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Abstract. We consider the initial boundary value problem for the ho-
mogeneous time-fractional diffusion equation ∂αt u − ∆u = 0 (0 < α <
1) with initial condition u(x, 0) = v(x) and a homogeneous Dirich-
let boundary condition in a bounded polygonal domain Ω. We shall
study two semidiscrete approximation schemes, i.e., Galerkin FEM and
lumped mass Galerkin FEM, by using piecewise linear functions. We
establish optimal with respect to the regularity of the solution error
estimates, including the case of nonsmooth initial data, i.e., v ∈ L2(Ω).

1. Introduction

We consider the model initial–boundary value problem for the fractional
order parabolic differential equation (FPDE) for u(x, t):

∂αt u−∆u = f(x, t), in Ω T ≥ t > 0,

u = 0, on ∂Ω T ≥ t > 0,(1.1)

u(0) = v, in Ω

where Ω is a bounded polygonal domain in Rd (d = 1, 2, 3) with a boundary
∂Ω and v is a given function on Ω and T > 0 is a fixed value.

Here ∂αt u (0 < α < 1) denotes the left-sided Caputo fractional derivative
of order α with respect to t and it is defined by (see, e.g. [12, p. 91] or [22,
p. 78])

∂αt u(t) =
1

Γ(1− α)

∫ t

0
(t− τ)−α

d

dτ
u(τ) dτ,

where Γ(·) is the Gamma function. Note that if the fractional order α tends
to unity, the fractional derivative ∂αt u converges to the canonical first-order
derivative du

dt [12], and thus the problem (1.1) reproduces the standard par-
abolic equation. The model (1.1) is known to capture well the dynamics of
anomalous diffusion (also known as sub-diffusion) in which the mean square
variance grows slower than that in a Gaussian process [1], and has found a
number of important practical applications. For example, it was introduced
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by Nigmatulin [21] to describe diffusion in media with fractal geometry. A
comprehensive survey on fractional order differential equations arising in
dynamical systems in control theory, electrical circuits with fractance, gen-
eralized voltage divider, viscoelasticity, fractional-order multipoles in elec-
tromagnetism, electrochemistry, and model of neurons in biology is provided
in [5]; see also [22].

The capabilities of FPDEs to accurately model such processes have gen-
erated considerable interest in deriving, analyzing and testing numerical
methods for solving such problems. As a result, a number of numerical
techniques were developed and their stability and convergence were inves-
tigated, see e.g. [6, 14, 15, 19, 20, 27]. Yuste and Acedo in [27] presented
a numerical scheme by combining the forward time centered space method
and the Grunwald-Letnikov method, and provided a von Neumann type sta-
bility analysis. By exploiting the variational framework introduced by Ervin
and Roop, [9], Li and Xu [15] developed a spectral approximation method
in both temporal and spatial variable, and established various a priori error
estimates. Deng [6] analyzed the finite element method (FEM) for space-
and time-fractional Fokker-Plank equation, and established a convergence
rate of O(τ2−α + hµ), with α ∈ (0, 1) and µ ∈ (1, 2) being the temporal and
spatial fractional order, respectively.

In all these useful studies, the error analysis was done by assuming that
the solution is sufficiently smooth. The optimality of the established es-
timates with respect to the smoothness of the solution expressed through
the problem data, i.e., the right hand side f and the initial data v, was not
considered. Thus, these studies do not cover the interesting case of solutions
with limited regularity due to low regularity of the data, a typical case for
inverse problems related to this equation; see e.g., [3], [23, Problem (4.12)],
and also [10, 11] for its parabolic counterpart.

There are a few papers considering construction and analysis of numerical
methods with optimal with respect to the regularity of the solution error
estimates for the following equation with a positive type memory terms
[17, 18, 20]):

(1.2) ∂tu−
1

Γ(α)

∫ t

0
(t− τ)α−1∆u(τ)dτ = f(x, t), t > 0, 0 < α < 1,

This equation is closely related, but different from (1.1). For example,
McLean and Thomée in [17, 18] developed a numerical method based on
spatial finite element discretization and Laplace transformation with quadra-
tures in time for (1.2) with a homogeneous Dirichlet boundary data. In [17,
Theorem 5.1] the convergence of the proposed method has been studied and
maximum-norm error estimates of order O(t−1−αh2`2h), `h = | lnh|, were
established for initial data v ∈ L∞(Ω). Further, in [18, Theorem 4.2] a
maximum-norm error estimate of order O(h2`2h) was shown for smooth ini-

tial data v ∈ Ḣ2. Mustafa [20] studied a semidiscrete in time and and fully
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discrete schemes, Crank-Nicolson in time and finite elements in space, and
derived error bounds for smooth initial data; see, e.g. [20, Theorem 4.3].

The lack of optimal with respect to the regularity error estimates for the
numerical schemes for FPDEs with nonsmooth data is in sharp contrast with
the finite element method (FEM) for standard parabolic problems, α = 1.
Here the error analysis is complete and various optimal with respect to the
regularity of the solution estimates are available [25]. The key inngredient
of the analysis is the smoothing property of the parabolic operator and its
discrete counterpart [25, Lemmas 3.2 and 2.5]. For the FPDE (1.1), such
property has been established recently by Sakamoto and Yamamoto [23];
see Theorem 2.1 below for details.

The goal of this note is to develop an error analysis with optimal with
respect to the regularity of the initial data estimates for the semidiscrete
Galerkin and the lumped mass Galerkin FEMs for the problem (1.1) on
convex polygonal domains.

Now we describe our main results. We shall use the standard notations
in the finite element method [25]. Let {Th}0<h<1 be a family of regular
partitions of the domain Ω into d-simplexes, called finite elements, with h
denoting the maximum diameter. Throughout, we assume that the triangu-
lation Th is quasi-uniform, that is the diameter of the inscribed disk in the
finite element τ ∈ Th is bounded from below by h, uniformly on Th. The ap-
proximate solution uh will be sought in the finite element space Xh ≡ Xh(Ω)
of continuous piecewise linear functions over the triangulation Th

Xh =
{
χ ∈ H1

0 (Ω) : χ is a linear function over τ, ∀τ ∈ Th
}
.

The semidiscrete Galerkin FEM for the problem (1.1) is: find uh(t) ∈ Xh

such that

(∂αt uh, χ) + a(uh, χ) = (f, χ), ∀χ ∈ Xh, T ≥ t > 0,

uh(0) = vh,
(1.3)

where a(u,w) = (∇u,∇w) for u, w ∈ H1
0 (Ω), and vh ∈ Xh is a given

approximation of the initial data v. The choice of vh will depend on the
smoothness of the initial data v. Following Thomée [25], we shall take
vh = Rhv in case of smooth initial data and vh = Phv in case of nonsmooth
initial data, where Rh and Ph are Ritz and the orthogonal L2(Ω)-projection
on the finite element space Xh, respectively.

We shall study the convergence of the semidiscrete Galerkin FEM (1.3)

for the case of initial data v ∈ Ḣq(Ω), q = 0, 1, 2 (for the definition of these
spaces, see Section 2.2). The case q = 2 is referred to as smooth initial data,
while the case q = 0 is known as nonsmooth initial data.

In the past, the initial value problem for a standard parabolic equation, i.e.
α = 1, has been thoroughly studied in all these cases. It is well known that,
for smooth initial data, the solution uh satisfies an error bound uniformly
in t ≥ 0 [25, Theorem 3.1]:

(1.4) ‖uh(t)− u(t)‖+ h‖∇(uh(t)− u(t))‖ ≤ Ch2‖v‖2, for t ≥ 0.
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We also have a nonsmooth data error estimate, for v assumed to be only in
L2(Ω), but which deteriorates for t approaching 0 [25, Theorem 3.2], namely,

(1.5) ‖uh(t)− u(t)‖+ h‖∇(uh(t)− u(t))‖ ≤ Ch2t−1‖v‖, for t > 0.

The proof of all these results exploits the smoothing property of the parabolic
problem via its representation through the solution operator E(t) = et∆,
namely,

u(t) = E(t)v +

∫ t

0
E(t− s)f(s) ds, t > 0.

In this paper we establish analogous results for the semidiscrete Galerkin
FEM (1.3) for the model problem (1.1). The main difficulty in the error
analysis stems from limited smoothing properties of the FPDE, cf. Theo-
rem 2.1. Note that the solution operator for the FPDE is defined through
the Mittag-Leffler function, which decays only linearly at infinity, cf. Lemma
2.1, in contrast with the standard parabolic equation whose solution decays
exponentially for t→∞. The difficulty is overcome by exploiting the map-
ping property of the discrete solution operators.

Our main results are as follows. Firstly, in case of smooth initial data, we
derived the same error bound (1.4) uniformly in t ≥ 0 (cf. Theorem 3.1),
as is in the case of the standard parabolic problem. Secondly, for quasi-
uniform meshes we derived a nonsmooth data error estimate, for v ∈ L2(Ω)
only, which deteriorates for t approaching 0 (cf. Theorem 3.2)

(1.6) ‖uh(t)−u(t)‖+h‖∇(uh(t)−u(t))‖ ≤ Ch2`ht
−α‖v‖, `h = | lnh|, t > 0.

This result is similar to the counterpart of standard parabolic problem but
derived for quasi-uniform meshes and with an additional log-factor, `h.

Further, we study the more practical lumped mass semidiscrete Galerkin
FEM. We have shown the same rate of convergence for the case of smooth
initial data (cf. Theorem 4.1), and also the almost optimal error estimate

for the gradient in the case of data v ∈ Ḣ1(Ω) and v ∈ L2(Ω) (see estimate
(4.2)). For the case of nonsmooth data, v ∈ L2(Ω), for general quasi-uniform
meshes, we were only able to establish a suboptimal L2-error bound of order
O(h`ht

−α), see (4.15). Further, inspired by the study in [2], we also consider
special meshes. Namely, for a class of special triangulations satisfying the
condition (4.16), which holds for meshes that are symmetric with respect to
each internal vertex [2, Section 5], we show an almost optimal convergence
estimate (4.17):

‖ūh(t)− u(t)‖ ≤ Ch2`ht
−α‖v‖,

where ūh(t) is the solution of the lumped mass FEM. This estimate is similar
to the one derived for the lumped mass semidiscrete Galerkin method for
the standard parabolic equation [2, Theorem 4.1].

Finally, in Theorem 5.1 we establish a superconvergence result for the
postprocessed gradient of the error in case of smooth initial data and a
planar domain for special meshes. This improves the convergence order in
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H1-norm from O(h) to O(h2`ht
−α

2 ) for both Galerkin and the lumped mass
finite element approximation.

The paper is organized as follows. In Section 2, we state basic properties
of the Mittag-Leffler function, the smoothing property of the equation (1.1),
and some basic estimates for finite element projection operators. In Sections
3 and 4, we derive error estimates for the standard Galerkin FEM and
lumped mass FEM, respectively. In Section 5 we give a superconvergence
result for the gradient of the error in case of smooth initial data. Finally, in
Section 6 we present some numerical tests for a number of one-dimensional
examples, including both smooth and non-smooth data. The numerical tests
confirm our theoretical study.

We assume that the mesh size h of the triangulation Th satisfies 0 < h < 1.
Throughout we shall denote by C a generic constant, which may differ at
different occurrences, but is always independent of the mesh size h, the
solution u and the initial data v.

2. Preliminaries

In this section, we collect useful facts on the Mittag-Leffler function, reg-
ularity results for the fractional diffusion equation (1.1), and basic estimates
for the finite-element projection operators.

2.1. Mittag-Leffler function. We shall use extensively the Mittag-Leffler
function Eα,β(z) defined below

Eα,β(z) =

∞∑
k=0

zk

Γ(kα+ β)
z ∈ C,

where Γ(·) is the standard Gamma function defined as

Γ(z) =

∫ ∞
0

tz−1e−tdt <(z) > 0.

The Mittag-Leffler function is a two-parameter family of entire functions
of z of order α−1 and type 1 [12, pp. 42]. The exponential function is
a particular case of the Mittag-Leffler function, namely E1,1(z) = ez, [12,
pp. 42]. Two most important members of this family are Eα,1(−λtα) and
tα−1Eα,α(−λtα), which occur in the solution operators for the initial value
problem and the nonhomogeneous problem (1.1), respectively. There are
several important properties of the Mittag-Leffler function Eα,β(z), mostly
derived by M. Djrbashian (cf. [7, Chapter 1]).

Lemma 2.1. Let 0 < α < 2 and β ∈ R be arbitrary, and απ
2 < µ <

min(π, απ). Then there exists a constant C = C(α, β, µ) > 0 such that

(2.1) |Eα,β(z)| ≤ C

1 + |z|
µ ≤ |arg(z)| ≤ π.

Moreover, for λ > 0, α > 0, and t > 0 we have

(2.2) ∂αt Eα,1(−λtα) = −λEα,1(−λtα).
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Proof. The estimate (2.1) can be found in [12, pp. 43, equation (1.8.28)]
or [22, Theorem 1.4], while (2.2) is discussed in [12, Lemma 2.33, equation
(2.4.58)]. �

2.2. Solution representation. To discuss the regularity of the solution of
(1.1), we shall need some notation. For q ≥ 0, we denote by Ḣq(Ω) ⊂ L2(Ω)
the Hilbert space induced by the norm

|v|2q =
∞∑
j=1

λqj(v, ϕj)
2,

with (·, ·) denoting the inner product in L2(Ω) and {λj}∞j=1 and {ϕj}∞j=1 be-
ing respectively the eigenvalues and eigenfunctions of −∆ with homogeneous
Dirichlet boundary data on ∂Ω. The set {ϕj}∞j=1 forms an orthonormal ba-

sis in L2(Ω). Thus |v|0 = ‖v‖ = (v, v)1/2 is the norm in L2(Ω), |v|1 the
norm in H1

0 = H1
0 (Ω) and |v|2 = ‖∆v‖ is equivalent to the norm in H2(Ω)

when v = 0 on ∂Ω [25]. We set Ḣ−q = (Ḣq)′, the set of all bounded linear

functionals on the space Ḣq.
Now we give a representation of the solution of problem (1.1) using the

Dirichlet eigenpairs {(λj , ϕj)}. First, we introduce the operator E(t):

(2.3) E(t)v =

∞∑
j=1

Eα,1(−λjtα) (v, ϕj)ϕj(x).

This is the solution operator to problem (1.1) with a homogeneous right
hand side, so that for f(x, t) ≡ 0 we have u(t) = E(t)v. This representation
follows from an eigenfunction expansion and (2.2) [23]. Further, for the non-
homogeneous equation with a homogeneous initial data v ≡ 0, we shall use
the operator defined for χ ∈ L2(Ω) as

(2.4) Ē(t)χ =

∞∑
j=0

tα−1Eα,α(−λjtα) (χ, ϕj)ϕj(x).

The operators E(t) and Ē(t) are used to represent the solution u(x, t) of
(1.1):

u(x, t) = E(t)v +

∫ t

0
Ē(t− s)f(s)ds.

It was shown in [23, Theorem 2.2] that if f(x, t) ∈ L2((0, T );L2(Ω)), then

there is a unique solution u(x, t) ∈ L2((0, T ); Ḣ2(Ω)).
For the solution of the homogeneous equation (1.1), which is the object of

our study, we have the following stability and smoothing estimates, essen-
tially established in [23, Theorem 2.1], and slightly extended in the theorem
below. Since these estimates will play a key role in the error analysis of the
FEM approximations, we give some simple hints of the proof.
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Theorem 2.1. The solution u(t) = E(t)v to problem (1.1) with f ≡ 0
satisfies the following estimates

(2.5) |(∂αt )`u(t)|p ≤ Ct−α(`+ p−q
2

)|v|q, t > 0,

where for ` = 0, 0 ≤ q ≤ p ≤ 2 and for ` = 1, 0 ≤ p ≤ q ≤ 2 and q ≤ p+ 2.

Proof. First we discuss the case ` = 0. According to parts (i) and (iii) of
[23, Theorem 2.1], we have

(2.6) |u(t)|2 + ‖∂αt u(t)‖ ≤ Ct−α(1− q
2

)|v|q, q = 0, 2.

By means of interpolation of estimates (2.6) for q = 0 and q = 2, we get the
desired estimate (2.5) for the the case p = 2, 0 ≤ q ≤ 2.

Further, applying part (i) of [23, Theorem 2.1], we have

(2.7) ‖u(t)‖ ≤ C‖v‖.
Thus, interpolation of (2.6) for q = 2 and (2.7) yields (2.5) for 0 ≤ p = q ≤ 2.
The remaining cases, 0 ≤ q < p < 2, follow from the interpolation of (2.6)
with q = 0 and (2.7). This shows the assertion for ` = 0.

Now we consider the case ` = 1. It follows from the representation formula
(2.3) and Lemma 2.1 that

|∂αt u(t)|2p =

∞∑
j=1

λ2+p
j Eα,1(−λjtα)2 (v, ϕj)

2

= t−α(2+p−q)
∞∑
j=1

(λjt
α)2+p−qEα,1(−λjtα)2λqj(v, ϕj)

2

≤ Ct−α(2+p−q)
∞∑
j=1

(λjt
α)2+p−q

(1 + λjtα)2
λqj(v, ϕj)

2

≤ Ct−α(2+p−q) sup
j∈N

(λjt
α)2+p−q

(1 + λjtα)2

∞∑
j=1

λqj(v, ϕj)
2 ≤ Ct−α(2+p−q)|v|2q ,

where we have used the fact that, in view of Young’s inequality,

sup
j∈N

(λjt
α)2+p−q

(1 + λjtα)2
≤ C for p ≤ q ≤ p+ 2.

Thus, we get

|∂αt u(t)|p ≤ Ct−α(1+ p−q
2

)|v|q.
This completes the proof of the theorem. �

Remark 2.1. Note that for ` = 1 we have the restriction p ≤ q, which is
not present in the similar result for the standard parabolic problem, see, e.g.
[25, Lemma 3.2]. This reflects the fact that FPDE has limited smoothing
properties. The limited smoothing is also valid for the semidiscrete Galerkin
approximation (see Lemma 3.1), which will influence the error estimates for
the finite element solution.
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2.3. Properties of Ritz and L2-projections on Xh. In our analysis we
shall also use the orthogonal L2-projection Ph : L2(Ω) → Xh and the Ritz
projection Rh : H1

0 (Ω)→ Xh defined by

(2.8)
(Phψ, χ) = (ψ, χ) ∀χ ∈ Xh,

(∇Rhψ,∇χ) = (∇ψ,∇χ) ∀χ ∈ Xh,

respectively. It is well-known that the operators Ph and Rh have the follow-
ing approximation properties.

Lemma 2.2. The operators Ph and Rh satisfy

(2.9) ‖Phψ − ψ‖+ h‖∇(Phψ − ψ)‖ ≤ Chq|ψ|q, for ψ ∈ Ḣq, q = 1, 2.

(2.10) ‖Rhψ − ψ‖+ h‖∇(Rhψ − ψ)‖ ≤ Chq|ψ|q, for ψ ∈ Ḣq, q = 1, 2.

In particular, (2.9) indicates that Ph is stable in Ḣ1.

Proof. The estimates (2.10) are well known, cf. e.g. [25, Lemma 1.1] or
[8, Theorem 3.16 and Theorem 3.18]. For globally uniform meshes, the case

considered in this paper, the Ḣ1 stability of Ph directly follows from the error
bound (2.9) and the inverse inequality. However, for more general meshes
such stability is valid only under some mild assumptions on the mesh; see,
e.g. [4]. �

3. Semidiscrete Galerkin FEM

In this section we derive error estimates for the standard semidiscrete
Galerkin FEM. First we recall some basic known facts for the spatially
semidiscrete standard Galerkin FEM. We begin with the smoothing prop-
erties of the solution operators for the semidiscrete method as well as other
preliminary results needed in the sequel. The error estimates hinge crucially
on the smoothing properties of the discrete operator Ēh, cf. (3.3).

3.1. Semidiscrete Galerkin FEM and its properties. Upon introduc-
ing the discrete Laplacian ∆h : Xh → Xh defined by

−(∆hψ, χ) = (∇ψ,∇χ) ∀ψ, χ ∈ Xh,

and fh = Phf we may write the spatially discrete problem (1.3) as

(3.1) ∂αt uh(t)−∆huh(t) = fh(t) for t ≥ 0 with uh(0) = vh.

Now we give a representation of the solution of (3.1) using the eigenvalues
and eigenfunctions {λhj }Nj=1 and {ϕhj }Nj=1 of the discrete Laplacian −∆h.

First we introduce the discrete analogues of (2.3) and (2.4) for t > 0:

(3.2) Eh(t)vh =
N∑
j=1

Eα,1(−λhj tα)(vh, ϕ
h
j )ϕhj
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and

(3.3) Ēh(t)fh =
N∑
j=1

tα−1Eα,α(−λhj tα) (fh, ϕ
h
j )ϕhj .

Then the solution uh(x, t) of the discrete problem (3.1) can be expressed by:

(3.4) uh(x, t) = Eh(t)vh +

∫ t

0
Ēh(t− s)fh(s) ds.

Also, on the finite element space Xh, we introduce the discrete norm |||·|||p
for any p ∈ R defined by

(3.5) |||ψ|||2p =
N∑
j=1

(λhj )p(ψ,ϕhj )2 ψ ∈ Xh.

Since we are dealing with finite dimensional spaces, the above norm is well
defined for all real p. From the very definition of the discrete Laplacian −∆h

we have |||ψ|||1 = |ψ|1 and also |||ψ|||0 = ‖ψ‖ for any ψ ∈ Xh. So there will
be no confusion in using |ψ|p instead of |||ψ|||p for p = 0, 1 and ψ ∈ Xh.

To analyze the convergence of the semidiscrete Galerkin method, we shall
need various smoothing properties of the operator Eh(t), which are discrete
analogues of those formulated in (2.5). The estimates will be used for ana-
lyzing the convergence of the lumped mass FEM in Section 4.

Lemma 3.1. Let Eh(t) be defined by (3.2) and vh ∈ Xh. Then

(3.6) |||(∂αt )`uh(t)|||p = |||(∂αt )`Eh(t)vh|||p ≤ Ct−α(`+ p−q
2

)|||vh|||q, t > 0,

where for ` = 0, q ≤ p and 0 ≤ p− q ≤ 2 and for ` = 1, p ≤ q ≤ p+ 2.

Proof. First, consider the case ` = 0. Then using the representation (3.2) of
the solution uh(t) and the bound for the Mittag-Leffler function Eα,β(z) in
Lemma 2.1 we get for q ≤ p

|||uh(t)|||2p =

N∑
j=1

(λhj )p|(uh(t), ϕhj )|2 =

N∑
j=1

(λhj )p|Eα,1(−λhj tα)|2|(vh, ϕhj )|2

≤ Ct−α(p−q)
N∑
j=1

(λhj t
α)p−q

(1 + λhj t
α)2

(λhj )q(vh, ϕ
h
j )2

≤ Ct−α(p−q)
N∑
j=1

(λhj )q|(vh, ϕhj )|2 = Ct−α(p−q)|||vh|||2q .

Here in the last inequality we have used the fact that for q ≤ p and p ≤ q ≤
p+ 2 the expression maxj(λ

h
j t
α)p−q/(1 + λhj t

α)2 is bounded.
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The estimates for the case ` = 1 are obtained analogously using the
representation (3.2) of the solution uh(t) for p ≤ q ≤ p+ 2 and Lemma 2.1:

|||∂αt uh(t)|||2p =
N∑
j=1

(λhj )p|(∂αt uh(t), ϕhj )|2

=

N∑
j=1

(λhj )2+p|Eα,1(−λhj tα)|2|(vh, ϕhj )|2.

Now using the bound of Mittag-Leffler function in Lemma 2.1 and Young’s
inequality, we obtain

|||∂αt uh(t)|||2p ≤ Ct−(2α+α(p−q))
N∑
j=1

(λhj t
α)2+p−q

(1 + λhj t
α)2

(λhj )q|(vh, ϕhj )|2

≤ Ct−(2α+α(p−q))
N∑
j=1

(λhj )q|(vh, ϕhj )|2

= Ct−(2α+α(p−q))|||vh|||2q .
The desired estimate follows from this immediately. �

The following estimates are crucial for the a priori error analysis in the
sequel.

Lemma 3.2. Let Ēh be defined by (3.3) and ψ ∈ Xh. Then we have for all
t > 0,

(3.7) |||Ēh(t)ψ|||p ≤

{
Ct−1+α(1+ q−p

2
)|||ψ|||q, p− 2 ≤ q ≤ p,

Ct−1+α|||ψ|||q, p < q.

Proof. By the definition of the operator Ēh(t) and using Lemma 2.1 for
Eα,α(z), we have for any p ∈ R and q ≤ p

|||Ēh(t)ψ|||2p = t−2+2α
N∑
j=1

E2
α,α(−λhj tα)(λhj )p(ψ,ϕhj )2

≤ Ct−2+α(2+q−p) max
j

(λhj t
α)p−q

(1 + λhj t
α)2

N∑
j=1

(λhj )q(ψ,ϕhj )2

= Ct−2+α(2+q−p)|||ψ|||2q ,
where for getting the last inequality we took into account 0 ≤ p − q ≤ 2.
The desired assertion for p < q follows from the fact that the eigenvalues
{λhj } are bounded away from zero independently of the mesh size h. �

Remark 3.1. Lemma 3.2 expresses the smoothing properties of the operator
Ēh. While p = 0, 1, the parameter q can be arbitrary as long as it complies
with the condition p−2 ≤ q ≤ p. This flexibility in the choice of q is essential
for deriving error estimates for problems with initial data of low regularity.
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Further, we shall need the following inverse inequality.

Lemma 3.3. There exists a constant C independent of h such that for all
ψ ∈ Xh we have for any real l > s

(3.8) |||ψ|||l ≤ Chs−l|||ψ|||s.

Proof. For quasi-uniform triangulations Th the inverse inequality |ψ|1 ≤
Ch−1‖ψ‖ holds for all ψ ∈ Xh. By the definition of −∆h this implies
max1≤j≤N λ

h
j ≤ C/h2. Thus, for the norm ||| · |||p defined in (3.5), we obtain

that for any real l > s

|||ψ|||2l ≤ C max
j

(λhj )l−s
N∑
j=1

(λhj )s(ψ,ϕhj )2 ≤ Ch2(s−l)|||ψ|||2s.

That completes the proof. �

3.2. Error estimates for smooth initial data. Here we establish error
estimates for the semidiscrete Galerkin method for initial data v ∈ Ḣ2(Ω).
In a customary way we split the error uh(t)− u(t) into two terms as

(3.9) uh − u = (uh −Rhu) + (Rhu− u) := ϑ+ %.

By (2.10) and (2.5) we have for any t > 0 and q = 1, 2,

(3.10) ‖%(t)‖+ h‖∇%(t)‖ ≤ Ch2t−α(1− q
2

)|v|q v ∈ Ḣq,

so it suffices to get proper estimates for ϑ(t), which is done in the following
lemma.

Lemma 3.4. Let u and uh be the solutions of (1.1) and (1.3), respectively,
with vh = Rhv. Then for ϑ(t) = uh(t)−Rhu(t) we have

(3.11) ‖ϑ(t)‖+ h‖∇ϑ(t)‖ ≤ Ch2|v|2.

Proof. We note that ϑ satisfies

(3.12) ∂αt ϑ(t)−∆hϑ(t) = −Ph∂αt %(t) for t > 0.

For v ∈ Ḣq, q = 1, 2 the Ritz projection Rhv is well defined, so that ϑ(0) = 0
and hence, by Duhamel’s principle (3.4),

(3.13) ϑ(t) = −
∫ t

0
Ēh(t− s)Ph∂αt %(s) ds.

By using Lemma 3.2 with p = 1 and q = 0, the stability of Ph, (2.10), and
the estimate (2.5) with ` = 1, p = 1 and we find, for q = 1, 2,

‖∇Ēh(t− s)Ph∂αt %(s)‖ ≤ C(t− s)
α
2
−1 ‖∂αt %(s)‖

≤ Ch(t− s)
α
2
−1 |∂αt u(s)|1

≤ Ch(t− s)
α
2
−1sα(− 3

2
+ q

2
)|v|q.

(3.14)
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By substituting this inequality into (3.13) we obtain that for q = 1, 2

‖∇ϑ(t)‖ ≤ Ch
∫ t

0
(t− s)

α
2
−1sα(− 3

2
+ q

2
) ds |v|q ≤ Cht−α(1− q

2
)|v|q,(3.15)

where we have used that for α < 1∫ t

0
(t− s)

α
2
−1sα(− 3

2
+ q

2
) ds = t

α
2
− 3α

2
+ qα

2

∫ 1

0
(1− s)

α
2
−1sα(− 3

2
+ q

2
)ds

= B(α2 , α(−3
2 + q

2) + 1)t−α(1− q
2

),

with B(·, ·) being the standard Beta function. Since both arguments, α2 > 0

and −3+q
2 α + 1 > 0 for q = 1, 2, the value B(α, α(−3

2 + q
2) + 1) is finite.

Taking q = 2 we get the desired estimate for ∇ϑ.
Next, by using the smoothing property of the operator Ēh in Lemma 3.2

with p = q = 0 and that of the operator E in Theorem 2.1 with ` = 1 and
p = q = 2, we get

‖ϑ(t)‖ ≤
∫ t

0
‖Ēh(t− s)Ph∂αt %(s)‖ds

≤ C
∫ t

0
(t− s)α−1‖∂αt %(s)‖ds

≤ Ch2

∫ t

0
(t− s)α−1|∂αt u(s)|2ds

≤ Ch2

∫ t

0
(t− s)α−1s−αds|v|2 = CB(α, 1− α)h2|v|2.

(3.16)

This completes the proof. �

Using the triangle inequality and the estimates (3.10) and (3.11) we get
the main result in the subsection.

Theorem 3.1. Let u and uh be the solutions of (1.1) and (1.3), respectively,
with vh = Rhv. Then

(3.17) ‖uh(t)− u(t)‖+ h‖∇(uh(t)− u(t))‖ ≤ Ch2|v|2.
Remark 3.2. As a byproduct of estimates (2.10) and (3.15) we also got a

bound for the error for v ∈ Ḣ1(Ω) and vh = Rhv:

(3.18) ‖∇(uh(t)− u(t))‖ ≤ Cht−
α
2 |v|1.

Remark 3.3. In view of the smoothing property of the operator Ēh estab-
lished in Lemma 3.2, we can improve the estimate of ϑ(t) for q = 2 to O(h2)

at the expense of slightly increasing the factor by O(t−
α
2 ):

‖∇Ēh(t− s)Ph∂αt %(s)‖ ≤ Ch2(t− s)
α
2
−1 |∂αt u(s)|2

≤ Ch2(t− s)
α
2
−1s−α|v|2,

which yields

(3.19) ‖∇ϑ‖ ≤ Ch2t−
α
2 |v|2.
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3.3. Error estimates for non-smooth initial data. Now we prove an
error estimate for nonsmooth initial data, v ∈ L2(Ω), and the intermediate

case, v ∈ Ḣ1(Ω). Since the Ritz projection Rhv is not defined for v ∈ L2(Ω),
we shall use instead the L2-projection Ph onto the finite element space Xh,
and split the error uh − u into:

uh − u = (uh − Phu) + (Phu− u) := ϑ̃+ %̃.

By Lemma 2.2 and Theorem 2.1 we have

(3.20) ‖%̃(t)‖+ h‖∇%̃(t)‖ ≤ Ch2|u(t)|2 ≤ Ch2t−α(1− q
2

)‖v‖q, q = 0, 1.

Thus, we only need to estimate the term ϑ̃. Obviously, Ph∂
α
t %̃ = ∂αt Ph(Phu−

u) = 0 and we get the following problem for ϑ̃:

(3.21) ∂αt ϑ̃(t)−∆hϑ̃(t) = −∆h(Rhu− Phu)(t), t > 0, ϑ̃(0) = 0.

Then with the help of formula (3.3), ϑ̃(t) can be represented by

(3.22) ϑ̃(t) = −
∫ t

0
Ēh(t− s)∆h(Rhu− Phu)(s) ds.

Next, we show the following estimate for ϑ̃(t):

Lemma 3.5. Let ϑ̃(t) be defined by (3.22). Then for p = 0, 1, q = 0, 1, and
`h = | lnh|, the following estimate holds

‖ϑ̃(t)‖p ≤ Ch2−p`ht
−α(1− q

2
)‖v‖q.

Proof. By Lemma 3.2 with p = 0, 1 and q = p− 2 + ε, for any ε > 0 we have

‖ϑ̃(t)‖p ≤
∫ t

0
‖Ēh(t− s)∆h(Rhu− Phu)(s)‖pds

≤
∫ t

0
(t− s)

ε
2
α−1|||∆h(Rhu− Phu)|||p−2+εds

≤
∫ t

0
(t− s)

ε
2
α−1|||Rhu− Phu|||p+εds := A.

Further, we apply the inverse inequality (3.8) for Rhu − Phu, the bounds
(2.9) and (2.10), for Phu− u and Rhu− u, respectively, and the smoothing
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property (2.5) with ` = 0 and p = 2 to get

A ≤ Ch−ε
∫ t

0
(t− s)

ε
2
α−1‖Rhu− Phu‖pds

≤ Ch2−p−ε
∫ t

0
(t− s)

ε
2
α−1‖u(s)‖2ds

≤ Ch2−p−ε
∫ t

0
(t− s)

ε
2
α−1s−α(1− q

2
)ds ‖v‖q

= CB
( ε

2
α, 1− α+

q

2
α
)
h2−p−εt−α(1− q

2
− ε

2
) ‖v‖q

≤ C

ε
h2−p−εt−α(1− q

2
) ‖v‖q.

The last inequality follows from the fact B( ε2α, 1−α+ q
2α) =

Γ( ε
2
α)Γ(1−α+ q

2
α)

Γ(1−α+ q+ε
2
α)

and Γ( ε2α) ∼ 2
αε as ε → 0+, e.g., by means of Laurenz expansion of the

Gamma function. The desired assertion follows by choosing ε = 1/`h. �

Then Lemma 3.5 and the triangle inequality yield the following almost
optimal error estimate for the semidiscrete Galerkin method for initial data
v ∈ Ḣq, q = 0, 1:

Theorem 3.2. Let u and uh be the solutions of (1.1) and (1.3) with vh =
Phv, respectively. Then with `h = | lnh|

(3.23) ‖uh(t)−u(t)‖+h‖∇(uh(t)−u(t))‖ ≤ Ch2 `h t
−α(1− q

2
)‖v‖q, q = 0, 1.

Remark 3.4. For v ∈ Ḣ1(Ω) and vh = Rhv, we have established the esti-
mate (3.18), which is slightly better than (3.23), since it does not have the
factor `h.

3.4. Problems with more general elliptic operators. The preceding
analysis could be straightforwardly extended to problems with more gen-
eral boundary conditions/spatially varying coefficients. In fact this is the
strength of the finite element method and the advantages of the direct nu-
merical methods for treating such problems in comparison with some an-
alytical techniques that are limited to constant coefficients and canonical
domains. More precisely, we can study problem (1.3) with a bilinear form
a(·, ·) : V × V 7→ R of the form:

(3.24) a(u, χ) =

∫
Ω

(k(x)∇u · ∇χ+ c(x)uχ) dx,

where k(x) is a symmetric d× d matrix-valued measurable function on the
domain Ω with smooth entries and c(x) is an L∞-function. We assume that

c0|ξ|2 ≤ ξTk(x)ξ ≤ c1|ξ|2, for ξ ∈ Rd, x ∈ Ω,

where c0, c1 > 0 are constants, and the bilinear form a(·, ·) is coercive on
V ≡ H1(Ω). Further, we assume that the problem a(w,χ) = (f, χ), ∀χ ∈ V
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has unique solution w ∈ V , which for f ∈ L2(Ω) has full elliptic regularity,
‖w‖H2 ≤ C‖f‖L2 .

Under these conditions we can define a positive definite operator A :
H1

0 → H−1, which has a complete set of eigenfunctions ϕj(x) and respective

eigenvalues λj(A) > 0. Then we can define the spaces Ḣq as in Section 2.2.
Further, we define the discrete operator Ah : Xh → Xh by

(Ahψ, χ) = a(ψ, χ), ∀ψ, χ ∈ Vh.
Then all results for problem (1.1) can be easily extended to fractional-order
problems with elliptic equations of this more general form.

4. Lumped mass finite element method

Now we consider the lumped mass FEM in planar domains (see, e.g.
[25, Chapter 15, pp. 239–244]). For completeness we shall introduce this
approximation. Let zτj , j = 1, . . . , d + 1 be the vertices of the d-simplex
τ ∈ Th. Consider the quadrature formula

(4.1) Qτ,h(f) =
|τ |
d+ 1

d+1∑
j=1

f(zτj ) ≈
∫
τ
fdx.

We may then define an approximation of the L2-inner product in Xh by

(4.2) (w,χ)h =
∑
τ∈Th

Qτ,h(wχ).

Then lumped mass Galerkin FEM is: find ūh(t) ∈ Xh such that

(∂αt ūh, χ)h + a(ūh, χ) = (f, χ) ∀χ ∈ Xh, t > 0,

ūh(0) = vh.
(4.3)

We now introduce the discrete Laplacian −∆̄h : Xh → Xh, corresponding
to the inner product (·, ·)h, by

(4.4) − (∆̄hψ, χ)h = (∇ψ,∇χ) ∀ψ, χ ∈ Xh.

Also, we introduce the L2-projection, P̄h : L2(Ω)→ Xh by

(P̄hf, χ)h = (f, χ), ∀χ ∈ Xh.

The lumped mass method can then be written with fh = P̄hf in operator
form as

∂αt ūh(t)− ∆̄hūh(t) = fh(t) for t ≥ 0 with ūh(0) = vh.

Similarly as in Section 3, we define the discrete operator Fh by

(4.5) Fh(t)vh =
N∑
j=1

Eα,1(−λ̄hj tα)(vh, ϕ̄
h
j )hϕ̄

h
j ,

where {λ̄hj }Nj=1 and {ϕ̄hj }Nj=1 are respectively the eigenvalues and the or-

thonormal eigenfunctions of −∆̄h with respect to (·, ·)h.
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Analogously to (3.3), we introduce the operator F̄h by

(4.6) F̄hfh(t) =
N∑
j=1

tα−1Eα,α(−λ̄hj tα)(fh, ϕ̄
h
j )hϕ̄

h
j .

Then the solution ūh to problem (4.3) can be represented as follows

ūh(t) = Fh(t)vh +

∫ t

0
F̄h(t− s)fh(s)ds.

For our analysis we shall need the following modification of the discrete
norm (3.5), ||| · |||p, on the space Xh

(4.7) |||ψ|||2p =
N∑
j=1

(λ̄hj )p(ψ, ϕ̄hj )2
h ∀p ∈ R.

The following norm equivalence result is useful.

Lemma 4.1. The norm ||| · |||p defined in (4.7) is equivalent to the norm
| · |p on the space Xh for p = 0, 1.

Proof. The equivalence the the two norms for the case of p = 0 is well known:

1

2
|||ψ|||0 ≤ ‖ψ‖ ≤ |||ψ|||0, ∀ψ ∈ Xh.

From the definitions of the discrete Laplacian−∆̄h and the eigenpairs {(λ̄hj , ϕ̄hj )},
we deduce

‖∇ψ‖2 = ((−∆̄h)ψ,ψ)h =
N∑
j=1

λ̄hj (ψ, ϕ̄hj )2
h = |||ψ|||1 ∀ψ ∈ Xh.

This completes the proof of the lemma. �

We shall also need the following inverse inequality, whose proof is identical
with that of Lemma 3.3:

(4.8) |||ψ|||l ≤ Chs−l|||ψ|||s l > s.

We show the following analogue of Lemma 3.2:

Lemma 4.2. Let F̄h be defined by (4.6). Then we have for ψ ∈ Xh and all
t > 0,

|||F̄h(t)ψ|||p ≤

{
Ct−1+α(1+ q−p

2
)|||ψ|||q, p− 2 ≤ q ≤ p,

Ct−1+α|||ψ|||q, p < q.

Proof. The proof essentially follows the steps of the proof of Lemma 3.2 by
replacing the eigenpairs (λhj , ϕ

h
j ) by (λ̄hj , ϕ̄

h
j ), and the L2-inner product (·, ·)

by the approximate L2-inner product (·, ·)h and thus it is omitted. �
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We need the quadrature error operator Qh : Xh → Xh defined by

(4.9) (∇Qhχ,∇ψ) = εh(χ, ψ) := (χ, ψ)h − (χ, ψ) ∀χ, ψ ∈ Xh.

The operator Qh, introduced in [2], represents the quadrature error (due to
mass lumping) in a special way. It satisfies the following error estimate:

Lemma 4.3. Let ∆̄h and Qh be the operators defined by (4.4) and (4.9),
respectively. Then

‖∇Qhχ‖+ h‖∆̄hQhχ‖ ≤ Chp+1‖∇pχ‖ ∀χ ∈ Xh, p = 0, 1.

Proof. See [2, Lemma 2.4]. �

4.1. Error estimate for smooth initial data. We shall now establish
error estimates for the lumped mass FEM for smooth initial data, i.e., v ∈
Ḣ2(Ω).

Theorem 4.1. Let u and ūh be the solutions of (1.1) and (4.3), respectively,
with vh = Rhv. Then

‖ūh(t)− u(t)‖+ h‖∇(ūh(t)− u(t))‖ ≤ Ch2|v|2.

Proof. Now we split the error into ūh(t) − u(t) = uh(t) − u(t) + δ(t) with
δ(t) = ūh(t) − uh(t) and uh(t) being the solution by the standard Galerkin
FEM. Since we have already established the estimate (3.17) for uh − u, it
suffices to get the following estimate for δ(t):

(4.10) ‖δ(t)‖+ h‖∇δ(t)‖ ≤ Ch2|v|2.
It follows from the definitions of the uh(t), ūh(t), and Qh that

∂αt δ(t)− ∆̄hδ(t) = ∆̄hQh∂
α
t uh(t) for t > 0, δ(0) = 0

and by Duhamel’s principle we have

δ(t) =

∫ t

0
F̄h(t− s)∆̄hQh∂

α
t uh(s)ds.

Using Lemmas 4.1, 4.2, and 4.3 we get for χ ∈ Xh:

‖∇F̄h(t)∆̄hQhχ‖ ≤ Ct
α
2
−1‖∆̄hQhχ‖ ≤ Ct

α
2
−1h‖∇χ‖.

Similarly, for χ ∈ Xh

‖F̄h(t)∆̄hQhχ‖ ≤ Ct
α
2
−1|||∆̄hQhχ|||−1 ≤ Ct

α
2
−1‖∇Qhχ‖ ≤ Ct

α
2
−1h2‖∇χ‖.

Consequently, using Lemma 3.1 with l = 1, p = 1 and q = 2 we get

‖δ(t)‖+ h‖∇δ(t)‖ ≤ Ch2

∫ t

0
(t− s)

α
2
−1|||∂αt uh(s)|||1ds

≤ Ch2

∫ t

0
(t− s)

α
2
−1s−

α
2 ds |||uh(0)|||2.

Since ∆hRh = Ph∆, we deduce

|||uh(0)|||2 = ‖∆hRhu(0)‖ = ‖Ph∆u(0)‖ ≤ |u(0)|2 ≤ C‖v‖2,
which yields (4.10) and concludes the proof. �



18 BANGTI JIN, RAYTCHO LAZAROV, AND ZHI ZHOU

An improved bound for ‖∇δ(t)‖ can be obtained as follows. In view of
Lemmas 4.1 and 4.3 and (4.8), we observe that for any ε > 0 and χ ∈ Xh

‖∇F̄h(t)∆̄hQhχ‖ ≤ Ct
ε
2
α−1|||∆̄hQhχ|||−1+ε ≤ Ct

ε
2
α−1h2−ε‖∇χ‖.

Consequently,

(4.11) ‖∇δ(t)‖ ≤ Ch2−ε
∫ t

0
(t− s)

ε
2
α−1|||∂αt uh(s)|||1ds.

Now, to (4.11) we apply Lemma 3.1 with l = 1, p = 1 and q = 2 to get

‖∇δ(t)‖ ≤ Ch2−ε
∫ t

0
(t− s)

ε
2
α−1s−

α
2 ds|||uh(0)|||2 ≤ C

1

ε
h2−εt−α

1−ε
2 |v|2.

Remark 4.1. In the above estimate, by choosing ε = 1/`h, `h = | lnh|, we
get

(4.12) ‖∇δ(t)‖ ≤ Ch2`ht
−α

2 |v|2,

which improves the bound of ‖∇δ(t)‖ for fixed t > 0 by almost one order.

Remark 4.2. Instead, if we apply to (4.11) Lemma 3.1 with l = 1, p = 1
and q = 1 we shall get an improved estimate for δ(t) in the case of initial

data v ∈ Ḣ1:

(4.13) ‖∇δ(t)‖ ≤ Ch2`ht
−α|v|1.

4.2. Error estimates for nonsmooth initial data. Now we consider the
case of nonsmooth initial data, i.e., v ∈ L2(Ω) as well as the intermediate

case v ∈ Ḣ1. Due to the lower regularity, we take vh = Phv. As before,
the idea is to split the error into ūh(t) − u(t) = uh(t) − u(t) + δ(t) with
δ(t) = ūh(t) − uh(t) and uh(t) being the solution of the standard Galerkin
FEM. Thus, in view of estimate (3.23) it suffices to establish proper bound
for δ(t).

Theorem 4.2. Let u and ūh be the solutions of (1.1) and (4.3), respectively,
with vh = Phv. Then with `h = | lnh|, the following estimates are valid for
t > 0:

(4.14) ‖∇(ūh(t)− u(t))‖ ≤ Ch`ht−α(1− q
2

)|v|q q = 0, 1,

and

(4.15) ‖ūh(t)− u(t)‖ ≤ Chq+1`ht
−α(1− q

2
)|v|q q = 0, 1.

Furthermore, if the quadrature error operator Qh defined by (4.9) satisfies

(4.16) ‖Qhχ‖ ≤ Ch2‖χ‖ ∀χ ∈ Xh,

then the following almost optimal error estimate is valid:

(4.17) ‖ūh(t)− u(t)‖ ≤ Ch2`ht
−α‖v‖.
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Proof. By Duhamel’s principle

δ(t) =

∫ t

0
F̄h(t− s)∆̄hQh∂

α
t uh(s)ds.

Then by appealing to the smoothing property of the operator F̄h in Lemma
4.2 and the inverse inequality (4.8), we get for χ ∈ Xh, ε > 0, and p = 0, 1

(4.18)

|||F̄h(t)∆̄hQhχ|||p ≤ Ct
ε
2
α−1|||∆̄hQhχ|||p−2+ε

= Ct
ε
2
α−1|||Qhχ|||p+ε

≤ Ct
ε
2
α−1h−ε|||Qhχ|||p

≤ Ct
ε
2
α−1h−ε‖Qhχ‖p.

Consequently, by Lemmas 4.3, 3.1 and Ḣ1- and L2-stability of the operator
Ph from Lemma 2.2, we deduce for q = 0, 1

‖∇δ(t)‖ ≤ Chq+1−ε
∫ t

0
(t− s)

ε
2
α−1‖∂αt uh(s)‖qds

≤ Chq+1−ε
∫ t

0
(t− s)

ε
2
α−1s−αds‖uh(0)‖q

= Chq+1−εt−α(1− ε
2

)B
( ε

2
α, 1− α

)
‖Phv‖q

≤ C 1

ε
hq+1−εt−α(1− ε

2
)|v|q.

Now the desired estimate (4.14) follows by triangle inequality from the es-
timate (3.23) and the above estimate by taking ε = 1 and ε = 1/`h for the
cases q = 1 and 0, respectively.

Next we derive an L2- error estimate. First, note that for χ ∈ Xh we have

‖F̄h(t)∆̄hQhχ‖ ≤ Ct
α
2
−1|||∆̄hQhχ|||−1 ≤ Ct

α
2
−1‖∇Qhχ‖.

This estimate and Lemma 4.3 give

‖δ(t)‖ ≤ Chq+1

∫ t

0
(t− s)

α
2
−1‖∂αt uh(s)‖q ds

≤ Chq+1

∫ t

0
(t− s)

α
2
−1s−αds |uh(0)|q

≤ Chq+1t−
α
2B
(α

2
, 1− α

)
|Phv|q

≤ Chq+1t−
α
2 |v|q, q = 0, 1,

which shows the desired estimate (4.15).
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Finally, if (4.16) holds, by applying (4.18) with p = 0 and ε ∈ (0, 1
2), we

get

‖δ(t)‖ ≤ Ch−ε
∫ t

0
(t− s)

ε
2
α−1‖Qh∂αt uh(s)‖ ds

≤ Ch2−ε
∫ t

0
(t− s)

ε
2
α−1‖∂αt uh(s)‖ ds

≤ Ch2−ε
∫ t

0
(t− s)

ε
2
α−1s−αds|uh(0)| ds

≤ C 1

ε
h2−εt−α(1− ε

2
)‖v‖.

Then (4.17) follows immediately by choosing ε = 1/`h. �

Remark 4.3. The condition (4.16) on the quadrature error operator Qh
is satisfied for symmetric meshes; see [2, Sections 5]. In case the condi-
tion (4.16) does not hold, we were able to show only a suboptimal O(h)-
convergence rate for L2-norm of the error, which is reminiscent of the situ-
ation in the classical parabolic equation (see, e.g. [2, Theorem 4.4]).

Remark 4.4. As we mentioned before, assumption (4.16) is valid for sym-
metric meshes. In fact, in one dimension, the symmetry requirement can be
relaxed to almost symmetry [2, Section 6], and (4.17) can be proven as well.

Remark 4.5. We note that we have used a globally quasi-uniform meshes,
while the results in [2] are valid for meshes that satisfy the inverse inequality
only locally.

5. Special meshes

Remark 3.3 (as well as Remark 4.1) suggests that one can achieve a higher
order convergence rate for ∇(uh − u), if one can get an estimate of the
error ∇(Rhu − u) in some special norm. This could be achieved using the
superconvergence property of the gradient available for special meshes and
solutions in H3(Ω). Examples of special meshes exhibiting superconvergence
property include triangulations in which every two adjacent triangles form a
parallelogram [13]. To establish a super-convergent recovery of the gradient,
Křižek and Neittaanmäki in [13] introduced an operator of the averaged
(recovered, postprocessed) gradient Gh(Rhu) of the Ritz projection Rhu of
a function u (see [13, equation (2.2)]) with the following properties:

(a) If u ∈ H3(Ω) then, [13, Theorem 4.2]

(5.1) ‖∇u−Gh(Rhu)‖ ≤ Ch2‖u‖H3(Ω).

(b) For χ ∈ Xh the following bound is valid:

(5.2) ‖Gh(χ)‖ ≤ C‖∇χ‖.
The bound (5.2) follows immediately from [13, inequality (3.4)] established
for a reference finite element by rescaling and using the fact that χ ∈ Xh.
We point out that one can get a higher order approximation of the ∇u by
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Gh(Rhu) due to the special post-processing procedure valid for sufficiently
smooth solutions and special meshes.

This result could be used to establish a higher convergence rate for the
semi-discrete Galerkin method (and similarly for the lumped mass method)
for smooth initial data. Specifically, we have the following result.

Theorem 5.1. Let Th be strongly uniform triangulation of Ω, that is, every
two adjacent triangles form a parallelogram. Then the following estimate is
valid

(5.3) ‖∇u(t)−Gh(uh(t))‖ ≤ Ch2t−α/2‖v‖2.

Proof. It follows from the fact that u satisfies equation (1.1), i.e., ∂αt u(t) =
∆u and from Theorem 2.1 (with ` = 1, p = 1 and q = 2) that

|u(t)|3 ≤ Ct−α/2|v|2.

Then using the above super-convergent recovery operator Gh of the gradient
with the properties (5.1), (5.2) and the estimate (3.19) for θ(t) = Rhu(t)−
uh(t), we get

‖∇u(t)−Gh(uh(t))‖ = ‖∇u(t)−Gh(Rhu(t))‖+ ‖Gh(Rhu(t)− uh(t))‖
≤ Ch2‖u(t)‖H3(Ω) + C‖∇θ(t)‖

≤ Ch2t−α/2‖v‖2

which shows the desired estimate. �

Remark 5.1. By repeating the proof of Theorem 5.1 and appealing to Re-
mark 4.1, we can derive the following error estimate for the solution of the
lumped mass Galerkin FEM

‖∇u(t)−Gh(ūh(t))‖ ≤ Ch2`ht
−α/2‖v‖2, `h = | lnh|.

Remark 5.2. Obviously any strongly regular triangulation is also symmetric
at each internal vertex and therefore for such meshes we have as well optimal
convergence in L2-norm for nonsmooth data; see (4.17).

6. Numerical results

In this section, we present some numerical results to verify the error es-
timates. We consider the following one-dimensional problem on the unit
interval (0, 1)

∂αt u(x, t)− ∂2
xxu(x, t) = 0, 0 < x < 1 0 ≤ t ≤ T,

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T,
u(x, 0) = v(x), 0 ≤ x ≤ 1.

(6.1)

We performed numerical tests on five different data:
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(a) Smooth initial data: v(x) = −4x2 +4x; in this case the initial data v
is in H2(Ω)∩H1

0 (Ω), and the exact solution u(x, t) can be represented
by a rapidly converging Fourier series:

u(x, t) =
16

π3

∞∑
n=1

1

n3
Eα,1(−n2π2tα)(1− (−1)n) sinnπx.

(b) Initial data in Ḣ1 (intermediate smoothness):

(6.2) v(x) =

{
x, x ∈ [0, 1

2 ],

1− x, x ∈ (1
2 , 1].

(c) Nonsmooth initial data: (1) v(x) = 1, (2) v(x) = x, and (3) v(x) =
χ[0, 1

2
], the characteristic function of the interval (0, 1

2). Since this

choice of v is not compatible with the homogeneous Dirichlet bound-
ary data, obviously, in all three cases v /∈ H1

0 . However, in all these
examples v ∈ Hs, 0 < s < 1

2 .
(d) We also consider initial data v that is a Dirac δ 1

2
(x)-function con-

centrated at x = 1
2 . Such weak data is not covered by our theory.

However, it is interesting to see how the method performs for such
highly nonsmooth initial data. We note that the choice of the Dirac
delta function as initial data is common for certain parameter iden-
tification problems in fractional diffusion problems [3].

(e) Variable coefficient case (cf. (3.24)): we take k(x) = 3 + sin(2πx)
and initial condition v(x) = 1. This class of problems was discussed
in Section 3.4.

The exact solution for each example from (a) to (d) can be expressed by an
infinite series involving the Mittag-Leffler function Eα,1(z). To accurately
evaluate the Mittag-Leffler functions, we employ the algorithm developed
in [24], which is based on three different approximations of the function,
i.e., Taylor series, integral representations and exponential asymptotics, in
different regions of the domain.

We divide the unit interval (0, 1) into N + 1 equally spaced subintervals,
with a mesh size h = 1/(N + 1). The space Xh consists of continuous piece-
wise linear functions on the partition. In the case of a constant coefficient
k(x) (cf. Section 3.4) we can represent the exact solution to the semidis-
crete problem by (3.2) for the standard semidiscrete Galerkin method and
by (4.5) for the lumped mass method using the eigenpairs (λhj , ϕ

h
j (x)) and

(λ̄hj , ϕ̄
h
j (x)) of the respective one-dimensional discrete Laplacian −∆h and

−∆̄h, i.e.,

(−∆hϕ
h
j , v) = λhj (ϕhj , v) and (−∆̄hϕ̄

h
j , v)h = λ̄hj (ϕ̄hj , v)h ∀v ∈ Xh.
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Here (w, v) and (w, v)h refer to the standard L2-inner product and the ap-
proximate L2-inner product (4.2) on the space Xh, respectively. Then

λhj = λ̄hj =
4

h2
sin2 πj

2(N + 1)
and ϕhj (xk) = ϕ̄hj (xk) =

√
2 sin(jπxk), j = 1, 2, . . . , N

for xk being a mesh point and linear over the finite elements. These will be
used in computing the finite element approximations by the Galerkin and
lumped mass methods.

We also have used a direct numerical solution technique by first discretiz-
ing the time interval, tn = nτ , n = 0, 1, . . . , with τ being the time step size,
and then using a weighted finite difference approximation of the fractional
derivative ∂αt u(x, tn) developed in [16]:

∂αt u(x, tn) =
1

Γ(1− α)

n−1∑
j=0

∫ tj+1

tj

∂u(x, s)

∂s
(tn − s)−α ds

≈ 1

Γ(1− α)

n−1∑
j=0

u(x, tj+1)− u(x, tj)

τ

∫ tj+1

tj

(tn − s)−αds

=
1

Γ(2− α)

n−1∑
j=0

bj
u(x, tn−j)− u(x, tn−j−1)

τα
,

where the weights bj = (j + 1)1−α − j1−α, j = 0, 1, . . . , n − 1. It has been
shown that if the solution u(x, t) is sufficiently smooth and the time step τ is
a constant, then local truncation error of the approximation is bounded by
Cτ2−α for some C depending only on u [16, equation (3.3)]. When needed,
we have used this approximation on very fine meshes in both space and
time to compute a reference solution. Unless otherwise specified, we have
set τ = 1.0 × 10−6, so that the error incurred by temporal discretization
can be ignored. Whenever possible, we have compared the accuracy of this
reference solution with the exact representation. Our experiments show
that with a very small time step size, these two produce the same numerical
results.

For each example, we measure the accuracy of the approximation uh(t)
by the normalized error ‖u(t)−uh(t)‖/‖v‖ and ‖∂x(u(t)−uh(t))‖/‖v‖. The
normalization enables us to observe the behavior of the error with respect
to time in case of nonsmooth initial data. We shall present only numerical
results for the lumped mass FEM, since that for the Galerkin FEM is almost
identical.

6.1. Numerical experiments for the smooth initial data: exam-
ple (a). In Table 1 we report the numerical results for t = 1 and α =
0.1, 0.5, 0.95. In Figure 1, we show plots of the results from Table 1 in
a log-log scale. We see that the slopes of the error curves are 2 and 1, re-
spectively, for L2- and H1-norm of the error. In the last column of Table
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1 we also present the error of the recovered gradient Gh(uh). Since in one-
dimension the mid-point of each interval has the desired superconvergence
property, the recovered gradient in the case is very simple, just sampled
at these points [26, Theorem 1.5.1]. It is clear that the recovered gradient
Gh(uh) exhibits a O(h2) convergence rate, concurring with the estimates in
Theorem 5.1 and Remark 5.1. It is worth noting that the smaller is the α
value, the larger is the error (in either the L2- or H1-norm). This is at-
tributed to the property of the Mittag-Leffler function Eα,1(−λtα), which,
asymptotically, decays faster as α approaches unity, cf. Lemma 2.1 and the
representation (2.3).

Table 1. Numerical results for smooth data, example (a):
t = 1 and h = 2−k.

L2-error H1-error Gh(uh)-error
k α = 0.1 α = 0.5 α = 0.95 α = 0.1 α = 0.5 α = 0.95 α = 0.5
3 5.23e-4 3.37e-4 4.84e-5 2.65e-2 1.74e-2 2.04e-3 3.20e-3
4 1.29e-4 8.31e-5 1.21e-5 1.33e-2 8.77e-3 1.02e-3 8.07e-4
5 3.21e-5 2.07e-5 3.05e-6 6.69e-3 4.39e-3 5.11e-4 2.03e-4
6 8.01e-6 5.17e-6 7.93e-7 3.34e-3 2.19e-3 2.55e-4 5.17e-5
7 2.00e-6 1.30e-6 2.32e-7 1.67e-3 1.10e-3 1.28e-4 1.39e-5

Figure 1. Numerical results for smooth initial data, exam-
ple (a) with α = 0.1, 0.5, 0.95 at t = 1.

6.2. Numerical experiments for the intermediate case of smooth-
ness of the data, example (b). In this example the initial data v(x) is

in H1
0 (Ω) ∩ H

3
2
−ε(Ω) with ε > 0, and thus it represents an intermediate

case. All the numerical results reported in Table 2 were evaluated at t = 1
for α = 0.5. The slopes of the error curves in a log-log scale are 2 and 1
respectively for L2 and H1 norm of the errors, which is in agreement with
the theory for the intermediate case; ratio in the last column of Table 2,
refers to the ratio between the errors as the mesh size h halves.



SEMIDISCRETE GFEM FOR FRACTIONAL PARABOLIC PDE’S 25

Table 2. Numerical results for the intermediate case (b)
with α = 0.5 at t = 1.

h 1/8 1/16 1/32 1/64 1/128 ratio
L2-error 8.08e-4 2.00e-4 5.00e-5 1.26e-5 3.24e-6 ≈ 3.97
H1-error 1.80e-2 8.84e-3 4.39e-3 2.19e-3 1.10e-3 ≈ 2.00

6.3. Numerical experiments for nonsmooth initial data: example
(c). In Tables 3 and 4 we present the computational results for problem (c),
cases (1) and (2). For nonsmooth initial data, we are particularly interested
in errors for t close to zero, and thus we also present the error at t = 0.005
and t = 0.01. In Figure 2 we plot the results shown in Tables 3 and 4, i.e.,
for problem (c), cases (1) and (2). These numerical results fully confirm the
theoretically predicted rates for the nonsmooth initial data.

(a) Error plots for Example (c) (1)

(b) Error plots for Example (c) (2)

Figure 2. Numerical results for nonsmooth initial data with
α = 0.5 at t = 0.005, 0.01, 1.0.

Now we consider the third example of nonsmooth case, the characteristic
function of the interval (0, 0.5), namely, v(x) = χ[0, 1

2
]. Note that if we use

the interpolation of v as the initial data for the semidiscrete problem, the L2-
error has only a suboptimal first-order convergence. However, if we choose
L2 projection as is discussed in previous sections, then the results agree well
with our estimates; see Table 5. We also discretize this example by the
Galerkin method, and the results are presented in Table 6. A comparison of
Tables 5 and 6 clearly indicates that the Galerkin method and the lumped
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Table 3. Nonsmooth initial data, example (c) (1): α = 0.5
at t = 0.005, 0.01, 1.

h 1/8 1/16 1/32 1/64 1/128 ratio
t = 0.005 L2-norm 1.06e-2 2.65e-3 6.63e-4 1.65e-4 4.02e-5 ≈ 4.05

H1-norm 2.08e-1 1.04e-1 5.22e-2 2.61e-2 1.30e-2 ≈ 2.00
t = 0.01 L2-norm 7.94e-3 1.99e-3 4.93e-4 1.19e-4 2.59e-5 ≈ 4.08

H1-norm 1.63e-1 8.16e-2 4.08e-2 2.04e-2 1.02e-2 ≈ 2.00
t = 1 L2-norm 8.07e-4 2.02e-4 5.03e-5 1.25e-5 3.05e-6 ≈ 4.02

H1-norm 2.02e-2 1.01e-2 5.04e-3 2.52e-3 1.26e-3 ≈ 2.00

Table 4. Nonsmooth initial data, example (c)(2): α = 0.5
at t = 0.005, 0.01, 1.

Time h 1/8 1/16 1/32 1/64 1/128 ratio
t = 0.005 L2-norm 1.08e-2 2.71e-3 6.79e-4 1.69e-4 4.13e-5 ≈ 4.03

H1-norm 2.28e-1 1.14e-2 5.71e-2 2.86e-2 1.43e-2 ≈ 2.00
t = 0.01 L2-norm 7.98e-3 2.00e-3 4.99e-4 1.23e-4 2.91e-5 ≈ 4.02

H1-norm 1.73e-1 8.67e-2 4.34e-2 2.17e-2 1.08e-2 ≈ 2.00
t = 1 L2-norm 8.05e-4 2.01e-4 5.03e-5 1.25e-5 3.07e-6 ≈ 4.01

H1-norm 2.02e-2 1.01e-2 5.07e-3 2.53e-3 1.27e-3 ≈ 2.00

mass method yield almost identical results for this example. Although not
presented, we note that similar observations hold for other examples as well.
Hence, we have focused our presentation on the lumped mass method.

Table 5. Nonsmooth initial data, example (c)(3): α = 0.5
at t = 0.005, 0.01, 1

time h 1/8 1/16 1/32 1/64 1/128 ratio
t = 0.005 L2-norm 8.54e-3 2.16e-3 5.45e-4 1.31e-4 3.17e-5 ≈ 4.06

H1-norm 2.18e-1 1.08e-1 5.38e-2 2.68e-2 1.34e-2 ≈ 2.00
t = 0.01 L2-norm 6.54e-3 1.64e-3 4.14e-4 1.06e-4 2.90e-5 ≈ 3.96

H1-norm 1.63e-1 8.04e-2 4.00e-2 2.00e-2 9.96e-3 ≈ 2.00
t = 1 L2-norm 8.10e-4 2.03e-4 5.07e-5 1.27e-5 3.23e-6 ≈ 3.99

H1-norm 1.82e-2 9.02e-3 4.46e-3 2.22e-3 1.11e-3 ≈ 2.01

6.4. Numerical experiments for initial data a Dirac δ-function. We
note that this case is not covered by our theory. Formally, the orthogonal L2-
projection Ph is not well defined for such functions. However, we can look at
(v, χ) for χ ∈ Xh ⊂ H1

0 (Ω) as a duality pairing between the spaces H−1(Ω)
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Table 6. Nonsmooth initial data, example (c)(3) with α =
0.5 at t = 0.005, 0.01, 1 by the Galerkin method.

time h 1/8 1/16 1/32 1/64 1/128 ratio
t = 0.005 L2-norm 8.60e-3 2.14e-3 5.30e-4 1.28e-4 2.85e-5 ≈ 4.11

H1-norm 1.78e-1 9.78e-2 5.11e-2 2.61e-2 1.32e-2 ≈ 1.96
t = 0.01 L2-norm 6.56e-3 1.64e-3 4.06e-4 9.94e-5 2.29e-5 ≈ 4.11

H1-norm 1.34e-1 7.34e-2 3.82e-2 1.95e-2 9.85e-3 ≈ 1.95
t = 1 L2-norm 8.07e-4 2.02e-4 5.04e-5 1.25e-5 3.09e-6 ≈ 4.03

H1-norm 1.54e-2 8.30e-3 4.29e-3 2.18e-3 1.10e-3 ≈ 1.96

and H1
0 (Ω) and therefore (δ 1

2
, χ) = χ(1

2). If x = 1
2 is a mesh point, say

xL, then we can define Phδ 1
2

appropriately with its finite element expansion

given by the Lth column of the inverse of the mass matrix. This was the
initial data for the semidiscrete problem that we used in our computations.
In Table 7 we show the L2- and H1-norm of the error for this case. It is

noted that the H1-norm of the error converges as O(h
1
2 ), while the error in

the L2-norm converges as O(h
3
2 ); see the last column of Table 7. It is quite

remarkable that we can practically have good convergence rates in L2- and
H1-norm for such very weak solutions. A theoretical justification of these
rates is a subject of our current work.

Table 7. Lumped mass FEM with initial data a Dirac δ-
function, α = 0.5, t = 0.005, 0.01, 1.

time h 1/8 1/16 1/32 1/64 1/128 ratio
t = 0.005 L2-norm 7.24e-2 2.66e-2 9.54e-3 3.40e-3 1.21e-3 ≈ 2.79

H1-norm 1.51e0 1.07e0 7.60e-1 5.40e-1 3.81e-1 ≈ 1.41
t = 0.01 L2-norm 5.20e-2 1.89e-2 6.77e-3 2.40e-3 8.54e-4 ≈ 2.79

H1-norm 1.07e0 7.59e-1 5.37e-1 3.80e-1 2.70e-1 ≈ 1.41
t = 1 L2-norm 5.47e-3 1.93e-3 6.84e-4 2.42e-4 8.56e-5 ≈ 2.79

H1-norm 1.07e-1 7.58e-2 5.37e-2 3.80e-2 2.70e-2 ≈ 1.41

6.5. Numerical experiments for variable coefficients, example (e).
Although we do not have an explicit representation of the exact solution,
we compare the numerical solution with the approximate solution obtained
on very fine meshes, namely, with mesh-size h = 1/512 and time-step size
τ = 1.0 × 10−5. Normalized L2- and H1-norms of the error are reported
in Table 8 for t = 0.01 for α = 0.5. The results confirm the theoretically
predicted rate.

In summary, the convergence rates observed for all the numerical ex-
periments are in excellent agreement with the theoretical findings for both
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Table 8. Numerical results for variable coefficients and non-
smooth initial data with α = 0.5 at t = 0.01.

h 1/8 1/16 1/32 1/64 1/128 ratio
L2-error 3.24e-3 8.21e-4 2.05e-4 5.09e-5 1.23e-6 ≈ 4.02
H1-error 7.15e-2 3.60e-2 1.80e-2 8.94e-3 4.36e-3 ≈ 2.01

smooth and nonsmooth initial data, including also the case of the recovered
gradient Gh(uh) discussed in Section 5, see also Remark 5.1.
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