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Pre-asymptotic error Analysis of CIP-FEM and FEM

for Helmholtz Equation with high Wave Number.

Part II: hp version

Lingxue Zhu∗ Haijun Wu†

Abstract

In this paper, which is part II in a series of two, the pre-asymptotic error analysis of the continuous
interior penalty finite element method (CIP-FEM) and the FEM for the Helmholtz equation in
two and three dimensions is continued. While part I contained results on the linear CIP-FEM
and FEM, the present part deals with approximation spaces of order p ≥ 1. By using a modified
duality argument, pre-asymptotic error estimates are derived for both methods under the condition of
kh

p
≤ C0

(

p

k

) 1
p+1 , where k is the wave number, h is the mesh size, and C0 is a constant independent of

k, h, p, and the penalty parameters. It is shown that the pollution errors of both methods in H1-norm

are O(k2p+1h2p) if p = O(1) and are O
(

k

p2

(

kh

σp

)2p
)

if the exact solution u ∈ H2(Ω) which coincide

with existent dispersion analyses for the FEM on Cartesian grids. Here σ is a constant independent
of k, h, p, and the penalty parameters. Moreover, it is proved that the CIP-FEM is stable for any
k, h, p > 0 and penalty parameters with positive imaginary parts. Besides the advantage of the
absolute stability of the CIP-FEM compared to the FEM, the penalty parameters may be tuned to
reduce the pollution effects.

Key words. Helmholtz equation, large wave number, pre-asymptotic error estimates, continuous
interior penalty finite element methods, finite element methods
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1 Introduction

This is the second installment in a series (cf. [47]) which is devoted to pre-asymptotic stability and error
estimates of hp versions of some continuous interior penalty finite element method (CIP-FEM) and the
finite element method (FEM) for the following Helmholtz problem:

−∆u− k2u = f in Ω,(1.1)

∂u

∂n
+ iku = g on Γ,(1.2)

where Ω ⊂ R
d, d = 2, 3 is a domain with smooth boundary, Γ := ∂Ω, i =

√
−1 denotes the imaginary

unit, and n denotes the unit outward normal to ∂Ω. The above Helmholtz problem is an approximation
of the following acoustic scattering problem (with time dependence eiωt):

−∆u− k2u = f in R
d,(1.3)

√
r
(∂(u− uinc)

∂r
+ ik(u− uinc)

)

→ 0 as r = |x| → ∞,(1.4)

where uinc is the incident wave and k is known as the wave number. The Robin boundary condition
(1.2) is known as the first order approximation of the radiation condition (1.4) (cf. [24]). We remark
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that the Helmholtz problem (1.1)–(1.2) also arises in applications as a consequence of frequency domain
treatment of attenuated scalar waves (cf. [23]).

It is well-known that the error bound of the finite element solution to the Helmholtz problem (1.1)–
(1.2) usually consists of two parts, one is the same order as the error of the best approximation of u from
the finite element space, another one is worse than the convergence order of the best approximation and
dominates the error bound of the finite element solution for large wave number k (relative to h and p)
[1, 5, 6, 21, 25, 26, 27, 31, 34, 35, 45, 47]. The second part is the so-called pollution error in the literature.
We recall that, the term “asymptotic error estimate” refers to the error estimate without pollution error
and the term “pre-asymptotic error estimate” refers to the estimate with non-negligible pollution effect.
The latest asymptotic error analysis was given by Melenk and Sauter [39, 40]. It is shown that, the
hp-FEM is pollution-free in the H1-norm if

kh

p
+ k

(kh

σp

)p
is small enough,(1.5)

where h is the mesh size, p is the polynomial degree of finite element space, and σ is some positive constant
independent of k, h, and p. In particular, the hp-FEM is pollution-free under either of the following two
conditions:

(1.6) p = O(1) fixed independent of k and k1+
1
ph is small enough,

(1.7) p ≥ c lnk and
k h

p
is small enough,

where c is some positive constant independent of k, h, and p. Although the above results improve greatly

the previous results which require k2h
p small enough (cf. [34, 35]), the pre-asymptotic error estimates are

still worth to be studied based on but not limited to the following considerations:

• For fixed p, the pollution effect can be reduced substantially but cannot be avoided in principle (cf.
[6, 5]).

• Implementations of high order FEMs, e.g. p ≥ ln k for large k, are not easy for problems with
complicated geometries or different materials.

• Given a tolerance ε, one wish to use as small as possible number of degrees of freedom, or in other
words, as large as possible mesh size h, to achieve this tolerance. We denote the maximum mesh
size by h(k, ε). Then h(k, ε) always locates in the pre-asymptotic range for large k because the
pollution error dominates the error bound. For example, when p = 1, for large k, the pollution
term is O(k3h2) (cf. [34, 47]) and hence h(k, ε) = O

(

(ε/k3)1/2
)

which is not in the asymptotic
range (0, C/k2) implied by the condition (1.6).

• The pre-asymptotic error analysis of FEM is hard for higher dimensional problems. To the best
of the authors’ knowledge, besides the first part of this series [47] for the linear FEM, no work
has been done ever since the pioneer works of Ihlenburg and Babuška [34, 35] for one dimensional
problems.

The purpose of this paper and the companion paper [47] is twofold: One is to derive pre-asymptotic
error estimates for the FEM for the Helmholtz equation in two and three dimensions, under the condition

of kh
p ≤ C0

(

p
k

)
1

p+1 for some positive constant C0 independent of k, h, and p. Clearly, this condition

extends the asymptotic range given by (1.5). For example, when p = O(1), the above condition is

satisfied if k1+
1

p+1h is small enough. This would be the condition obtained for the (p + 1)-th order
FEM by “standard” arguments (cf. (1.6)). Another purpose is to analyze some CIP-FEM which is
absolutely stable (that is, stable for any k, h, and p) and capable of achieving much less pollution effect
than the FEM for fixed p. The CIP-FEM, which was first proposed by Douglas and Dupont [22] for
elliptic and parabolic problems in 1970’s and then successfully applied to convection-dominated problems
as a stabilization technique [13, 14, 15, 16, 17], modifies the sesquilinear form of the FEM by adding
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the following least squares term penalizing the jump of the gradient of the discrete solution at mesh
interfaces:

J(u, v) :=
∑

e∈EI
h

iγ
he
p2

〈[

∂u

∂ne

]

,

[

∂v

∂ne

]〉

e

.(1.8)

Note that the penalty parameter iγ is chosen as a complex number in this paper and [47] instead of the
real numbers as usual. The paper [47] has considered the linear case p = 1 and this paper will be devoted
to the hp-version. To be precise, we obtain the following results:

(i) There exists a constant C0 > 0 independent of k, h, and γ, such that if k & 1, 0 ≤ γ . 1, and

(1.9)
kh

p
≤ C0

(p

k

)
1

p+1

,

then the following pre-asymptotic error estimates hold for both the CIP-FEM and the FEM:

‖u− uh‖H1(Ω) ≤















C1

(h

p
+

1

p

(kh

σp

)p)

+ C2
k

p2

(kh

σp

)2p

, if u ∈ H2(Ω),

C1(kh)
p + C2k(kh)

2p, if p = O(1) and ‖u‖Hp+1(Ω) . kp.

Here σ is a constant independent of k, h, p, and the penalty parameters. Note that the pollution

term is O(k2p+1h2p) if p = O(1) and ‖u‖Hp+1(Ω) . kp and is O
(

k
p2

(

kh
σp

)2p
)

if u ∈ H2(Ω).

(ii) The CIP-FEM attains a unique solution for any k > 0, h > 0, p > 0, and γ > 0.

(iii) Estimates in the L2-norm are also obtained.

We remark that the numerical tests in [47] for the linear CIP-FEM show that the penalty parameter may
be tuned to greatly reduce the pollution errors.

Error analysis and dispersion analysis are two main tools to understand numerical behaviors in short
wave computations. The later one, which is usually performed on structured meshes, estimates the error
between the wave number k of the continuous problem and some discrete wave number (denoted by ω) of
the numerical scheme [1, 2, 21, 31, 34, 35, 45, 46]. In particular, it is shown for the hp-FEM (cf. [1, 35])
that

k − ω =







O
(

k2p+1h2p
)

if kh≪ 1,

O
(k

p

(ekh

4p

)2p)

if kh≫ 1 and 2p+ 1 >
ekh

2
.

By contrast, our pre-asymptotic error analysis, which works also for unstructured meshes, gives error
estimates between the exact solution u and the discrete solution uh. Clearly, our pollution error bounds
in H1-norm coincide with the phase difference |k − ω| as above.

Our analysis relies on two novel tricks and the profound stability estimates for the continuous problem
given in [39, 40]. The first one is a modified duality argument (or Aubin-Nitsche trick). The traditional
duality argument is a crucial step in asymptotic error analyses of FEM for scattering problems, which is
usually used to estimate the L2-error of the finite element solution by its H1-error (cf. [4, 23, 35, 39, 40,
42]). Our key idea is to use some special designed elliptic projections in the duality-argument step so that
we can bound the L2-error of the discrete solution by using the errors of the elliptic projections of the
exact solution u and thus obtain the L2-error estimate directly by the modified duality argument. This
helps us to derive pre-asymptotic error estimates for the CIP-FEM and the FEM under the condition
(1.9). The second trick is used to prove the absolute stability of the CIP-FEM. One of the authors and
Feng [26, 27] have developed an approach to analyze the stability of the interior penalty discontinuous
Galerkin methods which makes use of the special test function vh := ∇uh ·(x−xΩ) (defined element-wise)
and a local version of the Rellich identity (for the Laplacian) and mimics the stability analysis for the
PDE solutions given in [38, 20, 32]. Here xΩ is a point such that the domain Ω is strictly star-shaped
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with respect to it. But the function vh is not in the approximation space of CIP-FEM which is the same
as that of the FEM, i.e., the space of continuous piecewise (mapped) polynomials, and thus, it can not
server as a test function for the CIP-FEM. We circumvent this difficulty by using the L2 projection of
vh onto the approximation space of CIP-FEM instead. By using the so-called “Oswald interpolation”
[15, 33, 36, 41] we may show that the difference between vh and its L2 projection is estimated by the
jump of vh at mesh interfaces, and hence, controlled by using the jump term (1.8) in the CIP-FEM. We
remark that the technique for deriving the stability of the linear CIP-FEM developed in the first part of
the series [47] does not work for higher order methods because it relies on the fact of ∆uh = 0 on each
element.

The remainder of this paper is organized as follows. The CIP-FEM is introduced in Section 2. Some
preliminary results, including the stability of the continuous solution, the approximation properties of
the hp-finite element space, and estimates of some elliptic projections, are cited or proved in Section 3.
In Section 4, by using an improved duality argument, some pre-asymptotic error estimates in H1- and

L2-norms are given for both CIP-FEM and FEM under the condition that
(

k
p

)
1

p+1 kh
p is small enough. In

Section 5, the CIP-FEM is shown to be stable for any k > 0, h > 0, p > 0, and γ > 0. In Section 6,
pre-asymptotic error estimates of the CIP-FEM are proved for k > 0, h > 0, p > 0, and γ > 0 by
utilizing the error estimates for the elliptic projection, the stability results for the CIP-FEM, and the
triangle inequality. The proofs of two preliminary lemmas on hp-approximation properties are given in
Appendix A.

Throughout the paper, C is used to denote a generic positive constant which is independent of h, p,
k, f , g, and the penalty parameters. We also use the shorthand notation A . B and B & A for the
inequality A ≤ CB and B ≥ CA. A ≃ B is a shorthand notation for the statement A . B and B . A.
We assume that k & 1 since we are considering high-frequency problems. For the ease of presentation, we
assume that k is constant on the domain Ω. We also assume that Ω is a strictly star-shaped domain with
an analytic boundary. Here “strictly star-shaped” means that there exist a point xΩ ∈ Ω and a positive
constant cΩ depending only on Ω such that

(1.10) (x− xΩ) · n ≥ cΩ, ∀x ∈ ∂Ω.

Sure the theory of this paper can be extended to the case of polyhedral domains. The extensions to other
types of boundary conditions, such as PML absorbing boundary condition (cf. [11, 10, 18]) and DtN
boundary condition (cf. [39]), will be addressed in future works.

2 Formulation of CIP-FEM

To formulate our CIP-FEM, we first introduce some notation. The standard space, norm and inner
product notation are adopted. Their definitions can be found in [12, 19]. In particular, (·, ·)Q and 〈·, ·〉Σ
for Σ ⊂ ∂Q denote the L2-inner product on complex-valued L2(Q) and L2(Σ) spaces, respectively. Denote
by (·, ·) := (·, ·)Ω and 〈·, ·〉 := 〈·, ·〉∂Ω.

For the triangulation of Ω we adopt the setting of [39, 40]. The triangulation Th consists of elements
which are the image of the reference triangle (in two dimensions) or the reference tetrahedron (in three
dimensions). We do not allow hanging nodes and assume—as is standard—that the element maps of
elements sharing an edge or a face induce the same parametrization on that edge or face. Additionally,
the element maps FK from the reference element K̂ to K ∈ Th satisfy the assumption 5.1 in [40]. For
any triangle/tetrahedron K ∈ Th, we define hK := diam(K). Similarly, for each edge/face e of K ∈ Th,
define he := diam(e). Let h = maxK∈Th

hK . We define

EI
h := set of all interior edges/faces of Th,

EB
h := set of all boundary edges/faces of Th on Γ.

We also define the jump [v] of v on an interior edge/face e = ∂K ∩ ∂K ′ as

[v] |e :=
{

v|K − v|K′ , if the global label of K is bigger,
v|K′ − v|K , if the global label of K ′ is bigger.
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For every e = ∂K ∩ ∂K ′ ∈ EI
h , let ne be the unit outward normal to edge/face e of the element K if the

global label of K is bigger and of the element K ′ if the other way around. For every e ∈ EB
h , let ne = n

the unit outward normal to ∂Ω.
Now we define the “energy” space V and the sesquilinear form ah(·, ·) on V × V as follows:

V := H1(Ω) ∩
∏

K∈Th

H2(K),

ah(u, v) := (∇u,∇v) + J(u, v) ∀u, v ∈ V,(2.1)

where

J(u, v) :=
∑

e∈EI
h

iγe
he
p2

〈[

∂u

∂ne

]

,

[

∂v

∂ne

]〉

e

,(2.2)

and γe, e ∈ EI
h are nonnegative numbers to be specified later.

Remark 2.1. (a) The terms in J(u, v) are so-called penalty terms. The penalty parameter in J(u, v) is
iγe. So it is a pure imaginary number with positive imaginary part. It turns out that if it is replaced by
a complex number with positive imaginary part, the ideas of the paper still apply. Here we set their real
parts to be zero partly because the terms from real parts do not help much (and do not cause any problem
either) in our theoretical analysis and partly for the ease of presentation.

(b) Penalizing the jumps of normal derivatives was used early by Douglas and Dupont [22] for second
order PDEs and by Babuška and Zlámal [8] for fourth order PDEs in the context of C0 finite element
methods, by Baker [9] for fourth order PDEs and by Arnold [3] for second order parabolic PDEs in the
context of IPDG methods.

(c) In this paper we consider the scattering problem with time dependence eiωt, that is, the signs before
i’s in the Sommerfeld radiation condition (1.4) and its first order approximation (1.2) are positive. If we
consider the scattering problem with time dependence e−iωt, that is, the signs before i’s in (1.4) and (1.2)
are negative, then the penalty parameters should be complex numbers with negative imaginary parts.

It is clear that J(u, v) = 0 if u ∈ H2(Ω) and v ∈ V . Therefore, if u ∈ H2(Ω) is the solution of
(1.1)–(1.2), then

(2.3) ah(u, v)− k2(u, v) + ik 〈u, v〉 = (f, v) + 〈g, v〉 , ∀v ∈ V.

Let Vh be the hp-CIP approximation space, that is,

Vh :=
{

vh ∈ H1(Ω) : vh |K ◦FK ∈ Pp(K̂), ∀K ∈ Th
}

,

where Pp(K̂) denote the set of all polynomials whose degrees do not exceed p on K̂. Then our CIP-FEMs
are defined as follows: Find uh ∈ Vh such that

(2.4) ah(uh, vh)− k2(uh, vh) + ik 〈uh, vh〉 = (f, vh) + 〈g, vh〉 , ∀vh ∈ Vh.

We remark that if the parameters γe ≡ 0, then the above CIP-FEM becomes the standard FEM.
The following (semi-)norms on the space V are useful for the subsequent analysis:

‖v‖1,h :=

(

‖∇v‖2L2(Ω) +
∑

e∈EI
h

γe
he
p2

∥

∥

∥

∥

[

∂v

∂ne

]
∥

∥

∥

∥

2

L2(e)

)1/2

,(2.5)

‖|v|‖ :=
(

‖v‖21,h + k ‖v‖2L2(Γ)

)
1
2 .(2.6)

In the next sections, we shall consider the pre-asymptotic stability and error analysis for the above
CIP-FEM and the FEM. For the ease of presentation, we assume that γe ≃ γ for some positive constant
γ and that hK ≃ h.
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3 Preliminary lemmas

In this section, we first recall the stability estimates of the continuous problem from Melenk and Sauter
[39, 40]. Then we consider the hp-approximation estimates of the discrete space Vh. These estimates
improve slightly the estimates in [40] when u ∈ H2(Ω). Finally, we analyze some elliptic projections
which are crucial for our pre-asymptotic analysis.

3.1 Stability estimates of the continuous problem

Let ∇n stand for derivatives of order n; more precisely, for a function u: Ω → R
d, Ω ⊂ R

d, |∇nu(x)|2 =
∑

α∈Nd
0 :|α|=n

n!
α! |Dαu(x)|2. The following lemma (cf. [40, Theorem 4.10]) says that the solution u to the

continuous problem (1.1)–(1.2) can be decomposed into the sum of an elliptic part and an analytic part
u = uE + uA where uE is usually non-smooth but the H2-bound of uE is independent of k and uA is
oscillatory but the Hj-bound of uA is available for any integer j ≥ 0.

Lemma 3.1. The solution u to the problem (1.1)–(1.2) can be written as u = uE + uA, and satisfies

‖uE‖H2(Ω) + k|uE |H1(Ω) + k2‖uE‖L2(Ω) ≤ CCf,g ,(3.1)

|uA|H1(Ω) + k‖uA‖L2(Ω) ≤ CCf,g ,(3.2)

∀p ∈ N0, ‖∇p+2uA‖L2(Ω) ≤ Cλpk−1 max{p, k}p+2Cf,g.(3.3)

Here, λ > 1 independent of k and Cf,g := ‖f‖L2(Ω) + ‖g‖H1/2(Γ).

Remark 3.1. An direct consequence of the above lemma is that

‖u‖H2(Ω) . kCf,g.

This estimate was proved in [20, 32, 38].

3.2 Approximation properties

In this subsection we consider to approximate the solution u to the problem (1.1)–(1.2) by finite element
functions in Vh. We give two types of approximation estimates in both L2-norm and the norm ‖|·|‖
defined in (2.6). The first type of estimates can be applied to smooth solution and gives higher order
convergences both in h and p. The second type of estimates assumes only H2 regularity and gives first
order convergences (even for higher order elements), but it uses the decomposition given in Lemma 3.1
and is more subtle than the first one. The proofs are a little long and will be given in the appendix.

Lemma 3.2. Let s ≥ 2 and µ = min{p+1, s}. Suppose u ∈ Hs(Ω). Then there exists ûh ∈ Vh such that

‖u− ûh‖L2(Ω) .
hµ

ps
‖u‖Hs(Ω),(3.4)

‖|u− ûh|‖ . Cerr
hµ−1

ps−1
‖u‖Hs(Ω),(3.5)

where Cerr :=
(

1 + γ + kh
p

)
1
2 .

The following lemma gives approximation estimates of the solution to the problem (1.1)-(1.2).

Lemma 3.3. Let u be the solution to the problem (1.1)-(1.2). Then there exist ûh ∈ Vh and a constant
σ > 0 independent of k, p, h, and the penalty parameters, such that

‖u− ûh‖L2(Ω) .
(h2

p2
+

h

p2

(kh

σp

)p)

Cf,g,(3.6)

‖|u− ûh|‖ . Cerr

(h

p
+

1

p

(kh

σp

)p)

Cf,g,(3.7)

where Cf,g := ‖f‖L2(Ω) + ‖g‖H1/2(Γ) and Cerr :=
(

1 + γ + kh
p

)
1
2 .
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Remark 3.2. The above estimates are based on the results from [39, 40] and a duality argument. Similar
estimates have been given in [39, 40] as follows

inf
vh∈Vh

(

‖∇(u − vh)‖L2(Ω) + k ‖u− vh‖L2(Ω)

)

.
(

1 +
kh

p

)(h

p
+
(kh

σp

)p)

Cf,g.

Our estimates in this lemma improve a little the above estimate in terms of p. See also Remark A.1.

3.3 Elliptic projections

In this subsection, we introduce two kind of elliptic projections and estimate the approximation errors
of them. For any u ∈ V , we define its elliptic projections u+h ∈ Vh and u−h ∈ Vh by the following two
formulations, respectively.

(3.8) ah(u
+
h , vh) + ik〈u+h , vh〉 = ah(u, vh) + ik〈u, vh〉 ∀vh ∈ Vh,

(3.9) ah(vh, u
−
h ) + ik〈vh, u−h 〉 = ah(vh, u) + ik〈vh, u〉 ∀vh ∈ Vh.

Let us take a look at the projections from other points of view. Define

a±h (u, v) := (∇u,∇v)±
∑

e∈EI
h

iγe
he
p2

〈[

∂u

∂ne

]

,

[

∂v

∂ne

]〉

e

.

Then a+h = ah, a
−
h (u, v) = ah(v, u) (cf. (2.1)), and clearly, u±h ∈ Vh satisfies

(3.10) a±h (u
±
h , vh)± ik〈u±h , vh〉 = a±h (u, vh)± ik〈u, vh〉 ∀vh ∈ Vh.

In other words, u±h is an CIP finite element approximation to the solution u of the following (complex-
valued) Poisson problem:

−△u = F in Ω,

∂u

∂n
± iku = ψ on Γ,

for some given function F and ψ which are determined by u.
Next, we estimate the errors of u±h . From (3.10) we have the following Galerkin orthogonality:

(3.11) a±h (u − u±h , vh)± ik〈u− u±h , vh〉 = 0 ∀vh ∈ Vh.

We state the following continuity and coercivity properties for the sesquilinear form ah(·, ·). Since they
follow easily from (2.1)-(2.5), so we omit their proofs to save space.

Lemma 3.4. For any v, w ∈ V ,

(3.12) |a±h (v, w)|, |a±h (w, v)| ≤ ‖v‖1,h‖w‖1,h,

(3.13) Re a±h (v, v)± Im a±h (v, v) = ‖v‖21,h.

Lemma 3.5. Suppose u is any function in H2(Ω). Then there hold the following estimates:

∥

∥

∣

∣u− u±h
∣

∣

∥

∥ . inf
zh∈Vh

‖|u− zh|‖ ,(3.14)

‖u− u±h ‖L2(Ω) . Cerr
h

p
inf

zh∈Vh

‖|u− zh|‖ ,(3.15)

where Cerr :=
(

1 + γ + kh
p

)
1
2 .
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Proof. We only prove the estimates for u+h since the proof for u−h follows almost the same procedure. For
any zh ∈ Vh, let η =u− u+h , ηh=u

+
h − zh. From ηh + η = u− zh and (3.11), we have

(3.16) ah(η, η) + ik〈η, η〉 = ah(η, u− zh) + ik〈η, u− zh〉.

Applying Lemma 3.4 and (3.16) we can obtain that

‖η‖21,h = Re ah(η, η) + Im ah(η, η)

= Re(ah(η, η) + ik〈η, η〉) + Im(ah(η, η) + ik〈η, η〉)− k〈η, η〉
= Re(ah(η, u− zh) + ik〈η, u− zh〉)

+ Im(ah(η, u− zh) + ik〈η, u− zh〉)− k‖η‖L2(Γ)

≤ C
(

‖η‖1,h‖u− zh‖1,h + k‖η‖L2(Γ)‖u− zh‖L2(Γ)

)

− k‖η‖L2(Γ).

Therefore,

(3.17) ‖η‖21,h + k‖η‖2L2(Γ) . ‖u− zh‖21,h + k‖u− zh‖2L2(Γ).

That is, (3.14) holds.
To show (3.15), we use the Nitsche’s duality argument (cf. [12, 19]). Consider the following auxiliary

problem:

−△w = η in Ω,(3.18)

∂w

∂n
− ikw = 0 on Γ.(3.19)

It can be shown that w satisfies

(3.20) ‖w‖H2(Ω) . ‖η‖L2(Ω).

As a matter of fact, the PDE theory shows that |w|H2(Ω) ≤ C(Ω)
(

‖∆w‖L2(Ω)+‖w‖H1(Ω)

)

(cf. [37]), and

testing (3.18) by the conjugate of w and taking the real part and imaginary part imply that ‖w‖H1(Ω) .

‖η‖L2(Ω).

Let ŵh ∈ Vh be defined in Lemma 3.2 (with u replaced by w). From (3.11),

ah(η, ŵh) + ik〈η, ŵh〉 = 0.

Testing the conjugated (3.18) by η and using the above orthogonality we get

‖η‖2L2(Ω) = −(u− u+h ,△w) = ah(u− u+h , w) + ik〈u− u+h , w〉
= ah(η, w − ŵh) + ik〈η, w − ŵh〉
. ‖η‖1,h‖w − ŵh‖1,h + k‖η‖L2(Γ)‖w − ŵh‖L2(Γ)

. ‖|η|‖ ‖|w − ŵh|‖

. ‖|η|‖Cerr
h

p
‖w‖H2(Ω),

which together with (3.14) and (3.20) gives (3.15). The proof is completed.

By combining Lemma 3.5 and Lemma 3.3 we have the following lemma which gives the error estimates
between the solution to the problem (1.1)-(1.2) and its elliptic projections.

Lemma 3.6. Let u be the solution to the problem (1.1)-(1.2). Then there hold the following estimates:

∥

∥

∣

∣u− u±h
∣

∣

∥

∥ . Cerr

(h

p
+

1

p

(kh

σp

)p)

Cf,g,(3.21)

‖u− u±h ‖L2(Ω) . C2
err

(h2

p2
+

h

p2

(kh

σp

)p)

Cf,g.(3.22)

where Cerr :=
(

1 + γ + kh
p

)
1
2 .
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4 Pre-asymptotic error estimates by duality argument

One crucial step in asymptotic error analyses of FEM for scattering problems is performing the duality
argument (or Aubin-Nitsche trick) (cf. [4, 23, 35, 39, 40, 42]). This argument is usually used to estimate
the L2-error of the finite element solution by its H1-error. In this section we use a modified duality

argument to derive pre-asymptotic error estimates under the condition that
(

k
p

)
1

p+1 kh
p is sufficiently

small. The key idea is to used the elliptic projections from the previous section in the duality-argument
step so that we can bound the L2-error of the discrete solution by using the errors of the elliptic projections
of the exact solution u and thus obtain the L2-error estimate directly by the modified duality argument.

Theorem 4.1. Let u and uh denote the solutions of (1.1)-(1.2) and (2.4),respectively. Suppose 0 ≤ γ . 1.
Then there exist constants C0 and σ > 0 independent of k, h, p, and the penalty parameters, such that if

(4.1)
kh

p
≤ C0

(p

k

)
1

p+1

,

then the following error estimates hold:

‖|u− uh|‖ .
(

1 +
k

p

(kh

σp

)p)

inf
zh∈Vh

‖|u− zh|‖ ,(4.2)

‖u− uh‖L2(Ω) .
(h

p
+

1

p

(kh

σp

)p)

inf
zh∈Vh

‖|u− zh|‖ .(4.3)

Proof. First, we estimate the L2-error by introducing the dual problem and using the elliptic projections of
the solution to the original continuous problem and of the solution to the dual problem. Let eh := u−uh.
Consider the following dual problem:

−△w − k2w = eh in Ω,(4.4)

∂w

∂n
− ikw = 0 on Γ.(4.5)

Let u+h be the elliptic projection of u defined by (3.8) and let w−
h ∈ Vh be the elliptic projection defined

as (3.9). From (2.3) and (2.4) we have the following orthogonality,

(4.6) ah(eh, vh)− k2(eh, vh) + ik〈eh, vh〉 = 0, ∀vh ∈ Vh.

Testing the conjugated (4.4) by eh and using (4.6) with vh = w−
h , (3.8)–(3.9) we get

‖eh‖2L2(Ω) = (∇eh,∇w) − k2(eh, w) + ik〈eh, w〉(4.7)

= ah(eh, w)− k2(eh, w) + ik〈eh, w〉
= ah(eh, w − w−

h ) + ik〈eh, w − w−
h 〉 − k2(eh, w − w−

h )

= ah(u− u+h , w − w−
h ) + ik〈u− u+h , w − w−

h 〉 − k2(eh, w − w−
h ).

Similar to Lemma 3.6, we may show that

∥

∥

∣

∣w − w−
h

∣

∣

∥

∥ . Cerr

(h

p
+

1

p

(kh

σp

)p)

‖eh‖L2(Ω) ,(4.8)

‖w − w−
h ‖L2(Ω) . C2

err

(h2

p2
+

h

p2

(kh

σp

)p)

‖eh‖L2(Ω) .(4.9)

From (4.7), Lemma 3.4, Lemma 3.5, and (4.8)–(4.9), we have

‖eh‖2L2(Ω) ≤ ‖u− u+h ‖1,h‖w − w−
h ‖1,h + k

∥

∥u− u+h
∥

∥

L2(Γ)

∥

∥w − w−
h

∥

∥

L2(Γ)

+ k2 ‖eh‖L2(Ω)

∥

∥w − w−
h

∥

∥

L2(Ω)

≤ CCerr

(h

p
+

1

p

(kh

σp

)p)

‖eh‖L2(Ω) inf
zh∈Vh

‖|u− zh|‖

+ CC2
errk

2
(h2

p2
+
h

p2

(kh

σp

)p)

‖eh‖2L2(Ω) .
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Noting that Cerr = 1+γ+ kh
p . 1+ kh

p , there exists a constant C0 independent of k, h, p, and the penalty
parameters such that

(4.10) if
kh

p
≤ C0

(p

k

)
1

p+1

then CC2
errk

2
(h2

p2
+
h

p2

(kh

σp

)p)

≤ CC2
err

(

C2
0

(p

k

)
2

p+1

+
(C0

σ

)p+1)

≤ 1

2
,

and as a consequence,

(4.11) ‖eh‖L2(Ω) .
(h

p
+

1

p

(kh

σp

)p)

inf
zh∈Vh

‖|u− zh|‖ .

That is, (4.3) holds.
Next we turn to prove (4.2). Let u±h ∈ Vh be the elliptic projections of u defined by (3.8)–(3.9) and

denote by ζ± = u− u±h . It follows from Lemma 3.4 and (4.6) that

‖eh‖21,h =Re ah(eh, eh) + Im ah(eh, eh)

=Re(ah(eh, eh)− k2(eh, eh) + ik〈eh, eh〉) + k2(eh, eh)

+ Im(ah(eh, eh)− k2(eh, eh) + ik〈eh, eh〉)− k‖eh‖2L2(Γ)

=Re(ah(eh, ζ
−)− k2(eh, ζ

−) + ik〈eh, ζ−〉) + k2‖eh‖2L2(Ω)

+ Im(ah(eh, ζ
−)− k2(eh, ζ

−) + ik〈eh, ζ−〉)− k‖eh‖2L2(Γ)

=Re(ah(ζ
+, ζ−)− k2(eh, ζ

−) + ik〈ζ+, ζ−〉) + k2‖eh‖2L2(Ω)

+ Im(ah(ζ
+, ζ−)− k2(eh, ζ

−) + ik〈ζ+, ζ−〉)− k‖eh‖2L2(Γ)

≤2‖ζ+‖1,h‖ζ−‖1,h + k2‖ζ−‖2L2(Ω) + 2k‖ζ+‖L2(Γ)‖ζ−‖L2(Γ) + 2k2‖eh‖2L2(Ω) − k‖eh‖2L2(Γ).

Therefore, from Lemma 3.5 and noting that kh
p , γ . 1,

‖|eh|‖ . inf
zh∈Vh

‖|u− zh|‖+ k‖eh‖L2(Ω).

which together with (4.3) implies (4.2). This completes the proof of the theorem.

Remark 4.1. (i) Noting that if γ = 0 then the CIP-FEM becomes the FEM, the above theorem and the
three corollaries below hold for the standard FEM.

(ii) Noting that the wave length is 2π
k , the condition (4.1) roughly says that about 2π

C0

(

k
p

)
1

p+1 degrees
of freedom are needed in one wave length.

(iii) From (4.10), clearly, the theorem holds under the following condition which is a little more general
(and a little more complicated as well) than (4.1):

(4.12)
k2h2

p2
+
k

p

(kh

σp

)p+1

is sufficiently small.

(iv) If

kh

p
+
k

p

(kh

σp

)p

is sufficiently small,(4.13)

then CIP-FEM, as well as the FEM, is pollution free in the norm ‖|·|‖, i.e., ‖|u− uh|‖ . infzh∈Vh
‖|u− zh|‖ .

The condition (4.13) improves a little the condition of kh
p + k

(

kh
σp

)p
small enough given in [39] for the

FEM, because, for example, if we choose k
(

kh
σp

)p
= c for some fixed constant c so that the latter condition

does not hold, then kh
p + k

p

(

kh
σp

)p
=

(

c
k

)
1
p + c

p may be small enough for an appropriate choice of p and
large k.

(v) The pre-asymptotic error estimates for the linear CIP-FEM and FEM (p = 1) in two and three
dimensions are given in the first part of this series [47]. For the pre-asymptotic error estimates for the
linear and hp version of the FEM in one dimension, we refer to [34] and [35], respectively. To the best
of the authors’ knowledge, there have been no pre-asymptotic error estimates for the higher order FEM
and CIP-FEM (p ≥ 2) in two and three dimensions given in the literature so far.
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From Remark 4.1(iv) we have the following corollary which gives practical sufficient conditions for
asymptotic estimates of the CIP-FEM and the FEM.

Corollary 4.1. Let u and uh denote the solutions of (1.1)-(1.2) and (2.4),respectively. Suppose 0 ≤ γ .
1. Then the following asymptotic error estimate

‖|u− uh|‖ . inf
zh∈Vh

‖|u− zh|‖

holds under any of the following three conditions:

(k

p

)
1
p kh

p
is sufficiently small,(4.14)

p & (ln k)
1
2 and

(k

p

)
1

p+1 kh

p
is sufficiently small,(4.15)

p & ln k and
k h

p
is sufficiently small.(4.16)

Proof. (4.14) implies (4.13) and the conditions (4.15)–(4.16) are all sufficient conditions of (4.14).

Remark 4.2. (i) Our asymptotic estimates hold for both the CIP-FEM and the FEM. Melenk and Sauter
[39, 40] proved recently the asymptotic error estimates for the FEM under either of the condition (4.16)
and the following one:

p = O(1) fixed independent of k and k1+
1
ph is sufficiently small.(4.17)

The above condition is similar to the condition (4.14) but we prefer the later one because it does not
require p = O(1).

(ii) The condition (4.15) says that the theorem 4.1 gives actually asymptotic estimates in the norm

‖|·|‖ under the further condition of p & (ln k)
1
2 . This condition is not strict from the practical point of

view. For example if we take p ≃ (ln k)
1
2 then p grows slowly as k increases, and so is

(

k
p

)
1

p+1 ≃ k
1√
ln k

which is o(kε) for any positive constant ε.
(iii) The condition (4.14) is convenient for fixed p. The condition (4.16) requires p & ln k and is perfect

when implementations of sufficiently high order CIP-FEM or FEM are available. And the condition (4.15)

which requires merely p & (ln k)
1
2 is suitable when only “medium” order methods can be used.

From Theorem 4.1 and Lemma 3.3, we have the following corollary which gives estimates for H2

regular solutions.

Corollary 4.2. Suppose the solution u ∈ H2(Ω). Under the conditions of Theorem 4.1, there hold the
following estimates:

‖u− uh‖1,h .
(h

p
+

1

p

(kh

σp

)p

+
k

p2

(kh

σp

)2p)

Cf,g,(4.18)

‖u− uh‖L2(Ω) .
(h2

p2
+

1

p2

(kh

σp

)2p)

Cf,g.(4.19)

Remark 4.3. (i) If p = o
(

(ln k)
1
2

)

then the condition (4.1) is weaker then the condition (4.14) for asymp-

totic error estimates, and the estimate (4.18) is a pre-asymptotic one with pollution term O
(

k
p2

(

kh
σp

)2p
)

.

(ii) Pre-asymptotic error analysis and dispersion analysis are two main tools to understand numerical
behaviors in short wave computations. The later one which is usually performed on structured meshes
estimates the error between the wave number k of the continuous problem and some discrete wave number
ω [1, 2, 21, 31, 34, 35, 46, 45]. In particular, it is shown for the hp-FEM (cf. [1, 35]) that

k − ω =







O
(

k2p+1h2p
)

if kh≪ 1,

O
(k

p

(ekh

4p

)2p)

if kh≫ 1 and 2p+ 1 >
ekh

2
.
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By contrast, our pre-asymptotic error analysis gives the error between the exact solution u and the discrete
solution uh and works for unstructured meshes. Clearly, our pollution error bounds in H1-norm coincide
with the phase difference |k − ω| as above.

(iii) Our pre-asymptotic estimates in Theorem 4.1 and Corollary 4.2–4.3 hold in particular under the
following condition

(4.20) p = O(1) fixed independent of k and k1+
1

p+1h is small enough,

which extends the asymptotic range given by (4.17).

By combining Theorem 4.1 and Lemma 3.2, we have the following corollary which gives estimates for
Hs regular solutions (s > 2).

Corollary 4.3. Suppose the solution u ∈ Hs(Ω), s > 2. Let µ = min{p+ 1, s}. Under the conditions of
Theorem 4.1, there hold the following estimates:

‖u− uh‖1,h .
(

1 +
k

p

(kh

σp

)p)hµ−1

ps−1
‖u‖Hs(Ω),(4.21)

‖u− uh‖L2(Ω) .
(h

p
+

1

p

(kh

σp

)p)hµ−1

ps−1
‖u‖Hs(Ω),(4.22)

where the invisible constants are independent on p, h, k, and the penalty parameters, but may depend on
s. In particular, if u ∈ Hp+1(Ω) is an oscillating solution in the sense of [35, Definition 3.2], i.e.

‖u‖Hp+1(Ω) . kp,

then the following estimates hold:

‖u− uh‖1,h . C(p)
((kh

σp

)p

+
k

p

(kh

σp

)2p)

,(4.23)

‖u− uh‖L2(Ω) .
C(p)

k

((kh

σp

)p+1

+
k

p

(kh

σp

)2p)

.(4.24)

Remark 4.4. (i) Corollary 4.3 certainly holds for s = 2. We exclude the the case s = 2 in this
corollary because the estimates in (4.21)–(4.22) with s = 2 are worse than those in (4.18)–(4.19). For
s > 2, Corollary 4.3 gives optimal convergence order in h and p while Corollary 4.2 gives only first order
convergence in h and p.

(ii) If p = O(1) and u is an oscillating solution then (4.23) shows clearly that the pollution error in
H1-norm is again bounded by O(k2p+1h2p).

By combining Lemma 3.1 and Corollary 4.2 we have the following stability estimates for the CIP-FEM
(FEM).

Corollary 4.4. Suppose the solution u ∈ H2(Ω). Under the conditions of Theorem 4.1, there hold the
following estimates:

‖uh‖1,h + k ‖uh‖L2(Ω) . Cf,g,

and hence the CIP-FEM is well-posed.

Remark 4.5. If γ = 0, then this corollary gives the following stability estimate for the standard FEM
under the same condition.

‖∇uh‖L2(Ω) + k ‖uh‖L2(Ω) . Cf,g.
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5 Stability estimates for the CIP-FEM

In the previous section we have shown that the CIP-FEM and the FEM are stable under the condition

that kh
p ≤ C0

(

p
k

)
1

p+1 and 0 ≤ γ . 1. The goal of this section is to derive stability estimates (or a priori

estimates) for the CIP-FEM (2.4) for any k, h, p, and γ > 0.
Some stability estimates have been proved for the discontinuous Galerkin methods (cf. [26, 27, 28])

and the spectral-Galerkin methods (cf. [44]). Their analyses mimic the stability analysis for the PDE
solutions given in [20, 32, 38]. The key idea is to use the test functions v = uh and v = (x − xΩ) · ∇uh,
respectively, and use the Rellich identity(for the Laplacian), where xΩ is a point such that the domain
Ω is strictly star-shaped with respect to it (see (1.10)). As for our CIP-FEM (2.4), although the test
function vh = uh can be still be used, the test function vh = (x − xΩ) · ∇uh does not apply since it is
discontinuous and hence not in the test space Vh. We surround this difficulty by taking the L2 projection
of (x− xΩ) · ∇uh to the finite element space Vh. To analyze the error of the L2 projection, we recall the
so-called Oswald interpolation operator IOs, which has been analyzed in [15, 33, 36, 41]. Let Wh be the
space of (discontinuous) piecewise mapped polynomials:

Wh :=
∏

K∈Th

Pp(F
−1
K (K)).(5.1)

Lemma 5.1. There exist an operator IOs :Wh 7→ Vh and a constant Cp depending only on p, such that,
for all K ∈ Th, the following estimate holds:

∀vh ∈ Wh, ‖vh − IOs vh‖L2(K) . Cph
1
2

K

∑

e∈EI
h∩K

‖[vh]‖L2(e),(5.2)

where Cp = p−1 for Cartesian meshes and Cp = p
d−3
2 for triangulations (d = 2, 3).

Lemma 5.2. Let Qh be the L2 projection onto Vh and let Cp be the constant in Lemma 5.1. Then the
following estimate holds:

∀vh ∈Wh, ‖vh −Qhvh‖L2(Th) . Cp

(

∑

e∈EI
h

he‖[vh]‖2L2(e)

)
1
2

,(5.3)

∀vh ∈Wh, ‖∇(vh −Qhvh)‖L2(Th) .
p2Cp

h

(

∑

e∈EI
h

he‖[vh]‖2L2(e)

)
1
2

.(5.4)

Proof. (5.3) follows from ‖vh − Qhvh‖L2(Th) ≤ ‖vh − IOs vh‖L2(Th) and Lemma 5.1. (5.4) follows from
the inverse inequality and (5.3).

We cite the following lemma [26, Lemma 4.1], which establishes two integral identities and play a
crucial role in our analysis.

Lemma 5.3. Let α(x) := x− xΩ, v ∈ ∏

K∈Th

H2(K), K ∈ Th and e ∈ EI
h. Then there hold

d‖v‖2L2(K) + 2Re(v, α · ∇v)K =

∫

∂K

α · nK |v|2,(5.5)

(d− 2)‖∇v‖2L2(K) + 2Re(∇v,∇(α · ∇v))K =

∫

∂K

α · nK |∇v|2.(5.6)

Here xΩ is a point such that the domain Ω is strictly star-shaped with respect to it (see (1.10)).

Remark 5.1. The identity (5.6) can be viewed as a local version of the Rellich identity for the Laplacian
△ (cf. [20]).
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Lemma 5.4. Let uh ∈ Vh solve (2.4). Then

‖∇uh‖2L2(Ω) − k2‖uh‖2L2(Ω) ≤ 2 ‖f‖L2(Ω) ‖uh‖L2(Ω) +
1

k
‖g‖2L2(Γ) ,(5.7)

∑

e∈EI
h

γe
he
p2

∥

∥

∥

∥

[

∂uh
∂ne

]∥

∥

∥

∥

2

L2(e)

+ k‖uh‖2L2(Γ) ≤ 2 ‖f‖L2(Ω) ‖uh‖L2(Ω) +
1

k
‖g‖2L2(Γ) .(5.8)

Proof. Taking vh = uh in (2.4) yields

ah(uh, uh)− k2‖uh‖2L2(Ω) + ik‖uh‖2L2(Γ) = (f, uh) + 〈g, uh〉.(5.9)

Therefore, taking real part and imaginary part of the above equation, we get

‖∇uh‖2L2(Ω) − k2‖uh‖2L2(Ω) ≤ |(f, uh) + 〈g, uh〉|,(5.10)

∑

e∈EI
h

γe
he
p2

∥

∥

∥

∥

[

∂uh
∂ne

]∥

∥

∥

∥

2

L2(e)

+ k‖uh‖2L2(Γ) ≤ |(f, uh) + 〈g, uh〉|.(5.11)

From (5.11),

∑

e∈EI
h

γe
he
p2

∥

∥

∥

∥

[

∂uh
∂ne

]∥

∥

∥

∥

2

L2(e)

+ k‖uh‖2L2(Γ) ≤ |(f, uh) + 〈g, uh〉|

≤ ‖f‖L2(Ω) ‖uh‖L2(Ω) +
1

2k
‖g‖2L2(Γ) +

k

2
‖uh‖2L2(Γ)

which implies (5.8). From (5.10) and (5.8),

‖∇uh‖2L2(Ω) − k2‖uh‖2L2(Ω) ≤ ‖f‖L2(Ω) ‖uh‖L2(Ω) +
1

2k
‖g‖2L2(Γ) +

k

2
‖uh‖2L2(Γ)

≤ 2 ‖f‖L2(Ω) ‖uh‖L2(Ω) +
1

k
‖g‖2L2(Γ) .

That is, (5.7) holds. This completes the proof of the lemma.

From (5.7) and (5.8) we can bound ‖∇uh‖L2(Ω) and the jumps of ∂uh

∂ne
across e ∈ EI

h . In order to get
the desired a priori estimates, we need to derive a reverse inequality whose coefficients can be controlled.
Such a reverse inequality, which is often difficult to get under practical mesh constraints, and stability
estimates for uh will be derived next.

Theorem 5.1. Let uh ∈ Vh solve (2.4) and suppose γe ≃ γ, hK , he ≃ h. Then

(5.12) k‖uh‖L2(Ω) + ‖uh‖1,h . CstaM(f, g),

where

M(f, g) := ‖f‖L2(Ω) + ‖g‖L2(Γ),(5.13)

Csta := 1 +
1

k

(γp4

h2
+
p6C2

p

γh2

)

.(5.14)

Proof. We divide the proof into three steps.
Step 1: Derivation of a representation identity for ‖uh‖L2(Ω). Define vh by vh|K = α · ∇uh|K for

every K ∈ Th, denote by wh = Qhvh, hence wh ∈ Vh. Using this wh as a test function in (2.4) and taking
the real part of resulted equation we get

(5.15) − k2 Re(uh, wh) = Re((f, wh) + 〈g, wh〉 − ah(uh, wh)− ik〈uh, wh〉).
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It follows from (5.5), (5.9), and (5.15) that

2k2‖uh‖2L2(Ω) = k2
∑

K∈Th

∫

∂K

α · nK |uh|2 − (d− 2)k2‖uh‖2L2(Ω)(5.16)

− 2k2 Re(uh, wh)− 2k2Re(uh, vh − wh)

= k2
∑

K∈Th

∫

∂K

α · nK |uh|2 + (d− 2)Re((f, uh) + 〈g, uh〉 − ah(uh, uh))

+ 2Re((f, wh) + 〈g, wh〉 − ah(uh, wh)− ik〈uh, wh〉)

= k2
∑

K∈Th

∫

∂K

α · nK |uh|2 + (d− 2)Re((f, uh) + 〈g, uh〉)

+ 2Re((f, wh) + 〈g, wh〉)−
∑

K∈Th

((d− 2)‖∇uh‖2L2(K) + 2Re(∇uh,∇wh)K)

− 2ReJ(uh, wh) + 2k Im〈uh, wh〉.
Since uh is continuous, we have

∑

K∈Th

∫

∂K

α · nK |uh|2 = 2
∑

e∈EI
h

Re〈α · ne{uh}, [uh]〉e + 〈α · nΩ, |uh|2〉(5.17)

= 〈α · nΩ, |uh|2〉.
Using the identity |a|2 − |b|2 = Re(a+ b)(ā− b̄) followed by the Rellich identity (5.6) we get

∑

K∈Th

((d− 2)‖∇uh‖2L2(K) + 2Re(∇uh,∇wh)K)(5.18)

=
∑

K∈Th

((d− 2)‖∇uh‖2L2(K) + 2Re(∇uh,∇vh)K)

+ 2
∑

K∈Th

Re(∇uh,∇(wh − vh))K

=
∑

K∈Th

∫

∂K

α · nK |∇uh|2 + 2
∑

K∈Th

Re(∇uh,∇(wh − vh))K

= 2
∑

e∈EI
h

Re〈α · ne{∇uh}, [∇uh]〉e + 〈α · nΩ, |∇uh|2〉

+ 2
∑

K∈Th

Re(∇uh,∇(wh − vh))K .

Plugging (5.17) and (5.18) into (5.16) gives

2k2‖uh‖2L2(Ω) = (d− 2)Re((f, uh) + 〈g, uh〉) + 2Re((f, vh) + 〈g, vh〉)(5.19)

+ k2〈α · nΩ, |uh|2〉+ 2k Im〈uh, vh〉 − 〈α · nΩ, |∇uh|2〉
− 2

∑

e∈EI
h

Re〈α · ne{∇uh}, [∇uh]〉e − 2Re J(uh, vh)

− 2ReJ(uh, wh − vh)− 2
∑

K∈Th

Re(∇uh,∇(wh − vh))K

+ 2k Im〈uh, wh − vh〉+ 2Re((f, wh − vh) + 〈g, wh − vh〉).
Step 2: Derivation of a reverse inequality. We bound each term on the right-hand side of (5.19). We

have

2Re((f, vh) + 〈g, vh〉) ≤C‖f‖2L2(Ω) +
1

8
‖∇uh‖2L2(Ω)(5.20)

+ C‖g‖2L2(Γ) +
cΩ
4

∑

e∈EB
h

‖∇uh‖2L2(e).
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It is clear that

k2〈α · nΩ, |uh|2〉 ≤ Ck2‖uh‖2L2(Γ).(5.21)

It follows from the star-shaped assumption on Ω that

2k Im〈uh, vh〉 − 〈α · nΩ, |∇uh|2〉(5.22)

≤ Ck
∑

e∈EB
h

‖uh‖L2(e)‖∇uh‖L2(e) − cΩ
∑

e∈EB
h

‖∇uh‖2L2(e)

≤ Ck2‖uh‖2L2(Γ) −
cΩ
2

∑

e∈EB
h

‖∇uh‖2L2(e).

For an edge/face e ∈ EI
h, let Ke and K ′

e denote the two elements in Th that share e. We have

−2
∑

e∈EI
h

Re〈α · ne{∇uh}, [∇uh]〉e ≤ C
∑

e∈EI
h

(p2

h

)
1
2 ‖∇uh‖L2(Ke

⋃
K′

e)

∥

∥

∥

∥

[

∂uh
∂ne

]∥

∥

∥

∥

L2(e)

(5.23)

≤ 1

8
‖∇uh‖2L2(Ω) + C

p4

γh2

∑

e∈EI
h

γe
he
p2

∥

∥

∥

∥

[

∂uh
∂ne

]
∥

∥

∥

∥

2

L2(e)

.

From (2.2), the trace and inverse inequalities (cf. Lemma A.1), we have

−2ReJ(uh, vh) = −2Re
∑

e∈EI
h

iγe
h

p2

〈

[

∂uh
∂ne

]

,

[

∂vh
∂ne

]

〉

e
(5.24)

.
∑

e∈EI
h

γe
he
p2

∥

∥

∥

∥

[

∂uh
∂ne

]∥

∥

∥

∥

L2(e)

∥

∥

∥

∥

[

∂vh
∂ne

]∥

∥

∥

∥

L2(e)

.
∑

e∈EI
h

γe
he
p2

∥

∥

∥

∥

[

∂uh
∂ne

]∥

∥

∥

∥

L2(e)

(p2

h

)
1
2

∑

K=Ke,K′
e

|vh|H1(K)

.
∑

e∈EI
h

γe
he
p2

∥

∥

∥

∥

[

∂uh
∂ne

]∥

∥

∥

∥

L2(e)

(p2

h

)
1
2

∑

K=Ke,K′
e

p2

h
‖∇uh‖L2(K)

≤ 1

8
‖∇uh‖2L2(Ω) +

γp4

h2

∑

e∈EI
h

γe
he
p2

∥

∥

∥

∥

[

∂uh
∂ne

]
∥

∥

∥

∥

2

L2(e)

.

Next we estimate the terms containing vh −wh = vh −Qhvh. From Lemma 5.2 and the definition of vh,

‖vh − wh‖L2(Th)
.
pCp

γ
1
2

(

∑

e∈EI
h

γe
he
p2

∥

∥

∥

∥

[

∂uh
∂ne

]∥

∥

∥

∥

2

L2(e)

)
1
2

,(5.25)

|vh − wh|H1(Th)
.
p3Cp

γ
1
2h

(

∑

e∈EI
h

γe
he
p2

∥

∥

∥

∥

[

∂uh
∂ne

]
∥

∥

∥

∥

2

L2(e)

)
1
2

.(5.26)
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From (5.26) and the trace inequality in Lemma A.1,

−2ReJ(uh, wh−vh) ≤
∑

e∈EI
h

γe
he
p2

∥

∥

∥

∥

[

∂uh
∂ne

]
∥

∥

∥

∥

L2(e)

‖[∇(wh − vh)]‖L2(e)(5.27)

≤ C
∑

e∈EI
h

γe
he
p2

∥

∥

∥

∥

[

∂uh
∂ne

]∥

∥

∥

∥

L2(e)

∑

K=Ke,K′
e

(p2

h

)
1
2 ‖∇(wh − vh)‖L2(K)

≤ Cγ
1
2

(

∑

e∈EI
h

γe
he
p2

∥

∥

∥

∥

[

∂uh
∂ne

]∥

∥

∥

∥

2

L2(e)

)
1
2

|vh − wh|H1(Th)

≤ C
p3Cp

h

∑

e∈EI
h

γe
he
p2

∥

∥

∥

∥

[

∂uh
∂ne

]∥

∥

∥

∥

2

L2(e)

.

And we have,

−2
∑

K∈Th

Re(∇uh,∇(wh−vh))K ≤ 2
∑

K∈Th

‖∇uh‖L2(K)‖∇(wh − vh)‖L2(K)(5.28)

≤ 1

8
‖∇uh‖2L2(Ω) + C |vh − wh|2H1(Th)

≤ 1

8
‖∇uh‖2L2(Ω) + C

p6C2
p

γh2

∑

e∈EI
h

γe
he
p2

∥

∥

∥

∥

[

∂uh
∂ne

]∥

∥

∥

∥

2

L2(e)

.

From (5.25) and Lemma A.1,

2k Im〈uh, wh − vh〉 ≤ Ck
∑

e∈EB
h

‖uh‖L2(e) ‖wh − vh‖L2(e)(5.29)

≤ Ck ‖uh‖L2(Γ)

(p2

h

)
1
2 ‖wh − vh‖L2(Th)

≤ Ck ‖uh‖L2(Γ)

(p2

h

)
1
2 pCp

γ
1
2

(

∑

e∈EI
h

γe
he
p2

∥

∥

∥

∥

[

∂uh
∂ne

]∥

∥

∥

∥

2

L2(e)

)
1
2

≤ Cp2Cp

( k

γh

)
1
2

(

k ‖uh‖2L2(Γ) +
∑

e∈EI
h

γe
he
p2

∥

∥

∥

∥

[

∂uh
∂ne

]∥

∥

∥

∥

2

L2(e)

)

.

From (5.25), (5.26), and Lemma A.1,

2Re((f, wh − vh) + 〈g, wh − vh〉)(5.30)

. ‖f‖L2(Ω) ‖wh − vh‖L2(Th)
+ ‖g‖L2(Γ)

(p2

h

)
1
2 ‖wh − vh‖L2(Th)

.
(

‖f‖L2(Ω) + ‖g‖L2(Γ)

) p2Cp

(γh)
1
2

(

∑

e∈EI
h

γe
he
p2

∥

∥

∥

∥

[

∂uh
∂ne

]∥

∥

∥

∥

2

L2(e)

)
1
2

. ‖f‖2L2(Ω) + ‖g‖2L2(Γ) +
p4C2

p

γh

∑

e∈EI
h

γe
he
p2

∥

∥

∥

∥

[

∂uh
∂ne

]
∥

∥

∥

∥

2

L2(e)

.

Plugging (5.20)–(5.24) and (5.27)–(5.30) into (5.19) we obtain

2k2‖uh‖2L2(Ω) ≤ |(f, uh) + 〈g, uh〉|+ C(‖f‖2L2(Ω) + ‖g‖2L2(Γ))

+
1

2
‖∇uh‖2L2(Ω) −

cΩ
4

∑

e∈EB
h

‖∇uh‖2L2(e) + C
(

k + p2Cp

( k

γh

)
1
2
)

k‖uh‖2L2(Γ)

+ C
( p4

γh2
+
γp4

h2
+
p3Cp

h
+
p6C2

p

γh2
+ p2Cp

( k

γh

)
1
2
)

∑

e∈EI
h

γe
he
p2

∥

∥

∥

∥

[

∂uh
∂ne

]
∥

∥

∥

∥

2

L2(e)

.
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From (5.8) and the facts

Cp ≥ p−1,
p3Cp

h
. γ +

p6C2
p

γh2
, p2Cp

( k

γh

)
1
2

.
p6C2

p

γh2
+
kh

p2
,

we have

2k2‖uh‖2L2(Ω) +
cΩ
4

∑

e∈EB
h

‖∇uh‖2L(e)

≤ −1

2
‖∇uh‖2L2(Ω) + ‖∇uh‖2L2(Ω) + C(‖f‖2L2(Ω) + ‖g‖2L2(Γ))

+ C
(

k + 1 +
γp4

h2
+
p6C2

p

γh2
+
kh

p2

)(

‖f‖L2(Ω) ‖uh‖L2(Ω) +
1

k
‖g‖2L2(Γ)

)

.

Step 3: Finishing up. It follows from (5.7), (5.13), (5.14), and the above inequality that

2k2‖uh‖2L2(Ω) +
cΩ
4

∑

e∈EB
h

‖∇uh‖2L2(e)

≤ k2‖uh‖2L2(Ω) −
1

2
‖∇uh‖2L2(Ω) + C(‖f‖2L2(Ω) + ‖g‖2L2(Γ))

+ CkCsta

(

‖f‖L2(Ω) ‖uh‖L2(Ω) +
1

k
‖g‖2L2(Γ)

)

≤ 3k2

2
‖uh‖2L2(Ω) −

1

2
‖∇uh‖2L2(Ω) + CC2

staM(f, g)2,

which together with (5.8) implies (5.12). The proof is completed.

Since scheme (2.4) is a linear complex-valued system, an immediate consequence of the stability
estimates is the following well-posedness theorem for (2.4).

Theorem 5.2. The CIP-FEM (2.4) has a unique solution for k > 0, h > 0, p ≥ 1 and γ > 0.

Remark 5.2. (i) For the general case when the meshes may be nonuniform, Theorem 5.1 and Theorem 5.2
still hold with h replaced by h = minK∈Th

hK . The proof is similar and is omitted.
(ii) When p = 1, a better stability estimate is derived in [47] by another approach taking advantage of

∆uh = 0 on each element.
(iii) The stability may be enhanced by an over-penalized technique, just like what is done for the hp-

IPDG method (cf. [27]). More precisely, if we replace ah(uh, vh) in the CIP-FEM (2.4) by the following
sesquilinear

aqh(uh, vh) = (∇uh,∇vh) +
q

∑

j=1

∑

e∈EI
h

iγj,e

(

he
p2

)2j−1 〈[
∂juh

∂nj
e

]

,

[

∂jvh

∂nj
e

]〉

e

,

with γj,e ≃ γj > 0, j = 1, 2, · · · , q, 2 ≤ q ≤ p, then, after some tedious but similar derivations, we may
show that (5.12) holds with Csta replaced by the following stability constant:

Cq
sta = 1 +

1

k

(p4C2
p

γ1h
+

p4C2
p

(γ1γ2)
1
2h

+
p3Cp

h

(

q
∑

j=1

γj
γ1

)
1
2

+
p2

h
max

1≤j≤q−1

( γj
γj+1

)
1
2

+ γq
p4

h2

)

.

We omit the details here. Clearly, if we choose γj ≃ (C2
ph)

2(j−1)
2q−1 , 1 ≤ j ≤ q, then Cq

sta .
p4C

4q−4
2q−1
p

kh
2q

2q−1

,

where Cp is defined in Lemma 5.1. Recall that the best stability constant obtained so far for the hp-IPDG

method is O
( p

8
3

kh
4
3

)

(cf. [27, Theroem 3.3]).
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6 Pre-asymptotic error estimates for the CIP-FEM by using the

stability

In this subsection we shall derive error estimates for scheme (2.4). This will be done by exploiting the
linearity of the Helmholtz equation and making use of the stability estimates derived in Theorem 5.1 and
the projection error estimates established in Lemma 3.6.

Let u and uh denote the solutions of (1.1)-(1.2) and (2.4), respectively. Recall that eh = u− uh. Let
u+h be the elliptic projection of u as defined in (3.8). Write eh = η − ξ with η := u − u+h , ξ := uh − u+h .
From the Galerkin orthogonality (4.6) and (3.8) we get

ah(ξ, vh)− k2(ξ, vh) + ik〈ξ, vh〉Γ = ah(η, vh)− k2(η, vh) + ik〈η, vh〉Γ(6.1)

= −k2(η, vh) ∀vh ∈ Vh.

The above equation implies that ξ ∈ Vh is the solution of scheme (2.4) with sources terms f = −k2η and
g ≡ 0. Then an application of Theorem 5.1 and Lemma 3.5 immediately gives the following lemma.

Lemma 6.1. ξ = uh − u+h satisfies the following estimate:

(6.2) k‖ξ‖L2(Ω) + ‖ξ‖1,h . CstaCerr
k2h

p
inf

zh∈Vh

‖|u− zh|‖ .

We are ready to state our error estimate results for scheme (2.4), which follows from Lemma 3.5,
Lemma 6.1 and an application of the triangle inequality.

Theorem 6.1. Let u and uh denote the solution of (1.1)-(1.2) and (2.4), respectively. Suppose u ∈
Hs(Ω), s ≥ 2. Then

‖u− uh‖1,h .
(

1 + CerrCsta
k2h

p

)

inf
zh∈Vh

‖|u− zh|‖ ,(6.3)

‖u− uh‖L2(Ω) . Cerr

(

1 + kCsta

)h

p
inf

zh∈Vh

‖|u− zh|‖ ,(6.4)

where Cerr :=
(

1 + γ + kh
p

)
1
2 and Csta is defined in Theorem 5.1.

Remark 6.1. (i) For the linear CIP-FEM, we have shown that [47], if γ ≃ 1, then the following pre-
asymptotic error estimate hold for any k, h > 0:

‖u− uh‖1,h ≤
(

C1kh+ C2 min
{

k3h2, 1
} )

Cf,g.

(ii) The theorem can also be extended to the over-penalized CIP-FEM. In particular (cf. Remark 5.2

(iii)), if p ≥ q ≥ 2, and γj ≃ (C2
ph)

2(j−1)
2q−1 , 1 ≤ j ≤ q, then the following pre-asymptotic error estimate

holds for any k, h, p > 0:

‖u− uh‖1,h ≤ C1 inf
zh∈Vh

‖|u− zh|‖+ C2

(

1 +
kh

p

)
1
2

kp3C
4q−4
2q−1
p h

−1
2q−1 inf

zh∈Vh

‖|u− zh|‖ .

The details will be reported in a separate work.

A Approximation by hp-finite element

In this appendix, we prove Lemma 3.2 and Lemma 3.3.

A.1 Proof of Lemma 3.2

We need the following trace and inverse inequalities (cf. [43, 15]).
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Lemma A.1. For any K ∈ Th and z ∈ Pp(F
−1
K (K)),

‖z‖L2(∂K) . ph−
1
2 ‖z‖L2(K),

‖∇z‖L2(K) . p2h−1‖z‖L2(K).

We recall the following well-known hp approximation properties (cf. [7, 29, 30, 39]):

Lemma A.2. Let µ = min{p+ 1, s}. Suppose u ∈ Hs(Ω).
• There exists ǔh ∈ Wh such that,

‖u− ǔh‖Hj(Th) :=
(

∑

K∈Th

‖u− ǔh‖2H2(K)

)
1
2

.
hµ−j

ps−j
‖u‖Hs(Ω), j = 0, 1, 2.(A.1)

• There exists ûh ∈ Vh such that

‖u− ûh‖Hj(Ω) .
hµ−j

ps−j
‖u‖Hs(Ω), j = 0, 1.(A.2)

Here the invisible constants in the two inequalities above depend on s but are independent of k, h, and p.

Clearly, (3.4) holds (cf. (A.2)). It remains to prove (3.5). It follows from the (A.2) and the trace
inequality that

(A.3) ‖u− ûh‖L2(Γ) . ‖u− ûh‖
1
2

L2(Ω) ‖u− ûh‖
1
2

H1(Ω) .
hµ−

1
2

ps−
1
2

‖u‖Hs(Ω).

From the local trace inequality

(A.4) ‖v‖2L2(∂K) . h−1
K ‖v‖2L2(K) + ‖v‖L2(K)‖∇v‖L2(K),

we have

∑

K∈Th

∑

e∈∂K

∥

∥

∥

∥

∂(u− ûh)

∂ne

∥

∥

∥

∥

2

L2(e)

. h−1‖u− ûh‖2H1(Th)
+ ‖u− ûh‖H1(Th)‖u− ûh‖H2(Th).

On the other hand, from Lemma A.1,

‖u− ûh‖H2(Th) ≤ ‖u− ǔh‖H2(Th) + ‖ǔh − ûh‖H2(Th)

. ‖u− ǔh‖H2(Th) +
p2

h
‖ǔh − ûh‖H1(Th)

Therefore, from (A.1) and (A.2),

∑

K∈Th

∑

e∈∂K

∥

∥

∥

∥

∂(u− ûh)

∂ne

∥

∥

∥

∥

2

L2(e)

.
p2

h

h2µ−2

p2s−2
‖u‖2Hs(Ω).

Then it follows from (A.2) and (2.5) that

‖u− ûh‖21,h . ‖∇(u− ûh)‖2L2(Ω) +
∑

e∈EI
h

γe
he
p2

∥

∥

∥

∥

[

∂(u− ûh)

∂ne

]
∥

∥

∥

∥

2

L2(e)

. (1 + γ)
h2µ−2

p2s−2
‖u‖2Hs(Ω).

By combining the above estimate, (A.3), and (2.6) we conclude that (3.5) holds. This completes the
proof of Lemma 3.2.
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A.2 Proof of Lemma 3.3

Lemma A.2 can also be used to approximate the elliptic part of the solution u. The following lemma
gives an approximation to the analytic part of the solution u.

Lemma A.3. Suppose uA is analytic and satisfies (3.2)–(3.3).
• There exists ǔA,h ∈ Wh such that

‖uA − ǔA,h‖Hj(Th) :=
(

∑

K∈Th

‖uA − ǔA,h‖2H2(K)

)
1
2

(A.5)

.
{ h2−j

kp2−j
+
h1−j

p

(kh

σp

)p}

Cf,g, j = 0, 1, 2.

• There exists ûA,h ∈ Vh such that

‖uA − ûA,h‖Hj(Ω) .
{ h2−j

kp2−j
+
h1−j

p2−j

(kh

σp

)p}

Cf,g, j = 0, 1.(A.6)

Here σ > 0 is some constant independent of k, h, and p.

Remark A.1. The following estimate is proved in [39, Theorem 5.5] (see also [40, Proposition 5.3]):

inf
vh∈Vh

(

‖∇(uA − vh)‖L2(Ω) + k ‖uA − vh‖L2(Ω)

)

.
(

1 +
kh

p

)(h

p
+
(kh

σp

)p)

.

Clearly, a combination of our H1-estimate and L2-estimate in (A.6) gives better upper bound than the
above estimate. This is because our L2-estimate improves that implied in the proof of [39, Theorem 5.5].

Proof. Following the proof of [39, Theorem 5.5], we start by defining for each elementK ∈ Th the constant
CK by

(A.7) C2
K :=

∑

p∈N0

‖∇puA‖2L2(K)

(2λmax{p, k})2p

and we note

‖∇puA‖L2(K) ≤ (2λmax{p, k})pCK ∀p ∈ N0,(A.8)
∑

K∈Th

C2
K .

1

k2
C2

f,g.(A.9)

Then, [39, Lemma C.2] and a scaling argument provides an approximant ǔA,h ∈ Wh which satisfies for
j = 0, 1, 2,

‖uA − ǔA,h‖Hj(K) . h−jCK

{( h

h+ σ

)p+1

+
(kh

σp

)p+1}

.

Summation over all elements K ∈ Th gives

‖uA − ǔA,h‖2Hj(Th)
:=

(

∑

K∈Th

‖uA − ǔA,h‖2Hj(K)

)

. h−2j
[( h

h+ σ

)2p+2

+
(kh

σp

)2p+2] ∑

K∈Th

C2
K .

The combination of the above inequality and (A.9) yields

(A.10) ‖uA − ǔA,h‖Hj(Th) .
[ 1

k
h−j

( h

h+ σ

)p+1

+
h1−j

p

(kh

σp

)p]

Cf,g.
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Furthermore, we estimate using h ≤ diam Ω and σ > 0 (independent of h)

h−j
( h

h+ σ

)p+1

=
h2−j

p2−j

hp−1

(h+ σ)p+1
p2−j ≤ h2−j

p2−j

( h

h+ σ

)p−1 p2

σ2
(A.11)

≤ h2−j

p2−j

( diam Ω

σ + diam Ω

)p−1 p2

σ2
.
h2−j

p2−j
,

we therefore arrive at

‖uA − ǔA,h‖Hj(Th) .
[1

k

h2−j

p2−j
+
h1−j

p

(kh

σp

)p]

Cf,g.

That is, (A.5) holds.
Similarly, [39, Lemma C.3] and a scaling argument provides an approximant uA,h ∈ Vh which satisfies

for j = 1,

‖uA − uA,h‖H1(K) . h−1CK

{( h

h+ σ

)p+1

+
(kh

σp

)p+1}

.

Summation over all elements K ∈ Th gives

‖uA − uA,h‖2H1(Ω) .
[

h−2
( h

h+ σ

)2p+2

+
k2

p2

(kh

σp

)2p] ∑

K∈Th

C2
K .

The combination of the above inequality and (A.9), (A.11) yields

‖uA − uA,h‖H1(Ω) .
[ h

k p
+

1

p

(kh

σp

)p]

Cf,g.

We introduce the sesquilinear form a(·, ·) := (∇u,∇v)+(u, v) and define the elliptic projection ûA,h ∈ Vh
of uA by

(A.12) a(ûA,h, vh) = a(uA, vh) ∀vh ∈ Vh.

Then,

‖uA − ûA,h‖2H1(Ω) = a(uA − ûA,h, uA − ûA,h) = a(uA − ûA,h, uA − uA,h)

. ‖uA − ûA,h‖H1(Ω)‖uA − uA,h‖H1(Ω).

Therefore,

(A.13) ‖uA − ûA,h‖H1(Ω) . ‖uA − uA,h‖H1(Ω) .
[ h

k p
+

1

p

(kh

σp

)p]

Cf,g.

To show (A.6), we use the Nitsche’s duality argument and consider the following auxiliary problem:

−△w + w = uA − ûA,h in Ω,(A.14)

∂w

∂n
= 0 on Γ.(A.15)

It can be shown that w satisfies

(A.16) ‖w‖H2(Ω) . ‖uA − ûA,h‖L2(Ω).

Let ŵh ∈ Vh be defined in Lemma A.2. Testing the conjugated (A.14) by uA − ûA,h we get

‖uA − ûA,h‖L2(Ω) = (uA − ûA,h,−△w + w)

= (∇(uA − ûA,h),∇w) + (uA − ûA,h, w)

= a(uA − ûA,h, w) = a(uA − ûA,h, w − ŵh)

. ‖uA − ûA,h‖H1(Ω)‖w − ŵh‖H1(Ω)

. ‖uA − ûA,h‖H1(Ω)
h

p
‖w‖H2(Ω),

which together with (A.16) and (A.13) gives (A.6). The proof is completed.
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Next we prove Lemma 3.3. We consider to approximate uE and uA, respectively. First, from
Lemma A.2, there are two functions ûE,h ∈ Vh and ǔE,h ∈Wh such that

‖uE − ûE,h‖Hj(Ω) .
h2−j

p2−j
Cf,g, j = 0, 1,(A.17)

‖uE − ǔE,h‖Hj(Th) .
h2−j

p2−j
Cf,g, j = 0, 1, 2.(A.18)

On the other hand, from Lemma A.3, there exist ûA,h ∈ Vh and ǔA,h ∈ Wh satisfying (A.6) and (A.5)
respectively. Let ûh = ûE,h + ûA,h, ǔh = ǔE,h + ǔA,h. It follows from the triangle inequality that

‖u− ûh‖Hj(Ω) .
(h2−j

p2−j
+
h1−j

p2−j

(kh

σp

)p)

Cf,g, j = 0, 1,(A.19)

‖u− ǔh‖Hj(Th) .
(h2−j

p2−j
+
h1−j

p

(kh

σp

)p)

Cf,g, j = 0, 1, 2.(A.20)

Therefore, (3.6) holds.
(3.7) can be proved by following the same procedure as that for deriving (3.5). We omit the details.

This completes the proof of Lemma 3.3.
Acknowledgments. The author would like to thank Professor J.M. Melenk for helpful communica-

tions.
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