n≤N

|En0 | ≤ Cε and, for all k ≥ 1, sup
0≤n≤N

|Enk | ≤ Cε2, (4.10)

for all k ≥ 0, sup
0≤n≤N

‖enk‖ ≤ Cε, (4.11)

where N = T/∆t and where the macroscopic (resp. microscopic) error Enk (resp. enk)
is defined by (4.2) (resp. (4.1)). Note that C is independent from ε and k.

The numerical experiments described in Section 5 show that these error estimates
are sharp. Recall that tBL

ε = Cε ln(1/ε) for some constant C only depending on the
matrix A of (2.1) (see (2.10)). The assumption ∆t > tBL

ε = Cε ln(1/ε) is therefore
automatically satisfied for sufficiently small ε, and in particular when the time-step
∆t is of the order of the macroscopic time scale.

Proof. Using the definitions (4.1) and (4.2) of the microscopic and the macro-
scopic errors, and the fact that the microscopic state is reconstructed via the lifting
operator L,

unk = LXn
k ,

15

we have

LEnk = LXn
k − LRΦn∆tu0 = unk − LRΦn∆tu0 = enk + Φn∆tu0 − LRΦn∆tu0,

or, equivalently,

enk = LEnk − (Id−LR) Φn∆tu0. (4.12)

As a consequence, we can write the recursion (4.5) for Enk+1 in terms of Epk only, by
eliminating the microscopic errors epk. We have

RΦ∆te
p
k − ρ∆tE

p
k = RΦ∆t [LEpk − (Id−LR) Φp∆tu0]− ρ∆tE

p
k

= (RΦ∆tL − ρ∆t) E
p
k −RΦ∆t (Id−LR) Φp∆tu0. (4.13)

The first term in (4.13) stems from the difference between the macroscopic evolution
of the microscopic system and the evolution of the approximate macroscopic equation.
The second term stems from the difference in evolution between a microscopic state
and the (unique) microscopic state that is obtained by lifting its restriction. To bound
the first term in (4.13), we observe that

|RΦ∆tL − ρ∆t| ≤ Cε. (4.14)

Consider indeed the system (2.1) with the initial condition (x0, y0) = L(x0). Then
z0 = 0 (because L(x0) ∈ Σ, see (3.5)), and we deduce from (2.8) that

|x(∆t)− x0 exp(λ∆t)| ≤ Cε|x0|,

that reads

|RΦ∆tL(x0)− ρ∆tx0| ≤ Cε|x0|,

from which we infer (4.14).
We now turn to the second term of equation (4.13). We introduce the shorthand

notation for the exact solution

Φp∆tu0 = ũp =
(
Rũp,R⊥ũp

)
= (x̃p, ỹp) .

First, using the definition (3.5) for L, we write

(Id−LR) Φp∆tu0 =

[
0

ỹp − (A−1q) x̃p

]
.

Second, using (2.13) with the initial condition x0 = 0, y0 = ỹp − (A−1q) x̃p, we get

|RΦ∆t (Id−LR) Φp∆tu0| ≤ Cε
∥∥ỹp − (A−1q) x̃p

∥∥ . (4.15)

We are now left with bounding
∥∥ỹp − (A−1q) x̃p

∥∥. We note that ỹp − (A−1q) x̃p =
z(p∆t), thus, using (2.11) for the solution u(p∆t) = Φp∆tu0, we deduce that

∥∥ỹp − (A−1q) x̃p
∥∥ = ‖z(p∆t)‖ ≤ Cε (|x0|+ ‖z0‖) ≤ Cε.

Note that we have used the fact that p ≥ 1 and ∆t ≥ tBL
ε , hence p∆t ≥ tBL

ε . We then
deduce from (4.15) that

|RΦ∆t (Id−LR) Φp∆tu0| ≤ Cε2. (4.16)

16

Collecting (4.13), (4.14) and (4.16), we obtain

|RΦ∆te
p
k − ρ∆tE

p
k | ≤ Cε (|Epk |+ ε) ,

where C only depends on A, q, p, α, T and ∆t.
Inserting this bound into the error recursion (4.5), and using that ρ∆t > 0

(see (2.7)), we get

∣∣Enk+1

∣∣ ≤ Cε
n−1∑

p=1

ρn−p−1
∆t (|Epk |+ ε) .

We now introduce Ẽk := max0≤n≤T/∆t |Enk |, and write

∣∣Enk+1

∣∣ ≤ Cε
(
Ẽk + ε

) n−1∑

p=1

ρn−p−1
∆t = Cε

(
Ẽk + ε

) 1− ρn−1
∆t

1− ρ∆t
.

Let m := max
0≤n≤N

1− ρn∆t
1− ρ∆t

, which only depends on ∆t, T and λ. We obtain

Ẽk+1 ≤ Cmε
(
Ẽk + ε

)
,

where Cm only depends on A, q, p, α, T and ∆t (and is in particular independent of
k and ε). We thus have

0 ≤ Ẽk ≤ vk
where the sequence {vk}k∈N is recursively defined by vk+1 = Cmε (vk + ε) and v0 =

Ẽ0, so that

vk = Ẽ0(Cmε)k + Cmε2
1− (Cmε)k

1− Cmε .

Note that the bound (2.8) reads |x(t)−X(t)| ≤ Cε, hence v0 = Ẽ0 ≤ Cε.
Let us choose ε0 = 1/(Cm). Notice that ε0 only depends on A, q, p, α, T and ∆t.

For any ε ∈ (0, ε0), the sequence vk has a limit as k goes to infinity and there exists
C, independent of k and ε, such that

0 ≤ Ẽ0 ≤ Cε and ∀k ≥ 1, 0 ≤ Ẽk ≤ vk ≤ Cε2.
This proves the bound (4.10) on the macroscopic error.

To prove the error bound on the microscopic error, we notice, using the defini-
tion (3.5) of L, that

(Id−LR) Φn∆tu0 = (Id−LR) u(n∆t) =
(

0, y(n∆t)− (A−1q)x(n∆t)
)
.

Since ∆t ≥ tBL
ε , we deduce from (2.11) that

∀n ≥ 1, ‖(Id−LR) Φn∆tu0‖ ≤ Cε. (4.17)

Collecting (4.12), (4.10) and (4.17), we obtain, for any k ≥ 0,

∀n ≥ 1, ‖enk‖ ≤ C|Enk |+ ‖(Id−LR) Φn∆tu0‖ ≤ Cε.
Note that the microscopic error is always dominated by the lifting error (the second
term of (4.12)).

Since, at any parareal iteration k, we start with the correct initial condition, we
have e0

k = 0 and we thus have proved (4.11).

17

4.3. Error bounds for Algorithm 2. We now consider Algorithm 2, where
the reconstruction at each parareal iteration is done using any matching operator P
satisfying (3.6) and (3.7). The continuity assumption (3.8) will be added when needed.
As pointed out above, we do not assume any specific expression for P here. We show
in Section 4.3.2 that, in contrast to Algorithm 1, the convergence rate obtained with
Algorithm 2 increases as the number of parareal iterations k increases. Before that, we
show in Section 4.3.1 that, at a given parareal iteration k, the computed trajectories
(again both at the macro and the micro scales) are exact up to the time k∆t.

4.3.1. Local exactness of the algorithm. One of the important properties
of the parareal algorithm (1.2) is that it results, after k parareal iterations, in a
solution that is exact at all times up to k∆t. The word “exact” here means that the
parareal solution is equal to the solution that would have been obtained using only,
in a sequential fashion, the fine-scale propagator up to time k∆t. We now show that
this exactness property holds for the micro-macro parareal algorithm we propose.

Theorem 12. Consider Algorithm 2, where F∆t is the exact propagator of the
microscopic problem (2.1), C∆t is the exact propagator of the associated macroscopic
problem (2.4), L is the lifting operator defined by (3.5) and P is a matching operator
satisfying (3.6) and (3.7).

Denote by unk the microscopic solution obtained at the n-th time-step and k-th
parareal iteration, using Algorithm 2. Then, at any parareal iteration k ≥ 1, we have

∀p ≤ k, upk = Φp∆tu0. (4.18)

Proof. The proof goes by induction. Consider the parareal iteration k = 1. We
obviously have u0

1 = u0 = Φ0
∆tu0. At time iteration n = 1, in view of (3.15), we have

u1
1 = P(X1

1 , u
1
0),

with (see (3.12))

X1
1 = C∆t(X0

1) +R(u1
0)−X1

0 = C∆t(X0
1) +R(u1

0)− C∆t(X0
0) = R(u1

0).

Hence, using the fundamental property (3.7),

u1
1 = P(R(u1

0), u1
0) = u1

0 = F∆t(u
0
0) = Φ∆tu0.

This proves (4.18) for k = 1.
Assume now that, at some parareal iteration k ≥ 1, we have (4.18). In view

of (3.18), this implies that Xp
k = R [Φp∆tu0] for any p ≤ k. Using (4.4) and the fact

that Φ∆tu
p−1
k = Φp∆tu0 for all p ≤ k, we deduce that

∀n ≤ k + 1, Xn
k+1 = RΦ∆tu

n−1
k = RΦn∆tu0. (4.19)

Hence, at the parareal iteration k + 1, the macroscopic solution is exact up to time
(k + 1)∆t. Using (3.15), we now write, for any n ≤ k,

un+1
k+1 = P(Xn+1

k+1 , u
n+1
k) = P(RΦn+1

∆t u0,Φ∆tu
n
k) = P(RΦn+1

∆t u0,Φ
n+1
∆t u0) = Φn+1

∆t u0,

where we have used (4.19) and (3.10) in the first equality, the exactness assumption
of the microscopic solution at iteration k in the second equality, and the fundamen-
tal property (3.7) of the matching operator P in the last equality. This proves the
relation (4.18) at the iteration k + 1 and concludes the proof.

This result also directly follows from our above remark that, in its form (3.17),
Algorithm 2 is of the form (1.2).

18

4.3.2. Error bounds. We now establish error bounds on Algorithm 2 that show
that the microscopic solution converges towards the exact microscopic dynamics when
the modeling error ε decreases, and that the convergence rate improves as the number
of parareal iterations k increases. This is in contrast with Algorithm 1, where the
error does not improve even if k goes to infinity (see Section 4.2). With Algorithm 2,
we recover the behavior of the standard parareal algorithm, as recalled in Remark 10
(see e.g. (4.7)).

Theorem 13. Consider Algorithm 2, where F∆t is the exact propagator of the
microscopic problem (2.1), C∆t is the exact propagator of the associated macroscopic
problem (2.4), L is the lifting operator defined by (3.5), and P is a matching operator
satisfying (3.6), (3.7) and (3.8). We fix the time range [0, T], and recall that the size
of the boundary layer tBL

ε in (2.1) is defined by (2.10).
Then, there exists ε0 ∈ (0, 1), that only depends on A, q, p, α and T , such that,

for all ε < ε0 and all ∆t > tBL
ε , there exists a constant Ck, independent of ε, such

that

for all k ≥ 0, sup
0≤n≤N

|Enk | ≤ Ckε1+dk/2e, (4.20)

for all k ≥ 0, sup
0≤n≤N

‖enk‖ ≤ Ckε1+bk/2c, (4.21)

where N = T/∆t and where the macroscopic (resp. microscopic) error Enk (resp. enk)
is defined by (4.2) (resp. (4.1)). The constant Ck is independent from ε, but a priori
depends on k, A, q, p, α, ∆t and T .

In (4.20) and (4.21), we used the notation: for any x ∈ R, dxe ∈ Z and bxc ∈ Z
are respectively defined by: bxc ≤ x < bxc+ 1 and dxe − 1 < x ≤ dxe.

The above result shows that the parareal iterations alternatingly improve the
macroscopic and the microscopic errors by an order of magnitude in ε. The numerical
results of Section 5 show that (4.20) and (4.21) are sharp error estimates. As already
mentioned above, the assumption ∆t > tBL

ε is automatically satisfied for sufficiently
small ε, in particular when the time-step ∆t is of the order of the macroscopic time-
scale.

The bounds (4.20) and (4.21) show that, as k increases, the rate of convergence
(with respect to ε) of the error increases. The dependence of the constant Ck in
these two bounds on ∆t and k will be analyzed in details on the numerical test case
considered in Section 5.1 (see (5.4) and (5.5)).

Proof. Using (3.15), (3.7) and the definition (4.1) of the microscopic error, we
have

enk+1 = unk+1 − Φn∆tu0 = P(Xn
k+1, u

n
k)− P(R(Φn∆tu0),Φn∆tu0).

Hence, using (3.8), we deduce that

∥∥enk+1

∥∥ ≤ C
(
‖unk − Φn∆tu0‖+

∣∣Xn
k+1 −R(Φn∆tu0)

∣∣)

≤ C
(∥∥Φ∆tu

n−1
k − Φn∆tu0

∥∥+
∣∣Enk+1

∣∣)

≤ C
(∥∥Φ∆te

n−1
k

∥∥+
∣∣Enk+1

∣∣) . (4.22)

Since ∆t ≥ tBL
ε , we infer from (2.13) and (2.14) that

∥∥Φ∆te
n−1
k

∥∥ ≤ C
(∣∣Ren−1

k

∣∣+ ε
∥∥R⊥en−1

k

∥∥) = C
(∣∣En−1

k

∣∣+ ε
∥∥R⊥en−1

k

∥∥) ,
19

where we have used (4.3). We then deduce from (4.22) that
∥∥enk+1

∥∥ ≤ C
(∣∣En−1

k

∣∣+ ε
∥∥R⊥en−1

k

∥∥+
∣∣Enk+1

∣∣) ≤ C
(∣∣En−1

k

∣∣+ ε
∥∥en−1
k

∥∥+
∣∣Enk+1

∣∣) .
(4.23)

We now bound the macroscopic error Enk+1, using the recursion formula (4.5),
that reads

Enk+1 =

n−1∑

p=1

ρn−p−1
∆t T pk , (4.24)

with T pk := RΦ∆te
p
k − ρ∆tE

p
k . Consider the solution (x̃(t), ỹ(t)) to the system (2.1)

with initial condition ũ(0) = epk, that is x̃(0) = R(epk) = Epk and ỹ(0) = R⊥(epk). We
then have

T pk = x̃(∆t)− X̃(∆t),

where X̃(∆t) is the solution to (2.4) with initial condition X̃(0) = Epk . In view
of (2.8), we have

|T pk | =
∣∣∣x̃(∆t)− X̃(∆t)

∣∣∣ ≤ Cε
(
|x̃(0)|+ ‖ỹ(0)−A−1qx̃(0)‖

)
≤ Cε (|Epk |+ ‖e

p
k‖) ,

where C is independent from p, k and ε. We are now in position to use the recur-
sion (4.24), from which we infer

∣∣Enk+1

∣∣ ≤
n−1∑

p=1

ρn−p−1
∆t |T pk | ≤ Cε

n−1∑

p=1

ρn−p−1
∆t (|Epk |+ ‖e

p
k‖) . (4.25)

We now prove the theorem by induction, using the two fundamental estimates (4.23)
and (4.25). At the parareal iteration k = 0, Algorithm 2 is identical to Algorithm 1.
In view of (4.10) and (4.11), we thus have

sup
0≤n≤N

|En0 | ≤ C0ε and sup
0≤n≤N

‖en0‖ ≤ C0ε,

that is (4.20) and (4.21) for k = 0.
Let us now assume that (4.20) and (4.21) hold at any iteration k′ ≤ k, with k

an even integer. We prove the bounds at iteration k + 1. Setting m = k/2 + 1 (so
that bk/2c = dk/2e = m− 1, b(k − 1)/2c = m− 2 and d(k − 1)/2e = m− 1), we thus
assume that

sup
0≤p≤N

∣∣Epk−1

∣∣ ≤ Ck−1ε
m, sup

0≤p≤N

∥∥epk−1

∥∥ ≤ Ck−1ε
m−1,

sup
0≤p≤N

|Epk | ≤ Ckεm, sup
0≤p≤N

‖epk‖ ≤ Ckεm.

Then, we infer from (4.25) that, for any 0 ≤ n ≤ N ,

∣∣Enk+1

∣∣ ≤ CCkεm+1
n−1∑

p=1

ρn−p−1
∆t ≤ CCkεm+1 1− ρn−1

∆t

1− ρ∆t
≤ CCkε

m+1

1− ρ∆t
≤ Ck+1ε

m+1,

where Ck+1 is independent from ε, but depends on k and ∆t. We next deduce
from (4.23) that, for any 0 ≤ n ≤ N ,

∥∥enk+1

∥∥ ≤ C
(
Ckε

m + Ckε
m+1 + Ck+1ε

m+1
)
≤ C̃k+1ε

m,

20

where C̃k+1 is again independent from ε, but depends on k. We thus have proved (4.20)
and (4.21) at iteration k + 1.

We now assume that (4.20) and (4.21) hold at any iteration k′ ≤ k, with k an
odd integer. We prove the bounds at iteration k + 1. Setting m = (k − 1)/2 + 1 (so
that bk/2c = m − 1, dk/2e = m and b(k − 1)/2c = d(k − 1)/2e = m − 1), we thus
assume that

sup
0≤p≤N

∣∣Epk−1

∣∣ ≤ Ck−1ε
m, sup

0≤p≤N

∥∥epk−1

∥∥ ≤ Ck−1ε
m,

sup
0≤p≤N

|Epk | ≤ Ckεm+1, sup
0≤p≤N

|epk| ≤ Ckεm.

Using again equations (4.25) and (4.23), we find that, for any 0 ≤ n ≤ N ,
∣∣Enk+1

∣∣ ≤ Ck+1ε
m+1 and

∥∥enk+1

∥∥ ≤ Ck+1ε
m+1,

where Ck+1 is again independent from ε. We thus have proved (4.20) and (4.21) at
iteration k + 1. This concludes the proof.

4.4. Error bounds for Algorithm 3. Since Algorithm 3 uses the standard
parareal iteration (1.2), local exactness is automatically satisfied. We proceed to
proving error bounds on Algorithm 3, which can be compared to those of Algorithm 2.

Theorem 14. Consider Algorithm 3 given by (3.21), where F∆t is the exact
propagator of the microscopic problem (2.1), G∆t is the exact propagator of the asso-
ciated macroscopic DAE problem (3.20), and L is the lifting operator defined by (3.5).
We fix the time range [0, T], and recall that the size of the boundary layer tBL

ε in (2.1)
is defined by (2.10).

Then, there exists ε0 ∈ (0, 1), that only depends on A, q, p, α and T , such that,
for all ε < ε0 and all ∆t > tBL

ε , there exists a constant Ck, independent of ε, such
that

for all k ≥ 0, sup
0≤n≤N

|Enk | ≤ Ckεk+1, (4.26)

for all k ≥ 0, sup
0≤n≤N

‖enk‖ ≤ Ckεk+1, (4.27)

where N = T/∆t and where the macroscopic (resp. microscopic) error Enk (resp. enk)
is defined by (4.2) (resp. (4.1)). The constant Ck is independent from ε, but a priori
depends on k, A, q, p, α, ∆t and T .

These results are in agreement with [28, Theorem 2.1]. The numerical results of
Section 5 show that (4.26) and (4.27) are sharp error estimates.

The above result shows that, in contrast to Algorithm 2, Algorithm 3 improves
the order of convergence (in terms of ε) of both the macroscopic and the microscopic
errors by an order of magnitude in ε at each iteration. As noted in Section 3.3,
this improved convergence rate comes at the price of a larger computational cost per
iteration.

Proof. Using (3.21) and the definition (4.1) of the microscopic error, we have

enk+1 = unk+1 − Φn∆tu0 = Φ∆te
n−1
k + Lρ∆tR

(
en−1
k+1 − en−1

k

)
.

Using (4.3), we deduce from the above equation that
∥∥enk+1

∥∥ ≤
∥∥Φ∆te

n−1
k − Lρ∆tRen−1

k

∥∥+
∥∥Lρ∆tE

n−1
k+1

∥∥ . (4.28)

21

The first term is decomposed as

∥∥Φ∆te
n−1
k − Lρ∆tRen−1

k

∥∥
≤ C

(∣∣RΦ∆te
n−1
k − ρ∆tRen−1

k

∣∣+
∥∥R⊥Φ∆te

n−1
k −R⊥Lρ∆tRen−1

k

∥∥) .

Since ∆t ≥ tBL
ε , we infer an estimate on the first (resp. second) term of the above

right-hand side using (2.8) (resp. (2.11)), resulting in

∥∥Φ∆te
n−1
k − Lρ∆tRen−1

k

∥∥ ≤ Cε
∥∥en−1
k

∥∥ . (4.29)

Collecting (4.28) and (4.29), we deduce that there exists a constant C, independent
of ε, such that

∥∥enk+1

∥∥ ≤ C
(
ε
∥∥en−1
k

∥∥+
∣∣En−1

k+1

∣∣) . (4.30)

This estimate is to be compared with (4.23) in the proof of Theorem 13. Using (4.30),
the proof of Theorem 14 is completed via induction, in a way that is similar to (but
simpler than) the proof of Theorem 13.

5. Numerical experiments (linear test-case). In this section, we numeri-
cally illustrate the above convergence results on a linear problem. We first consider
the case when both the microscopic and the macroscopic models are integrated ex-
actly (Section 5.1). We next consider the case when the macroscopic propagator is a
forward Euler discretization, thus introducing some finite step-size error (Section 5.2).

We consider the example system




ẋ = − x

2
− y1 + y2

4[
ẏ1

ẏ2

]
=

1

ε

([
1

1

]
x−

[
1/2 1/2

0 1/3

][
y1

y2

]) , (5.1)

which is of the form (2.1). The associated macroscopic, slow dynamics is given by (2.4)
with λ = −1. The initial condition is x(0) = 1, y1(0) = y2(0) = 0, and we consider
the solution on the interval [0, T] with T = N∆t = 10.

The fine-scale propagator F∆t is the exact integrator of (5.1). The coarse prop-
agator C∆t is the exact integrator of (2.4) in Section 5.1, and a forward Euler dis-
cretization of (2.4) in Section 5.2. We choose the parareal time-step ∆t = 10−1, and
consider ε ∈ [10−5, 10−1]. The lifting operator L is defined by (3.5), and we use the
matching operator P defined by (3.9).

We look at the relative macroscopic error
∣∣ENk

∣∣ / |x(T)| and the relative micro-

scopic error
∥∥eNk

∥∥ / ‖u(T)‖ at the final time T = tN = N∆t for different iteration
numbers k, satisfying 0 ≤ k ≤ K.

5.1. Results with exact microscopic and macroscopic integrations. In
this section, we take both the fine-scale and the coarse propagators to be the exact
integrators.

5.1.1. Algorithm 1. We first consider Algorithm 1 (analyzed in Section 4.2),
where the reconstruction at the end of each parareal iteration is done using the lifting
operator L.

We set the maximal number of parareal iterations at K = 2. Figure 5.1 shows
the macroscopic and microscopic errors as a function of ε for the chosen values of k.

22

We see that the macroscopic error is of the order of O(ε2) as soon as k ≥ 1 (and is of
the order of O(ε) at k = 0). The macroscopic error at k = 2 is equal to that at k = 1.
We also observe that the microscopic error is always of the order of ε (for any k),
although the value of the error is smaller at k = 1 than at k = 0. These results are in
agreement with Theorem 11, and confirm the fact that the accuracy of Algorithm 1
does not improve when k goes to infinity.

10−8

10−6

10−4

10−2

100

∣ ∣ E
N k

∣ ∣ /
|x
(t

N
)|

10−5 10−4 10−3 10−2 10−1

ε

10−5

10−4

10−3

10−2

10−1

100

∥ ∥ e
N k

∥ ∥ /
‖u

(t
N
)‖

10−5 10−4 10−3 10−2 10−1

ε

k = 0

k = 1

k = 2

Fig. 5.1. Algorithm 1 for the system (5.1), with exact fine-scale and coarse propagators: errors
as a function of ε for different values of k (left: macroscopic error; right: microscopic error). Note
that the lines for k ≥ 1 visually overlap.

When ε is too large, the macroscopic error is not anymore of the order of O(ε2)
at the iteration k ≥ 1. This is due to the fact that the assumption ∆t ≥ tBL

ε is no
longer satisfied. Recall indeed that we keep ∆t fixed, and tBL

ε = Cε ln(1/ε) increases
if ε increases. Hence, for too large values of ε, the time step ∆t is too small to correct
for the initial boundary layer.

5.1.2. Algorithm 2. We now consider Algorithm 2 (analyzed in Section 4.3),
where the reconstruction at the end of each parareal iteration is performed using the
matching operator P.

The maximal number of parareal iterations is set at K = 6. Figure 5.2 shows
the macroscopic and microscopic errors as a function of ε, for the chosen values of
k. The numerical results are in agreement with Theorem 13. At each odd parareal
iteration, the order of convergence (in terms of ε) of the macroscopic error increases
by 1, whereas the microscopic error decreases, but remains of the same order in ε.
At each even iteration, the converse holds: the order of convergence (in terms of ε)
increases by 1 for the microscopic error, whereas the macroscopic error decreases but
its order remains alike. Note also that, for the smallest considered values of ε, the
algorithm reaches machine precision in 5 to 6 iterations.

As with Algorithm 1, when ε is too large, the numerical results do not agree
with the theoretical results, because the chosen time-step ∆t does not satisfy the
assumption ∆t ≥ tBL

ε .

At this point, we have numerically verified our theoretical results, and know that
the macroscopic error is bounded from above by, and actually roughly of the order of,

sup
n
|Enk | ≈ Ck,∆t

(ε

∆t

)1+dk/2e
, (5.2)

23

10−16

10−12

10−8

10−4

100

∣ ∣ E
N k

∣ ∣ /
|x
(t

N
)|

10−5 10−4 10−3 10−2 10−1

ε

10−16

10−12

10−8

10−4

100

∥ ∥ e
N k

∥ ∥ /
‖u

(t
N
)‖

10−5 10−4 10−3 10−2 10−1

ε

k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

Fig. 5.2. Algorithm 2 for the system (5.1), with exact fine-scale and coarse propagators: errors
as a function of ε for different values of k (left: macroscopic error; right: microscopic error).

where Ck,∆t a priori depends on k and ∆t, but is independent of ε (and likewise for
the microscopic error).

On Figure 5.3, we plot the macroscopic and microscopic errors as a function of
the iteration number k, 0 ≤ k ≤ K = 30, for various values of ε. We observe an
exponential convergence to the exact solution as a function of k, with a convergence
rate that increases when ε decreases. We deduce from (5.2) how the constant Ck,∆t
depends on k: there exists C0

∆t and C1
∆t, independent of k and ε, such that

sup
n
|Enk | ≈ C0

∆t

(
C1

∆t

)1+dk/2e (ε

∆t

)1+dk/2e
. (5.3)

Note that, for ε = 10−1 (which is quite a large value compared to ∆t = 10−1), the
convergence is very slow, which is in agreement with the previous observations.

10−16

10−12

10−8

10−4

100

∣ ∣ E
N k

∣ ∣ /
|x
(t

N
)|

0 10 20 30

k

10−16

10−12

10−8

10−4

100

∥ ∥ e
N k

∥ ∥ /
‖u

(t
N
)‖

0 10 20 30

k

ε = 10−1

ε = 10−2

ε = 10−3

ε = 10−4

Fig. 5.3. Algorithm 2 for the system (5.1), with exact fine-scale and coarse propagators and
parareal time step ∆t = 10−1: errors as a function of k for different values of ε (left: macroscopic
error; right: microscopic error).

To understand how C0
∆t and C1

∆t depend on ∆t, we perform another experiment,
in which we fix ε = 10−5 and vary ∆t. We then plot the error as a function of ∆t−1 for
different values of k (see Figure 5.4). These results show that the macroscopic error

varies proportionally to
(
∆t−1

)1+dk/2e
. Combined with (5.3), we therefore deduce

24

that, on this numerical test-case, the macroscopic error satisfies

sup
n
|Enk | ≈ C0

macro

(
C1

macro

ε

∆t

)1+dk/2e
, (5.4)

and likewise for the microscopic error:

sup
n
|enk | ≈ C0

micro

(
C1

micro

ε

∆t

)1+bk/2e
. (5.5)

We in particular see that, if ε/∆t is sufficiently small, then the parareal trajectory
converges to the exact trajectory when k goes to ∞.

10−15

10−12

10−9

10−6

10−3

101 102 103 104 105

∣ ∣ E
N k

∣ ∣ /
|x
(t

N
)|

∆t−1

10−15

10−12

10−9

10−6

10−3

101 102 103 104 105

∥ ∥ e
N k

∥ ∥ /
‖u

(t
N
)‖

∆t−1

k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

Fig. 5.4. Algorithm 2 for the system (5.1), with exact fine-scale and coarse propagators and
ε = 10−5: errors as a function of ∆t−1 for different values of k (left: macroscopic error; right:
microscopic error).

5.1.3. Algorithm 3. To complete these numerical tests, we consider Algorithm
3 originally proposed in [5, 28] (which we analyzed in Section 4.4), and repeat the
previous experiment. The results, shown in Figure 5.5, are in agreement with the
theoretical results.

10−16

10−12

10−8

10−4

100

∣ ∣ E
N k

∣ ∣ /
|x
(t

N
)|

10−5 10−4 10−3 10−2 10−1

ε

10−16

10−12

10−8

10−4

100

∥ ∥ e
N k

∥ ∥ /
‖u

(t
N
)‖

10−5 10−4 10−3 10−2 10−1

ε

k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

Fig. 5.5. Algorithm 3 for the system (5.1), with exact fine-scale and coarse propagators: errors
as a function of ε for different values of k (left: macroscopic error; right: microscopic error).

25

5.2. Results with exact microscopic and approximate macroscopic in-
tegration. In this section, we repeat the above experiments, but now using a forward
Euler time discretization for the coarse propagator, using the time step ∆t (hence,
to propagate the system over the time range ∆t, the scheme C∆t consists in doing a
single step of the forward Euler algorithm). The fine-scale propagator is again the
exact one.

5.2.1. Algorithm 1. We first consider Algorithm 1 (for which the reconstruc-
tion is done using the lifting operator L), and set the maximal number of parareal
iterations to K = 3. Figure 5.6 shows the errors as a function of ε for the chosen
values of k.

0.001

0.01

0.1

1

∣ ∣ E
N k

∣ ∣ /
|x
(t

N
)|

10−4 10−3 10−2 10−1

ε

0.001

0.01

0.1

1

∥ ∥ e
N k

∥ ∥ /
‖u

(t
N
)‖

10−4 10−3 10−2 10−1

ε

k = 0

k = 1

k = 2

k = 3

Fig. 5.6. Algorithm 1 for the system (5.1), with exact fine-scale propagator and approximate
coarse propagator: errors as a function of ε for different values of k (left: macroscopic error; right:
microscopic error).

When comparing Figure 5.6 with Figure 5.1 (in which the macroscopic dynamics
is exactly integrated), we notice that the behavior of the algorithm is similar for large
values of ε. For small values of ε, the errors approach an asymptotic value as ε goes
to zero (rather than converging to 0 as in Figure 5.1), with an asymptotic value that
depends on the number of iterations k. The larger k is, the smaller this asymptotic
value is, and the wider the range of ε for which results of Figures 5.6 and 5.1 (with
approximate or exact integration at the macroscopic scale) agree.

This observation is confirmed in Figure 5.7, where we show the errors as a function
of the iteration number k, 1 ≤ k ≤ K = 8, for various values of ε. We see that the
errors first converge exponentially to 0 as k increases, and then reach a plateau. The
residual macroscopic (resp. microscopic) error is of the order of O(ε2) (resp. O(ε)).

We explain this behavior as follows. The parareal iterations iteratively correct
the approximation made using the coarse propagator. When the coarse propagator is
a forward Euler discretization of the approximate macroscopic equation, there are two
sources of error: a modeling error (due to the fact that the macroscopic equation (2.4)
is only an approximation of the slow part of the reference model (2.1)), and a time
discretization error. For large values of ε, the modeling error is dominant, and the error
behaves as if the coarse propagator were exact. For small ε, the time discretization
is dominant, and the error becomes therefore independent of ε. Due to the parareal
iterations, the time discretization error is iteratively removed. However, due to the
fact that the reconstruction is performed using the lifting operator L, the modeling
error never vanishes when ε > 0. Hence, when k goes to infinity, Algorithm 1 using an
approximate coarse propagator converges to the solution given by a parareal algorithm

26

10−6

10−4

10−2

100

∣ ∣ E
N k

∣ ∣ /
|x
(t

N
)|

0 2 4 6 8

k

10−4

10−3

10−2

10−1

100

∥ ∥ e
N k

∥ ∥ /
‖u

(t
N
)‖

0 2 4 6 8

k

ε = 10−1

ε = 10−2

ε = 10−3

ε = 10−4

Fig. 5.7. Algorithm 1 for the system (5.1), with exact fine-scale propagator and approximate
coarse propagator: errors as a function of k for different values of ε (left: macroscopic error; right:
microscopic error).

with no time-step discretisation error (this latter has been removed by the iterations
in k), but with some modeling error. The solution hence converges to that given by
Algorithm 1 with exact coarse propagation.

5.2.2. Algorithm 2. We now consider Algorithm 2 (for which the reconstruc-
tion is performed using a matching operator P), and set the maximal number of
parareal iterations at K = 6. Figure 5.8 shows the errors as a function of ε for the
chosen values of k.

10−6

10−4

10−2

100

∣ ∣ E
N k

∣ ∣ /
|x
(t

N
)|

10−4 10−3 10−2 10−1

ε

10−5

10−4

10−3

10−2

10−1

100

∥ ∥ e
N k

∥ ∥ /
‖u

(t
N
)‖

10−4 10−3 10−2 10−1

ε

k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

Fig. 5.8. Algorithm 2 for the system (5.1), with exact fine-scale propagator and approximate
coarse propagator: errors as a function of ε for different values of k (left: macroscopic error; right:
microscopic error).

We compare Figure 5.8 to the corresponding Figure 5.2 (where the macroscopic
equation is exactly integrated). We again notice that, for small ε, the algorithm be-
haves differently: in particular, the convergence when ε goes to zero slows down when
the macroscopic equation is only approximately integrated. However, the behavior
with respect to k is left unchanged. We show on Figure 5.9 the evolution of the errors
as a function of the parareal iteration number k, 0 ≤ k ≤ K = 30, for a number of
fixed values of ε. As in Figure 5.3, the computed trajectory again converges to the
exact microscopic solution up to machine precision, exponentially with respect to k,
despite the presence of time discretization errors at the macroscopic level. Moreover,

27

comparing these results with those obtained when using an exact coarse propagator
(see Figure 5.3), we see that only a few extra parareal iterations are needed.

10−16

10−12

10−8

10−4

100

∣ ∣ E
N k

∣ ∣ /
|x
(t

N
)|

0 10 20 30

k

10−16

10−12

10−8

10−4

100

∥ ∥ e
N k

∥ ∥ /
‖u

(t
N
)‖

0 10 20 30

k

ε = 10−1

ε = 10−2

ε = 10−3

ε = 10−4

Fig. 5.9. Algorithm 2 for the system (5.1), with exact fine-scale propagator and approximate
coarse propagator: errors as a function of k for different values of ε (left: macroscopic error; right:
microscopic error).

6. Nonlinear examples. We finally illustrate the performance of our Algo-
rithm 2 on two nonlinear examples. Such cases are not covered by the theoretical
analysis of Section 4, where we considered a linear problem.

The first nonlinear example we consider is a straightforward extension of prob-
lem (2.1), and reads

ẋ = −λx− y, ẏ =
1

ε
(x2 − y), (6.1)

which is of the form (2.5). The corresponding macroscopic model is

Ẋ = −λX −X2. (6.2)

We use Algorithm 2 to integrate this system. The fine propagator F∆t is a forward
Euler scheme for (6.1) with the time step δt = 10−5. The coarse propagator C∆t is a
forward Euler scheme for (6.2) with the time step ∆t = 10−1 (which is equal to the
parareal time step). The lifting operator reads L(X) = (X,X2), and the matching
operator is again given by (3.9). The remaining parameters are chosen identical to
those in the previous experiments. On Figure 6.1, we show the error as a function
of ε for different values of k. Comparing that figure with Figure 5.2, we see that
Algorithm 2 performs equally well on this nonlinear case as on the linear problem
considered in Section 5.

The second nonlinear example we consider is the so-called Brusselator problem,
which was already considered in e.g. [19]. It reads

ẋ1 = A− (y + 1)x1 + x2
1x2,

ẋ2 = yx1 − x2
1x2, (6.3)

ẏ =
1

ε
(B0 − y)− yx1.

It models the evolution of the concentration of three chemical species. The concen-
tration of y is reduced via reaction with x, but restored to its base level B0 with a

28

10−16

10−12

10−8

10−4

100

∣ ∣ E
N k

∣ ∣ /
|x
(t

N
)|

10−4 10−3 10−2 10−1

ε

10−16

10−12

10−8

10−4

100

∥ ∥ e
N k

∥ ∥ /
‖u

(t
N
)‖

10−4 10−3 10−2 10−1

ε

k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

Fig. 6.1. Algorithm 2 for the system (6.1), with parareal time step ∆t = 10−1: errors as a
function of ε for different values of k (left: macroscopic error; right: microscopic error).

characteristic time of the order of ε. We choose A = 1 and B0 = 3. The fine propaga-
tor F∆t is a forward Euler discretization of (6.3) with the time step δt = 10−5. The
coarse propagator C∆t is a forward Euler discretization of the macroscopic model

ẋ1 = A− (B0 + 1)x1 + x2
1x2, ẋ2 = B0 x1 − x2

1x2,

with the time step ∆t = 10−1 (equal to the parareal time step). This system thus
has two slow variables and one fast one: u = (x, y), with x = (x1, x2). Note that
this case does not enter our theoretical framework for two reasons: (i) the example
is nonlinear; and (ii) the equation for y in the microscopic model is not purely a fast
equation (the second term in the right-hand side of the equation for ẏ in (6.3) is not
scaled by ε−1).

We show on Figure 6.2 the results obtained. Algorithm 2 again performs very well.
Actually, on this problem, the convergence behavior of Algorithm 2 closely resembles
that of Algorithm 3: at parareal iteration k, the order of convergence (in terms of ε)
seems to be equal to k, both for the macroscopic and the microscopic errors.

10−16

10−12

10−8

10−4

100

∣ ∣ E
N k

∣ ∣ /
|x
(t

N
)|

10−4 10−3 10−2 10−1

ε

10−16

10−12

10−8

10−4

100

∥ ∥ e
N k

∥ ∥ /
‖u

(t
N
)‖

10−4 10−3 10−2 10−1

ε

k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

Fig. 6.2. Algorithm 2 for the system (6.3), with parareal time step ∆t = 10−1: errors as a
function of ε for different values of k (left: macroscopic error; right: microscopic error).

7. Discussion and conclusions. We have introduced and analyzed two micro-
macro parareal algorithms for the time-parallel integration of singularly perturbed
ordinary differential equations, and provided a numerical analysis for the case where

29

the problem is linear and the coarse and fine-scale propagators integrate the macro-
scopic, resp. microscopic models exactly. The analysis shows that, when an appropri-
ate matching operator is used to update the microscopic state after correction of the
macroscopic state (which corresponds to using Algorithm 2), the rate of convergence
(in terms of the modelling error ε, which quantifies the time scale separation between
the microscopic and the macroscopic evolutions) improves at each parareal iteration,
and is roughly equal to εk/2. We have illustrated this theoretical result with numerical
experiments, and also numerically investigated the effect of using a numerical scheme
to integrate the macroscopic model (thereby introducing some discretization error).
The results show that the proposed micro-macro parareal algorithm, Algorithm 2,
is robust with respect to time discretization errors at the macroscopic level. It can
hence be viewed as an interesting way of using an approximate macroscopic model to
speed up simulations of high-dimensional multiscale systems of singularly perturbed
ordinary differential equations, provided that special care is taken when transferring
information between the microscopic and macroscopic levels of description.

Several questions remain open. First, while the analysis reveals that it is impor-
tant to choose the parareal time step ∆t sufficiently large (to average out the initial
time boundary layers in the full microscopic dynamics), the dependence on ∆t of the
numerical error and the convergence rate have not been analyzed. In particular, one
may expect an optimal time step ∆t to exist that leads to a required accuracy with
a minimal cost. Assume again (as for the original parareal algorithm, see the intro-
duction) that the cost of a single evaluation of the fine-scale propagator F∆t is much
larger than the cost of propagating the macroscopic system using C∆t over the com-
plete time range [0, T] (This assumption is all the more justified as the macroscopic
system is a low-dimensional problem compared to the microscopic problem). Then
the cost of the parareal algorithm, after K iterations, is proportional to K∆t/ε (We
have assumed that the cost of F∆t is proportional to ∆t/ε, since we need to use a time
step of the order of ε over a time range of length ∆t). This cost is to be compared
with the cost of the full microscopic sequential integration, which is proportional to
N∆t/ε. The computational speed-up is thus N/K. We saw on Figure 5.2 that, for
reasonably small values of ε, results obtained at the iteration K = 6 were satisfactory.
For the test-case considered in Section 5.1.2, the computational speed-up is thus

N

K
=
T/∆t

K
= 16.6.

Second, we expect Algorithm 2 to extend to more general dissipative systems. As
pointed out above, we considered here the simple linear problem (2.1) to focus on the
issues stemming from using two different levels of description of the same system. We
have already checked in Section 6 that Algorithm 2 behaves equally well on nonlinear
systems of singularly perturbed ODEs. We currently investigate the extension of the
algorithm to a setting, motivated by molecular simulations, where the reference model
is a high-dimensional stochastic differential equation (modeling the evolution of all
the degrees of freedom of the atomistic system) and the macroscopic model is the
effective dynamics of the slow component of the microscopic model, derived under
time scale separation assumptions following [24, 25].

Acknowledgements. FL and TL thank Sorin Mitran for enlightening discus-
sions that eventually led to this work. All authors thank the anonymous referees for
their comments that lead to a substancial improvement of the manuscript. Part of
this work was performed during a research stay of GS at CERMICS (ENPC – Paris),

30

when he was a Postdoctoral Fellow of the Research Foundation – Flanders (FWO).
GS warmly thanks the whole CERMICS team for its hospitality, and both CERMICS
and FWO for funding this stay. This work was (partially) completed while FL and TL
were visiting the Institute for Mathematical Sciences, National University of Singa-
pore in 2012. This work was partially supported by the Research Council of the K.U.
Leuven through grant OT/09/27, by the Interuniversity Attraction Poles Programme
of the Belgian Science Policy Office under grant IUAP/V/22, and by the Agence Na-
tionale de la Recherche under grant ANR-09-BLAN-0216-01 (MEGAS). The scientific
responsibility rests with its authors.

REFERENCES

[1] L. Baffico, S. Bernard, Y. Maday, G. Turinici, and G. Zérah. Parallel-in-time molecular-
dynamics simulations. Physical Review E, 66(5):057701, 2002.

[2] G. Bal. Parallelization in time of (stochastic) ordinary differential equations. preprint available
at http://www.columbia.edu/∼gb2030/PAPERS/paralleltime.pdf, 2003.

[3] G. Bal. On the convergence and the stability of the parareal algorithm to solve partial differ-
ential equations. In R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund, and
J. Xu, editors, Domain decomposition methods in science and engineering, volume 40 of
Lecture Notes in Computational Science and Engineering, pages 425–432. Springer Berlin
Heidelberg, 2005.

[4] G. Bal and Y. Maday. A “parareal” time discretization for non-linear PDE’s with application
to the pricing of an american put. In L.F. Pavarino and A. Toselli, editors, Recent devel-
opments in domain decomposition methods, volume 23 of Lecture Notes in Computational
Science and Engineering, pages 189–202. Springer Berlin Heidelberg, 2002.

[5] A. Blouza, L. Boudin, and S.-M. Kaber. Parallel in time algorithms with reduction methods for
solving chemical kinetics. Communications in Applied Mathematics and Computational
Science, 5(2):241–263, 2010.

[6] R.E. Caflisch. Monte Carlo and Quasi-Monte Carlo methods. Acta Numerica, 7:1–49, 1998.
[7] X. Dai, C. Le Bris, F. Legoll, and Y. Maday. Symmetric parareal algorithms for Hamilto-

nian systems. Mathematical Modelling and Numerical Analysis, 2013. in press (preprint
arXiv:1011.6222).

[8] W. E and B. Engquist. The heterogeneous multi-scale methods. Communications in Mathe-
matical Sciences, 1(1):87–132, 2003.

[9] W. E, B. Engquist, X. Li, W. Ren, and E. Vanden-Eijnden. Heterogeneous multiscale methods:
A review. Communications in Computational Physics, 2(3):367–450, 2007.

[10] S. Engblom. Parallel in time simulation of multiscale stochastic chemical kinetics. Multiscale
Modeling and Simulation, 8:46–68, 2009.

[11] C. Farhat and M. Chandesris. Time-decomposed parallel time-integrators: theory and feasibil-
ity studies for fluid, structure, and fluid–structure applications. International Journal for
Numerical Methods in Engineering, 58(9):1397–1434, 2003.

[12] P. Fischer, F. Hecht, and Y. Maday. A parareal in time semi-implicit approximation of the
Navier-Stokes equations. In R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Wid-
lund, and J. Xu, editors, Domain decomposition methods in science and engineering,
volume 40 of Lecture Notes in Computational Science and Engineering, pages 433–440.
Springer Berlin Heidelberg, 2005.

[13] M.J. Gander and E. Hairer. Nonlinear convergence analysis for the parareal algorithm. In
U. Langer, M. Discacciati, D.E. Keyes, O. Widlund, and W. Zulehner, editors, Domain
decomposition methods in science and engineering XVII, volume 60 of Lect. Notes Comput.
Sci. Eng., pages 45–56. Springer, 2008.

[14] M.J. Gander and S. Vandewalle. Analysis of the parareal time-parallel time-integration method.
SIAM Journal on Scientific Computing, 29:556–578, 2007.

[15] I. Garrido, M. Espedal, and G. Fladmark. A convergent algorithm for time parallelization
applied to reservoir simulation. In R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau,
O. Widlund, and J. Xu, editors, Domain Decomposition Methods in Science and Engi-
neering, volume 40 of Lecture Notes in Computational Science and Engineering, pages
469–476. Springer Berlin Heidelberg, 2005.

[16] I. Garrido, B. Lee, G.E. Fladmark, and M.S. Espedal. Convergent iterative schemes for time
parallelization. Mathematics of Computation, 75(255):1403–1428, 2006.

31

[17] C.W. Gear. Towards explicit methods for differential algebraic equations. BIT Numerical
Mathematics, 46(3):505–514, 2006.

[18] C.W. Gear, T.J. Kaper, I.G. Kevrekidis, and A. Zagaris. Projecting to a slow manifold: Singu-
larly perturbed systems and legacy codes. SIAM Journal on Applied Dynamical Systems,
4(3):711–732, 2005.

[19] C.W. Gear and I.G. Kevrekidis. Projective methods for stiff differential equations: prob-
lems with gaps in their eigenvalue spectrum. SIAM Journal on Scientific Computing,
24(4):1091–1106, 2003.

[20] D. Givon, R. Kupferman, and A. Stuart. Extracting macroscopic dynamics: model problems
and algorithms. Nonlinearity, 17(6):R55–R127, 2004.

[21] H.B. Keller. Numerical methods for two-point boundary-value problems. Blaisdell (Waltham,
MA), 1968.

[22] I.G. Kevrekidis, C.W. Gear, J.M. Hyman, P.G. Kevrekidis, O. Runborg, and C. Theodoropou-
los. Equation-free, coarse-grained multiscale computation: enabling microscopic simulators
to perform system-level tasks. Communications in Mathematical Sciences, 1(4):715–762,
2003.

[23] I.G. Kevrekidis and G. Samaey. Equation-free multiscale computation: Algorithms and appli-
cations. Annual Review on Physical Chemistry, 60:321–344, 2009.

[24] F. Legoll and T. Lelièvre. Effective dynamics using conditional expectations. Nonlinearity,
23(9):2131–2163, 2010.

[25] F. Legoll and T. Lelièvre. Some remarks on free energy and coarse-graining. In B. Engquist,
O. Runborg, and R. Tsai, editors, Numerical Analysis and Multiscale Computations, vol-
ume 82 of Lect. Notes Comput. Sci. Eng., pages 279–329. Springer, 2012.

[26] J.-L. Lions, Y. Maday, and G. Turinici. Résolution d’EDP par un schéma en temps pararéel [A
”parareal” in time discretization of PDE’s]. Comptes Rendus de l’Académie des Sciences
- Series I - Mathematics, 332(7):661–668, 2001.

[27] C. Lubich and A. Ostermann. Multi-grid dynamic iteration for parabolic equations. BIT
Numerical Mathematics, 27(2):216–234, 1987.

[28] Y. Maday. Parareal in time algorithm for kinetic systems based on model reduction. In
A. Bandrauk, M.C. Delfour, and C. Le Bris, editors, High-dimensional partial differential
equations in science and engineering, volume 41 of CRM Proceedings and Lecture Notes,
pages 183–194. American Mathematical Society, 2007.

[29] Y. Maday. The parareal in time algorithm. In F. Magoulès, editor, Substructuring Techniques
and Domain Decomposition Methods, pages 19–44 (Chapter 2). Saxe-Coburg Publications,
Stirlingshire, UK, 2010.

[30] Y. Maday and G. Turinici. A parareal in time procedure for the control of partial differen-
tial equations. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics,
335(4):387–392, 2002.

[31] Y. Maday and G. Turinici. The parareal in time iterative solver: a further direction to parallel
implementation. In R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund, and
J. Xu, editors, Domain decomposition methods in science and engineering, volume 40 of
Lecture Notes in Computational Science and Engineering, pages 441–448. Springer Berlin
Heidelberg, 2005.

[32] S. Mitran. Time parallel kinetic-molecular interaction algorithm for CPU/GPU computers.
Procedia Computer Science, 1:745–752, 2010.

[33] J. Nievergelt. Parallel methods for integrating ordinary differential equations. Communications
of the ACM, 7(12):731–733, 1964.

[34] G.A. Pavliotis and A.M. Stuart. Multiscale methods: averaging and homogenization. Springer,
2008.

[35] G. Staff and E. Rønquist. Stability of the parareal algorithm. In R. Kornhuber, R. Hoppe,
J. Périaux, O. Pironneau, O. Widlund, and J. Xu, editors, Domain decomposition methods
in science and engineering, volume 40 of Lecture Notes in Computational Science and
Engineering, pages 449–456. Springer, 2005.

[36] S. Vandewalle and R. Piessens. Efficient parallel algorithms for solving initial-boundary value
and time-periodic parabolic partial differential equations. SIAM Journal on Scientific and
Statistical Computing, 13:1330–1346, 1992.

Appendix A. Proofs of Lemma 2 and Corollary 3.

Before proving Lemma 2 and Corollary 3, we start with a preliminary result. Here
and in all what follows, ‖ · ‖ denotes the Euclidean norm when applied to vectors, and
the associated operator norm when applied to matrices.

32

Lemma 15. Let M be a matrix in Rd×d such that the real part of the spectrum
of M is positive. Then, there exist C > 0 and µ > 0 such that, for all time t ≥ 0,

‖ exp(−Mt)‖ ≤ C exp(−µt). (A.1)

One can choose µ = infν∈σ(M) Re(ν)/2, where σ(M) denotes the spectrum of M . We
also have

∥∥M−1
∥∥ ≤ C

µ
. (A.2)

Proof. We introduce the Jordan form of the matrix M . Let us assume for simplic-
ity of notation that M has only two Jordan blocks associated to two complex eigenval-
ues λ1 6= λ2 with 0 < Re(λ1) ≤ Re(λ2). The generalization to any number of Jordan
blocks is straightforward. Let us denote µ = infν∈σ(M) Re(ν)/2 = Re(λ1)/2 > 0.

Since M has only two Jordan blocks, there exists an invertible matrix Q ∈ Rd×d
such that

M = Q−1

[
Nd1(λ1) 0

0 Nd2(λ2)

]
Q,

where d1 + d2 = d, and, for any m ∈ N? and any λ ∈ C,

Nm(λ) =




λ 1 0 0
0 λ 1 0

. . .
. . .
0 λ 1

0 λ



∈ Rm×m.

We compute, for any t ∈ R,

exp(Mt) = Q−1

[
exp(λ1t)Pd1(t) 0

0 exp(λ2t)Pd2(t)

]
Q, (A.3)

where, for any m ∈ N? and any t ∈ R,

Pm(t) =




1 t t2/2 t3/6 tm−1/((m− 1)!)
0 1 t t2/2 tm−2/((m− 2)!)

. . .
. . .

0 1 t
0 1



∈ Rm×m.

Since Pm(t) is a matrix with entries which are polynomial functions of t, there exists
a constant C that only depends on the matrix M such that

∀t ≥ 0, ‖Pd1(−t)‖+ ‖Pd2(−t)‖ ≤ C exp(µt).

We then infer from (A.3) that there exists a constant that only depends on M such
that

∀t ≥ 0, ‖exp(−Mt)‖ ≤ C exp(−µt).
33

This yields (A.1). Then, (A.2) is obtained using the fact that

∥∥M−1
∥∥ =

∥∥∥∥
∫ ∞

0

exp(−Mt) dt

∥∥∥∥ ≤
∫ ∞

0

‖exp(−Mt)‖ dt ≤ C
∫ ∞

0

exp(−µt) dt =
C

µ
.

This concludes the proof of Lemma 15.

We are now in position to prove Lemma 2 and Corollary 3.

Proof of Lemma 2. We start by writing

ż = ẏ −A−1q ẋ

=
1

ε
(qx−Ay)−A−1q

(
αx+ pT y

)

= −
[
A

ε
+
(
A−1q

)
pT
]
z − λ

(
A−1q

)
x, (A.4)

where λ is defined by (2.4). Introducing

M ε := A+ ε
(
A−1q

)
pT ∈ R(d−1)×(d−1), V := λ

(
A−1q

)
∈ R(d−1),

we recast (A.4) as

ż = −M
ε

ε
z − V x. (A.5)

From the definition of M ε, and in view of Assumption (2.3), it is clear that there
exists a critical value ε0(A, q, p) such that for all ε < ε0(A, q, p), the matrix M ε has a
spectrum with a real part bounded from below by λ−/2 > 0, where λ− is independent
of ε. Up to a modification of ε0(A, q, p, α), the same property holds true for the matrix
M ε + ελ Id that will appear below (where λ is defined by (2.4)). In the sequel of the
proof, we will systematically work with ε < ε0(A, q, p, α).

By explicit integration of (A.5), we have

z(t)− exp(−M εt/ε)z0 = −
∫ t

0

exp [−M ε(t− s)/ε] V x(s) ds. (A.6)

From (2.1), we have ẋ = λx+ pT z. Using equation (A.6), we thus obtain

x(t)− x0 exp(λt) = pT
∫ t

0

exp (λ(t− s)) z(s)ds

= pT
∫ t

0

exp (λ(t− s)) exp (−M εs/ε) z0ds

− pT
∫ t

0

exp (λ(t− s))
∫ s

0

exp (−M ε(s− r)/ε)V x(r)drds. (A.7)

34

To bound the first term of (A.7), we write, using Lemma 15,

∥∥∥∥
∫ t

0

exp (λ(t− s)) exp (−M εs/ε) ds

∥∥∥∥

= exp(λt)

∥∥∥∥
∫ t

0

exp (− (M ε/ε+ λ Id) s) ds

∥∥∥∥

≤
∥∥∥(M ε/ε+ λ Id)

−1
∥∥∥ ‖exp(λt) Id− exp (− (M ε/ε) t)‖

≤ ε
∥∥∥(M ε + ελ Id)

−1
∥∥∥
(
‖exp(λt) Id‖+ ‖exp (− (M ε/ε) t)‖

)

≤ εC(A, q, p, α)

λ−/4

(
exp(λT) + C(A, q, p, α) exp (−λ−t/(4ε))

)

≤ C(A, q, p, α, T) ε, (A.8)

when ε ≤ ε0(A, q, p, α). Turning to the second term of (A.7), we use Fubini’s theorem,
and write

∫ t

0

exp (λ(t− s))
∫ s

0

exp (−M ε(s− r)/ε)V x(r) drds

= exp(λt)

∫ t

0

exp(M εr/ε)

[∫ t

r

exp (−(M ε/ε+ λ Id)s) ds

]
V x(r) dr

= exp(λt)

∫ t

0

exp(M εr/ε)
[
exp (−(M ε/ε+ λ Id)r)− exp (−(M ε/ε+ λ Id)t)

]

× (M ε/ε+ λ Id)
−1
V x(r) dr

=

∫ t

0

[
exp (λ(t− r)) Id− exp (−M ε(t− r)/ε)

]
(M ε/ε+ λ Id)

−1
V x(r) dr.

Therefore, for ε ≤ ε0(A, q, p, α), using Lemma 15, we obtain

∥∥∥∥
∫ t

0

exp (λ(t− s))
∫ s

0

exp (−M ε(s− r)/ε)V x(r)drds

∥∥∥∥

≤
∥∥∥(M ε/ε+ λ Id)

−1
∥∥∥ ‖V ‖ sup

0≤r≤t
|x(r)|

∫ t

0

‖exp (λ(t− r)) Id− exp (−M ε(t− r)/ε)‖ dr

≤ ε
∥∥∥(M ε + ελ Id)

−1
∥∥∥C(A, q, p, α, T) sup

0≤r≤t
|x(r)|

≤ C(A, q, p, α, T) ε sup
0≤r≤t

|x(r)|. (A.9)

Combining equations (A.7), (A.8) and (A.9), we get

|x(t)− x0 exp(λt)| ≤ C(A, q, p, α, T)‖p‖ ‖z0‖ ε+ C(A, q, p, α, T) ‖p‖ ε sup
0≤r≤t

|x(r)|

≤ C(A, q, p, α, T)ε

(
‖z0‖+ sup

0≤r≤t
|x(r)|

)
,

35

and hence,

sup
0≤t≤T

|x(t)− x0 exp(λt)|

≤ C(A, q, p, α, T) ε

(
‖z0‖+ sup

0≤r≤T
|x(r)|

)

≤ C(A, q, p, α, T) ε

(
‖z0‖+ |x0|+ sup

0≤r≤T
|x(r)− x0 exp(λr)|

)
.

We deduce that, for ε ≤ ε0(A, q, p, α, T),

sup
0≤t≤T

|x(t)− x0 exp(λt)| ≤ C(A, q, p, α, T) ε

1− C(A, q, p, α, T) ε
(‖z0‖+ |x0|)

≤ C(A, q, p, α, T) ε (‖z0‖+ |x0|). (A.10)

This proves (2.8).

We now turn to proving the bound (2.9) on z(t). Introducing

B :=
(
A−1q

)
pT ∈ R(d−1)×(d−1),

we now recast (A.4) as

ż = −
[
A

ε
+B

]
z − V x = −A

ε
z − [Bz + V x] .

By explicit integration, we have

z(t)− exp(−At/ε)z0 = −
∫ t

0

exp [−A(t− s)/ε] (Bz(s) + V x(s)) ds. (A.11)

Using (A.1) and Assumption (2.3), we obtain

‖z(t)− exp(−At/ε)z0‖ ≤ C(A)

∫ t

0

exp

[
λ−

s− t
2ε

]
‖Bz(s) + V x(s)‖ ds

≤ C(A, q, p, α)

∫ t

0

exp

[
λ−

s− t
2ε

]
(‖z(s)‖+ |x(s)|) ds

≤ C(A, q, p, α) sup
s∈[0,t]

(‖z(s)‖+ |x(s)|) 2ε

λ−

≤ εC(A, q, p, α)

(
sup
s∈[0,t]

‖z(s)− exp(−As/ε)z0‖

+ sup
s∈[0,t]

‖ exp(−As/ε)z0‖+ sup
s∈[0,t]

|x(s)|
)
.

Taking the supremum over t ∈ [0, T], we obtain, for ε ≤ ε0(A, q, p, α),

sup
t∈[0,T]

‖z(t)− exp(−At/ε)z0‖ ≤
εC(A, q, p, α)

1− εC(A, q, p, α)

(
sup

s∈[0,T]

‖ exp(−As/ε)z0‖+ sup
s∈[0,T]

|x(s)|
)

≤ εC(A, q, p, α)

1− εC(A, q, p, α)

(
C(A)‖z0‖+ sup

s∈[0,T]

|x(s)|
)
.

36

We then deduce from (A.10) that, for ε ≤ ε0(A, q, p, α, T),

sup
t∈[0,T]

‖z(t)− exp(−At/ε)z0‖ ≤
εC(A, q, p, α, T)

1− εC(A, q, p, α)
(‖z0‖+ |x0|)

≤ εC(A, q, p, α, T) (‖z0‖+ |x0|) . (A.12)

This proves (2.9).

We finally turn to proving (2.11). Using (A.1), we see that

‖ exp(−At/ε)‖ ≤ C(A) exp(−λ−t/(2ε)),

thus, for times t ≥ tBL
ε =

2ε

λ−
ln(1/ε), we have ‖ exp(−At/ε)‖ ≤ C(A)ε. We then

deduce from (A.12) the bound (2.11). This concludes the proof of Lemma 2.

Proof of Corollary 3. The first assertion follows directly from (2.8) and the
fact that ‖z0‖ ≤ ‖y0‖+ C|x0|. The second assertion follows from (2.11) and (2.13).

37

