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FINITE ELEMENT APPROXIMATION OF STEADY FLOWS OF

INCOMPRESSIBLE FLUIDS WITH

IMPLICIT POWER-LAW-LIKE RHEOLOGY

LARS DIENING ,̊ CHRISTIAN KREUZER: , AND ENDRE SÜLI;

Abstract. We develop the analysis of finite element approximations of implicit power-law-like
models for viscous incompressible fluids. The Cauchy stress and the symmetric part of the velocity
gradient in the class of models under consideration are related by a, possibly multi–valued, maximal
monotone r-graph, with 1 ă r ă 8. Using a variety of weak compactness techniques, including
Chacon’s biting lemma and Young measures, we show that a subsequence of the sequence of finite
element solutions converges to a weak solution of the problem as the finite element discretization
parameter h tends to 0. A key new technical tool in our analysis is a finite element counterpart of
the Acerbi–Fusco Lipschitz truncation of Sobolev functions.
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1. Introduction. Most physical models describing fluid flow rely on the as-
sumption that the Cauchy stress is an explicit function of the symmetric part of the
velocity gradient of the fluid. This assumption leads to the Navier–Stokes equations
and its nonlinear generalizations, such as various electrorheological flow models; see,
e. g., [Lad69, Lio69, Rŭž00]. It is known however that the framework of classical
continuum mechanics, built upon the notions of current and reference configuration
and an explicit constitutive equation for the Cauchy stress, is too narrow to en-
able one to model inelastic behavior of solid-like materials or viscoelastic properties
of materials. Our starting point in this paper is therefore a generalization of the
classical framework of continuum mechanics, called the implicit constitutive theory,
which was proposed recently in a series of papers by Rajagopal; see, for example,
[Raj03, Raj06]. The underlying principle of the implicit constitutive theory in the
context of viscous flows is the following: instead of demanding that the Cauchy
stress is an explicit function of the symmetric part of the velocity gradient, one may
allow an implicit and not necessarily continuous relationship between these quanti-
ties. The resulting general theory therefore admits fluid flow models with implicit
and possibly discontinuous power-law-like rheology; see, [Mál08, Mál07]. Very re-
cently a rigorous mathematical existence theory was developed for these models by
Bulíček, Gwiazda, Málek, and Świerczewska-Gwiazda in [BGMŚG09]. Motivated
by the ideas in [BGMŚG09], we consider the construction of finite element approx-
imations of implicit constitutive models for incompressible fluids and we develop
the convergence theory of these numerical methods by exploiting a range of weak
compactness arguments.

Let Ω Ă Rd, d P N, be a bounded open Lipschitz domain with polyhedral
boundary. For r P p1,8q we define r1 P p1,8q by the equality 1

r
` 1

r1 “ 1 and we set

r̃ :“ mintr1, r˚{2u, where r˚ :“
#

dr
d´r

if r ă d,

8 otherwise.
(1.1)
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We refer the reader to the first paragraph in Section 2.1 for the definitions of the
various function spaces used in the paper and for a list of our notational conventions.

Problem. For f P W´1,r1 pΩqd find pu, p,Sq P W 1,r
0 pΩqd ˆLr̃

0pΩq ˆLr1pΩqdˆd such
that

divpu b u ` p1 ´ Sq “ f in D1pΩq,
divu “ 0 in D1pΩq,

pDupxq,Spxqq P Apxq for almost every x P Ω.

(1.2)

The symmetric part of the gradient is defined by Du :“ 1
2

p∇u ` p∇uqTq. As is
implied by the choice of the solution space W 1,r

0 pΩqd for the velocity, a homogenous
Dirichlet boundary condition is assumed here for u.

The implicit law, which relates the shear rate Du to the shear stress S, is given
by an nonhomogeneous maximal monotone r-graph A : x ÞÑ Apxq. In particular,
we assume that the following properties hold for almost every x P Ω:
(A1) p0,0q P Apxq;
(A2) For all pδ1,σ1q, pδ2,σ2q P Apxq,

pσ1 ´ σ2q : pδ1 ´ δ2q ě 0 (Apxq is a monotone graph),

and if δ1 ‰ δ2 and σ1 ‰ σ2, then the inequality is strict;

(A3) If pδ,σq P Rdˆd
sym ˆ Rdˆd

sym and

pσ̄ ´ σq : pδ̄ ´ δq ě 0 for all pδ̄, σ̄q P Apxq,

then pδ,σq P Apxq (i.e., Apxq is a maximal monotone graph);

(A4) There exists a constant c ą 0 and a nonnegative m P L1pΩq, such that for all
pδ,σq P Apxq we have

σ : δ ě cp|δ|r ` |σ|r1 q ´mpxq (i.e., Apxq is an r-graph);

(A5) (i) For all δ P Rdˆd
sym :“ tζ P Rdˆd : ζ “ ζTu, the set

tσ P Rdˆd
sym : pδ,σq P Apxqu

is closed;
(ii) For any closed C Ă Rdˆd

sym , the set

 

px, δq P Ω ˆ Rdˆd
sym : there exists σ P C, such that pδ,σq P Apxq

(

is measurable relative to the smallest σ-algebra LpΩqbBpRdˆd
sym q of the

product of the σ-algebra LpΩq of Lebesgue measurable subsets of Ω

and all Borel subsets BpRdˆd
symq of Rdˆd

sym .

The class of fluids described by (1.2) is very general and includes not only
Newtonian (Navier–Stokes) fluids (S “ 2µ˚Dv with µ˚ being a positive constant),
but also standard power-law fluid models, where S “ 2µ˚|Dv|r´2Dv, 1 ă r ă 8,
and their generalizations (S “ 2µ̃p|Dv|2qDv), stress power-law fluid flow models
and their generalizations of the form Dv “ αp|S|2qS, fluids with the viscosity
depending on the shear rate and the shear stress S “ 2µ̂p|Dv|2, |S|2qDv, as well
as activated fluids, such as Bingham and Herschel–Bulkley fluids. For further details
concerning the physical background of the implicit constitutive theory we refer the
reader to the papers by Rajagopal and Rajagopal & Srinivasa [Raj03, Raj06, RS08],
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and the introductory sections of Bulíček, Gwiazda, Málek & Świerczewska-Gwiazda
[BGMŚG09, BGMŚG11] and Bulíček, Málek & Süli [BMS12].

It is proved in [BGMŚG09] that under the assumption r ą 2d
d`2

problem (1.2)
has a weak solution. The proof in [BGMŚG09] uses a sequence of approximation
spaces spanned by finite subsets of a Schauder basis of an infinite-dimensional sub-
space of a Sobolev space, consisting of exactly divergence-free functions. Since such
a Schauder basis is not explicitly available for computational purposes, here, in-
stead, we shall approximate (1.2) from two classes of inf-sup stable pairs of finite
element spaces. The first class contains velocity-pressure space-pairs that do not
lead to exactly divergence-free velocity approximations. For finite element spaces
of this kind our convergence result is restricted to r ą 2d

d`1
. In the case of exactly

divergence-free finite element spaces for the velocity we show that the resulting
(sub)sequence of finite element approximations converges to a weak solution of the
problem for any r ą 2d

d`2
, as in [BGMŚG09].

The paper is structured as follows. In Section 2 we introduce the necessary
analytical tools, including Young measures and Chacon’s biting lemma. In Section
3 we define the finite element approximation of the problem with both discretely
divergence-free and exactly divergence-free finite element spaces for the velocity. A
key technical tool in our analysis is a new discrete Lipschitz truncation technique,
which can be seen as the finite element counterpart of the Lipschitz truncation of
Sobolev functions discovered by Acerbi and Fusco [AF88] and further refined by
Diening, Málek, and Steinhauer [DMS08]; see also [DHHR11, BDF12, BDS12]. The
central result of the paper is stated in Section 4, in Theorem 19, and concerns the
convergence of the finite element approximations constructed in Section 3.

2. Preliminaries. In this section we recall some known results and mathe-
matical tools from the literature. We shall first introduce basic notations and recall
some well-known properties of Lebesgue and Sobolev spaces. We shall then discuss
the approximation of an x-dependent r-graph by a sequence of regular single-valued
tensor fields using a graph-mollification technique by Francfort, Murat and Tartar
[FMT04] (which the authors of [FMT04] attribute to Dal Maso). We close the sec-
tion by recalling a generalization from [Gwi05, GZG07] of the so-called fundamental
theorem on Young measures; cf. [Bal89].

2.1. Analytical framework. Let CpΩ̄qd be the space of d-component vector-
valued continuous functions on Ω̄ and let C0pRdˆd

symq denote the space of continuous
functions with compact support in Rdˆd

sym . For a measurable subset ω Ă Rd, we
denote the classical spaces of Lebesgue and vector-valued Sobolev functions by
pLspωq, } ¨ }s;ωq and pW 1,spωqd, } ¨ }1,s;ωq, s P r1,8s, respectively. Let Dpωq :“
C8

0 pωqd be the set of infinitely many times differentiable d-component vector-valued
functions with compact support in ω; we denote by D1pωq the corresponding dual
space, consisting of distributions on ω. For s P r1,8q, denote by W

1,s
0 pωqd the

closure of Dpωq in W 1,spωqd and let W 1,s
0,divpωqd :“ tv P W 1,s

0 pωqd : div v ” 0u. The
case s “ 8 has to be treated differently. We define

W
1,8
0 pΩqd :“ W

1,1
0 pΩqd XW 1,8pΩqd

and

W
1,8
0,divpΩqd :“ W

1,1
0,divpΩqd XW 1,8pΩqd.

Moreover, we denote the space of functions in Lspωq with zero integral mean by
Ls
0pωq. For s, s1 P p1,8q with 1

s
` 1

s1 “ 1, Ls1 pΩq and Ls1

0 pΩq are the dual spaces

of LspΩq and Ls
0pΩq, respectively. The dual of W 1,s

0 pΩqd is denoted by W´1,s1 pΩqd.
For ω “ Ω we omit the domain in our notation for norms; e. g., we write }¨}s instead
of } ¨ }s,Ω.
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Inf-sup condition. The inf-sup condition has a crucial role in the analysis of in-
compressible flow problems. It states that, for s, s1 P p1,8q with 1

s
` 1

s1 “ 1, there
exists a constant αs ą 0 such that

sup
0‰vPW 1,s

0
pΩqd

xdiv v, qyΩ
}v}1,s

ě αs}q}s1 for all q P Ls1

0 pΩq. (2.1a)

This follows from the existence of the Bogovskĭı operator B : Ls
0pΩq Ñ W

1,s
0 pΩq,

with

divBh “ h and αs}Bh}1,s ď }h}s (2.1b)

for all s P p1,8q; compare e.g. with [DRS10, Bog79].
Korn’s inequality. According to (1.2) the maximal monotone graph defined in
(A1)–(A5) provides control over the symmetric part of the velocity gradient only.
Korn’s inequality implies that this suffices in order to control the norm of a Sobolev
function; i. e., for s P p1,8q, there exists a γs ą 0 such that

γs}v}1,s ď }Dv}s for all v P W 1,s
0 pΩqd; (2.2)

compare, for example, with [DRS10].

2.2. Approximation of maximal monotone r-graphs. In general an x-
dependent maximal monotone r-graph A satisfying (A1)–(A5) cannot be repre-
sented in an explicit fashion. However, based on a regularized measurable selection,
it can be approximated by a regular single-valued monotone tensor field. Following
[FMT04], there exists a mapping S˚ : ΩˆRdˆd

sym Ñ Rdˆd
sym (a selection) such that, for

all δ P Rdˆd
sym , pδ,S˚px, δqq P Apxq for almost every x P Ω and

(a1) S˚ is measurable with respect to the product σ-algebra LpΩq b BpRdˆd
symq;

(a2) For almost all x P Ω the domain of S˚ is Rdˆd
sym ;

(a3) S˚ is monotone, i. e., for every δ1, δ2 P Rdˆd
sym and almost all x P Ω,

`

S˚px, δ1q ´ S˚px, δ2q
˘

: pδ1 ´ δ2q ě 0; (2.3)

(a4) For almost all x P Ω and all δ P Rdˆd
sym the following growth and coercivity

conditions hold:

ˇ

ˇS˚px, δq
ˇ

ˇ ď c1 |δ|r´1 ` kpxq and S˚px, δq : δ ě c2 |δ|r ´mpxq, (2.4)

where c1, c2 ą 0, and k P Lr1pΩq and m P L1pΩq are nonnegative functions.
Let η P C0pRdˆd

symq be a radially symmetric nonnegative function with support
in the unit ball B1p0q Ă Rdˆd

sym and
´

R
dˆd
sym

η dζ “ 1. For n P N we then set ηnpζq “
nd2

ηpnζq and define

Snpx, δq :“ pS˚
˙ ηnqpx, δq “

ˆ

R
dˆd
sym

S˚px, ζq ηnpδ ´ ζqdζ “
ˆ

R
dˆd
sym

S˚px, ζqdµn
δ .

(2.5)

Here, thanks to the equality
´

R
dˆd
sym

ηn dζ “ 1 and the nonnegativity of η, for each

δ P Rdˆd
sym , dµn

δ :“ ηnpδ ´ ζqdζ defines a probability measure that is absolutely
continuous with respect to the Lebesgue measure, with density ηnpδ ´ p¨qq.

We recall the following properties of the matrix function Sn from [GMŚ07,
BGMŚG09, GZG07].
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Lemma 1. The x-dependent matrix function Sn, defined in (2.5), satisfies

pSnpx, δ1q ´ Snpx, δ2qq : pδ1 ´ δ2q ě 0 for all δ1, δ2 P Rdˆd
sym

.

Moreover, there exist constants c̃1, c̃2 ą 0 and nonnegative functions m̃ P L1pΩq,
k̃ P Lr1pΩq such that, uniformly in n P N, we have

|Snpx, δq| ď c̃1 |δ|r´1 ` k̃pxq for all δ P Rdˆd
sym

,

Snpx, δq : δ ě c̃2 |δ|r ´ m̃pxq for all δ P Rdˆd
sym

.

Remark 2. The selection S˚ enters in the definition of the finite element
method in the form of Sn through the Galerkin ansatz; compare with Section 3.4
below. The natural question is then how one can gain access to such a selection.
In fact, in most physical models it appears that the selection S˚ is given and Apxq
is defined as the maximal monotone graph containing the set tpD,S˚pDqq : D P
Rdˆd

sym
u; compare with [BGMŚG09, GMŚ07] and the references therein.

2.3. Weak convergence tools. The result in [Gwi05, GZG07] extends[Bal89]
from limits of single distributed measures to limits of general probability mea-
sures. To this end we need to introduce some standard notation from the theory
of Young measures. We denote by MpRdˆd

symq the space of bounded Radon mea-
sures. We call µ : Ω Ñ MpRdˆd

symq, x ÞÑ µx, weak-˚ measurable if the mapping
x ÞÑ

´

R
dˆd
sym

hpζqdµxpζq is measurable for all h P C0pRdˆd
symq. The associated non-

negative measure is defined by |µx| pCq :“ µ`
x ` µ´

x , via the Jordan decomposition
µx “ µ`

x ´ µ´
x into two bounded non-negative measures µ`

x , µ
´
x . By means of the

norm }µ}
L8

w pΩ;MpRdˆd
sym qq :“ ess supxPΩ

´

R
dˆd
sym

d |µx| the space L8
w pΩ;MpRdˆd

symqq of es-
sentially bounded, weak-˚ measurable functions turns into a Banach space with
separable predual L1pΩ, C0pRdˆd

symqq. The support of a non-negative measure is de-
fined to be the largest closed subset of Rdˆd

sym for which every open neighborhood of
every point of the set has positive measure and suppµx :“ suppµ`

x Y suppµ´
x .

Theorem 3 (Young measures). Let Ω be an open and bounded subset of Rd.
Suppose that tνjujPN Ă L8

w pΩ;MpRdˆd
sym

qq is such that νjx is a probability measure
on Rdˆd

sym
for all j P N and a.e. x P Ω. Assume that νj converges to ν in the weak-˚

topology of L8
w pΩ;MpRdˆd

sym
qq for some ν P L8

w pΩ;MpRdˆd
sym

qq.
Suppose further that the sequence tνjujPN satisfies the tightness condition

lim
RÑ8

sup
jPN

ˇ

ˇ

 

x P Ω: supp νjxzBRp0q ‰ H
(ˇ

ˇ Ñ 0,

where BRp0q denotes the ball in Rdˆd
sym

with center 0 P Rdˆd
sym

and radius R ą 0.
Then, the following statements hold:

(i) νx is a probability measure, i. e., }νx}
MpRdˆd

sym q “
´

R
dˆd
sym

d |νx| “ 1 a.e. in Ω;

(ii) for every h P L8pΩ;CbpRdˆd
sym

qq,
ˆ

R
dˆd
sym

hpx, ζqdνjxpζq á˚

ˆ

R
dˆd
sym

hpx, ζqdνxpζq weak-˚ in L8pΩq;

(iii) for every measurable subset ω Ă Ω and for every Carathéodory function h

such that

lim
RÑ8

sup
jPN

ˆ

ω

ˆ

tζPRdˆd
sym : |hpx,ζq|ąRu

|hpx, ζq| dνjxpζqdζ “ 0 (2.6)

we have that
ˆ

R
dˆd
sym

hpx, ζqdνjxpζq á
ˆ

R
dˆd
sym

hpx, ζqdνxpζq weakly in L1pωq.
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Lemma 4 (Chacon’s biting lemma). Let Ω be a bounded domain in Rd and
let tvnunPN be a bounded sequence in L1pΩq. Then, there exists a nonincreasing
sequence of measurable subsets Ej Ă Ω with |Ej | Ñ 0 as j Ñ 8, such that tvnunPN

is precompact in the weak topology of L1pΩzEjq, for each j P N.

3. Finite Element Approximation. This section is concerned with approxi-
mating problem (1.2) by a finite element method. To this end we introduce a general
framework covering inf-sup stable Stokes elements, which are discretely divergence-
free, as well as exactly divergence-free finite elements for the velocity. These two
classes of velocity elements require different treatment of the convection term. The
discussion of these, including representative examples of velocity-pressure pairs of
finite element spaces from each class, is the subject of §3.2 and §3.3. The finite
element approximation of (1.2) is stated in §3.4. We close with a new Lipschitz
truncation method for finite element spaces, which plays a crucial role in the proof
of our main result, Theorem 19.

3.1. Finite element spaces. We consider a family tVn,QnunPN Ă W
1,8
0 pΩqd

ˆL8pΩq of pairs of conforming finite-dimensional subspaces of W 1,r
0 pΩqd ˆL8pΩq.

To be more precise, let G :“ tGnunPN be a sequence of shape-regular partitions of
Ω̄, i. e., a sequence of regular finite element partitions of Ω̄ satisfying the following
structural assumptions.
‚ Affine equivalence: For every element E P Gn, n P N, there exists an invertible

affine mapping

FE : E Ñ Ê,

where Ê is the closed standard reference d-simplex or the closed standard unit
cube in Rd.

‚ Shape-regularity: For any element E P Gn, n P N, the ratio of its diameter to the
diameter of the largest inscribed ball is bounded, uniformly with respect to all
partitions Gn, n P N.

For a given partition Gn, n P N, and certain subspaces V Ă CpΩ̄qd and Q Ă L8pΩq,
the finite element spaces are then given by

Vn “ VpGnq :“
!

V P V : V |E ˝ F´1
E P P̂V, E P Gn and V |BΩ “ 0

)

, (3.1a)

Qn “ QpGnq :“
!

Q P Q : Q|E ˝ F´1
E P P̂Q, E P Gn

)

, (3.1b)

where P̂V Ă W 1,8pÊqd and P̂Q Ă L8pÊq are finite-dimensional subspaces, with
dim P̂V “ ℓ and dim P̂V “ , respectively, for some ℓ,  P N. Note that Qn Ă L8pΩq
and since Vn Ă CpΩ̄qd it follows that Vn Ă W

1,8
0 pΩqd. Each of the above spaces is

assumed to have a finite and locally supported basis; e. g. for the discrete pressure
space this means that for n P N there exists Nn P N such that

Qn “ spantQn
1 , . . . , Q

n
Nn

u

and for each basis function Qn
i , i “ 1, . . . , Nn, we have that if there exists E P Gn

with Qn
i ı 0 on E, then

suppQn
j Ă

ď

 

E1 P Gn | E1 X E ‰ H
(

“: Ωn
E with Ωn

E ď c |E|

for some constant c ą 0 depending on the shape-regularity of G. The piecewise
constant mesh size function hGn

P L8pΩq is almost everywhere in Ω defined by

hGn
pxq :“ |E|

1

d , if E P Gn with x P E.
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We introduce the subspace Vn
div of discretely divergence-free functions by

Vn
div :“

 

V P Vn : xdivV , QyΩ “ 0 for all Q P Qn
(

and we define

Qn
0 :“

 

Q P Qn :

ˆ

Ω

Q dx “ 0
(

.

Throughout the paper we assume that all pairs of velocity-pressure finite element
spaces possess the following properties.

Assumption 5 (Approximability). For all s P r1,8q,

inf
V PVn

}v ´ V }1,s Ñ 0 for all v P W 1,s
0 pΩqd, as n Ñ 8; and

inf
QPQn

}q ´Q}s Ñ 0 for all q P LspΩq, as n Ñ 8.

For this, a necessary condition is that the maximal mesh size vanishes, i.e. we have
}hGn

}L8pΩq Ñ 0 as n Ñ 8.
Assumption 6 (Projector Πn

div). For each n P N there exists a linear projection
operator Πn

div :W
1,1
0 pΩqd Ñ Vn such that,

‚ Πn
div preserves divergence in the dual of Qn; i. e., for any v P W 1,1

0 pΩqd, we have

xdiv v, QyΩ “ xdiv Πn
divv, QyΩ for all Q P Qn.

‚ Πn
div is locally W 1,1-stable; i. e., there exists c1 ą 0, independent of n, such that

 

E

|Πn
divv| ` hGn

|∇Πn
divv| dx ď c1

 

Ωn
E

|v| ` hGn
|∇v| dx (3.2)

for all v P W 1,1
0 pΩqd and all E P Gn. Here we have used the notation

ffl

B
¨ dx :“

1
|B|

´

B
¨ dx for the integral mean-value over a measurable set B Ă Rd, |B| ‰ 0.

It was shown in [BBDR10, DR07] that the localW 1,1-stability of Πn
div implies its

local and globalW 1,s-stability, s P r1,8s. In fact, by noting that the power function
t ÞÑ ts is convex for s P r1,8q, we obtain for almost every x P E, E P Gn, by the
equivalence of norms on finite-dimensional spaces and standard scaling arguments,
that

|Πn
divvpxq| ` hGn

|∇Πn
divvpxq| ď }Πn

divvpxq}L8pEq ` hGn
}∇Πn

divv}L8pEq

ď c

 

E

|Πn
divvpxq| ` hGn

|∇Πn
divv| dx

ď c

 

Ωn
E

|vpxq| ` hGn
|∇v| dx

ď c

ˆ
 

Ωn
E

|vpxq|s ` hsGn
|∇v|s dx

˙
1

s

,

where we have used Jensen’s inequality in the last step; recall that |Ωn
E | ď c |E| with

a constant depending solely on the shape-regularity of G. Raising this inequality
to the s-th power and integrating over E yields

ˆ

E

|Πn
divv|s ` hsGn

|∇Πn
divv|s dx ď c

ˆ

Ωn
E

|v|s ` hsGn
|∇v|s dx.

Summing over all elements E P Gn and accounting for the locally finite overlap of
patches yields, for any s P r1,8q, that

}Πn
divv}1,s ď cs}v}1,s for all v P W 1,s

0 pΩqd, (3.3)
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with a constant cs ą 0 independent of n P N. Note that for s “ 8 the inequality
(3.3) follows from an obvious modification of the argument above.

Hence, by invoking the approximation properties of the sequence of finite ele-
ment spaces for the velocity, stated in Assumption 5, we obtain that

}v ´ Πn
divv}1,s Ñ 0 for all v P W 1,s

0 pΩqd, as n Ñ 8 and s P r1,8q. (3.4)

Moreover, we have the following result in the weak topology of W 1,s
0 pΩqd.

Proposition 7. Let tvnunPN Ă W
1,s
0 pΩqd, s P p1,8q, such that vn á v weakly

in W
1,s
0 pΩqd as n Ñ 8. Then

Πn
divvn á v weakly in W

1,s
0 pΩqd as n Ñ 8.

Proof. Thanks to the uniform boundedness of the sequence of linear operators
tΠn

div : W
1,s
0 pΩqd Ñ Vn Ă W

1,s
0 pΩqdunPN (cf. (3.3)), we have that there exists a

weakly converging subsequence of tΠn
divvnunPN in W

1,s
0 pΩqd. By the uniqueness of

the weak limit, it therefore suffices to identify the limit of tΠn
divvnunPN in LspΩqd.

We deduce from the above considerations that

}v ´ Πn
divvn}LspΩqď }v ´ Πn

divv}LspΩq ` }Πn
divpvn ´ vq}LspΩq

ď }v ´ Πn
divv}LspΩq ` c}vn ´ v}LspΩq ` c}hGn

∇pvn ´ vq}LspΩq.

The first term vanishes because of (3.4) and the second term vanishes since vn Ñ v

strongly in LspΩqd, thanks to the compact embedding W 1,s
0 pΩqd ãÑãÑ LspΩqd. The

last term vanishes since }hGn
}L8pΩq Ñ 0 as n Ñ 8, by Assumption 5.

Assumption 8 (Projector Πn
Q). For each n P N there exists a linear projection

operator Πn
Q : L1pΩq Ñ Qn such that, for all s1 P p1,8q, Πn

Q is stable. In other
words, there exists a constant c̃s1 ą 0, independent of n, such that

}Πn
Qq}s1 ď c̃s1 }q}s1 for all q P Ls1 pΩq.

The stability of Πn
Q and the approximation properties of Qn Ă Ls1 pΩq, stated

in Assumption 5, imply that Πn
Q satisfies

}q ´ Πn
Qq}s1 Ñ 0, as n Ñ 8 for all q P Ls1 pΩq and s1 P p1,8q. (3.5)

As a consequence of (2.1a) and Assumption 6 (compare also with (3.3)) the
following discrete counterpart of (2.1a) holds; see [BBDR10].

Proposition 9 (Inf-sup stability). For all s, s1 P p1,8q with 1
s

` 1
s1 “ 1, there

exists a constant βs ą 0, independent of n, such that

sup
0‰V PVn

xdivV , QyΩ
}V }1,s

ě βs }Q}s1 for all Q P Qn
0 and all n P N.

Thanks to the above considerations, there is a discrete Bogovskĭı operator, which
admits the following properties.

Corollary 10 (Discrete Bogovskĭı operator). Under the conditions of this
section, for all n P N, there exists a linear B

n : divVn Ñ Vn with

divpBnHq “ H and βs }BnH}1,s ď sup
QPQn

xH, QyΩ
}Q}s1
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for all H P divVn. Moreover, if V n P Vn, n P N, such that V n á V weakly in
W

1,s
0 pΩqd as n Ñ 8, then we have that

B
n divV n á BdivV weakly in W

1,s
0 pΩqd as n Ñ 8.

It follows from Corollary 10 by Hölder’s inequality that βs }BnH}1,s ď }H}s.
However, we shall need in the proof of Lemma 21 the stronger statement from
Corollary 10.

Proof. Thanks to the discrete inf-sup stability (Proposition 9), we may identify
divVn with the dual of Qn{R. Next, we extend H P divVn, to hH “ Ls

0pΩq,
s P p1,8q, by means of the projection operator Πn

Q : Ls1 pΩq Ñ Qn, 1
s

` 1
s1 “ 1, from

Assumption 8. In fact, hH P Ls
0pΩq is uniquely defined by

ˆ

Ω

H Πn
Qq dx “

ˆ

Ω

hHq dx for all q P Ls1 pΩq.

Moreover, we have

}hH}s “ sup
qPLs1 pΩq

´

Ω
hHq dx

}q}s1

“ sup
qPLs1 pΩq

´

Ω
H Πn

Qq dx

}q}s1

ď c̃s1 sup
QPQn

´

Ω
HQ dx

}Q}s1

.

We define B
nH :“ Πn

divBhH P Vn. Thanks to the above considerations and the
stability properties (3.3) and (2.1b) of Πn

div and B respectively, we have proved the
first claim.

In order to prove the second assertion, we set Hn :“ divV n and conclude that
Hn á H :“ divV weakly in Ls

0pΩq as n Ñ 8. Consequently, thanks to (3.5), we
have for all q P Ls1 pΩq, that

ˆ

Ω

hHnq dx “
ˆ

Ω

HnΠn
Qq dx Ñ

ˆ

Ω

Hq dx as n Ñ 8.

In other words, we have that hHn á H weakly in Ls
0pΩq as n Ñ 8. The Bogovskĭi

operator B : Ls
0pΩq Ñ W

1,s
0 pΩqd is continuous and therefore it is also continuous

with respect to the weak topologies of the respective spaces; compare e.g. with
[AB2006, Theorem 6.17]. Therefore, we have BhHn á BH weakly in W 1,s

0 pΩqd as
n Ñ 8 and the assertion follows from Proposition 7.

3.2. Discretely divergence-free finite elements. As in [Tem84] we wish
to ensure that the discrete counterpart of the convection term inherits the skew-
symmetry of the convection term. In particular, upon integration by parts, it follows
that

´
ˆ

Ω

pv b wq : ∇h dx “
ˆ

Ω

pv b hq : ∇w ` pdiv vqpw ¨ hqdx (3.6)

for all v,w,h P DpΩqd. The last term vanishes provided that div v ” 0, and then
ˆ

Ω

pv b vq : ∇v dx “ 0.

It can be easily seen that this is not generally true for finite element functions
V P Vn, even if

xdivV , QyΩ “ 0 for all Q P Qn,

i. e., if V is discretely divergence-free. However, we observe from (3.6) that

´
ˆ

Ω

pv b wq : ∇hdx “ 1
2

ˆ

Ω

pv b hq : ∇w ´ pv b wq : ∇h dx “: Brv, w, hs (3.7)
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for all v,w,h P W 1,8
0,divpΩqd. We extend this definition to W 1,8pΩqd in the obvious

way and deduce that

Brv, v, vs “ 0 for all v P W 1,8pΩqd. (3.8)

We further investigate this modified convection term for fixed r, r1 P p1,8q with
1
r

` 1
r1 “ 1; recall the definition of r̃ from (1.1). We note that r̃ ą 1 is equivalent to

the condition r ą 2d
d`2

. In this case we can define its dual r̃1 P p1,8q by 1
r̃

` 1
r̃1 “ 1

and we note that the Sobolev embedding

W 1,rpΩqd ãÑ L2r̃pΩqd (3.9)

holds. This is a crucial condition in the continuous problem, which guarantees
ˆ

Ω

pv b wq : ∇h dx ď c }v}1,r}w}1,r}h}1,r̃1 (3.10)

for all v,w,h P W 1,8pΩqd; see [BGMŚG09] and Section 3.3 below. Because of the
extension (3.7) of the convection term to functions that are not necessarily point-
wise divergence-free, we have to adopt the following stronger condition in order
to ensure that the trilinear form Br¨, ¨, ¨s is bounded on W 1,rpΩqd ˆ W 1,rpΩqd ˆ
W 1,r̃1 pΩqd. In particular, let r ą 2d

d`1
, in order to ensure that there exists s P p1,8q

such that 1
r

` 1
2r̃

` 1
s

“ 1. In other words, we have for v,w,h P W 1,8pΩqd that

ˆ

Ω

pdiv vq pw ¨ hqdx ď } div v}r}w}2r̃}h}s ď c }v}1,r}w}1,r}h}1,r̃1 ,

with a constant c depending on r, Ω and d. Here we have used the embeddings
(3.9) and W 1,r̃1

0 pΩqd ãÑ LspΩqd. Consequently, together with (3.10) we thus obtain

Brv, w, hs ď c }v}1,r}w}1,r}h}1,r̃1 . (3.11)

Example 11. In [BBDR10] it is shown that Assumptions 6 and 8 are satisfied
by the following velocity-pressure pairs of finite elements:
‚ The conforming Crouzeix–Raviart Stokes element, i. e., continuous piecewise

quadratic plus bubble velocity and discontinuous piecewise linear pressure ap-
proximations (compare e. g. with [BF91, §VI Example 3.6]);

‚ The Mini element; see, [BF91, §VI Example 3.7];
‚ The spaces of continuous piecewise quadratic elements for the velocity and piece-

wise constants for the pressure ([BF91, §VI Example 3.6]);
Moreover, it is stated without proof in [BBDR10] that the lowest order Taylor–Hood
element also satisfies Assumptions 6 and 8.

3.3. Exactly divergence-free finite elements. Another way of retaining
the skew-symmetry of the convection term and ensuring that (3.8) holds is to use
an exactly divergence-free finite element approximation of the velocity. In addition
to Assumptions 6 and 8 in Section 3.1 we suppose that the following condition holds.

Assumption 12. The finite element spaces defined in Section 3.1 satisfy

divVn Ă Qn
0 , n P N.

This inclusion obviously implies that discretely divergence-free functions are auto-
matically exactly divergence-free, i. e.,

Vn
div “ tV P Vn : divV ” 0u, n P N.
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According to (3.6), in this case, we define

Brv, w, hs :“ ´
ˆ

Ω

pv b wq : ∇h dx (3.12)

for all v,w,h P W 1,8
0 pΩqd and obtain

Brv, v, vs “ 0 for all v P W 1,8
0,divpΩqd. (3.13)

Recalling (3.10), with Assumption 12, the convection term can be controlled under
the weaker restriction r ą 2d

d`2
, i. e., for v,w,h P W 1,8pΩqd, we have that

Brv, w, hs ď c }v}1,r}w}1,r}h}1,r̃1 , (3.14)

where, as before, 1
r̃

` 1
r̃1 “ 1 with r̃ from (1.1). The constant c ą 0 only depends

on r, Ω and d.
Admittedly, finite element spaces that simultaneously satisfy Assumptions 6, 8

and 12 are not very common. Most constructions of exactly divergence-free finite
element spaces in the literature are not very practical in that they require a suf-
ficiently high polynomial degree and/or restrictions on the geometry of the mesh;
see [AQ92, SV85, QZ07, Zha08]. In a very recent work [GN11] Guzmán and Neilan
proposed inf-sup stable finite element pairs in two space-dimensions, which admit
exactly divergence-free velocity approximations for r “ 2. A generalization of the
Guzmán–Neilan elements to three dimensions is contained in [GN12]. We shall show
below that the lowest order spaces introduced in [GN11] simultaneously satisfy As-
sumptions 6, 8 and 12 for r P r1,8q.

Example 13 (Guzmán–Neilan elements [GN11]). We consider the finite ele-
ment spaces introduced by Guzmán and Neilan in [GN11, Section 3] on simplicial
triangulations of a bounded open polygonal domain Ω in R2. In particular, we define

P̂V :“ P1pÊq ‘ spantcurlpb̂iq : i “ 1, 2, 3u ‘ spantcurlpB̂iq : i “ 1, 2, 3u.

Here P1pÊq denotes the space of affine vector-valued functions over Ê. Let further
tλ̂iui“1,2,3 be the barycentric coordinates on Ê associated with the three vertices
tẑiui“1,2,3 of Ê, i. e., λ̂ipẑjq “ δij . Then, for i P t1, 2, 3u, we set b̂i :“ λ̂2i`1λ̂i`2,
and B̂i denotes the rational bubble function

B̂i :“
λ̂iλ̂

2
i`1λ̂

2
i`2

pλ̂i ` λ̂i`1qpλ̂i ` λ̂i`2q
,

which can be continuously extended by zero at ẑi`1 and ẑi`2; the index i has to be
understood modulo 3. Thanks to properties of the curl operator, the local pressure
space

P̂Q :“ div P̂V

is the space of constant functions over Ê.
It is clear from [GN11] that the related pairs of spaces tVn,QnunPN (compare

with (3.1)) satisfy Assumption 12. For Πn
Q we can use a Clément type interpolation

or simply the best-approximation in Qn; clearly, both satisfy Assumption 8. The
approximability assumption, Assumption 5, follows with the mesh-size tending to
zero. It remains to verify Assumption 6. To this end we analyze the interpolation
operator proposed in [GN11]. In particular, let Πn

S : W
1,1
0 pΩq2 Ñ Ln be the Scott–

Zhang interpolant [SZ90] into the linear Lagrange finite element space Ln :“ LpGnq
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over a triangulation Gn, belonging to a shape-regular family of triangulations G “
tGnunPN of Ω. Then Πn

div :W
1,1
0 pΩq2 Ñ Vn is defined by

pΠn
divvqpzq :“ pΠn

Svqpzq, z P Nn,
ˆ

S

Πn
divv ds “

ˆ

S

v ds, S P Sn,
(3.15)

where Nn and Sn denote the vertices, respectively edges, of the triangulation Gn,
n P N. This operator is a projector and thanks to [GN11, (3.14)] and the fact that
Ln Ă Vn it thus remains to prove the stability estimate (3.2) in Assumption 6.

To this end we fix n P N. Although the claim can be proved using the techniques
in [GN11], this would necessitate the introduction of additional notation. Thus, for
the sake of brevity of the presentation, we give an alternative proof. According to
[GN11] the interpolation operator Πn

div is correctly defined by (3.15). Let tẑiui“1,2,3

be the vertices of Ê and let tŜiui“1,2,3 be its edges. Then, any function V̂ P P̂V is
uniquely defined by V̂ pẑiq and

´

Ŝi
V̂ ds, i “ 1, 2, 3. This implies that the mapping

V̂ ÞÑ
3
ÿ

i“1

ˇ

ˇV̂ pẑiq
ˇ

ˇ `
ˇ

ˇ

ˇ

ˇ

ˆ

Ŝi

V̂ ds

ˇ

ˇ

ˇ

ˇ

, V̂ P P̂V,

is a norm on P̂V. Hence, equivalence of norms on finite-dimensional spaces together
with (3.15) yield that

ˆ

Ê

ˇ

ˇΠn
divv ˝ F´1

E

ˇ

ˇ dx ď c

3
ÿ

i“1

´

ˇ

ˇΠn
divv ˝ F´1

E pẑiq
ˇ

ˇ `
ˇ

ˇ

ˆ

Ŝi

Πn
divv ˝ F´1

E ds
ˇ

ˇ

¯

“ c

3
ÿ

i“1

´

ˇ

ˇΠn
Sv ˝ F´1

E pẑiq
ˇ

ˇ `
ˇ

ˇ

ˆ

Ŝi

v ˝ F´1
E ds

ˇ

ˇ

¯

, v P W 1,1
0 pΩq2.

By a scaled trace theorem and properties of the Scott–Zhang operator we arrive at
ˆ

E

|Πn
divv| dx ď c

ˆ

Ωn
E

|v| ` hGn
|∇v| dx, v P W 1,1

0 pΩq2.

Note that Πn
div : W

1,1
0 pΩq2 Ñ Vn is a projector and that Ln Ă Vn. Thus the

inequality (3.2) follows from a standard inverse estimate and the Bramble–Hilbert
Lemma; compare also with [BBDR10, Theorem 3.5].

3.4. The Galerkin approximation. We are now ready to state the discrete
problem. Let tVn,QnunPN be the finite element spaces of Section 3.2 or 3.3 and let
B :W

1,8
0 pΩqd ˆW

1,8
0 pΩqd ˆW

1,8
0 pΩqd Ñ R be defined correspondingly.

For n P N we call a triple of functions
`

Un, Pn, SnpDUnq
˘

P Vn ˆ Qn
0 ˆ

Lr1pΩqdˆd a Galerkin approximation of (1.2) if it satisfies
ˆ

Ω

Snp¨,DUnq : DV dx` BrUn, Un, V s ´ xdivV , PnyΩ “ xf , V y

for all V P Vn,
ˆ

Ω

Q divUn dx “ 0 for all Q P Qn.

(3.16)

Restricting the test-functions to Vn
div the discrete problem (3.16) reduces to

finding Un P Vn
div such that

ˆ

Ω

Snp¨,DUnq : DV dx` BrUn, Un, V s “ xf , V y for all V P Vn
div. (3.17)
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Thanks to (3.8), respectively (3.13), it follows from Lemma 1 and Korn’s inequal-
ity (2.2) that the nonlinear operator defined by the left-hand side of (3.17) is coercive
on Vn

div. Since the dimension of Vn
div is finite, Brouwer’s fixed point theorem ensures

the existence of a solution to (3.17). The existence of a solution triple to (3.16) then
follows by the discrete inf-sup stability implied by Proposition 9.

Of course, because of the weak assumptions in the definition of the maximal
monotone r-graph, (3.16) does not define the Galerkin approximation Un uniquely.
However for each n P N we may select an arbitrary one among possibly infinitely
many solution triples and thus obtain a sequence

 `

Un, Pn,Snp¨,DUnq
˘(

nPN
. (3.18)

3.5. Discrete Lipschitz truncation. In this section we shall present a modi-
fied Lipschitz truncation, which acts on finite element spaces. This discrete Lipschitz
truncation is basically a composition of a continuous Lipschitz truncation and the
projector from Assumption 6. For this reason we first introduce a new Lipschitz
truncation on W

1,1
0 pΩqd, based on the results in [DMS08, BDF12, BDS12], which

provides finer estimates than the original Lipschitz truncation technique proposed
by Acerbi and Fusco in [AF88].

For v P L1pRdq we define the Hardy–Littlewood maximal function

Mpvqpxq :“ sup
Rą0

 

BRpxq

|v| dy. (3.19)

For s P p1,8s the Hardy–Littlewood maximal operatorM is continuous from LspRdq
to LspRdq, i. e., there exists a constant cs ą 0 such that

}Mpvq}LspRdq ď cs }v}LspRdq for all v P LspRdq, (3.20)

and it is of weak type p1, 1q, i. e., there exists a constant c1 ą 0 such that

sup
λą0

λ |tMpvq ą λu| ď c1}v}L1pRdq for all v P L1pRdq; (3.21)

see, e. g., [G04]. For any v P W 1,1pRdqd we set Mpvq :“ Mp|v|q and Mp∇vq :“
Mp|∇v|q.

Let v P W 1,1
0 pΩqd; we may then assume that v P W 1,1pRdqd by extending v by

zero outside Ω. For fixed λ ą 0 we define

Uλpvq :“ tMp∇vq ą λu , (3.22a)

and

Hλpvq :“ RdzpUλpvq X Ωq “ tMp∇vq ď λu Y pRdzΩq. (3.22b)

Since Mp∇vq is lower semi-continuous, the set Uλpvq is open and the set Hλpvq
is closed. According to [DMS08] it follows that v restricted to Hλpvq is Lipschitz
continuous and therefore also bounded. More precisely, we have that

|vpxq ´ vpyq| ď c λ |x´ y| (3.23)

for all x, y P Hλpvq, where the constant c ą 0 depends on Ω.
It remains to extend v|Hλpvq to a Lipschitz continuous function on Rd. The

result in [DMS08] is based on the so-called Kirszbraun extension theorem (cf. The-
orem 2.10.43 in [Fed69]) and uses an additional truncation of v with respect to
Mpvq. This can be avoided by proceeding similarly as in [BDF12, BDS12], i. e., ex-
tending v|Hλpvq by means of a partition of unity on a Whitney covering of the open
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and bounded set Uλpvq. To this end, we assume w.l.o.g. that Uλpvq ‰ H; otherwise
v does not need to be extended since Hλpvq “ Rd. According to [G04, BDF12]
there exists a decomposition of the open set Uλpvq into a family of (dyadic) closed
cubes tQjujPN, with side lengths ℓj :“ ℓpQjq, j P N, such that
(W1)

Ť

jPN Qj “ Uλpvq and the Qj ’s have pair-wise disjoint interiors.

(W2) 8
?
d ℓpQjq ď distpQj , BUλpvqq ď 32

?
d ℓpQjq.

(W3) If Qj X Qk ‰ H for some j, k P N, then

1
2

ď ℓj
ℓk

ď 2.

(W4) For a given Qj there exist at most p3d ´ 1q2d cubes Qk with Qj X Qk ‰ H.
For a fixed cube Q P Rd with barycenter z and any c ą 0, we define

cQ :“
"

x P Rd : max
i“1,...,d

|xi ´ zi| ď c ℓpQq
*

.

Hence, it follows from (W2) with θd :“ 2 ` 64
?
d, that

pθdQjq X Hλpvq ‰ H for all j P N. (3.24)

Let Q˚
j :“

b

9
8
Qj and Q˚˚

j :“ 9
8
Qj . Thanks to (W4), the enlarged cubes Q˚˚

j ,

j P N, are locally finite, i.e., they satisfy
ř

j χQ
˚˚
j

ď c with a constant c ą 0, which

depends on d only. Thanks to the overlaps of the Q˚
j ’s, there exists a partition of

unity tψjujPN subordinated to the family tQ˚
j ujPN with the following properties:

‚
ř

j ψj “ χUλpvq and 0 ď ψj ď 1 for all j P N;
‚ χ 7

8
Qj

ď ψj ď χQ
˚
j
, for all j P N;

‚ ψj P C8
0 pQ˚

j q with |∇ψj | ď c ℓ´1
j , for all j P N.

The Lipschitz truncation of v is then denoted by vλ and is defined by

vλ :“
#

ř

jPN ψjvj in Uλpvq,
v elsewhere,

(3.25a)

where

vj :“
#

ffl

Q
˚˚
j

v dx if Q˚
j Ă Ω,

0 elsewhere.
(3.25b)

We emphasize that the definition of the functions vj , j P N, here differs from
the one in [BDF12], since we need to preserve the no-slip boundary condition for
the velocity field on BΩ under Lipschitz truncation. Combining the techniques
of [DMS08] and [BDF12] we obtain the following result; for ease of readability of
the main body of the paper, the proof of Theorem 14 is deferred to the Appendix.

Theorem 14. Let λ ą 0 and v P W
1,1
0 pΩqd. Then, the Lipschitz truncation

defined in (3.25) has the following properties: vλ P W 1,8
0 pΩqd, and

(a) vλ “ v on Hλpvq, i. e., tv ‰ vλu Ă Uλpvq X Ω “ tMp∇vq ą λu X Ω;

(b) }vλ}s ď c }v}s for all s P r1,8s, with v P LspΩqd;
(c) }∇vλ}s ď c }∇v}s for all s P r1,8s, with v P W 1,s

0 pΩqd;
(d) |∇vλ| ď c λχUλpvqXΩ ` |∇v|χHλpvq ď cλ almost everywhere in Rd.

The constants appearing in the inequalities stated in parts (b), (c) and (d) depend
on Ω and d. In (b) and (c) they additionally depend on s.
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We next modify the Lipschitz truncation so that for finite element functions the
truncation is again a finite element function. To this end we recall the definition of
the finite element space Vn “ VpGnq of Section 3.1 or 3.3.

Let λ ą 0 and fix n P N. Since Vn Ă W
1,1
0 pΩqd, we could apply the truncation

defined in (3.25). However, since in general the Lipschitz truncation Vλ of V P Vn

does not belong to Vn, we shall define the discrete Lipschitz truncation by

V n,λ :“ Πn
divV λ P Vn. (3.26)

According to the next lemma the interpolation operator Πn
div is local, in the

sense that it modifies V λ in a neighborhood of UλpV q only.
Lemma 15. Let V P Vn. With the notation adopted in this section, we have

that

tV n,λ ‰ V u Ă Ωn
λpV q :“ interior

´

ď

 

Ωn
E | E P Gn with E X UλpV q ‰ H

(

¯

.

Proof. The stated inclusion follows from (3.2) in Assumption 6. In particular,
let E P Gn be such that E Ă RdzΩn

λpV q; then, Ωn
E Ă HλpV q. Consequently,

by Theorem 14(a), we have V λ “ V on Ωn
E . Hence we deduce from (3.2), our

assumption that V P Vn, and the fact that Πn
div is a projector, that

 

E

|V ´ Πn
divV λ| dx “

 

E

|Πn
divpV ´ V λq| dx

ď c

 

Ωn
E

|V ´ V λ| ` hGn
|∇pV ´ V λq| dx “ 0,

i. e., V “ V n,λ “ Πn
divV λ on E. This proves the assertion.

The set Ωn
λpV q from Lemma 15 is larger than UλpV q X Ω. However, the next

result states that we can keep the increase of the set under control. This is the key
observation for the construction of the discrete Lipschitz truncation.

Lemma 16. For n P N, V P Vn and λ ą 0, let Ωn
λpV q be defined as in

Lemma 15. Then, there exists a κ P p0, 1q only depending on P̂V and the shape-
regularity of G, such that

UλpV q X Ω Ă Ωn
λpV q Ă UκλpV q X Ω.

Proof. Thanks to the definition of Ωn
λpV q, the first inclusion is clear. It thus

remains to show the second inclusion. In order to avoid problems at the boundary
BΩ we extend V to Rd by zero outside Ω. Let x P Ωn

λpV q; then, there exists E P Gn,
EXUλpV q ‰ H such that x P Ωn

E . Consequently, by (3.22a) and (3.19), there exists
an x0 P E and an R ą 0 such that

 

BRpx0q

|∇V | dy ą λ.

Suppose that BRpx0q Ă
`

Ωn
E Y pRdzΩq

˘

; then, thanks to norm-equivalence in
finite-dimensional spaces, we have, by a standard scaling argument, that

λ ă
 

BRpx0q

|∇V | dy ď }∇V }L8pΩn
E

q ď c̃1

 

Ωn
E

|∇V | dy,

where the constant c̃1 depends solely on P̂V and the shape-regularity of G. Let
Bρpxq be the smallest ball with Bρpxq Ą Ωn

E and observe that |Bρpxq| ď c̃2 |Ωn
E |

with a constant c̃2 ą 0 depending only on the shape-regularity of G. Consequently,

Mp∇V qpxq ě
 

Bρpxq

|∇V | dy ě 1

c̃2

 

Ωn
E

|∇V | dy ě 1

c̃1c̃2
λ.
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In other words, we have that x P Upc̃1c̃2q´1λpV q X Ω.

We now consider the case BRpx0q Ć
`

Ωn
E Y pRdzΩq

˘

. Since x0 P E, it follows
that c̃3R ě diampEq, with a constant c̃3 ą 0 only depending on the shape-regularity
of G. As x P Ωn

E , there exists a constant c̃4 ą 1 such that Bc̃4Rpxq Ą pE YBRpx0qq.
Hence,

Mp∇V qpxq ě
 

Bc̃4Rpxq

|∇V | dy ě c̃´d
4

 

BRpx0q

|∇V | dy ą c̃´d
4 λ,

and we deduce that x P U
c̃

´d
4

λ
pV q X Ω. Combining the two cases, the claim follows

with κ :“ mintpc̃1c̃2q´1, c̃´d
4 u.

We are now ready to state the following analogue of Theorem 14 for the discrete
Lipschitz truncation (3.26).

Theorem 17. Let λ ą 0, n P N and V P Vn. Then, the Lipschitz truncation
defined in (3.26) satisfies V n,λ P Vn, and the following statements hold:

(a) V n,λ “ V on RdzΩn
λpV q;

(b) }V n,λ}1,s ď c }V }1,s for 1 ă s ď 8;

(c) |∇V n,λ| ď c λχΩn
λ

pV q ` |∇V |χRdzΩn
λ

pV q ď c λ almost everywhere in Rd.
The constants c appearing in the inequalities in parts (b) and (c) depend on Ω, d,
P̂V and the shape-regularity of G. In (b) the constant c also depends on s.

Proof. Assertion (a) is proved in Lemma 16. Estimate (b) is a consequence
of Theorem 14 and the W 1,q-stability of Πn

div; compare with (3.3). The bound (c)
follows from Theorem 14(d) and the W 1,8 stability of Πn

div; see (3.3).
The following corollary is an application of the discrete Lipschitz truncation

to (weak) null sequences. It is similar to the results in [DMS08] and [BDF12]. Its
analogue for Sobolev functions is stated in Corollary 26 in the Appendix.

Corollary 18. Let 1 ă s ă 8 and let tEnunPN Ă W
1,s
0 pΩqd be a sequence,

which converges to zero weakly in W
1,s
0 pΩqd, as n Ñ 8.

Then, there exists a sequence tλn,jun,jPN Ă R with 22
j ď λn,j ď 22

j`1´1 such
that the Lipschitz truncations En,j :“ En

n,λn,j
, n, j P N, have the following proper-

ties:
(a) En,j P Vn and En,j “ En on RdzΩn

λn,j
pEnq;

(b) }∇En,j}8 ď c λn,j;

(c) En,j Ñ 0 in L8pΩqd as n Ñ 8;

(d) ∇En,j á˚ 0 in L8pΩqdˆd as n Ñ 8;

(e) For all n, j P N we have }λn,jχΩn
λn,j

pEnq}s ď c 2´ j
s }∇En}s.

The constants c appearing in the inequalities (b) and (e) depend on d, Ω, P̂V and
the shape-regularity of G. The constant in part (e) also depends on s.

Proof. We first construct the sequence λn,j and prove (e). Let κ ą 0 be the
constant in Lemma 16. Then, for g P LspRdq, we have

ˆ

Rd

|g|s dx “
ˆ

Rd

ˆ 8

0

κssts´1χt|g|ąκtu dt dx ě
ˆ

Rd

ÿ

mPN

κs2msχt|g|ąκ2m`1u dx

ě
ÿ

jPN

2j`1´1
ÿ

m“2j

κs2ms
ˇ

ˇt|g| ą κ2m`1u
ˇ

ˇ .

We apply this estimate to g “ 2Mp∇Enq and use the boundedness of the maximal
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operator M (cf. (3.20)) to obtain

κs
ÿ

jPN

2j`1´1
ÿ

m“2j

2ms |tMp∇Enq ą κ2mu| ď 2s }Mp∇Enq}ss ď 2scs}∇En}ss.

For fixed n, j the sum over m involves 2j summands. Consequently, there exists an
integer λn,j P t22j , . . . , 22j`1´1u such that

λsn,j |tMp∇Enq ą κλn,ju| ď 2´jκ´s 2scs}∇En}ss.

This, together with the second inclusion in Lemma 16, proves (e). Assertions (a)
and (b) are then direct consequences of Theorem 17(a) and (b). It remains to
prove (c) and (d).

To prove (d), we proceed as follows. Thanks to the uniqueness of the limits, it
suffices to prove that En,j á 0 weakly in W 1,s

0 pΩqd. To this end, we note that the
compact embedding W 1,s

0 pΩqd ãÑãÑ LspΩqd implies that

En Ñ 0 in LspΩqd as n Ñ 8.

Let tEn
λn,j

unPN be the sequence of Lipschitz-truncated functions, defined according

to (3.25). Then, thanks to the boundedness of tEnunPN in W 1,s
0 pΩqd, Theorem 14(c)

and (b), we have that

En
λn,j

á 0 weakly in W 1,s
0 pΩqd, as n Ñ 8.

Thanks to the definition of the discrete Lipschitz truncation in (3.26), the desired
assertion follows from Proposition 7. Moreover, using a compact embedding, this
also proves (c).

4. The main theorem. After the preceding considerations, we are now ready
to state our main result. Its proof is presented in subsections §4.1–§4.4.

Theorem 19. Let tVn,QnunPN be the sequence of finite element space pairs
from Section 3.2 (respectively 3.3) and let

 `

Un, Pn,Snp¨,DUnq
˘(

nPN
be the se-

quence of discrete solution triples to (3.16) constructed in (3.18).
If r ą 2d

d`1
(respectively r ą 2d

d`2
), then there exists a solution pu, p,Sq P

W
1,r
0 pΩqd ˆLr̃

0pΩqˆLr1 pΩqdˆd of (1.2), such that, for a (not relabeled) subsequence,
we have

Un á u weakly in W
1,r
0 pΩqd,

Pn á p weakly in Lr̃
0pΩq,

Snp¨,DUnq á S weakly in Lr1pΩqdˆd.

4.1. Convergence of the finite element approximations. We begin the
proof of Theorem 19 by showing the existence of a weak limit for the sequence of
solution triples.

Lemma 20. Let tVn,QnunPN be the sequence of finite element space pairs from
Section 3.2 (respectively 3.3) and let

 `

Un, Pn,Snp¨,DUnq
˘(

nPN
be the sequence

of discrete solution triples to (3.16) constructed in (3.18).
If r ą 2d

d`1
(respectively r ą 2d

d`2
), then there exists pu, p,Sq P W

1,r
0 pΩqd ˆ

Lr̃
0pΩq ˆ Lr1pΩqdˆd, such that, for a (not relabeled) subsequence, we have

Un á u weakly in W
1,r
0 pΩqd,

Pn á p weakly in Lr̃
0pΩq,

Snp¨,DUnq á S weakly in Lr1pΩqdˆd.
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Moreover, the triple pu, p,Sq satisfies
ˆ

Ω

S : Dv ´ pu b uq : ∇v dx´ xdiv v, pyΩ “ xf , vy , for all v P W 1,r̃1

0 pΩqd
ˆ

Ω

q divudx “ 0, for all q P Lr1pΩq.
(4.1)

Proof. We divide the proof into four steps.
Step 1: From (3.16) we see that Un is discretely divergence-free and thus,

thanks to (3.17) and (3.8) (respectively (3.13)), we have that
ˆ

Ω

Snp¨,DUnq : DUn dx “ xf , Uny ď }f}´1,r1 }Un}1,r.

The coercivity of Sn (Lemma 1) and Korn’s inequality (2.2) imply that the sequence
tUnunPN Ă W

1,r
0 pΩqd is bounded, independent of n P N. This in turn implies, again

by Lemma 1, the boundedness of tSnpDUnqunPN in Lr1 pΩqdˆd. In other words,
there exists a constant c ą 0 such that

}Un}1,r ` }Snp¨,DUnq}r1 ď c, for all n P N. (4.2)

As r P p1,8q, the spaces W 1,r
0 pΩqd and Lr1 pΩqdˆd are reflexive and thus for a (not

relabeled) subsequence there exist u P W 1,r
0 pΩqd and S P Lr1 pΩqdˆd, such that

Un á u weakly in W 1,r
0 pΩqd (4.3)

and

Snp¨,DUnq á S weakly in Lr1 pΩqdˆd, (4.4)

as n Ñ 8. Moreover, using compact embeddings of Sobolev spaces, we have that

Un Ñ u strongly in LspΩqd for all

#

s P
´

1, rd
d´r

¯

, if r ă d,

s P p1,8q, otherwise.
(4.5)

Thanks to (4.3) we have by (3.5), for arbitrary q P Lr1 pΩq, that

0 “
ˆ

Ω

pΠn
QqqdivUn dx Ñ

ˆ

Ω

q divudx, (4.6)

i. e., the function u P W 1,r
0 pΩqd is exactly divergence-free.

Step 2: Next, we investigate the convection term. Let v P W
1,8
0 pΩqd be

arbitrary and define V n :“ Πn
divv. We show that

BrUn, Un, V ns Ñ ´
ˆ

Ω

pu b uq : ∇v dx. (4.7)

Thanks to the assumption r ą 2d
d`2

and (4.5), it follows that

Un b Un Ñ u b u in LspΩqdˆd for all s P r1, r̃q,

with r̃ ą 1 as in (1.1). By (3.4), we have that V n Ñ v in W
1,s1

0 pΩqd, s1 P pr̃1,8q,
and hence we obtain that, as n Ñ 8,

´
ˆ

Ω

pUn b Unq : ∇V n dx Ñ ´
ˆ

Ω

pu b uq : ∇v dx. (4.8)
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This proves (4.7) for the exactly divergence-free approximations from Section 3.3.
We emphasize that we have only required so far that r ą 2d

d`2
.

In order to prove (4.7) for the finite element spaces of Section 3.2 and thus for
the modified convection term defined in (3.7), we recall from (3.6) that

ˆ

Ω

pUn b V nq : ∇Un dx “ ´
ˆ

Ω

pUn b Unq : ∇V n ` pdivUnqUn ¨ V n dx.

For the first term we have already shown convergence in (4.8). In view of the
definition of B in (3.7) it thus remains to prove that the second term vanishes in
the limit n Ñ 8. To this end, we observe by (4.5) and Assumption 6 that

Un ¨ V n Ñ u ¨ v strongly in LspΩq for all

#

s P
´

1, rd
d´r

¯

, if r ă d,

s P p1,8q, otherwise.

Thanks to the stronger restriction r ą 2d
d`1

now, this last statement holds in par-
ticular for s “ r1. Hence, together with (4.3) and (4.6), we deduce that

ˆ

Ω

pdivUnqUn ¨ V n dx Ñ
ˆ

Ω

pdivuqu ¨ v dx “ 0

as n Ñ 8.
Step 3: We combine the above results. Recall that by (4.6) we have divu ” 0,

which is the second equation in (4.1). For an arbitrary v P W
1,8
0,divpΩqd let V n :“

Πn
divv, n P N. Thanks to (3.4), we have that V n P Vn

div and V n Ñ v in W
1,s
0 pΩqd

for all s P p1,8q. Therefore, using (4.3), (4.4) and (4.7), we obtain
ˆ

Ω

Snp¨,DUnq : DV n dx` BrUn, Un, V ns “ xf , V ny

Ó Ó
ˆ

Ω

S : Dv ` divpu b uq ¨ v dx xf , vy

as n Ñ 8. Since S P Lr1pΩqdˆd, f P W´1,r1pΩqd and u b u P Lr̃pΩqdˆd, by a
density argument, we arrive at

ˆ

Ω

S : Dv ` divpu b uq ¨ v dx “ xf , vy

for all v P W 1,r̃1

0,divpΩqd.
Step 4: We now prove convergence of the pressure. Thanks to the restriction

r ą 2d
d`1

we have, as in (3.11), that

xdivV , PnyΩ “
ˆ

Ω

Snp¨,DUnq : DV dx` BrUn, Un, V s ´ xf , V y

ď }Snp¨,DUnq}r1 }DV }r ` c }Un}21,r}V }1,r̃1 ` }f}´1,r1}V }1,r
for all V P Vn. By (4.2) and the discrete inf-sup condition stated in Proposition 9, it
follows that the sequence tPnunPN is bounded in the reflexive Banach space Lr̃

0pΩq.
Hence, there exists p P Lr̃

0pΩq such that, for a (not relabeled) subsequence, Pn á p

weakly in Lr̃
0pΩq. On the other hand we deduce for an arbitrary v P W 1,8

0 pΩqd that

xdiv v, PnyΩ “ xdiv Πn
divv, P

nyΩ ` xdivpv ´ Πn
divvq, PnyΩ

“
ˆ

Ω

Snp¨,DUnq : DΠn
divv dx´ xf , Πn

divvy ` BrUn, Un, Πn
divvs

` xdivpv ´ Πn
divvq, PnyΩ

Ñ
ˆ

Ω

S : Dv ` divpu b uq ¨ v dx´ xf , vy ` 0
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as n Ñ 8, where we have used (4.4), (4.7), (3.4) and the boundedness of the
sequence tPnunPN in Lr̃

0pΩq. This completes the proof of the lemma.
For the main result, Theorem 19, it remains to prove that

`

Dupxq, Spxq
˘

P Apxq (4.9)

for almost every x P Ω. The proof of this is the subject of the rest of Section 4.

4.2. Identification of the limits. In this section we shall first briefly discuss
properties of the maximal monotone r-graph introduced in (A1)–(A5). Here we
follow the presentation in [BGMŚG09]. Application of the fundamental theorem on
Young measures (cf. Theorem 3) leads to a representation of weak limits, which is
a crucial step in proving (4.9).

According to [FMT04] there exists a function φ : Ω ˆ Rdˆd
sym such that

Apxq “
 

pδ,σq P Rdˆd
sym ˆ Rdˆd

sym : σ ´ δ “ φpx,σ ` δq
(

, (4.10)

and
(a) φpx,0q “ 0 for almost every x P Ω;

(b) φp¨,χq is measurable for all χ P Rdˆd
sym ;

(c) for almost all x P Ω the mapping φpx, ¨q is 1-Lipschitz continuous;

(d) the functions s,d : Ω ˆ Rdˆd
sym Ñ Rdˆd

sym , defined as

spx,χq :“ 1
2

pχ ` φpx,χqq , dpx,χq :“ 1
2

pχ ´ φpx,χqq (4.11)

satisfy, for almost every x P Ω and all χ P Rdˆd
sym , the estimate

spx,χq : dpx,χq ě ´mpxq ` c
´

|dpx,χq|r ` |spx,χq|r
1
¯

.

We emphasize that this is in fact a characterization of maximal monotone r-graphs
A satisfying (A1)–(A5) without the second part of (A2).

We recall the selection S˚ from Section 2.2 and, as in [BGMŚG09], we define

bnpxq :“
ˆ

R
dˆd
sym

`

S˚px, ζq ´ S˚px,Duq
˘

: pζ ´ Dupxqqdµn
xpζq, (4.12)

where we have used the abbreviation µn
x :“ µn

DUnpxq. The next result, whose proof
is postponed to the next section, states that bn vanishes in measure.

Lemma 21. With the definitions of this section we have that bn Ñ 0 in measure.

Actually, employing the above characterization of A, the limit of the sequence
tbnunPN can be identified in another way by using the theory of Young measures.
To this end we introduce

Gxpζq :“ S˚px, ζq ` ζ, x P Ω, ζ P Rdˆd
sym , (4.13)

and define the push-forward measure of the measure µn
ζ from (2.5) by setting

νnx,ζpCq “ µn
ζ

`

G´1
x pCq

˘

for all C P BpRdˆd
sym

˘

. (4.14)

We recall from §2.2(a1) that S˚ is measurable with respect to the product σ-
algebra LpΩq b BpRdˆd

symq, and therefore so is Gx. Consequently, the measure νnx,ζ
is well-defined and, thanks to properties of the mollifier ηn from Section 2.2, it is a
probability measure. From the definitions of the functions s and d it follows that



FEM FOR IMPLICITLY CONSTITUTED FLUID FLOW MODELS 21

S˚px, ζq “ spx,Gxpζqq and ζ “ dpx,Gxpζqq. We thus have, by simple substitution,
the identities

Snpx,DUnq “
ˆ

R
dˆd
sym

spx, ζqdνnx pζq, (4.15a)

DUnpxq “
ˆ

R
dˆd
sym

dpx, ζqdνnx pζq, (4.15b)

as well as

bnpxq “
ˆ

R
dˆd
sym

`

spx, ζq ´ S˚px,Dupxqq
˘

: pdpx, ζq ´ Dupxqqdνnx pζq, (4.15c)

where we have used the abbreviation νnx :“ νn
x,DUnpxq.

In order to identify the limit we apply the generalized version of the classical fun-
damental theorem on Young measures stated in Theorem 3. Recall from Section 2.3
that L8

w pΩ;MpRdˆd
symqq is a separable Banach space with predual L1pΩ, C0pRdˆd

symqq.
For every n P N the mapping x ÞÑ νnx belongs to L8

w pΩ;MpRdˆd
symqq. To see this let

g P L1pΩ;C0pRdˆd
symqq. In view of (4.14) and (2.5), a simple substitution yields

ˆ

R
dˆd
sym

gpx, ζqdνnx pζq “
ˆ

R
dˆd
sym

ηnpDUnpxq ´ ζq gpx,Gxpζqqdζ.

It remains to prove that x ÞÑ
´

R
dˆd
sym

ηnpDUnpxq ´ ζq gpx,Gxpζqqdζ is measurable

and integrable. It follows from (A5), the definition (4.13) of Gx and property (a1) of
S˚ that h is LpΩqbBpRdˆd

symq measurable. Moreover, ηn, n ě 1, are smooth functions
and g P L1pΩ, C0pRdˆd

symqq, and therefore integrability follows from Fubini’s theorem.
Thanks to the properties of ηn it is clear that νnx is a probability measure a.e.

in Ω. Hence }νnx }
L8

w pΩ;MpRdˆd
sym qq “ 1 and thus the sequence tνnunPN is bounded

in L8
w pΩ;MpRdˆd

symqq. Therefore, by the Banach–Alaoglu theorem, there exists ν P
L8
w pΩ;MpRdˆd

symqq such that, for a (not relabeled) subsequence,

νn á˚ ν weak-˚ in L8
w pΩ;MpRdˆd

symqq. (4.16)

The next Lemma follows from the generalization of the fundamental theorem
on Young measures from [Gwi05] (see Theorem 3) and Chacon’s biting lemma
(Lemma 4). Its proof is postponed to Section 4.4.

Lemma 22. With the notations of this section, νx is a probability measure a.e.
in Ω and there exists a nonincreasing sequence of measurable subsets Ek Ă Ω, with
|Ek| Ñ 0, such that for all k P N we have for a (not relabeled) subsequence that

bnpxq á
ˆ

R
dˆd
sym

`

spx, ζq ´ S˚px, ζq
˘

: pdpx, ζq ´ Dupxqqdνxpζq “: bpxq (4.17)

weakly in L1pΩzEkq as n Ñ 8. Moreover, we have that

Spxq “
ˆ

R
dˆd
sym

spx, ζqdνxpζq and Dupxq “
ˆ

R
dˆd
sym

dpx, ζqdνxpζq.

We deduce from (4.9) and Lemma 22 that, to complete the proof of Theorem 19,
we need to show that

˜

Dupxq,
ˆ

R
dˆd
sym

spx, ζqdνxpζq
¸

P Apxq for a.e. x P Ω. (4.18)
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This follows from the two preceding Lemmas exactly as in [BGMŚG09, p. 131ff]. To
be more precise, the proof is based on noting that for each δ P Rdˆd the set

Cx
δ :“

 

σ P Rdˆd
sym : pδ,σq P Apxq

(

is convex for a.e. x P Ω; (4.19)

compare with (A2) and (A3). Combining Lemmas 21 and 22 we deduce that b “ 0

a.e. in Ω. Hence it follows from (A2) that
 

ζ P Rdˆd
sym :

`

spx, ζq ´ S˚px,Dupxq
˘

: pdpx, ζq ´ Dupxqq ą 0
(

Ć supp νx.

We split supp νx into the two sets

ω1pxq :“
 

ζ P supp νx : spx, ζq “ S˚px,Dupxqq
(

and ω2pxq :“ supp νx zω1pxq.

We investigate the pairing in (4.18) on the two sets ω1pxq and ω2pxq separately. On
ω2pxq we have by (A2) that dpx, ζq “ Dupxq. Therefore, on noting that νxpζq

νxpω2pxqq

is a probability measure on ω2pxq, one can show with (4.10), (4.11) and (4.19) that
˜

Dupxq,
ˆ

ω2pxq

spx, ζqd
`

νxpζq
νxpω2pxqq

˘

¸

P Apxq for a.e. x P Ω.

On the other hand it follows from the definition of ω1pxq that
ˆ

ω1pxq

spx, ζqdνxpζq “ νx
`

ω1pxq
˘

S˚px,Dupxqq.

Thanks to the properties of S˚, we have that
`

Dupxq, S˚px,Dupxqq
˘

P Apxq;
compare with Section 2.2. Using the fact that νx is a probability measure, we
deduce that

ˆ

R
dˆd
sym

spx, ζqdνxpζq “
ˆ

ω1pxq

spx, ζqdνxpζq `
ˆ

ω2pxq

spx, ζqdνxpζq

“ νxpω1pxqqS˚px,Dupxqq ` νxpω2pxqq
ˆ

ω2pxq

spx, ζqd
`

νxpζq
νxpω2pxqq

˘

is a convex combination of functions. Moreover, due to the above observations, for
a.e. x P Ω, each of the two functions in this convex combination is an element of
the set Cx

Dupxq. Hence, by (4.19), this completes the proof of Theorem 19.

As in [BGMŚG09] we can establish from the above observations strong conver-
gence of the symmetric velocity gradient and the stress on the subsets

ΩD :“
 

x P Ω: @pσ1, δ1q P Apxq with
`

σ1 ´ S˚px,Dupxqq
˘

: pδ1 ´ Dupxqq “ 0

implies that δ1 “ Dupxq
(

, and

ΩS :“
 

x P Ω: @pσ1, δ1q P Apxq with
`

σ1 ´ S˚px,Dupxqq
˘

: pδ1 ´ Dupxqq “ 0

implies that σ1 “ S˚px,Dupxqq
(

,

respectively. Since the proof is identical to the proof of [BGMŚG09, Lemma 5.2] we
omit it here and we only state the result.

Corollary 23. Assume the conditions of Theorem 19 and let r1 P p1,8q be
such that 1

r
` 1

r1 “ 1. Then, for all 1 ď s ă r and 1 ď s1 ă r1, we have that, as
n Ñ 8,

DUn Ñ Du strongly in LspΩDqdˆd,

Sn Ñ S˚p¨,Duq strongly in Ls1 pΩSqdˆd.
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4.3. Proof of Lemma 21. The proof of this assertion is motivated by the
proof of [BGMŚG09, Lemma 4.6]. However, since we are approximating problem
(1.2) with finite element functions here, we need to use the discrete Lipschitz trun-
cation from §3.5.

Let us define the auxiliary function

anpxq :“
`

Snpx,DUnpxqq ´ S˚px,Dupxqq
˘

: pDUnpxq ´ Dupxqq (4.20)

and observe that

ˆ

Ω

|an ´ bn| dx Ñ 0 as n Ñ 8. (4.21)

Indeed, thanks to (2.5) and the properties of ηn, we have that

ˆ

Ω

|an ´ bn| dx “
ˆ

Ω

ˇ

ˇ

ˇ

ˆ

R
dˆd
sym

`

S˚px, ζq ´ S˚px,Duq
˘

: pDUn ´ Duqdµn
xpζq

´
ˆ

R
dˆd
sym

`

S˚px, ζq ´ S˚px,Duq
˘

: pζ ´ Duqdµn
xpζq

ˇ

ˇ

ˇ
dx

“
ˆ

Ω

ˇ

ˇ

ˇ

ˆ

R
dˆd
sym

`

S˚px, ζq ´ S˚px,Duq
˘

: pDUn ´ ζqdµn
xpζq

ˇ

ˇ

ˇ
dx

ď
ˆ

Ω

ˆ

R
dˆd
sym

ˇ

ˇS˚px, ζq ´ S˚px,Duq
ˇ

ˇ

ˇ

ˇDUn ´ ζ
ˇ

ˇ dµn
xpζqdx

ď c

n

ˆ

Ω

sup
|ζ´DUnpxq|ď 1

n

ˇ

ˇS˚px, ζq ´ S˚px,DUnq
ˇ

ˇ dx ď c

n
.

Consequently, in order to prove that bn Ñ 0 in measure it suffices to prove that
an Ñ 0 in measure. We shall establish the second claim in several steps.

Step 1: First we introduce some preliminary facts concerning discrete Lipschitz
truncations. For convenience we use the notation

En :“ Πn
divpUn ´ uq “ Un ´ Πn

divu P Vn

and let tEn,jun,jPN Ă Vn be the sequence of Lipschitz-truncated finite element
functions according to Corollary 18. Recall from Lemma 20 that En á 0 weakly in
W

1,r
0 pΩqd, i. e., we are exactly in the situation of Corollary 18. Although En P Vn

div,
i. e., it is discretely divergence-free, this does not necessarily imply that En,j P Vn

div

and thus we need to modify En,j in order to be able to use it as a test function in
(3.17). Recalling Corollary 10 we define

Ψ
n,j :“ B

npdivEn,jq P Vn. (4.22a)

The ‘corrected’ function

Φ
n,j :“ En,j ´ Ψ

n,j P Vn
div (4.22b)

is then discretely divergence-free. We need to control the correction in a norm. To
this end we recall from Section 3.1 that Qn “ spantQn

1 , . . . , Q
n
Nn

u for a certain lo-
cally supported basis. Then, thanks to properties of the discrete Bogovskĭı operator
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and Corollary 10, we have that

βr}Ψn,j}1,r ď sup
QPQn

@

divEn,j , Q
D

Ω

}Q}r1

“ sup
QPQn

@

divEn,j ´ divEn, Q
D

Ω

}Q}r1

“ sup
Q“

řNn
i“1

ρiQ
n
i

˜

ÿ

suppQn
i

ĂtEn,j“Enu

@

divEn,j ´ divEn, ρiQ
n
i

D

Ω

}Q}r1

`
ÿ

suppQn
i

XtEn,j‰Enu‰H

@

divEn,j ´ divEn, ρiQ
n
i

D

Ω

}Q}r1

¸

“ sup
Q“

řNn
i“1

ρiQ
n
i

˜

ÿ

suppQn
i

XtEn,j‰Enu‰H

@

divEn,j ´ divEn, ρiQ
n
i

D

Ω

}Q}r1

¸

“ sup
Q“

řNn
i“1

ρiQ
n
i

˜

ÿ

suppQn
i

XtEn,j‰Enu‰H

@

divEn,j , ρiQ
n
i

D

Ω

}Q}r1

¸

ď } divEn,jχΩn

tEn,j‰Enu
}r sup

Q“
řNn

i“1
ρiQ

n
i

}
ř

suppQn
i

XtEn,j‰Enu‰H ρiQ
n
i }r1

}Q}r1

ď c } divEn,j χΩn

tEn,j‰Enu
}r ď c }∇En,j χΩn

tEn,j‰Enu
}r,

where χΩn

tEn,j‰Enu
is the characteristic function of the set

Ωn
tEn,j‰Enu :“

ď

!

Ωn
E | E P Gn such that E Ă tEn,j ‰ Enu

)

.

Note that in the penultimate step of the above estimate we have used norm equiv-
alence on the reference space P̂Q from (3.1b). In particular, we see by means of
standard scaling arguments that for Q “

řNn

i“1 ρiQ
n
i the norms

Q ÞÑ
´

Nn
ÿ

i“1

|ρi|r
1

}Qn
i }r1

r1

¯1{r1

and Q ÞÑ }Q}r1

are equivalent with constants depending on the shape-regularity of G and P̂Q. This
directly implies the desired estimate.

Observe that |Ωn
E | ď c |E| for all E P Gn, n P N, with a shape-dependent con-

stant c ą 0; hence,
ˇ

ˇ

ˇ
Ωn

tEn,j‰Enu

ˇ

ˇ

ˇ
ď c

ˇ

ˇtEn,j ‰ Enu
ˇ

ˇ, and it follows from Theorem 17

and Corollary 18(e) that

βr}Ψn,j}1,r ď c }λn,jχΩn

tEn,j‰Enu
}r ď c 2´j{r}∇En}r. (4.23)

Moreover, we have from Corollaries 18 and 10, that

Φ
n,j,Ψn,j á 0 weakly in W 1,s

0 pΩqd for all s P r1,8q, (4.24a)

Φ
n,j,Ψn,j Ñ 0 strongly in LspΩqd for all s P r1,8q, (4.24b)

as n Ñ 8.
Step 2: We claim that

lim sup
nÑ8

ˆ

tEn“En,ju

|an| dx ď c 2´j{r,

with a constant c ą 0 independent of j. To see this we first observe that |an| “
an ` 2a´

n with the usual notation a´
n pxq “ maxt´anpxq, 0u, x P Ω. Therefore, we
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have that

lim sup
nÑ8

ˆ

tEn“En,ju

|an| dx ď lim sup
nÑ8

ˆ

tEn“En,ju

an dx

` 2 lim sup
nÑ8

ˆ

tEn“En,ju

a´
n dx.

(4.25)

We bound the two terms on the right-hand side separately. As a consequence of
(4.21) and the fact that bnpxq ě 0 for a.e. x P Ω (cf. (4.12)) it follows that

ˆ

tEn“En,ju

a´
n dx ď

ˆ

Ω

a´
n dx ď

ˆ

Ω

|an ´ bn| dx Ñ 0, as n Ñ 8.

The bound on the first term on the right-hand side of (4.25) is more involved. In
particular, recalling the definitions (4.20) and (4.22) we have that

ˆ

tEn“En,ju

an dx

“
ˆ

tEn“En,ju

`

Snp¨,DUnq ´ S˚p¨,Duq
˘

: pDΠn
divu ´ Duqdx

`
ˆ

Ω

Snp¨,DUnq : DΦ
n,j dx`

ˆ

Ω

Snp¨,DUnq : DΨ
n,j dx

´
ˆ

Ω

S˚p¨,Duq : DEn,j dx

`
ˆ

tEn‰En,ju

`

S˚p¨,Duq ´ Snp¨,DUnq
˘

: DEn,j dx

“ In ` IIn,j ` IIIn,j ` IVn,j ` Vn,j .

Thanks to (3.4) and (4.2) we have that, as n Ñ 8,

|In| ď
ˆ

tEn“En,ju

ˇ

ˇSnpx,DUnpxqq ´ S˚px,Dupxqq
ˇ

ˇ |DΠn
divupxq ´ Dupxq| dx

ď }Snp¨,DUnp¨qq ´ S˚p¨,Dup¨q}r1 }DΠn
divu ´ Du}r Ñ 0.

In order to estimate IIn,j we recall that Φ
n,j P Vn

div is discretely divergence-free,
and we can therefore use it as a test function in (3.17) to deduce that

IIn,j “ ´BrUn, Un, Φn,js `
@

f , Φn,j
D

Ω
Ñ 0 as n Ñ 8.

Indeed, the second term vanishes thanks to (4.24a). The first term vanishes by
arguing as in (4.7) — observe that for (4.8) the weak convergence (4.24a) of Φn,j

is sufficient. The term IIIn,j can be bounded by means of (4.23); in particular,

lim sup
nÑ8

ˇ

ˇIIIn,j
ˇ

ˇ ď lim sup
nÑ8

}Sp¨,DUnq}r1 }DΨ
n,j}r ď c 2´j{r,

where we have used (4.2). Corollary 18 implies that

lim
nÑ8

IVn,j “ 0.

Finally, by (4.2) and Corollary 18, we have that

lim sup
nÑ8

ˇ

ˇVn,j
ˇ

ˇ ď lim sup
nÑ8

`

}S˚p¨,Duq}r1 ` }Snp¨,DUnq}r1

˘

}DEn,jχtEn‰En,ju}r

ď c 2´j{r.
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In view of (4.25) this completes Step 2.
Step 3: We prove, for any ϑ P p0, 1q, that

lim
nÑ8

ˆ

Ω

|an|ϑ dx “ 0.

Using Hölder’s inequality, we easily obtain that
ˆ

Ω

|an|ϑ dx “
ˆ

tEn“En,ju

|an|ϑ dx`
ˆ

tEn‰En,ju

|an|ϑ dx

ď |Ω|1´ϑ

˜

ˆ

tEn“En,ju

|an| dx
¸ϑ

`
ˆ
ˆ

Ω

|an| dx
˙ϑ

ˇ

ˇtEn ‰ En,ju
ˇ

ˇ

1´ϑ
.

Thanks to (4.2), we have that p
´

Ω
|an| dxqϑ is bounded uniformly in n and by

Corollary 18 we have that

ˇ

ˇtEn ‰ En,ju
ˇ

ˇ ď c
}En}r1,r
λrn,j

ď c

22
jr
,

where we have used that tEnunPN is bounded in W
1,r
0 pΩqd according to (4.2) and

Assumption 6. Consequently, from Step 2 we deduce that

lim sup
nÑ8

ˆ

Ω

|an|ϑ dx ď c |Ω|1´ϑ
2´jϑ{r ` c

22
jrp1´ϑq

.

The left-hand side is independent of j and we can thus pass to the limit j Ñ 8.
This proves the assertion and actually implies that an Ñ 0 in measure as n Ñ 8.
According to (4.21) we have that bn Ñ 0 in measure and thus we have completed
the proof of Lemma 21.

4.4. Proof of Lemma 22. The proof of this Lemma is given in [BGMŚG09].
In order to keep the paper self-contained, we shall reproduce it here.

The assertion is an immediate consequence of the result on Young measures
from [Gwi05] stated in Theorem 3. It therefore suffices to check the assumptions
therein. The first assumption has already been verified in (4.16).

Step 1: We prove that the sequence tνnunPN satisfies the tightness condition.
From the definition of νnx (cf. (4.14)) it follows that

γnpxq :“ max
ζPsupp νn

x

|ζ| “ max
ζPsuppµn

x

|Gxpζq| ď max
ζPsuppµn

x

`

|ζ| `
ˇ

ˇS˚px, ζq
ˇ

ˇ

˘

.

We deduce from the inclusion suppµn
x Ă B1{npDV npxqq that }γn}s ď c for some

constant c ą 0 and s “ maxtr, r1u ą 1. Since Ω is bounded, the sequence is
uniformly bounded in L1pΩq, and for M ą 0 we have

ˇ

ˇ

 

x P Ω: supp νnx zBM p0q
(ˇ

ˇ “
ˇ

ˇ

 

x P Ω: γnpxq ą M
(ˇ

ˇ ď
ˆ

Ω

γnpxq
M

dx ď c

M
.

This yields the tightness of tνnunPN and it follows from part (i) of Theorem 3 that
νx is a probability measure, i. e., }νx}

MpRdˆd
sym q “ 1 for a.e. x P Ω.

Step 2: We turn to proving (4.17). Recalling (4.15c), the assertion follows if
there exists a nonincreasing sequence of measurable subsets tEiuiPN with |Ei| Ñ 0

as i Ñ 8, such that the function

hpx, ζq :“
`

spx, ζq ´ S˚px,Dupxqq
˘

: pdpx, ζq ´ Dupxqq
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satisfies (2.6) on A “ ΩzEi for each i P N. This can be seen as follows. From (4.2)
it follows that }DUn}r ` }Du}r is bounded uniformly in n P N. Consequently, the
sequence tcnunPN, defined by

cnpxq :“ c
´

|DUnpxq|r´1 ` |Dupxq|r´1 ` 1

nr´1
` k

1

r1 pxq
¯

ˆ
´

|DUnpxq| ` |Dupxq| ` 1

n

¯

, (4.26)

is bounded in L1pΩq, where k P Lr1 pΩq from (2.4) and c ą 0 is a constant to be
chosen later. Hence, Chacon’s biting lemma (Lemma 4) implies that there exists a
nonincreasing sequence of measurable subsets tEiuiPN with |Ei| Ñ 0 as i Ñ 8 such
that tcnunPN is weakly precompact in L1pΩzEiq for each i P N. Fix i P N and set
ω :“ ΩzEi. Thanks to the de la Valleé-Poussin theorem (see, [Mey66]), there exists
a nonnegative increasing convex function φ : R` Ñ R` such that

φptq
t

Ñ 8 as t Ñ 8 and sup
nPN

ˆ

ω

φp|cn|qdx ă 8. (4.27)

Let us also define

Hpx, ζq :“
`

S˚px, ζq ´ S˚px,Dupxqq
˘

: pζ ´ Dupxqq.

By a simple substitution in the spirit of (4.15) it follows that

sup
nPN

ˆ

ω

ˆ

tζPRdˆd
sym : |hpx,ζq|ąRu

hpx, ζqdνnx pζqdx

“ sup
nPN

ˆ

ω

ˆ

tξPRdˆd
sym : |Hpx,ξq|ąRu

Hpx, ξqdµn
xpξqdx

ď sup
těR

t

φptq supnPN

ˆ

ω

ˆ

tξPRdˆd
sym : |Hpx,ξq|ąRu

φ
`

Hpx, ξq
˘

dµn
xpξqdx

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

“:JR

.

Thanks to the properties (4.27) of φ the assertion follows once JR has been shown
to remain bounded. To this end, we observe that

JR ď sup
nPN

ˆ

ω

sup
ξPB 1

n
pDupxqq

φ
`

Hpx, ξq
˘

dx ď sup
nPN

ˆ

ω

φp|cn|qdx,

where we have used that we can choose the constant in (4.26) so that

Hpx, ξq ď c
´

|ξ|r´1 ` |Dupxq|r´1 ` kpxq
¯

p|ξ| ` |Dupxq|q .

The assertion then follows from (4.27).
Finally the identities for Du and S follow similarly from the representations

(4.15a) and (4.15b) and the uniqueness of the weak limits (4.3) and (4.4).
Thus we have completed the proof of Lemma 22.

5. Conclusions. We have established the convergence of finite element ap-
proximations of implicitly constituted power-law-like models for viscous incompress-
ible fluids. A key new technical tool in our analysis was a finite element counterpart
of the Acerbi–Fusco Lipschitz truncation of Sobolev functions, which was used in
combination with a variety of weak compactness techniques, including Chacon’s bit-
ing lemma and Young measures. An interesting direction for future research is the
extension of the results obtained herein to unsteady implicitly constituted models
of incompressible fluids.
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[DR07] L. Diening and M. Rŭžička, Interpolation operators in Orlicz–Sobolev spaces, Nu-
mer. Math. 107(1) (2007), pp. 107–129.
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[Rŭž00] M. Rŭžička, Electrorheological Fluids: Modeling and Mathematical Theory,
Springer, Belin, 2000.

[SV85] L. R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the
divergence operator in spaces of piecewise polynomials, RAIRO Modél. Math.
Anal. Numér. 19(1) (1985), pp. 111–143.

[SZ90] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions
satisfying boundary conditions, Math. Comput. 54(190) (1990), pp. 483–493.

[Tem84] R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis. 3rd (rev.)
ed., Studies in Mathematics and its Applications, Vol. 2. North-Holland,
Amsterdam-New York-Oxford, 1984.

[Zha08] S. Zhang, On the P1 Powell–Sabin divergence-free finite element for the Stokes
equations, J. Comput. Math. 26(3) (2008), pp. 456–470.

Appendix: Auxiliary comments on Lipschitz truncation. Although
similar techniques were used in [BDF12] to prove the properties of the Lipschitz
truncation, we decided to present a complete proof of Theorem 14 for the following
two reasons:

‚ In contrast with the Lipschitz truncation in [BDF12], the Lipschitz truncation
in (3.25) preserves boundary values. This requires changes to the proof that are
not always obvious.

‚ The concept of Lipschitz truncation seems to be new to the numerical analysis
community. For this reason we have aimed to keep the presentation as self-
contained as possible.

Recall the notational conventions introduced in Section 3.5 prior to Theorem 14,
and the definition (3.25) of the Lipschitz truncation. We start with some basic
estimates.

Lemma 24. Let λ ą 0 and v P W 1,1
0 pΩqd and let tvjujPN Ă Rd be defined as in

(3.25b). We then have, for all j P N, that

(a)
ffl

Q
˚˚
j

ˇ

ˇ

ˇ

v´vj

ℓj

ˇ

ˇ

ˇ
dx ď c

ffl

Q
˚˚
j

|∇v| dx ď cMp∇vqpyq for all y P Q˚˚
j ;

(b)
ffl

Q
˚˚
j

|∇v| dx ď c λ;
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(c) for k P N with Q˚
j X Q˚

k ‰ H, we have

|vj ´ vk| ď c

 

Q
˚˚
j

|v ´ vj | dx` c

 

Q
˚˚
k

|v ´ vk| dx;

(d) for k P N with Q˚
j X Q˚

k ‰ H we have |vj ´ vk| ď c ℓj λ.
Proof. We extend v by zero outside Ω.
(a) This statement is a consequence of Poincaré’s inequality and the Friedrichs

inequality. Indeed, recalling (3.25b), for Q˚
j Ă Ω we have by Poincaré’s inequality

that
 

Q
˚˚
j

ˇ

ˇ

ˇ

ˇ

v ´ vj

ℓj

ˇ

ˇ

ˇ

ˇ

dx ď c

 

Q
˚˚
j

|∇v| dx ď c

 

B
diampQ

˚˚
j

q
pyq

|∇v| dx ď cMp∇vqpyq

for all y P Q˚˚
j ; the constant c depends only on d.

In the case Q˚
j Ć Ω, it follows from the fact that Ω is a Lipschitz domain and

Q˚˚
j “

b

9
8
Q˚

j , that
ˇ

ˇQ˚˚
j zΩ

ˇ

ˇ ě c
ˇ

ˇQ˚
j

ˇ

ˇ, with a constant c ą 0 depending on Ω.

Hence v is zero on a portion of Q˚˚
j whose measure is bounded below by a positive

constant, which depends on the Lipschitz constant of BΩ. Consequently, we can
apply Friedrichs’ inequality (cf. [MZ97, Lemma 1.65]) to deduce that

 

Q
˚˚
j

ˇ

ˇ

ˇ

ˇ

v

ℓj

ˇ

ˇ

ˇ

ˇ

dx ď c

 

Q
˚˚
j

|∇v| dx ď cMp∇vqpyq @y P Q˚˚
j .

(b) It follows from (W2) that pθdQjq X pRdzUλpvqq “ pθdQjq X tMp∇vq ď λu ‰
H; compare with (3.22). For z P pθdQjq X tMp∇vq ď λu let Rj :“ θd

?
d 9
8
ℓj “

θd diampQ˚˚
j q; then, θdQ˚˚

j Ă BRj
pzq. Consequently,

 

Q
˚˚
j

|∇v| dx ď c

 

θdQ
˚˚
j

|∇v| dx ď c

 

BRj
pzq

|∇v| dx ď cMp∇vqpzq ď c λ.

(c) Observe that Q˚
j X Q˚

k ‰ H is equivalent to Qj X Qk ‰ H and hence we

obtain from (W3) and Q˚˚
i “

b

9
8
Q˚

i , i P N, that

ˇ

ˇQ˚˚
j X Q˚˚

k

ˇ

ˇ ě p4
?
2q´dmaxt

ˇ

ˇQ˚
j

ˇ

ˇ , |Q˚
k |u.

Therefore, there exists a constant c ą 0, depending on d, such that

|vj ´ vk| ď
 

Q
˚˚
j

XQ
˚˚
j

|v ´ vj | dx`
 

Q
˚˚
j

XQ
˚˚
j

|v ´ vk| dx

ď c

 

Q
˚˚
j

|vj ´ v| dx ` c

 

Q
˚˚
k

|v ´ vk| dx.

(d) The claim is a combination of (c), (a), (b) and (W3).
The next result proves that the Lipschitz truncation is a proper Sobolev func-

tion.
Lemma 25. Let λ ą 0, v P W 1,1

0 pΩqd and let vλ be defined as in (3.25). Then,
vλ ´ v “

ř

jPN ψjpvj ´ vq P W 1,1
0 pUλpvq X Ωqd.

Proof. It follows from (3.25) and properties of the partition of unity tψjujPN

that vλ ´ v “
ř

jPN ψjpvj ´ vq pointwise on Rd and vλ ´ v “ 0 in the complement

of Uλpvq. Moreover, we have that ψjpvj ´ vq P W
1,1
0 pUλpvq X Ωqd. Indeed, for

Q˚
j Ă Ω this follows from the fact that ψ P C8

0 pQ˚
j q. If on the other hand Q˚

j Ć Ω,
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then this follows from vj “ 0 and v P W 1,1
0 pUλpvq X Ωq. We need to show that the

sum converges in W
1,1
0 pUλpvq X Ωqd. Since Ω is bounded, it suffices to prove that

the sum of the gradients converges absolutely in L1pΩqdˆd. We have, pointwise, the
equality

ÿ

jPN

∇
´

ψjpvj ´ vq
¯

“
ÿ

jPN

`

p∇ψjqpvj ´ vq ` ψjp∇vj ´ ∇vq
˘

,

where we have used that both sums are just finite sums, since the family Q˚
j is

locally finite. Every summand in the last sum belongs to L1pUλpvq X Ωqdˆd. For a
finite subset I Ă N, we have, thanks to Lemma 24 and the locally finite overlaps of
the Q˚

j , that

ΣI :“
ˆ

Uλpvq

ÿ

jPNzI

|p∇ψjqpvj ´ vq ` ψjp∇vj ´ ∇vq| dx

ď c
ÿ

jPNzI

ˆ

Q
˚
j

|vj ´ v|
ℓj

dx`
ÿ

jPNzI

ˆ

Q
˚
j

|∇v| dx

ď c
ÿ

jPNzI

ˆ

Q
˚˚
j

|∇v| dx ď c
ÿ

jPNzI

λ |Qj| ď c

ˆ

Uλpvq

χYjPNzIQ
˚
j
λdx.

Note that
Ť

jPNzI Q
˚
j Ă Uλpvq and λ |Uλpvq| “ λ |tMp∇vq ą λu| ď c }∇v}L1pΩq by

the weak type estimate (3.21) and v P W
1,1
0 pΩqd. Thus, χYjPNzIQ

˚
j
λ ď χUλpvqλ P

L1pRdq. Therefore, it follows by χŤ

jPNzI Q
˚
j

Ñ 0 and the Lebesgue’s dominated

convergence theorem that ΣI Ñ 0 as I Ñ N. Hence the sum
ř

jPN ∇
´

ψjpvj ´ vq
¯

converges absolutely in L1pΩqdˆd, and the claim follows.

Proof. [Proof of Theorem 14] We shall consider parts (a)–(d) in the statement
of the theorem separately.

(a) The claim directly follows from vλ ´ v P W 1,1
0 pUλ X Ωqd (see Lemma 25).

(b) We begin by noting that

χUλpvq |vλ| ď
ÿ

jPN

χQ
˚
j

|vj | ď
ÿ

jPN

χQ
˚
j

 

Q
˚˚
j

|v| dx.

By Jensen’s inequality and the local finiteness of the Q˚˚
j we then deduce that

ˆ

Ω

χUλpvq |vλ|s dx ď
ÿ

jPN

ˇ

ˇQ˚
j

ˇ

ˇ

ˆ
 

Q
˚˚
j

|v| dx
˙s

ď
ÿ

jPN

ˆ

Q
˚˚
j

|v|s dx ď c

ˆ

Ω

|v|s dx,

for s P r1,8q, which then proves (b) for s P r1,8q using also that vλ “ v outside
of Uλpvq. The case s “ 8 follows by obvious modifications of the argument.

(c) We define Ij :“ tk P N : Q˚
j X Q˚

k ‰ Hu. Then, on every Q˚
j we have that

∇vλ “ ∇
´

ÿ

kPN

ψkvk

¯

“ ∇
´

ÿ

kPIj

ψkpvk ´ vjq
¯

“
ÿ

kPIj

p∇ψkqpvk ´ vjq,

where we have used that
ř

kPIj
ψk “ 1 on Q˚

j . By Lemma 24 we thus obtain

χUλpvq |∇vλ| ď c
ÿ

jPN

χQ
˚
j

ÿ

kPIj

 

Q
˚
k

|v ´ vk|
ℓk

dx ď c
ÿ

jPN

χQ
˚
j

ÿ

kPIj

 

Q
˚˚
k

|∇v| dx.



32 LARS DIENING, CHRISTIAN KREUZER, AND ENDRE SÜLI

The inequality in part (c) now follows by arguing as in part (b).
(d) It follows from the final chain of inequalities in the proof of part (c) above,

Lemma 24 (b) and the local finiteness of the Q˚˚
j that

χUλpvq |∇vλ| ď c λ.

Since vλ “ v on Hλpvq, we get the first part of the claim

|∇vλ| ď c λχUλpvqXΩ ` |∇v|χHλpvq.

Recall that Hλpvq “ pRdzΩq Y tMp∇vq ď λu. Now, vλ “ 0 on RdzΩ and |∇v| ď
Mp∇vq proves that |∇v|χHλpvq ď λ. This proves the second part of the claim.

The following theorem is the analogue of Corollary 18 for Sobolev functions.
Similar results can be found in [DMS08] and [BDF12].

Corollary 26. Let 1 ă s ă 8 and let tenunPN Ă W
1,s
0 pΩqd be a sequence,

which converges to zero weakly in W
1,s
0 pΩqd, as n Ñ 8.

Then, there exists a sequence tλn,jun,jPN Ă R with 22
j ď λn,j ď 22

j`1´1 such
that the Lipschitz truncations en,j :“ enλn,j

, n, j P N, have the following properties:

(a) en,j P W 1,8
0 pΩqd and en,j “ en on Hλn,j

;

(b) }∇en,j}8 ď cλn,j ;

(c) en,j Ñ 0 in L8pΩqd as n Ñ 8;

(d) ∇en,j á˚ 0 in L8pΩqdˆd as n Ñ 8;

(e) For all n, j P N we have }λn,jχUλpenq}s ď c 2´ j
s }∇en}s, with a constant c ą 0

depending on s.
Proof. The assertions follow by adopting the proof of Corollary 18.


