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LARGE DEVIATIONS FOR A MEAN FIELD MODEL OF SYSTEMIC
RISK

JOSSELIN GARNIER∗, GEORGE PAPANICOLAOU† , AND TZU-WEI YANG‡

Abstract. We consider a system of diffusion processes that interact through their empirical
mean and have a stabilizing force acting on each of them, corresponding to a bistable potential.
There are three parameters that characterize the system: the strength of the intrinsic stabilization,
the strength of the external random perturbations, and the degree of cooperation or interaction
between them. The latter is the rate of mean reversion of each component to the empirical mean of
the system. We interpret this model in the context of systemic risk and analyze in detail the effect of
cooperation between the components, that is, the rate of mean reversion. We show that in a certain
regime of parameters increasing cooperation tends to increase the stability of the individual agents
but it also increases the overall or systemic risk. We use the theory of large deviations of diffusions
interacting through their mean field.
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1. Introduction. Systemic risk is the risk that in an interconnected system of
agents that can fail individually, a large number of them fails simultaneously or nearly
so, leading to the overall failure of the system. It is a property of the interconnected
system as a whole, and not only of the individual components, in the sense that
assessment of the risk of individual failure alone cannot provide an assessment of the
systemic risk. The interconnectivity of the agents, its form and evolution, play an
essential role in systemic risk assessment [6].

In this paper we consider a simple model of interacting agents for which systemic
risk can be assessed analytically in some interesting cases. Each agent can be in
one of two states, a normal and a failed one, and it can undergo transitions between
them. We assume that the dynamic evolution of each agent has the following features.
First, there is an intrinsic stabilization mechanism that tends to keep the agents near
the normal state. Second, there are external destabilizing forces that tend to push
away from the normal state and are modeled by stochastic processes. Third, there
is cooperation among the agents that acts as individual stabilizer by diversification.
This means that in such a system we expect that there is a decrease in the risk of
destabilization or ”failure” for each agent because of the cooperation or diversification.
What is less obvious is the effect of cooperation on the overall or system’s risk, which
can be defined in a precise way for the model considered here. We show in this
paper that for the models under consideration and in a certain regime of parameters,
the systemic risk increases with increasing cooperation. The aim of this paper is to
analyze this tradeoff between individual risk and systemic risk for a class of interacting
systems subject to failure.

Perhaps a simple mathematical model of interacting agents having the features we
want is a system of stochastic differential equations with mean-field interaction. Let
xj(t) be the state of risk of agent or component j, taking real values. For j = 1, . . . , N ,
the xj(t)’s are modeled as continuous-time stochastic processes satisfying the system
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of Itô stochastic differential equations:

dxj(t) = −hU(xj(t))dt + θ(x̄(t)− xj(t))dt + σdwj(t), (1.1)

with given initial conditions. Here −hU(y) = −hV ′(y) is the restoring force, V is
a potential which we assume has two stable states, and {wj(t)}Nj=1 are independent,
standard Brownian motions. The parameter h controls the level of intrinsic stabi-
lization and σ is the strength of the destabilizing random forces. The interaction
or cooperation is the mean reversion term with rate of mean reversion θ and with
x̄(t) := 1

N

∑N
i=1 xi(t) denoting the empirical mean of the processes, that is, the em-

pirical mean of the individual risks. For θ > 0 the individual risk processes tend to
mean-revert to their empirical mean, which is a simple but non-trivial form of co-
operation. We take the empirical mean x̄(t) to be a measure of the systemic risk.
The bi-stable-state structure of V (y) determines the normal and failed states of the
agents. We will assume in this paper that U(y) = y3−y, so that V (y) = 1

4y
4− 1

2y
2+c

and we take c = 0 since it is inessential. The two stable states are then ±1 and we
let −1 be the normal state and +1 to be the failed state. The potential V (y) ensures
that each risk variable xj(t) stays around −1 (normal) or +1 (failed). The evolution
of the system is characterized by the initial conditions, the three parameters (h, θ, σ)
and by the system size N .

We have chosen a mean-field interaction because it is a simple form of cooperative
behavior. More elaborate models are considered in Section 3, where some heterogene-
ity is introduced between the components of the system. For mean-field models a
natural measure of systemic risk is the transition probability of the empirical mean
x̄(t) from the normal state to the failed state. More precisely, the mathematical prob-
lem we address here is this: For N large we calculate approximately such transition
probabilities and analyze how they depend on h, σ and θ, the three parameters of the
system. We are interested in a regime of these parameters for which there are two
collective, that is, large N , equilibria centered around the normal and failed states.
These two equilibria can be identified through the mean-field limit of the system, that
is, the weak limit in probability of the empirical density of the agents risk xj . Mean
field models with multiple stable points, not only bistable ones, could be considered
but their analysis is more involved while the main result about systemic risk, and
dependence on the parameters (h, θ, σ) and by the system size N , is clearly seen in
the bistable model that we consider here.

The mathematical analysis of bistable mean field models like (1.1) was initiated
by Dawson [9, 18], including the mean field limit, the existence of multiple equilibria,
and a fluctuation theory. Non-equilibrium statistical mechanics and phase transitions
have been studied extensively in the sciences [19]. The large deviation theory that we
use here was developed by Dawson and Gärtner [10, 11]. In particular, they introduced
and analyzed the rate function for large deviations associated with (1.1) when N is
large and with more general potentials [11]. Their theory may be considered as an
infinite dimensional extension of the Freidlin-Wentzell theory of large deviations for
stochastic differential equations with small noise [16, 14]. The main result in this
paper is the analysis of this rate function for small h. That is, for a shallow two-
well potential, where transitions from one well (quasi-equilibrium) to the other are
exponentially small in N , the ”constant” in the exponent is small when h is small.
Other mean field models have been studied in [33, 18, 27, 2, 28, 30, 15], and large
deviations results for various models can be found in [12, 1, 29, 13, 22, 8, 7]. In [7] a
general large deviations theory is developed for a model with both drift and volatility
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interactions, as well as with degenerate noise, using weak convergence and optimal
control methods.

The main contribution of the paper as far as systemic risk theory is concerned is
the demonstration that, within the range of the bistable mean field model (1.1), while
cooperation between agents decreases the individual risk of each agent, the systemic
or overall risk is increased. This is discussed in detail in Section 6.4, in terms of the
three parameters (h, θ, σ), with h small. The fact that reducing individual risk by
cooperation or diversification can lead to increased systemic risk has been anticipated
in macroeconomics and elsewhere and it has been extensively discussed, modeled, and
analyzed in [31, 4, 20, 17, 26, 32, 5, 3, 21, 24]. However, the dynamic phase transitions
formulation and the large deviations theory exploited in this paper have not been used
in the economics literature, to our knowledge. The use of coupled stochastic equations
for modeling evolution of individual risk and the effects of interactions among agents
is also considered in [4, 23] where there is some discussion regarding the economic
interpretation of the variables {xj(t)}. They could, for example, represent some form
of equity ratio in a very simple model in insurance or banking.

The paper is organized as follows. In Section 2, we briefly review the classical
mean-field limit in [9], and we discuss the intrinsic stability of equilibria [9] when h
is small. Section 3 generalizes (1.1) by replacing the rate of mean reversion θ by an
agent-dependent θj . The mean-field limit and the explicit conditions are also studied.
In Section 4, we carry out numerical simulations of both the homogeneous and the
heterogeneous model in various parameter ranges. Section 5 uses the large deviation
principle in [10] to formulate the dynamic phase transition of interest here, that is,
the system transition from the normal state to the failed state. In Section 6, we
specialize the large deviations theory when h is small so as to obtain a result from
which the systemic risk as a function the basic parameters (h, θ, σ) can be assessed
and interpreted. In Section 7 we introduce a formal expansion of the rate function for
small h and obtain a reduced variational principle for the systemic risk that appears
to come from a large deviations principle for an one-dimensional dynamical system.
It gives, of course, the same results about systemic risk as described in Section 6.
In Section 8 we discuss the case where there is diversity in mean reversion and it is
shown that under some natural conditions the heterogeneous model is systemically
more unstable than the homogeneous one. The technical details of the proofs are in
the appendices.

2. The Mean-Field Limit. We briefly review the mean field limit in [9, 18]
and carry out a small h analysis of results since they will be used in calculating large
deviation probabilities. We want to analyze the systemic behavior of the interacting
diffusion processes (1.1), through their empirical mean x̄(t), but this is not possible
in a direct way since (1.1) is nonlinear. We consider instead the empirical density of
xj(t), which is a measure valued process that has a limit as N → ∞. Let M1(R) be
the space of probability measures endowed with the weak (Prohorov) topology and let
C([0, T ],M1(R)) be the space of continuousM1(R)-valued processes on [0, T ] endowed
with the corresponding weak topology. Define the empirical probability measure pro-
cess XN (t, dy) := 1

N

∑N
j=1 δxj(t)(dy) and note that XN ∈ C([0, T ],M1(R)). The mean

field limit theorem for XN , proved in [9, 18], is as follows:

Theorem 2.1. (Dawson, 1983) Assume that the force is U(y) = y3 − y and
that XN (0) converges weakly to a probability measure ν0. Then the measure valued
process XN converges weakly in law as N → ∞ to a deterministic process with density
u(t, y)dy ∈ C([0, T ],M1(R)), which is the unique weak solution of the Fokker-Planck
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equation:

∂

∂t
u = h

∂

∂y
[U(y)u]− θ

∂

∂y

{[
∫

yu(t, y)dy − y

]

u

}

+
1

2
σ2 ∂

2

∂y2
u, (2.1)

with initial condition ν0.
By Theorem 2.1, we can analyze u and view XN as a perturbation of u for N

large. We may consider x̄(t) in the same way because x̄(t) =
∫

yXN (t, dy). However,
the limit problem is infinitely dimensional, as is expected.

Explicit solutions of (2.1) are not available in general, but we can find equilibrium
solutions. Assuming that ξ = limt→∞

∫

yu(t, y)dy, then an equilibrium solution ueξ
satisfies

h
d

dy
[(y3 − y)ueξ]− θ

d

dy
[(ξ − y)ueξ] +

1

2
σ2 d

2

dy2
ueξ = 0,

and has the form

ueξ(y) =
1

Zξ

√

2π σ
2

2θ

exp

{

− (y − ξ)2

2σ
2

2θ

− h
2

σ2
V (y)

}

, (2.2)

with Zξ the normalization constant:

Zξ =

∫

1
√

2π σ
2

2θ

exp

{

− (y − ξ)2

2σ
2

2θ

− h
2

σ2
V (y)

}

dy.

Now ξ must satisfy the compatibility or consistency condition:

ξ = m(ξ) :=

∫

yueξ(y)dy. (2.3)

Finding equilibrium solutions has thus been reduced to finding solutions of this equa-
tion.

For U(y) = y3 − y, ξ = 0 is a solution for (2.3). With the same U(y), it can be
shown (see also [9, Theorem 3.3.1 and 3.3.2]) that there are two additional non-zero
solutions ±ξb if and only if d

dξm(0) > 1, and for given h and θ, there exists a critical

σc(h, θ) > 0 such that d
dξm(0) > 1 if and only if σ < σc(h, θ).

An explanation for this bifurcation at equilibrium is that when σ ≥ σc, ran-
domness dominates the interaction among the components, i.e., θ(x̄(t) − xj(t))dt is
negligible. In this case, the system behaves like N independent diffusions and hence,
by the symmetry of V (y), at any given time roughly half of them stay around −1
and half around +1 so the average is 0. When, however, σ < σc, then the interac-
tive force is significantly larger (now σdwj(t) is less important). Therefore all agents
stay around the same place (either −ξb or +ξb) and the zero average equilibrium is
unstable. Since we want to model systemic risk phenomena, we assume that σ < σc
throughout this paper, and we regard −ξb as the normal state of the system and
+ξb as the failed state. The calculation of transitions probabilities between these two
states is our objective.

For small h we can approximate the solution of (2.3) to order O(h) as follows.
Proposition 2.2. For small h, the critical value σc can be expanded as

σc =

√

2θ

3
+O(h). (2.4)
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In addition, the non-zero solutions ±ξb are

± ξb = ±
√

1− 3
σ2

2θ

(

1 + h
6

σ2

(

σ2

2θ

)2
1− 2(σ2/2θ)

1− 3(σ2/2θ)

)

+ O(h2). (2.5)

Proof. See Appendix A.
From Proposition 2.2, we see the relation between the existence of the bi-stable

states and the ratio σ2/2θ: For a given θ, and for small h, (2.3) has non-zero solutions
if and only if 3σ2/2θ < 1. Moreover, these non-zero solutions ±ξb are generally not
±1 since the magnitude |ξb| is less than 1. Note that the coefficient of order h in the
expansion (2.5) depends significantly on θ and σ. Thus, when 3σ2/2θ tends to 1, ξb
in (2.5) will not go to +∞ while, in fact, ξb goes to 0. From the O(1) term in (2.5),
we also see that ξb is roughly decreasing as σ2/2θ is increasing.

3. Diversity of Sensitivities. We can generalize (1.1) by allowing for agent
dependent coefficients. We consider a particular case in which each agent can have a
different rate of mean reversion to the empirical mean, that is, for j = 1, . . . , N ,

dxj = −h ∂

∂xj
V (xj)dt+ σdwj + θj(x̄ − xj)dt, (3.1)

and as before V (y) = 1
4y

4 − 1
2y

2. We consider the case where θ1, . . . , θN take K
distinct positive numbers, Θ1, . . . ,ΘK . We define Il = {j : θj = Θl}, ρl = |Il|/N and
X l
N = 1

ρlN

∑

j∈Il
δxj . Assuming that limN→∞ ρl exists and is positive for all l, the

limit of (X1
N , . . . , X

K
N ) as N → ∞ are the weak solutions (u1, . . . , uK) of the set of K

coupled Fokker-Planck equations.
Theorem 3.1. Assume that U(y) = y3 − y and that (X1

N (0), . . . , XK
N (0)) con-

verge weakly in probability to the probability measures (ν1, . . . , νK). Then the measure
valued vector process (X1

N , . . . , X
K
N ) converges weakly as N → ∞ to the weak solution

(u1, . . . , uK) of the system of the Fokker-Planck equations:

∂

∂t
u1 =

1

2
σ2 ∂

2

∂y2
u1 −Θ1

∂

∂y

{[

∫

y
K
∑

l=1

ρlul(t, y)dy − y

]

u1

}

+ h
∂

∂y
[U(y)u1] (3.2)

...

∂

∂t
uK =

1

2
σ2 ∂

2

∂y2
uK −ΘK

∂

∂y

{[

∫

y

K
∑

l=1

ρlul(t, y)dy − y

]

uK

}

+ h
∂

∂y
[U(y)uK ],

with initial condition (ν1, . . . , νK).
Proof. See Appendix B.1 for the outline of the proof following [18].
The equilibrium solutions {uel,ξ}Kl=1 have the form

uel,ξ(y) =
1

Zl,ξ

√

2π σ2

2Θl

exp

{

− (y − ξ)2

2 σ2

2Θl

− h
2

σ2
V (y)

}

(3.3)

Zl,ξ =

∫

1
√

2π σ2

2Θl

exp

{

− (y − ξ)2

2 σ2

2Θl

− h
2

σ2
V (y)

}

dy,
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and ξ must satisfy the compatibility condition

ξ = m(ξ) :=

K
∑

l=1

ρl

∫

yuel,ξ(y)dy. (3.4)

For U(y) = y3 − y, ξ = 0 is the trivial solution of (3.4), and a simple extension of
Theorem 3.3.1 in [9], shows that there are two sets of non-trivial solutions {uel,ξb}Kl=1

and {uel,−ξb}Kl=1 if and only if d
dξm(0) > 1. The numerical simulations presented in

the next section show that diversity in the rate of mean reversion can have significant
impact on the stability of the mean-field model.

As in the homogeneous case, we can get an approximate condition for equilibrium
bifurcation for small h.

Proposition 3.2. The compatibility condition (3.4) has non-zero solutions if
and only if σ < σdiv

c . For small h, σdiv
c has the expansion

σdiv

c =

√

√

√

√

K
∑

l=1

ρl
Θl
/

K
∑

l=1

3ρl
2Θ2

l

+O(h).

Proof. See Appendix B.2.
We note that diversity does affect the threshold condition and makes the analysis

more difficult. The non-zero solutions ±ξb can be computed approximately when h is
small:

± ξb = ±

√

√

√

√

K
∑

l=1

ρl
Θl

(

1− 3
σ2

2Θl

)

/

K
∑

l=1

ρl
Θl

+O(h). (3.5)

Higher order terms in the expansion of (3.5) can also be obtained but we will omit
them in this paper. In the following Proposition we show that σdiv

c ≤ σhomo
c , where

σhomo
c = σc, the critical value (2.4) of the homogeneous case.

Proposition 3.3. With θ =
∑K
l=1 ρlΘl, we have σhomo

c ≥ σdiv
c for small h.

Proof. See Appendix B.3.
This result shows that when there is diversity the parameter region of existence

of equilibria ±ξb is smaller than in the homogeneous case . From this observation we
can anticipate that these equilibria are less stable in the presence of diversity, and
this is confirmed next by numerical simulations and analytically.

By noting that ξhomo
b =

√

1− (σ2/σhomo
c )2 +O(h) and ξdivb =

√

1− (σ2/σdiv
c )2 +

O(h), we have the following corollary:

Corollary 3.4. With θ =
∑K
l=1 ρlΘl, we have 1 > ξhomo

b ≥ ξdivb for small h.

4. Numerical Simulations. Before going into a detailed analysis of the models,
we carry out numerical simulations of (1.1) and (3.1) so as to get a quick impression
of their behavior. We discretize with a uniform time grid, and let Xn

j denote the
simulated Xj at time n∆t.

4.1. Homogeneous Model. We simulate (1.1) using the Euler scheme

Xn+1
j = Xn

j − hU(Xn
j )∆t+ σ∆Wn+1

j + θ(
1

N

N
∑

k=1

Xn
k −Xn

j )∆t. (4.1)
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Fig. 4.1. Simulations for different σ. The system has two (statistically) stable equilibria when
σ is below the critical value or otherwise has single stable state 0. For small h, 3σ2/2θ < 1 is the
approximate criterion.
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Fig. 4.2. Simulations for different θ. The system has two stable equilibria if θ is above the
critical value or otherwise has single stable state 0. For small h, 3σ2/2θ < 1 is the approximate
criterion.

We take U(y) = y3 − y, = 1, X0
j = −1, ∆t = 0.02, and let {∆Wn

j }j,n be independent
Gaussian random variables with mean zero and variance ∆t. In the figures presented,
the dashed lines show the numerical solutions of the compatibility equation (2.3),
ξ = m(ξ). As noted earlier, if d

dξm(0) ≤ 1, then 0 = m(0) is the unique solution and 0
is a stable state. Therefore we should observe that the systemic risk fluctuates around
0. If d

dξm(0) > 1, there are two additional non-zero solutions ±ξb = m(±ξb) and ±ξb
are stable while 0 is unstable. We also know that when h is small, the condition
d
dξm(0) > 1 can be simplified to be 3σ2/2θ < 1.

Figure 4.1 and Figure 4.2 illustrate the behavior of the empirical mean as the
system transitions from having two equilibria to having a single one, which is con-
trolled by the value of d

dξm(0). This is an instance of a bifurcation of equilibria.
From Proposition 2.2, we know that when h is small, the existence condition of two
equilibria, d

dξm(0) > 1, can be approximated by the condition 3σ2/2θ < 1. In the

simulations, we let h = 0.1 so the approximate condition 3σ2/2θ < 1 can be applied.
In Figure 4.1 we change σ but fix the other parameters, and consider the three cases
d
dξm(0) < 1 (3σ2/2θ > 1), d

dξm(0) ≈ 1 (3σ2/2θ = 1) and d
dξm(0) > 1 (3σ2/2θ < 1).

In Figure 4.2 we change θ. We can see that even though the parameters varied in the
numerical simulations are not the same, the bifurcation behavior is similar.

Figure 4.3 shows the effect of increasing h on the system stability. By stability we
mean resistance to the transition of the empirical mean of the system from one state
to the other (because the model is symmetric). The parameter h is proportional to
the height of the potential barrier of each agent. Thus we increase the overall system
stability if we increase the component’s stability. This observation is analogous to
comments in [31, 25, 26]. It is clear that h influences system stability substantially.

Figure 4.4 illustrates the effect of system size on its stability. Clearly a larger
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Fig. 4.3. The effect of changing h. Increasing it stabilizes the system.
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Fig. 4.4. Influence of the system size N . A larger system tends to have a more stable behavior.

system is more stable. These stability phenomena will be quantified with the large
deviations analysis of Section 5.

4.2. Heterogeneous Model. For the heterogeneous model, θ is replaced by θj ,
and the discretization is

Xn+1
j = Xn

j − hU(Xn
j )∆t+ σ∆Wn+1

j + θj(
1

N

N
∑

k=1

Xn
k −Xn

j )∆t, (4.2)

with the same parameter settings. The different values of θj are controlled by the
parameters Θl and ρl. In the simulation, we takeK = 3 and {Θl}Kl=1 = {ΘL,ΘM ,ΘH}
for a system a low, medium and high rates of mean reversion to the empirical mean,
that is, the systemic risk. We also take {ρl}Kl=1 = {ρL, ρM , ρH} for the corresponding
fractions. We use the normalized standard deviation of the distribution of θj values
in order to quantify diversity. We find that the heterogeneous model behaves like
the homogeneous one when h, σ and N change. But, diversity on the rates of mean
reversion has significant impact on system stability.

As in the homogeneous case, in Figure 4.5 we consider cases with σ below, close
to and above the critical value. The results are similar to the homogeneous case
as expected. For σ below the critical value we have two equlibria and for σ above
the critical value one equilibrium. The condition d

dξm(0) > 1 is still necessary and

sufficient for the existence two equlibria. The condition
∑K
l=1(ρl/Θl)(3σ

2/2Θl−1) < 1
is also a good approximation to the exact one when h is small.

The parameter h and the system size N are closely associated with system sta-
bility. We note that in Figure 4.6 and Figure 4.7 when h or N are increased, the
system becomes visibly more stable. Another observation is that with h, σ and N
fixed, and with the mean of θj of (4.2) equal to θ of (4.1), the heterogeneous system
is consistently more unstable than the corresponding homogeneous model (see Figure
4.3 and Figure 4.4). Clearly diversity tends to destabilize the system.



9

0 2000 4000 6000 8000 10000
−1.5

−1

−0.5

0

0.5

1

1.5

N=100, h=0.1, σ=1, Θ=[5;10;15]
ρ=[0.33;0.34;0.33], stdev(θ)/mean(θ)=0.40825
dm(0)/dξ=1.0096, Σ

i
(ρ

i
/Θ

i
)(3σ2/2Θ

i
−1)=−0.0949

t

S
ys

te
m

ic
 R

is
k

0 2000 4000 6000 8000 10000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

N=100, h=0.1, σ=2.1218, Θ=[5;10;15]
ρ=[0.33;0.34;0.33], stdev(θ)/mean(θ)=0.40825

dm(0)/dξ=1.0002, Σ
i
(ρ

i
/Θ

i
)(3σ2/2Θ

i
−1)=1.0408e−017

t

S
ys

te
m

ic
 R

is
k

0 2000 4000 6000 8000 10000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

N=100, h=0.1, σ=3, Θ=[5;10;15]
ρ=[0.33;0.34;0.33], stdev(θ)/mean(θ)=0.40825
dm(0)/dξ=0.98922, Σ

i
(ρ

i
/Θ

i
)(3σ2/2Θ

i
−1)=0.1219

t

S
ys

te
m

ic
 R

is
k

Fig. 4.5. Effect of changes in σ. The system has two stable equllibria when σ is below the
critical value and has single one otherwise. For small h,

∑K
l=1

(ρl/Θl)(3σ
2/2Θl − 1) < 1 is the

approximate criterion.
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Fig. 4.6. Effect of changing h. Increasing it stabilizes the system.

We also change the diversity of θj by changing Θl and ρl. To compare with the
homogeneous case, in Figure 4.8 and Figure 4.9 we change the standard deviation of
θj while the mean of θj is fixed. In this most interesting part of the simulations we
see that when we increase the standard deviation of diversity values, the number of
transitions is notably larger than that in the homogeneous case.

5. Large Deviations. In the previous two sections we saw both analytically
and numerically that for large N , the empirical density XN(t, dy) is close (weakly, in
probability) to the solution of the Fokker-Planck equation (2.1), and so the mean x̄(t)
in (1.1) stays around the first order moment of the deterministic limit,

∫∞

−∞ yu(t, y)dy.
If the condition of existence of two equilibria is satisfied, then x̄(t) will remain close
to either −ξb or +ξb for relatively long time intervals, depending in particular on
the parameter h. However, as long as N < ∞, as we have seen in the simulations
the random forcing by the Brownian motions {wj(t)}Nj=1 will cause transitions with
non-zero probability. A systemic transition is the event that x̄(t) is displaced from
±ξb to ∓ξb within a finite time horizon. Thus, systemic transition means that a
large number of agents transition in a finite time. In this paper, we are interested
in computing the probability of such a systemic transition. Mathematically, given a
finite time horizon [0, T ] and the conditions for existence of two equilibria, we want
to compute the probability

P(x̄(0) = −ξb, x̄(T ) = ξb) (5.1)

when N is large and as a function of the parameters (h, θ, σ) in (1.1).

5.1. Large Deviations of Mean-fields. According to [10], we can calculate
this probability asymptotically for large N using large deviations. To state the large
deviations theory that we will use, we will review briefly some notation and terminol-
ogy from [10].
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Fig. 4.7. Effect of changing the system size N . Larger system have a more stable behavior.
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Fig. 4.8. The effect of changes in Θl. The median of the diversity values is fixed but the low
and high sensitivities are changed to adjust the level of diversity of θj while ρl and the mean of θj
are the same. Increasing diversity tends to destabilize the system.

• M1(R) is the space of probability measures on R with the Prohorov metric
ρ, associated with weak convergence.

• C([0, T ],M1(R)) is the space of continuous functions from [0, T ] to M1(R)
with the metric sup0≤t≤T ρ(φ1(t), φ2(t)).

• MR(R) = {µ ∈M1(R),
∫

ϕ(y)µ(dy) ≤ R}, where ϕ ∈ C2(R) is a nonnegative
function with lim|x|→∞ ϕ(x) = ∞. From [10], if U(y) = y3−y, we can choose
ϕ(y) = 1 + y2 + γy4, 0 ≤ γ ≤ h/2.

• M∞(R) = ∪R>0MR(R) = {µ ∈ M1(R),
∫

ϕ(y)µ(dy) < ∞} endowed with the
inductive topology: µn → µ in M∞(R) if and only if µn → µ in M1(R) and
supn

∫

ϕ(y)µn(dy) <∞.
• C([0, T ],M∞(R)) is the space of continuous functions from [0, T ] to M∞(R)
endowed with the topology: φn(·) → φ(·) in C([0, T ],M∞(R)) if and only if
φn(·) → φ(·) in C([0, T ],M1(R)) and sup0≤t≤T supn

∫

ϕ(y)φn(t, dy) <∞.
• Given ν ∈ M∞(R), we let Eν = {φ ∈ C([0, T ],M∞(R)) : φ(0) = ν}, endowed
with the relative topology.

To simplify the notation, we rewrite (2.1) as ut = L∗
uu+ hM∗u, where

L∗
ψφ =

1

2
σ2φyy + θ

∂

∂y

{[

y −
∫

yψ(t, y)dy

]

φ

}

, M∗φ =
∂

∂y
[U(y)φ] .

Theorem 5.1. (Dawson and Gärtner, 1987) Given a finite horizon [0, T ], ν ∈
M∞(R) and A ⊆ Eν , if XN (0) = 1

N

∑N
j=1 δxj(0) → ν in M∞(R) as N → ∞, then the

law of XN(t) =
1
N

∑N
j=1 δxj(t) satisfies the large deviation principle with the good rate
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Fig. 4.9. The effect of changes in ρl, with Θl and the mean of θj fixed. Increasing diversity
tends to destabilize the system.

function Ih:

− inf
φ∈Å

Ih(φ) ≤ lim inf
N→∞

1

N
logP(XN ∈ A)

≤ lim sup
N→∞

1

N
logP(XN ∈ A) ≤ − inf

φ∈Ā
Ih(φ),

where Å and Ā are the interior and closure of A in Eν , respectively, and

Ih(φ) =
1

2σ2

∫ T

0

sup
f :〈φ,f2

y〉6=0

Jh(φ, f)dt, (5.2)

Jh(φ, f) = 〈φt − L∗
φφ− hM∗φ, f〉2/〈φ, f2

y 〉, 〈φ, f〉 =
∫ ∞

−∞

f(y)φ(dy),

if φ(t) is absolutely continuous in t ∈ [0, T ] and Ih(φ) = ∞ otherwise.
Remark. Here for φ ∈ Eν and t ∈ [0, T ], φ(t) is viewed as a real Schwartz

distribution on R, L∗
ψ and M∗φ are differential operators in the distribution sense,

and f in (5.2) is a real Schwartz test function. The definition of absolute continuity
for the path of measures (φ(t))t∈[0,T ] is in the sense of Definition 4.1 in [10], that is to
say: for each compact set K ⊂ R there exists a neighborhood UK of the null function
in the set of test functions with compact support in K and an absolutely continuous
function HK from [0, T ] to R such that |〈φ(t), f〉 − 〈φ(s), f〉| ≤ |HK(t) −HK(s)| for
all s, t ∈ [0, T ] and f ∈ UK . Note that by Lemma 4.2 in [10], if φ(t) is absolutely
continuous in t ∈ [0, T ], φt(t) exists in the distribution sense almost everywhere on
t ∈ [0, T ].

In order to use Theorem 5.1, we let ν = ue−ξb in (2.2) and define the rare event A
of systemic transition by

A =
{

φ ∈ Eν : φ(T ) = ueξb
}

. (5.3)

However, since Å is an empty set, Theorem 5.1 give a trivial lower bound for the
probability in question. Therefore we consider instead the closed rare event Aδ:

Aδ =
{

φ ∈ Eν : ρ(φ(T ), ueξb) ≤ δ
}

.

Then Theorem 5.1 implies that

− inf
φ∈Åδ

Ih(φ) ≤ lim inf
N→∞

1

N
logP(XN ∈ Aδ)

≤ lim sup
N→∞

1

N
logP(XN ∈ Aδ) ≤ − inf

φ∈Aδ

Ih(φ).
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In addition, we show that infφ∈Aδ
Ih(φ) can be bounded from below by infφ∈A Ih(φ)

as δ → 0.
Lemma 5.2. By definition infφ∈Aδ

Ih(φ) is decreasing with δ > 0 and bounded
from above by infφ∈A Ih(φ). In addition,

lim
δ→0

inf
φ∈Aδ

Ih(φ) ≥ inf
φ∈A

Ih(φ).

Proof. See Appendix C.
Combining Lemma 5.2 and the fact that infφ∈Åδ

Ih(φ) ≤ infφ∈A Ih(φ), for any
ǫ > 0, we have for sufficiently small δ > 0

− inf
φ∈A

Ih(φ) ≤ lim inf
N→∞

1

N
logP(XN ∈ Aδ)

≤ lim sup
N→∞

1

N
logP(XN ∈ Aδ) ≤ − inf

φ∈A
Ih(φ) + ǫ.

Therefore for large N and sufficiently small δ,

P(XN ∈ Aδ) ≈ exp

(

−N inf
φ∈A

Ih(φ)

)

. (5.4)

This tells us that a larger system has a more stable empirical mean trajectory, which
is consistent with what we have seen in the numerical simulation. Now the main step
is finding infφ∈A Ih(φ), which is a min-max variational problem

inf
φ∈A

Ih(φ) = inf
φ∈A

1

2σ2

∫ T

0

sup
f :〈φ,f2

y〉6=0

〈φt − L∗
φφ− hM∗φ, f〉2/〈φ, f2

y 〉dt, (5.5)

where the f in the sup is a real Schwartz test function.

5.2. An Alternative Expression for the Rate Function. The representa-
tion of the rate function (5.2) is somewhat complicated, but we can simplify it if φ
has the density with some additional properties. If φ is a density function such that
φ(t, y) is smooth, rapidly decreasing in y ∈ R for each t ∈ [0, T ] and is absolutely
continuous in t ∈ [0, T ] for each y ∈ R, then let g(t, y) satisfy

φt − L∗
φφ− hM∗φ = (φg)y. (5.6)

Note that because of the properties of φ, the left hand side of (5.6) is well-defined in
y ∈ R and almost everywhere in t ∈ [0, T ]. In addition, because φ is positive valued,
g exists and is unique except on a measure zero set in [0, T ].

Note that for the pair (φ, g) satisfying (5.6)

sup
f :〈φ(t),f2

y 〉6=0

Jh(φ(t), f) = sup
f :〈φ(t),f2

y 〉6=0

〈φ(t), fyg〉2/〈φ(t), f2
y 〉 = 〈φ(t), g2〉,

and therefore we have the following proposition.
Proposition 5.3. If φ is a density function such that φ(t) is a Schwartz function

for each t ∈ [0, T ] and is absolutely continuous in t ∈ [0, T ] for each y ∈ R, and g(t, y)
satisfies (5.6), the rate function Ih(φ) in (5.2) can be written in the form

Ih(φ) =
1

2σ2

∫ T

0

〈φ, g2〉dt. (5.7)
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We interpret (5.6) and (5.7) as follows. The function g is regarded as the driving
force making φ deviate from the solution of the Fokker-Planck equation (2.1), and
Ih(φ) is the L

2(φ) norm of g, which measures how difficult it is to have this deviation
φ.

6. Small hAnalysis. The goal of this section is to analyze the min-max problem
(5.5) which controls the asymptotic systemic transition probability. This problem is
nonlinear and infinitely dimensional and is difficult to analyze. To get some useful
information about it we will assume that h is small and analyze it in this regime.
We will first solve (5.5) when h is exactly 0, and then we will get rigorous upper and
lower bounds for (5.5) when h is nonzero but small. We will then compare the large
deviations result with the local fluctuation theory of a single agent so as to explain
why interconnectedness destabilizes the system.

6.1. The h = 0 and the Small h Analysis. We note that when h = 0,
ue±ξb = ue±ξ0 , where

ue±ξ0(y) =
1

√

2π σ
2

2θ

exp

{

− (y − (±ξ0))2
2σ

2

2θ

}

, ξ0 =

√

1− 3
σ2

2θ
. (6.1)

In this case, (5.5) is solvable and the optimal path is a Gaussian, starting from ue−ξ0
and ending in ue+ξ0 .

Theorem 6.1. Let h = 0 and define

pe(t, y) =
1

√

2π σ
2

2θ

exp

{

− (y − ae(t))2

2σ
2

2θ

}

, ae(t) =
2ξ0
T
t− ξ0. (6.2)

Then pe ∈ A is the unique minimizer for (5.5) and

inf
φ∈A

I0(φ) = I0(p
e) =

2ξ20
σ2T

.

Proof. See Appendix D.1.
We show next that (5.5) is continuous at h = 0.
Theorem 6.2. There exists γ(h) such that γ(h) → 0 as h→ 0 and

∣

∣

∣
inf
φ∈A

Ih(φ)−
2ξ2b
σ2T

∣

∣

∣
≤ γ(h). (6.3)

We recall here that

ξb = ξ0 + hξ1 +O(h2), ξ1 =

√

1− 3
σ2

2θ

6

σ2

(

σ2

2θ

)2
1− 2(σ2/2θ)

1− 3(σ2/2θ)
. (6.4)

Proof. See Appendix D.2 and D.3.
As it is stated we could replace ξb by ξ0 in Theorem 6.2, since ξb = ξ0 + o(1) as

h→ 0. We will see in the next section (in Proposition 7.5) that γ(h) = O(h2). In fact
we show this rigorously for the upper bound but only formally for the lower bound.
Since ξb = ξ0+hξ1+O(h

2) we see that the term 2ξ2b/(σ
2T ) contains the leading-order

term and the first-order correction in the h-expansion of infφ∈A Ih(φ).
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6.2. Large Deviations for the First Exit Time. In this subsection, we con-
sider the rare event B of systemic transition at some time before T :

Bδ = {φ ∈ Eν : ∃t ∈ (0, T ], ρ(φ(t), ueξb) ≤ δ}.

In other words, Bδ = ∪t∈(0,T ]Aδ(t), where

Aδ(t) = {φ ∈ Eν : ρ(φ(t), ueξb) ≤ δ}.

We let B := B0. We then have that
Lemma 6.3. By definition infφ∈Bδ

Ih(φ) is decreasing with δ > 0 and bounded
from above by infφ∈B Ih(φ). In addition,

lim
δ→0

inf
φ∈Bδ

Ih(φ) = inf
φ∈∪t∈(0,T ]A(t)

Ih(φ) = inf
φ∈B

Ih(φ),

where A(t) := A0(t).
Proof. See Appendix D.4.
From Theorem 6.2, we see that in the sense of large deviations the probability of

system failure at some time before time T is essentially the same as the probability
of system failure at time T .

Corollary 6.4. For any t1 < t2, there exists a sufficiently small h such that
infφ∈A(t1) Ih(φ) > infφ∈A(t2) Ih(φ). Consequently, infφ∈B Ih(φ) ≈ infφ∈A(T ) Ih(φ) for
small h.

6.3. Comparison with the Fluctuation Theory of a Single Agent. To get
a better understanding of the large deviations results we need to carry out a standard
fluctuation theory for a single agent. We assume that xj(0) = −1 for all j and that
the xj(t)’s are in the vicinity of −1 so that we can linearize (1.1):

xj(t) = −1 + zj(t), x̄(t) = −1 + z̄(t), z̄(t) =
1

N

N
∑

j=1

zj(t).

For V (y) = 1
4y

4− 1
2y

2, zj(t) and z̄(t) satisfy the linear stochastic differential equations

dzj = −(θ + 2h)zjdt+ θz̄dt+ σdwj , dz̄ = −2hz̄dt+
σ

N

N
∑

j=1

dwj ,

with zj(0) = z̄(0) = 0. The processes zj(t) and z̄(t) are Gaussian and the mean and
variance functions are easily calculated. We are especially interested in their behavior
for large N .

Lemma 6.5. For all t ≥ 0, Ezj(t) = Ez̄(t) = 0 and Varz̄(t) = σ2

N (1− e−4ht). In

addition, Varzj(t) → σ2

2(θ+2h) (1− e−2(θ+2h)t) as N → ∞, uniformly in t ≥ 0.

From Lemma 6.5, we see that σ2/N and σ2/2(θ+2h) should be sufficiently small
so that linearization is consistent with the results it produces.

6.4. Increased Probability of Large Deviations for Increased θ and Its
Systemic Risk Interpretation. We have now the analytical results with which
we may conclude that individual risk diversification may increase the systemic risk.
Assume that σ2/N and σ2/2(θ + 2h) are sufficiently small and N is large. From
Lemma 6.5, the risk xj(t) of the agent j is approximately a Gaussian process with the
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stationary distribution N (−1, σ2/2(θ + 2h)). If the external risk, σ is high, then in
order to keep the risk xj(t) at an acceptable level, the agent may increase the intrinsic
stability, h, or share the risk with other agents, that is, increase θ. Increasing h is in
general more costly (cuts into profits) than increasing θ, and at the individual agent
level there is no difference in risk assessment between increasing h and increasing θ.
Therefore the agents are likely to increase θ and reduce individual risk by diversifying
it. Note that σ2/2(θ + 2h) . σ2/2θ when σ2 and θ are significantly larger than h.
Thus, individual agents can maintain low locally assessed risk by diversification, even
in a very uncertain environment.

What is not perceived by the individual agents, however, is that risk diversification
may increases the systemic risk while it reduces their individual risk. Because σ2 and
θ are significantly larger than h, the small h analysis can be applied and from (5.4)
and Theorem 6.2, the systemic risk (the probability of the system failure) is

P(XN ∈ Bδ) ≈ exp

(

−N 2ξ2b
σ2T

)

, for small δ and h,

ξb =

√

1− 3
σ2

2θ

(

1 + h
6

σ2

(

σ2

2θ

)2
1− 2(σ2/2θ)

1− 3(σ2/2θ)

)

+O(h2).

We see that there are additional systemic-level σ2 terms in the exponent and ξb, which
can not be observed by the agents, increasing the systemic risk, even if the individual
risk σ2/2θ is fixed. In other words, the individual agents may believe that they are
able to withstand larger external fluctuations as long as their risk can be diversified,
but a higher σ tends to destabilize the system.

7. A Reduced Large Deviations Principle for Small h. In Section 6.1, we
show that the large deviation problem infφ∈A Ih(φ) is continuous in h so that we have
the upper and lower bounds for infφ∈A Ih(φ) when h is small. In this section, we
analyze with a formal expansion the optimal path for infφ∈A Ih(φ) by assuming that
it is of the form pe+O(h), motivated by the fact that the optimal path is pe for h = 0.
In this way, we can obtain a reduced large deviations principle (a reduced Freidlin-
Wentzell theory) for the systemic risk. That is, we obtain a reduced rate function
corresponding to a finite dimensional system after ignoring higher order terms. The
reduced rate function has all relevant information up to O(h2) terms, and we also
need to expand φ to O(h2).

We assume that the optimal φ = p+ hq(1) + h2q(2) + . . ., where

p(t, y) =
1

√

2π σ
2

2θ

exp

{

− (y − a(t))2

2σ
2

2θ

}

, a(t) = 〈φ, y〉.

In other words, we let the first moment of φ be determined by a(t), and from the zero
h case we know that a(t) = ae(t) + O(h). From the form of p and (5.6), a natural
parameterization for q(1) and q(2) is the Hermite expansion

q(1)(t, y) =

∞
∑

n=2

bn(t)
∂n

∂yn
p(t, y), q(2)(t, y) =

∞
∑

n=2

cn(t)
∂n

∂yn
p(t, y).

Note that by the properties of p and a(t), 〈q(1), yn〉 = 〈q(2), yn〉 = 0 for n = 0, 1 so we
can start the Hermite expansion from n = 2.
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The formal expansion result of this section is that if the optimal φ = p+ hq(1) +
h2q(2), then

inf
φ∈A

Ih(φ) ≈ inf
a(t):0≤t≤T
a(0)=−ξb
a(T )=ξb

1

2σ2

∫ T

0

(

d

dt
a+ h(a3 + 3

σ2

2θ
a− a)

)2

dt, (7.1)

for small h. Note that a(t) = 〈φ, y〉 = x̄(t). The right hand side of (7.1) is an one-
dimensional variational problem that has the form of a rate function of the Freidlin-
Wentzell theory. In fact, the right side of (7.1) is the large deviations variational
problem for the rate function of the small-noise stochastic differential equation

dx̄(t) = −h
[

x̄3(t)−
(

1− 3σ2

2θ

)

x̄(t)

]

dt+ ǫσdw(t) (7.2)

where here ǫ = 1/
√
N is small. Note that 3σ2/2θ < 1, as assumed above, and therefore

(7.2) also represents a bi-stable structure. In the remainder of this section we describe
how this result is obtained by formal expansions and then in Section 7.3 we show how
we recover from (7.1) the main result of the paper stated in the previous section.

An important remark about the expansion is that the Hermite functions are a
basis of the L2 space and thus p+hq(1)+h2q(2) is generally a signed measure. However,
if q(1) and q(2) can be expressed as the linear combinations of finite Hermite functions,
then we can see that for any ǫ > 0, there exists a sufficiently small h such that the
negative part of p+ hq(1) + h2q(2) is less than ǫ.

7.1. Optimization over g. The first step in finding the optimal φ = p+hq(1)+
h2q(2) is determining the optimal g by using (5.6) for φ. Once we obtain g, we can
compute Ih(φ) by using (5.7). It is also natural to assume that g = g(0)+hg(1)+h2g(2)

along with the Hermite expansion:

g(0) = p−1
∞
∑

n=0

αn(t)
∂n

∂yn
p, g(1) = p−1

∞
∑

n=0

βn(t)
∂n

∂yn
p, g(2) = p−1

∞
∑

n=0

γn(t)
∂n

∂yn
p.

In addition, since 〈q(1), y〉 = 〈q(2), y〉 = 0, we can see that φ = p + hq(1) + h2q(2)

satisfies

L∗
φφ = L∗

pp+ hL∗
pq

(1) + h2L∗
pq

(2), M∗φ = M∗p+ hM∗q(1) + h2M∗q(2).

The force U(y) = y3 − y can also be expanded in Hermite polynomials:

U(y) = p−1
3
∑

n=0

δn(t)
∂n

∂yn
p.

Now everything is expanded in the orthogonal basis and we can find the optimal g(0)

and g(1) by putting everything into (5.6) and comparing coefficients.
Lemma 7.1. With the expansions mentioned above, the optimal g(0) is − d

dta, and

the optimal βn for g(1) are

βn =











−δ0 = −〈p, U(y)〉, n = 0,
d
dtbn+1 + θ(n+ 1)bn+1 − δn, 1 ≤ n ≤ 3,
d
dtbn+1 + θ(n+ 1)bn+1, n ≥ 4.

(7.3)
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Proof. See Appendix E.1.
It remains to determine g(2). From (5.7) we see that the only contribution of g(2)

to Ih up to O(h2) is 〈p, 2g(0)g(2)〉 = −2γ0
d
dta. Thus it suffices to determine γ0, which

can also be obtained from (5.6).
Lemma 7.2. With the expansions mentioned above, the optimal γ0 is

γ0 = −〈q(1), U(y) + g(1)〉.

Proof. See Appendix E.2.

7.2. Optimization over φ. We are now ready to find the optimal φ. For given
φ = p+ hq(1) + h2q(2) and the corresponding optimal g = g(0) + hg(1) + h2g(2), (5.7)
gives

Ih(φ) =
1

2σ2

∫ T

0

〈p+ hq(1) + h2q(2), (g(0) + hg(1) + h2g(2))2〉dt

=
1

2σ2

∫ T

0

〈p, (g(0))2〉dt+ h

2σ2

∫ T

0

〈p, 2g(0)g(1)〉dt

+
h2

2σ2

∫ T

0

(

〈p, (g(1))2 + 2g(0)g(2)〉+ 〈q(1), 2g(0)g(1)〉
)

dt+O(h3).

From Lemma 7.2, 〈p, 2g(0)g(2)〉 = −2g(0)〈q(1), U(y) + g(1)〉, and therefore

〈p, 2g(0)g(2)〉+ 〈q(1), 2g(0)g(1)〉 = −2g(0)〈q(1), U(y)〉 = −2g(0)
3
∑

n=2

Hnδnbn,

where Hn(t) := 〈p−1, (∂np/∂yn)2〉. We note that

〈p, 2g(0)g(1)〉 = −2g(0)δ0, 〈p, (g(1))2〉 = δ20 +
∞
∑

n=1

Hnβ
2
n, 〈p, (g(0))2〉 = (g(0))2.

Then Ih(φ) can be written as

Ih(φ) =
1

2σ2

∫ T

0

(g(0) − hδ0)
2dt+

h2

2σ2

∫ T

0

(H1β
2
1 − 2H2g

(0)δ2b2)dt (7.4)

+
h2

2σ2

∫ T

0

(H2β
2
2 − 2H3g

(0)δ3b3)dt+
h2

2σ2

∞
∑

n=3

∫ T

0

Hnβ
2
ndt+O(h3).

We see that a and bn are coupled at the O(h2) level of (7.4). However, from the
results of the zero h case, a = ae+O(h) and p = pe +O(h) so we can decouple a and
bn and express the expanded Ih(φ) up to O(h2) as the sum of independent terms.

Proposition 7.3. To order O(h2), the rate function Ih(φ) can be written as the
sum of independent terms:

Ih(φ) =
1

2σ2

∫ T

0

(g(0) − hδ0)
2dt+

h2

2σ2

∫ T

0

(H̃1β̃
2
1 + 2

d

dt
aeH̃2δ̃2b2)dt (7.5)

+
h2

2σ2

∫ T

0

(H̃2β̃
2
2 + 2

d

dt
aeH̃3δ̃3b3)dt+

h2

2σ2

∞
∑

n=3

∫ T

0

H̃nβ̃
2
ndt+O(h3),
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where H̃n(t) = 〈(pe)−1, (∂npe/∂yn)2〉, U(y) = (pe)−1
∑3
n=0 δ̃n(t)

∂n

∂yn p
e, and

β̃n =











−δ̃0 = −〈pe, U(y)〉, n = 0,
d
dtbn+1 + θ(n+ 1)bn+1 − δ̃n, 1 ≤ n ≤ 3,
d
dtbn+1 + θ(n+ 1)bn+1, n ≥ 4.

(7.6)

We can see from (7.5) that q(2) does not appear in terms up to O(h2). From
the h expansion of ue±ξb in (2.2), and the fact that V (y) is a polynomial of degree
four, we have bn+1(0) = bn+1(T ) = 0 for n ≥ 4. The variational problem for bn+1

is to minimize
∫ T

0 H̃nβ̃
2
ndt where β̃n is given in terms of bn+1 by (7.6). The obvious

solution of this problem is bn+1 = 0 and β̃n = 0 for n ≥ 4. Consequently, in order to
find the optimal φ for Ih(φ) in (7.5), we may solve separately the variational problems
for a, b1, b2 and b3.

7.3. Probability of Systemic Transitions for Small h. We consider the
small probability of systemic transitions for large N and small h through the large
deviation infφ∈A Ih(φ). Here we consider the solution up to O(h) terms. That is,
using (7.5), we solve the variational problem for a(t):

inf
a(t):0≤t≤T
a(0)=−ξb
a(T )=ξb

∫ T

0

(g(0) − hδ0)
2dt = inf

a(t):0≤t≤T
a(0)=−ξb
a(T )=ξb

∫ T

0

(
d

dt
a+ h(a3 + 3

σ2

2θ
a− a))2dt. (7.7)

By simple calculus of variations methods we find the optimal a.
Lemma 7.4. The optimal a(t) for (7.7) satisfies the second order ordinary dif-

ferential equation

d2

dt2
a = h2(a3 + (3

σ2

2θ
− 1)a)(3a2 + (3

σ2

2θ
− 1))

with a(0) = −ξb and a(T ) = ξb. Consequently, the optimal path is

a(t) =
2ξb
T
t− ξb +O(h2). (7.8)

By inserting (7.8) into (7.7) we obtain infφ∈A Ih(φ) up to O(h).
Proposition 7.5. For small h, the large deviations problem, infφ∈A Ih(φ), up to

O(h), is

inf
φ∈A

Ih(φ) =
2ξ0
σ2T

(ξ0 + 2hξ1) +O(h2), (7.9)

where ξb = ξ0 + hξ1 +O(h2) from (2.5). Note that ξ1 is positive because 2θ > 3σ2.
Proof. See Appendix E.3.
The asymptotic probability of systemic transition for large N and sufficiently

small δ and h has the form

P(XN ∈ Aδ) ≈ exp

(

−N inf
φ∈A

Ih(φ)

)

= exp

(

−N
{

2ξ0
σ2T

(ξ0 + 2hξ1) +O(h2)

})

.
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8. Effect of Diversity of Sensitivities on the Transition Probability. We
consider the situation introduced in Section 3 and analyze it when h = 0. We aim
at computing the transition probability in this situation. The K partial empirical
averages

x̄k(t) :=
1

|Ik|
∑

j∈Ik

xj(t), k = 1, . . . ,K (8.1)

then satisfy a closed system of stochastic differential equations

dx̄k =
σ√
ρkN

dw̄k(t)− θk(x̄k − x̄)dt (8.2)

where w̄k are independent Brownian motions and the empirical mean x̄(t) can be
expressed in terms of the partial averages as

x̄(t) =

K
∑

k=1

ρkx̄k(t)

Proposition 8.1. If x̄k(0) = −ξb for all k = 1, . . . ,K, then x̄(T ) is a Gaussian
random variable with mean −ξb and variance σ2

T := Var(x̄(T )) given by

σ2
T =

σ2

N

∫ T

0

̺TeMsR−1(eMs)T̺ds (8.3)

where ̺ is the K-dimensional column vector (ρk)k=1,...,K , M and R are the K × K
matrices defined by

Mij = −θi(δij − ρj), Rij = ρiδij , i, j = 1, . . . ,K,

and T stands for the transpose.
Proof. See Appendix F.1.
We can then deduce that the transition probability is

pT ≈ exp
(

− 2ξ2b
σ2
T

)

(8.4)

Our next goal is to study the impact of the diversity on the transition probability.
Proposition 8.2. Let us assume that the diversity is small:

θk = θ̄(1 + δαk), δ ≪ 1

where
∑

k ρkαk = 0 so that θ̄ is the mean value of the θk’s. The equilibrium position
ξb, the variance σ2

T and the transition probability pT can be expanded as powers of δ
as

ξ2b =
(

1− 3σ2

2θ̄

)

− δ2
(

∑

k

ρkα
2
k

)3σ2

2θ̄
+O(δ3),

σ2
T =

σ2T

N

[

1 + δ2
(

∑

k

ρkα
2
k

)( 1

T

∫ T

0

(1− e−θ̄s)2ds
)

+O(δ3)
]

,

pT ≈ exp
{

− 2N

σ2T

[(

1− 3σ2

2θ̄

)

− δ2
(

∑

k

ρkα
2
k

)(3σ2

2θ̄
+

1

T

∫ T

0

(1− e−θ̄s)2ds
)]}

.
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Proof. See Appendix F.2.
This proposition shows that the diversity reduces the gap between the two equi-

librium states and enhances the fluctuations of the empirical mean. Both effects
contribute to the increase of the systemic transition probability.

9. Summary and Conclusions. The aim of this paper is to introduce and
analyze a mathematical model for the evolution of risk in a system of interacting
agents where cooperation between them can reduce their individual risk of failure but
increase the systemic or overall risk. The model we use is a system of bistable diffusion
processes that interact through their empirical mean, a mean field model. We take the
rate of mean reversion to the empirical mean θ as a measure of cooperation, the depth
of the bistable potential h as a measure of intrinsic stability of each agent, and the
strength of the external random perturbations σ as the level of uncertainty in which
the agents function. Using the theory of large deviations we calculate the probability
that the system will transition from one of the two bistable states to the other during
a time interval of length T , when the number of agents N is large and when h is small.
In this regime of parameters we find that systemic risk increases with cooperation.
The formula from which we draw this conclusion is given is Section 6.4. We also
show that when the rate of mean reversion to the empirical mean varies among the
different agents, that is, when there is diversity in the cooperative behavior then the
probability of transitions increases, which means that the systemic risk increases.

Acknowledgement. This work is partly supported by the Department of En-
ergy [National Nuclear Security Administration] under Award Number NA28614, and
partly by AFOSR grant FA9550-11-1-0266.

Appendix A. Proof of Proposition 2.2.
For small h, we view ueξ as a perturbed Gaussian density function. Let pξ(y) be the

Gaussian density function with mean ξ and variance σ2/2θ, Y be the Gaussian random
variable with the density pξ, and η = 2/σ2. By using the expansion exp(−hηV ) =
1− hηV + h2η2V 2/2 + O(h3), we have

Zξ = 1− hηEV (Y ) +
1

2
h2η2EV 2(Y ) +O(h3)

Z−1
ξ = 1 + hηEV (Y )− 1

2
h2η2EV 2(Y ) + h2η2(EV (Y ))2 +O(h3).

Then we calculate m(ξ) as follows:

m(ξ) = Z−1
ξ

∫

y

(

1− hηV +
1

2
h2η2V 2 +O(h3)

)

pξ(y)dy

= Z−1
ξ

(

ξ − hηE[Y V (Y )] +
1

2
h2η2E[Y V 2(Y )] +O(h3)

)

= ξ + hη{ξEV (Y )−E[Y V (Y )]}+ h2η2{−1

2
ξEV 2(Y ) + ξ(EV (Y ))2

−EV (Y )E[Y V (Y )] +
1

2
E[Y V 2(Y )]} +O(h3)

= ξ − hη
σ2

2θ
EVy(Y ) + h2η2

σ2

2θ
{E[V (Y )Vy(Y )]−EV (Y )EVy(Y )}+O(h3)

= ξ − hη
σ2

2θ
EVy(Y ) + h2η2

σ2

2θ
Cov(Vy(Y ), V (Y )) +O(h3).
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The compatibility condition ξb = m(ξb) gives

EVy(Y )− hηCov(Vy(Y ), V (Y )) +O(h2) = 0. (A.1)

Assuming that ξb = ξ0 + hξ1 +O(h2), the O(1) terms in (A.1) give

ξ30 + 3
σ2

2θ
ξ0 − ξ0 = ξ0(ξ

2
0 + 3

σ2

2θ
− 1) = 0.

Then ξ0 = 0,±
√

1− 3σ2/2θ if 3σ2 < 2θ, or otherwise ξ0 = 0. In order to obtain the

nontrivial result, we suppose that 3σ2 < 2θ and ξ0 takes ±
√

1− 3σ2/2θ in the later
calculations. Note that EVy(Y ) = ξ3 + (3σ2/2θ− 1)ξ = 2hξ20ξ1 +O(h2), and

Cov(Vy(Y ), V (Y )) = E[V (Y )Vy(Y )] +O(h) = E[(
1

4
Y 4 − 1

2
Y 2)(Y 3 − Y )] +O(h)

= E[
1

4
Y 7 − 3

4
Y 5 +

1

2
Y 3] +O(h).

Along with the identity ξ20 + 3σ2/2θ = 1, we have

EY 3 = ξ0 +O(h), EY 5 =

(

1 + 4
σ2

2θ
− 6

(

σ2

2θ

)2
)

ξ0 +O(h),

EY 7 =

(

1 + 12
σ2

2θ
+ 6

(

σ2

2θ

)2

− 48

(

σ2

2θ

)3
)

ξ0 +O(h).

Then Cov(Vy(Y ), V (Y )) = 6(σ2/2θ)2(1−2σ2/2θ)ξ0+O(h). The O(h) terms in (A.1)
imply ξ1 = 3η(σ2/2θ)2(1− 2σ2/2θ)/ξ0.

Appendix B. Proofs in Section 3.

B.1. Proof of Theorem 3.1. The proof contains three steps.

B.1.1. Existence and Uniqueness of the Weak Solution of the McKean-
Vlasov Equation. The existence and uniqueness of a probability measure valued
process (u1(t), . . . , uK(t)) that is a weak solution of the McKean-Vlasov equation
(3.2) is guaranteed by [18, Theorem 2.11].

B.1.2. Weak Compactness of the Empirical Process. By Prohorov’s the-
orem, it suffices to prove that the sequence {(X1

N , . . . , X
K
N )}∞N=1 is weakly compact

by showing that

sup
N

sup
1≤k≤K

sup
0≤t≤T

E[〈Xk
N (t, dy), |y|〉] <∞,

which can be done by using the calculations similar to (B1) and (B2) in [9].

B.1.3. Identification of the Limit. For a test function f ∈ S(R), we define

Xf,l
N (t) = 〈f(y), X l

N (t, y)〉 =∑j∈Il
f(xj(t))/|Il|. By Itô’s formula,

dXf,l
N =

1

|Il|
∑

j∈Il

[−hU(xj)dt+ σdwj +Θl(x̄− xj)dt]fy(xj) +
1

2
σ2fyy(xj)dt

= 〈−hUfy +Θl(〈y,
K
∑

l=1

ρlX
l
N〉 − y)fy +

σ2

2
fyy, X

l
N 〉dt+ 〈fy,

σ

|Il|
∑

j∈Il

δxjdwj〉.
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Then by the integration by parts, we write

dX l
N = {(hUX l

N)y− [Θl(〈y,
K
∑

l=1

ρlX
l
N 〉−y)X l

N ]y+
σ2

2
(X l

N )yy}dt−
σ

|Il|
∑

j∈Il

(δxj )ydwj .

For simplicity, we prove the case that K = 2 and the general case is similar. We let
X1,×n
N ×X2,×n

N denote the product measure on R
2n:

X1,×n
N ×X2,×n

N (y1, . . . , y2n) = X1
N (t, y1) · · ·X1

N(t, yn)X
2
N (t, yn+1) · · ·X2

N (t, y2n).

For a test function f ∈ S(R2n), we have

d〈f,X1,×n
N ×X2,×n

N 〉 = d〈f,X1,×n
N ×X2,×n

N 〉(1) + d〈f,X1,×n
N ×X2,×n

N 〉(2),

where (1) and (2) denote the first and the second order terms of d〈f,X1,×n
N ×X2,×n

N 〉,
respectively:

d〈f,X1,×n
N ×X2,×n

N 〉(1) =
n
∑

j=1

〈f, dX1
N (t, yj)×X

1,×(n−1),j
N ×X2,×n

N 〉

+

2n
∑

j=n+1

〈f, dX2
N (t, yj)×X1,×n,j

N ×X
2,×(n−1),j
N 〉

d〈f,X1,×n
N ×X2,×n

N 〉(2) = 1

2

n
∑

j,k=1
j 6=k

〈f, dX1
N (t, yj)×dX1

N (t, yk)×X1,×(n−2),j,k
N ×X2,×n

N 〉

+
1

2

2n
∑

j,k=n+1
j 6=k

〈f, dX2
N (t, yj)× dX2

N (t, yk)×X1,×n
N ×X

2,×(n−2),j,k
N 〉

+
1

2

n
∑

j=1

2n
∑

k=n+1

〈f, dX1
N (t, yj)× dX2

N (t, yk)×X
1,×(n−1),j
N ×X

2,×(n−1),k
N 〉.

Note that for j 6= k, dX l
N (t, yj) × dX l

N (t, yk) = σ2

|Il|2

∑

i∈Il
(δxi(yj))j(δxi(yk))kdt =

σ2

ρ2lN
(δ(yk − yj)X

l
N (t, yj))jkdt, and dX1

N (t, yj) × dX2
N (t, yk) = 0. If we analogously

represent the generator G(X1,×n
N ,X2,×n

N )f of 〈f,X1,×n
N ×X2,×n

N 〉 as

G(X1,×n
N ,X2,×n

N )f = G
(1)

(X1,×n
N ,X2,×n

N )
f +G

(2)

(X1,×n
N ,X2,×n

N )
f,

then G
(2)

(X1,×n
N ,X2,×n

N )
f → 0 as N → ∞ and G

(1)

(X1,×n
N ,X2,×n

N )
f = G(u×n

1 ,u×n
2 )f , the gener-

ator of 〈f, u×n1 ×u×n2 〉, where (u1, u2) satisfying (3.2). Then the limit of (X1
N , X

2
N ) is a

solution of the martingale problem associated to (3.2). In addition, by [18, Corollary
2.10], the solution is unique and therefore (X1

N , X
2
N ) → (u1, u2) weakly as N → ∞.
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B.2. Proof of Proposition 3.2. All we need to show is that for small h,
d
dξm(0) > 1 if and only if σ < σdiv

c , where m(ξ) is defined by (3.4). We obtain
d
dξm by calculate d

dξ

∫

yuel,ξ(y)dy. Note that
d
dξZl,ξ = (2Θl/σ

2)(
∫

yuel,ξdy− ξ)Zl,ξ and

d2

dξ2
Zl,ξ =

2Θl
σ2

Zl,ξ

(

d

dξ

∫

yuel,ξdy − 1

)

+
2Θl
σ2

(
∫

yuel,ξdy − ξ

)

d

dξ
Zl,ξ (B.1)

=
2Θl
σ2

Zl,ξ

(

d

dξ

∫

yuel,ξdy − 1

)

+

(

2Θl
σ2

)2

Zl,ξ

(
∫

yuel,ξdy − ξ

)2

.

On the other hand, we can also compute d2

dξ2Zl,ξ by directly taking the twice deriva-
tives of Zl,ξ:

d2

dξ2
Zl,ξ = −2Θl

σ2
Zl,ξ +

(

2Θl
σ2

)2

Zl,ξ

∫

(y − ξ)2uel,ξdy. (B.2)

By comparing (B.1) and (B.2),

d

dξ

∫

yuel,ξdy =
2Θl
σ2

[
∫

y2uel,ξdy − (

∫

yuel,ξdy)
2

]

.

Note that
∫

yuel,0dy = 0, so d
dξm(0) =

∑K
l=1 ρl(2Θl/σ

2)
∫

y2uel,0dy. By using the same

trick in the proof of Proposition 2.2, let pl(y) be the Gaussian density function with
mean 0 and variance σ2/2Θl, Yl be the Gaussian random variable with the density
pl, and η = 2/σ2. Then for small h, Z−1

l,0 = 1 + hηEV (Yl) +O(h2), and

∫

y2uel,0dy = Z−1
l,0

∫

y2(1 − hηV +O(h2))pl(y)dy

= Z−1
l,0 (EY

2
l − hηE[Y 2

l V (Yl)] +O(h2))

= EY 2
l + hη(EY 2

l EV (Yl)−E[Y 2
l V (Yl)]) +O(h2).

Therefore d
dξm(0) > 1 if and only if

∑K
l=1 ρl(2Θl/σ

2)(EY 2
l EV (Yl)−E[Y 2

l V (Yl)]) > 0.

Note that EY 2
l = σ2/2Θl, EV (Yl) = (3/4)(EY 2

l )
2 − (1/2)EY 2

l , and E[Y 2
l V (Yl)] =

(15/4)(EY 2
l )

3 − (3/2)(EY 2
l )

2. Then the sufficient and necessary condition becomes

K
∑

l=1

ρl
Θl

(

1− 3
σ2

2Θl

)

> 0.

B.3. Proof of Proposition 3.3. It is equivalent to show that
∑K
l=1 ρl/Θl ≤

∑K
l=1 ρlΘl

∑K
l=1 ρl/Θ

2
l . First note that by the Cauchy-Schwarz inequality,

(

K
∑

l=1

ρl
Θl

)2

=

(

K
∑

l=1

√
ρl

Θl
×√

ρl

)2

≤
K
∑

l=1

ρl
Θ2
l

K
∑

l=1

ρl =

K
∑

l=1

ρl
Θ2
l

.

Then it suffices to show that 1 ≤ ∑K
l=1 ρlΘl

∑K
l=1 ρl/Θl. Again by the Cauchy-

Schwarz inequality,

K
∑

l=1

ρlΘl

K
∑

l=1

ρl
Θl

≥
K
∑

l=1

√

ρlΘl

√

ρl
Θl

=
K
∑

l=1

ρl = 1.
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Appendix C. Proof of Lemma 5.2.
It suffices to show the case that δ = 1/n. For each n, let φn ∈ A1/n, such that

infφ∈A1/n
Ih(φ) ≤ Ih(φn) < infφ∈A1/n

Ih(φ) + 1/n; {Ih(φn)} are bounded from above
by infφ∈A Ih(φ)+1 <∞. Because Ih is a good rate function, and by Proposition B.13
of [18], compactness is equivalent to sequentially compactness in C([0, T ],M∞(R)),
{φn} has a convergent subsequence {φnk

} whose limit φ∗ is in A. As Ih is lower
semicontinuous, then

lim
n

inf
φ∈A1/n

Ih(φ) = lim
k
Ih(φnk

) = lim inf
k

Ih(φnk
) ≥ Ih(φ

∗) ≥ inf
φ∈A

Ih(φ).

Appendix D. Proofs in Section 6.

D.1. Proof of Theorem 6.1. We prove it in three steps. The first step is to
show that there exists a uniform lower bound of I0(φ), for all φ ∈ A.

Lemma D.1. If h = 0, then infφ∈A I0(φ) ≥ 2ξ20/(σ
2T ).

Proof. For any φ ∈ A, a(t) denotes
∫

yφ(t, dy). We observe that

Jh(φ) = sup
f :〈φ,f2

y 〉6=0

〈φt − L∗
φφ, f〉2/〈φ, f2

y 〉
f≡y

≥ 〈φt − L∗
φφ, y〉2,

because 〈φ, 1〉 = 1. Note that 〈φt, y〉 = d
dt〈φ, y〉 = d

dta(t), and

〈L∗
φφ, y〉 = 〈1

2
σ2φyy + θ

∂

∂y
[(y − a(t))φ] , y〉 = −θ〈(y − a(t))φ, 1〉 = 0.

Then after taking the infimum over φ ∈ A, we have

inf
φ∈A

I0(φ) ≥ inf
φ∈A

1

2σ2

∫ T

0

(

d

dt
a

)2

dt = inf
a(t):0≤t≤T
a(0)=−ξ0
a(T )=ξ0

1

2σ2

∫ T

0

(

d

dt
a

)2

dt =
2ξ20
σ2T

.

The last equality is obtained by a simple calculus of variation with the optimal path
a(t) = 2ξ0t/T − ξ0.

The second step is to show that I0(p
e) = 2ξ20/(σ

2T ). Then infφ∈A I0(φ) =
2ξ20/(σ

2T ) and therefore pe is a minimizer for (5.5).
Lemma D.2. If h = 0, and

pe(t, y) =
1

√

2π σ
2

2θ

exp

{

− (y − ae(t))2

2σ
2

2θ

}

, ae(t) =
2ξ0
T
t− ξ0,

then pe ∈ A and I0(p
e) = 2ξ20/(σ

2T ).
Proof. By reading (5.6) with φ = pe and h = 0, we have pet = L∗

pep
e+(peg)y. One

can easily check that L∗
pep

e = 0 and pet = −pey ddtae(t). Then we have g = − d
dta

e(t)
and by (5.7),

I0(p
e) =

1

2σ2

∫ T

0

〈pe, g2〉dt = 1

2σ2

∫ T

0

(

d

dt
ae
)2

dt =
2ξ20
σ2T

.

Finally we prove that for h = 0, the minimizer pe is unique.
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Lemma D.3. For h = 0, pe is the unique minimizer for (5.5).
Proof. From the previous lemmas, we find that if φ is a minimizer then a(t) =

∫

yφ(t, dy) must be ae(t), and f = − d
dta

e(t)y is a global maximizer of J0(φ, ·). Then

for any test function f̃ , d
dǫJ0(φ,− d

dta
e(t)y+ ǫf̃) = 0 at ǫ = 0. By a simple calculus of

variations, φ satisfies the linear parabolic PDE:

φt =
1

2
σ2φyy + θ

∂

∂y
[(y − ae(t))φ]− d

dt
ae(t)φy ,

with the initial condition φ(0) = ue−ξ0 , and that implies the uniqueness of the mini-
mizer, which is pe.

D.2. Proof of Theorem 6.2 (Upper Bounds). Define the test function:

pu(t, y) =
1

√

2π σ
2

2θ

exp

{

− (y − au(t))2

2σ
2

2θ

}

, au(t) =
2ξb
T
t− ξb.

We recall that from (2.3) and (2.5), ξb depends on h and ξb → ξ0 as h→ 0.
Proposition D.4. For any ǫ > 0, then for all sufficiently small h,

inf
φ∈A

Ih(φ) ≤
1

2σ2

∫ T

0

〈pu, ( d
dt
au − h(y3 − y))2〉dt+ ǫ. (D.1)

It is not difficult to see that the first term of the right hand side of (D.1) is equal to
2ξ2b/(σ

2T ) up to a term of order h as h→ 0.
Proof. We construct the test function φu ∈ A as follows:

φu(t) =











(1− t
δT )u

e
−ξb

+ t
δT p

u(t), t ∈ [0, δT ],

pu(t), t ∈ (δT, T − δT ),

(1− t−(T−δT )
δT )pu(t) + t−(T−δT )

δT ueξb , t ∈ [T − δT, T ],

where δT will be determined later. Note that infφ∈A Ih(φ) ≤ Ih(φ
u) so we just need to

compute Ih(φ
u). Let gu satisfy (5.6) for φ = φu. For t ∈ (δT, T − δT ), φu(t) = pu(t),

and it is easy to see that put = − d
dta

upuy and L∗
pup

u = 0. Therefore for t ∈ (δT, T−δT ),
gu = − d

dta
u − h(y3 − y) by (5.6). From (5.7), we have

Ih(φ
u) =

1

2σ2

(

∫ δT

0

+

∫ T−δT

δT

+

∫ T

T−δT

)

〈φu, (gu)2〉dt

≤ 1

2σ2

∫ T

0

〈pu, (− d

dt
au − h(y3 − y))2〉dt+ 1

2σ2

(

∫ δT

0

+

∫ T

T−δT

)

〈φu, (gu)2〉dt.

The rest is to show that for any ǫ > 0, there exists a sufficiently small h such that
the last term in the last equation is bounded by ǫ. It suffices to show that for any
δT > 0, we can choose a sufficiently small h such that 〈φu, (gu)2〉 is bounded by a δT -
independent constant cu > 0 for t ∈ [0, δT ] ∪ [T − δT, T ]. If so, then let δT < ǫσ2/cu

and

1

2σ2

(

∫ δT

0

+

∫ T

T−δT

)

〈φu, (gu)2〉dt ≤ 1

2σ2
(2δT )cu < ǫ,
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for sufficiently small h.
For t ∈ [0, δT ], because φu is simply the convex combination of ue−ξb and pu, φu

can be bounded by a δT -independent constant. To compute gu from (5.6), it is also
easy to see that L∗

φuφu and M∗φu can be bounded by δT -independent constants. The
only term we need to worry is (pu(t)−ue−ξb )/δT from computing φut (t). However, p

u(t)
is differentiable at t = 0 and pu(0) → ue−ξb as h→ 0 so we can bound (pu(t)−ue−ξb)/δT
by a δT -independent constant with suitable h. Thus gu is bounded independently of
δT and so we can find a δT -independent constant cu > 0 such that 〈φu, (gu)2〉 < cu.

The same argument works for t ∈ [T − δT, T ] and we have the desired result.

D.3. Proof of Theorem 6.2 (Lower Bounds). From (D.1), there exists some
constant C such that infφ∈A Ih(φ) ≤ C for all h ≤ h0. Then we can assume that
Ih(φ) ≤ C for all φ ∈ A and all h ≤ h0 without loss of generality. The following
lemma shows that the first and second moments of all φ ∈ A are uniformly bounded.

Lemma D.5. Given C > 0, there exists R > 0 such that for any φ ∈ A with
Ih(φ) ≤ C for some h ≥ 0, then

sup
t∈[0,T ]

〈φ(t), y〉2 ≤ sup
t∈[0,T ]

〈φ(t), y2〉 ≤ R.

Proof. Recall that MR(R) = {φ ∈ M1(R),
∫

ϕ(y)φ(dy) ≤ R} and M∞(R) =
∪R>0MR(R) with the inductive topology. Here we focus on the case that ϕ = 1 + y2

in order to obtain the uniform result, and let M2
R(R) and M

2
∞(R) denote the spaces

with the quadratic Lyapunov function ϕ.
The proof is an application of Theorem 5.1(c), Theorem 5.3 and Lemma 5.5 of

[10]. By Theorem 5.1(c), if φ ∈ C([0, T ],M2
∞(R)) with φ(0) = ue−ξb and Ih(φ) ≤ C

for some h ≥ 0, then φ is in an h-dependent compact set K. By Theorem 5.3 the
compact set K is contained in C([0, T ],M2

R(R)) for an h-dependent R > 0. Finally,
by Lemma 5.5 and Theorem 5.1(c), it suffices to let R ≥ eλT (C + r), where r and λ
satisfy

r ≥ 2

∫

ϕ(y)ue−ξb(y)dy, λ ≥ sup
µ∈M1(R)

〈µ,Lµϕ+ hMϕ+
1

2
ϕ2
y〉/〈µ, ϕ〉,

with ϕ(y) = 1 + y2. Obviously we can find the uniform r and λ for all h ≥ 0 and
also the uniform R. Then any φ of interest are in C([0, T ],M2

R(R)) and thus have the
uniform bounded first and second order moments.

Now we derive that lower bound. The key idea is that because we have the
universal upper bound for the first and second moments of all φ ∈ A and for all
h ≤ h0, Chebyshev’s inequality implies the uniform convergence.

Proposition D.6. For any ǫ > 0, then for all sufficiently small h,

inf
φ∈A

Ih(φ) ≥
1

2σ2

∫ T

0

〈pu, ( d
dt
au − h(y3 − y))2〉dt− ǫ. (D.2)

Proof. Define fM = ι ∗ f̂M , where f̂M is a piecewise linear function and ι is the
standard mollifier:

f̂M (y) =



















y, y ∈ (−M,M)

−y + 2M, y ∈ [M, 2M ]

−y − 2M, y ∈ [−2M,−M ]

0, otherwise

, ι(y) =

{

Z exp( 1
y2−1), y2 < 1

0, otherwise.
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Then fM is a smooth function with the compact support [−2M − 1, 2M + 1]. In
addition, fM (y) ≡ y on (−M + 1,M − 1), |fMx | ≤ 1, and |fMxx | is uniformly bounded
for all M and is nonzero only on ∪2

i=−2(iM − 1, iM + 1).

Because for all φ ∈ A, 〈φ(t), (fMy )2〉 ≤ 1, we can estimate the rate function:

Ih(φ) ≥
1

2σ2

∫ T

0

〈φt − L∗
φφ− hM∗φ, fM 〉2dt

≥ 1

2σ2T

(

∫ T

0

〈φt − L∗
φφ− hM∗φ, fM 〉dt

)2

.

Then we estimate the integrand term by term. By Lemma D.5, the following conver-
gences are all uniform in φ ∈ A and h ≤ h0.

First we have

∫ T

0

〈φt, fM 〉dt = 〈ueξb , fM 〉 − 〈ue−ξb , fM 〉.

ue±ξb are exponentially decaying functions so 〈ue±ξb , fM 〉 converges to ±ξb rapidly as
M → ∞.

We note that 〈L∗
φφ, f

M 〉 = σ2〈φ, fMyy 〉/2− θ〈φ, (y − a)fMy 〉. By reading the prop-

erties of fMyy and Chebyshev’s inequality, we have 〈φ, fMyy 〉 → 0 as M → ∞. We write

〈φ, (y − a)fMy 〉 as

〈φ, (y − a)fMy 〉 = a(1− 〈φ, fMy 〉) + (〈φ, yfMy 〉 − a).

Since a is bounded and 〈φ, fMy 〉 → 1 as M → ∞, a(1−〈φ, fMy 〉) → 0 as M → ∞. We
see that

|〈φ, yfMy 〉 − a|2 ≤
(

2

∫

(−M+1,M+1)c
|y|φ(dy)

)2

≤ 4

∫

(−M+1,M+1)c
y2φ(dy)

∫

(−M+1,M+1)c
φ(dy).

Again by Chebyshev’s inequality, the right hand side vanishes as M → ∞.

Finally we estimate 〈M∗φ, fM 〉. Since fM is compactly supported,

|〈M∗φ, fM 〉| = |〈φ, (y3 − y)fMy 〉| ≤ (2M + 1)3 + (2M + 1).

For a fixed M , we can choose a sufficiently small h such that h|〈M∗φ, fM 〉| is small.

Consequently, for any ǫ > 0, we can first choose a sufficiently large M and then
there exists a sufficiently small h such that

inf
φ∈A

Ih(φ) ≥
2ξ2b
σ2T

− ǫ.
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D.4. Proof of Lemma 6.3. It suffices to show the case that δ = 1/n. For each
n, let φn ∈ B1/n and tn ∈ (0, T ] such that ρ(φn(tn), u

e
ξb
) < δ and infφ∈B1/n

Ih(φ) ≤
Ih(φn) < infφ∈B1/n

Ih(φ) + 1/n; {Ih(φn)} are bounded from above by infφ∈B Ih(φ) +
1 < ∞. Let {tnk

} be a convergent subsequence of {tn}. Because Ih is a good rate
function, and by Proposition B.13 of [18], compactness is equivalent to sequentially
compactness in C([0, T ],M∞(R)), {φnk

} has a convergent subsequence {φnk′
} whose

limit φ∗ is in A(t∗) where t∗ = lim tnk
. As Ih is lower semicontinuous, then

lim
n

inf
φ∈B1/n

Ih(φ) = lim inf
nk′

Ih(φnk′
) ≥ Ih(φ

∗) ≥ inf
φ∈A(t∗)

Ih(φ) ≥ inf
φ∈B

Ih(φ).

Appendix E. Proofs in Section 7.

E.1. Proof of Lemma 7.1. We note that pt = −py ddta and therefore

φt = −py
d

dt
a+ h

∞
∑

n=2

d

dt
bn

∂n

∂yn
p− h

d

dt
a

∞
∑

n=2

bn
∂n+1

∂yn+1
p

+ h2
∞
∑

n=2

d

dt
cn

∂n

∂yn
p− h2

d

dt
a

∞
∑

n=2

cn
∂n+1

∂yn+1
p.

After collecting O(1) terms in (5.6) and integrating over y, we have

−p d
dt
a =

1

2
σ2py + θ(y − a)p+ pg(0) = pg(0).

Then g(0) = − d
dta.

Now we collect O(h) terms in (5.6) and integrating over y. We get

∞
∑

n=1

d

dt
bn+1

∂n

∂yn
p− d

dt
a

∞
∑

n=2

bn
∂n

∂yn
p =

1

2
σ2

∞
∑

n=2

bn
∂n+1

∂yn+1
p

+ θ(y − a)

∞
∑

n=2

bn
∂n

∂yn
p+

3
∑

n=0

δn
∂n

∂yn
p+ g(0)

∞
∑

n=2

bn
∂n

∂yn
p+

∞
∑

n=0

βn
∂n

∂yn
p.

Using the fact that

1

2
σ2 ∂

n+1

∂yn+1
p = −θ(y − a)

∂n

∂yn
p− nθ

∂n−1

∂yn−1
p,

we have

∞
∑

n=1

d

dt
bn+1

∂n

∂yn
p = −θ

∞
∑

n=1

(n+ 1)bn+1
∂n

∂yn
p+

3
∑

n=0

δn
∂n

∂yn
p+

∞
∑

n=0

βn
∂n

∂yn
p,

and the optimal βn are obtained by comparing the coefficients.

E.2. Proof of Lemma 7.2. Let ψ(2) denote the anti-derivative of q(2) that
vanishes at −∞. After collecting O(h2) terms in (5.6) and integrating over y. We
have

ψ
(2)
t =

1

2
σ2q(2)y + θ(y − a)q(2) + U(y)q(1) + q(2)g(0) + q(1)g(1) + pg(2). (E.1)

Note that pg(2) =
∑∞

n=0 γn
∂n

∂yn p, so γ0 is obtained by integrating (E.1) from y = −∞
to y = ∞. Then we have γ0 = −〈q(1), U(y) + g(1)〉.
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E.3. Proof of Proposition 7.5. We write a(t) = a0(t) + ha1(t) + O(h2) with
a0(t) = 2ξ0t/T − ξ0 and a1(t) = 2ξ1t/T − ξ1. Then we put a(t) into (7.7) and we have

inf
φ∈A

Ih(φ) =
1

2σ2

∫ T

0

{

(
d

dt
a0)

2 + 2h(
d

dt
a0)(a

3
0 + (3

σ2

2θ
− 1)a0 +

d

dt
a1)

}

dt+O(h2).

We note that d
dta0 is a constant, and a0(t) and a

3
0(t) are odd functions with respect

to t = T/2. Then

inf
φ∈A

Ih(φ) =
1

2σ2

∫ T

0

{

(

d

dt
a0

)2

+ 2h
d

dt
a0
d

dt
a1

}

dt+O(h2)

=
1

2σ2

∫ T

0

{

(

2ξ0
T

)2

+ 2h
2ξ0
T

2ξ1
T

}

dt+O(h2) =
2ξ0
σ2T

(ξ0 + 2hξ1) +O(h2).

Appendix F. Proofs in Section 8.

F.1. Proof of Proposition 8.1. The system of SDEs (8.1) for the vector X̄(t) =
(x̄k(t))k=1,...,K has the form

dX̄(t) =MX̄(t) +
σ√
N
R−1/2dW̄ (t)

where W̄ (t) = (w̄k(t))k=1,...,K is a column vector. This system can be solved:

X̄(t) = eMtX̄(0) +
σ√
N

∫ t

0

eM(t−s)R−1/2dW̄ (s)

If x̄k(0) = −ξb, then, using the fact that the uniform vector is in the null space of M ,
we have eMtX̄(0) = X̄(0). As a corollary we get the explicit representation of the
empirical mean:

x̄(t) = −ξb +
σ√
N

∫ t

0

̺TeM(t−s)R−1/2dW̄ (s)

This shows the desired result.

F.2. Proof of Proposition 8.2. The expansion of ξ2b follows from the explicit
expression (3.5). The expansion of σ2

T follows from the expansion of (8.3) and uses
the properties of the matrix M . We have M = −θ̄M̄ − δθ̄N , with

M̄ = I − u̺T, where u = (1, . . . , 1) is the K-dimensional column vector,

Nij = αi(δij − ρj), i, j = 1, . . . ,K.

The matrix M̄ satisfies M̄n = M̄ for all n ≥ 1 and therefore

e−θ̄M̄t =

∞
∑

n=0

(−θ̄t)n
n!

M̄n = I +

∞
∑

n=1

(−θ̄t)n
n!

M̄ = I + (e−θ̄t − 1)M̄.

We have

eMt =

∞
∑

n=0

(−θ̄t)n
n!

(M̄ + δN)n
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Using the fact that M̄T̺ = 0 (and again that M̄n = M̄ for n ≥ 1), we can expand

̺TeMt = ̺T + δ̺T
{

(−θ̄t)N + (e−θ̄t − 1 + θ̄t)NM̄
}

+ δ2̺T
{ (θ̄t)2

2
N2 +

[

e−θ̄t − 1 + θ̄t− (θ̄t)2

2

][

N2M̄ − 3(NM̄)2 +NM̄N
]

− θ̄t
[

e−θ̄t − 1 + θ̄t
]

(NM̄)2̺
}

+O(δ3).

Using the fact that M̄TNT̺ = NT̺ and M̄T(NT)2̺ = (NT)2̺, this can be simplified
into

̺TeMt = ̺T + δ̺T(e−θ̄t − 1)N + δ2̺T
[

(θ̄t)2 − (1 + θ̄t)(e−θ̄t − 1 + θ̄t)
]

N2 +O(δ3).

Consequently

̺TeMtR−1(eMt)T̺ = ̺T(I + (e−θ̄t − 1)M̄)R−1(I + (e−θ̄t − 1)M̄T)̺

+ 2δ̺T(e−θ̄t − 1)NR−1(I + (e−θ̄t − 1)M̄T)̺

+ 2δ2̺T
[

(θ̄t)2 − (1 + θ̄t)(e−θ̄t − 1 + θ̄t)
]

N2R−1(I + (e−θ̄t − 1)M̄T)̺

+ δ2̺T(e−θ̄t − 1)NR−1(e−θ̄t − 1)NT̺+ O(δ3).

Using the fact that M̄T̺ = 0 and NR−1̺ = Nu = 0, we obtain

̺TeMtR−1(eMt)T̺ = ̺TR−1̺+ δ2(1− e−θ̄t)2̺TNR−1NT̺+O(δ3)

We have ̺TR−1̺ = 1 and ̺TNR−1NT̺ =
∑

k ρkα
2
k which gives the expansion of the

variance σ2
T .

Finally the expansion of the transition probability can be obtained by substituting
the expansions of ξ2b and σ2

T into (8.4).
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