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A CHEEGER INEQUALITY FOR THE GRAPH CONNECTION LAPLACIAN

AFONSO S. BANDEIRA∗, AMIT SINGER† , AND DANIEL A. SPIELMAN‡

Abstract. The O(d) Synchronization problem consists of estimating a set of n unknown orthogonal d × d matrices
O1, . . . , On from noisy measurements of a subset of the pairwise ratios OiO

−1

j
. We formulate and prove a Cheeger-type

inequality that relates a measure of how well it is possible to solve the O(d) synchronization problem with the spectra of an
operator, the graph Connection Laplacian. We also show how this inequality provides a worst case performance guarantee for
a spectral method to solve this problem.
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1. Introduction. While the graph Laplacian is used to encode similarities between connected vertices,
the graph Connection Laplacian endows the edges with transformations that describe the nature of the
similarity. For example, consider a collection of two-dimensional photos of a three-dimensional object that
are taken from many angles as it spins in mid-air. We could form a graph with one vertex for each photo by
connecting photos that are similar. By applying simple transformations, such as in-plane rotations, we will
discover similarities between photos that are not apparent when we merely treat them as vectors of pixels.
In this case, we may also wish to keep track of the transformation under which a pair of photos is similar.
Singer and Wu [27] defined the Connection Laplacian to encode this additional information. The problem
of using this information to assign a viewpoint to each picture is an instance of a synchronization problem
on the graph.

More formally, the input to a synchronization problem over a group G is an undirected graph G = (V,E) and
a group element ρij ∈ G for each edge (i, j) ∈ E, such that ρji = ρ−1

ij . We say that an assignment of group
elements to vertices, also called a group potential, g : V → G, satisfies an edge ρij if gi = ρijgj . The objective
in a synchronization problem is to find a group potential that satisfies the edges as much as possible. When
there is a g that satisfies all of the edges, it is easy to find: one can arbitrarily fix the value of g at one
vertex and then iteratively set g at neighbors of vertices whose values have already been set. When there is
no group potential that satisfies all of the edges, we must specify a measure of how well a group potential
satisfies the edges. This is achieved by the notion of frustration which will be defined in Section 1.3.

We focus on the group O(d) of d × d orthogonal matrices (rotations, reflections and compositions of both
on Rd). Please keep in mind that the “O” has nothing to do with asymptotic notation. This group is of
particular interest in several applications. For example, when d = 1, i.e. G = O(1) ∼= Z/2Z, the solution to
the synchronization problem can be used to determine whether a manifold is orientable [28]. The G = O(1)
case is also a generalization of the Max-Cut problem [13]: the group potential defines a partition of the
vertices into two parts, and the group elements on edges specify whether the vertices they connect should
be on the same or opposite sides of the partition. In fact, our inequality for partial synchronization can be
understood as a generalization of Trevisan’s inequality relating eigenvalues of the graph Laplacian and the
maximum cut [32].

Synchronization overO(d) plays a major role in an algorithm for the sensor network localization problem [10].
The similar problem of synchronization over SO(d), the group of rotations in Rd, also has several applications.
The problem over SO(3) can be used for global alignment of 3-D scans [33], and the problem over SO(2) plays
a major role in new algorithms for the cryo-electron microscopy problem (see [26, 29]). Other applications
of SO(2) synchronization may be found in [25, 35, 17].
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Singer [25] proposed solving the SO(2) synchronization problem by constructing a matrix, the Connection
Laplacian, whose eigenvectors associated with the smallest eigenvalues would provide the group potential if it
were possible to satisfy all the edges. He then showed that under a model of random noise that prevents such
a solution, a good solution can still be obtained by rounding the smallest eigenvectors. A similar algorithm
was proposed in [11, 26] for SO(3). These algorithms are analogous to spectral graph partitioning—the
use of the smallest eigenvector of the Laplacian matrix to partition a graph [15]. The analysis of the SO(2)
algorithm under random noise can be viewed as an analog of McSherry’s [21] analysis of spectral partitioning.

Our paper contains three theorems. We begin by considering the simpler problem of finding an assignment
of unit vectors to each vertex that agrees with the transformations on the edges. Motivated by Trevisan [32],
we first consider a variant of the problem in which we are allowed to find a partial assignment in which we
assign the zero vector to some of the vertices. In Theorem 2.2, we prove a quadratic relationship between
the smallest eigenvalue of the connection Laplacian and the minimum frustration of a partial assignment. To
analyze the case in which we must assign a unit vector to every vertex, we observe that partial assignments
are really only required when the underlying graph has poor connectivity. In Theorem 2.4, we prove a
relation between the minimum frustration of a full assignment and the smallest eigenvalue of the Connection
Laplacian and the second-smallest eigenvalue of the underlying graph Laplacian. We see that when the
second-smallest eigenvalue of the underlying graph Laplacian is large (i.e., when it is a good expander),
the minimum frustration is well approximated by the smallest eigenvalue of the Connection Laplacian. Our
main result is Theorem 2.6, in which we relate the minimum frustration of a group potential to the sum of
the smallest d eigenvalues of the Connection Laplacian and the second-smallest eigenvalue of the underlying
graph Laplacian.

In the same way that the classical Cheeger’s inequality provides a worst-case performance guarantee for
spectral clustering, the three Theorems described above provide worst-case performance guarantees for a
spectral method to solve each of the described Synchronization problems. It is worth noting that, in a
different setup, Trevisan [32] showed a particular case of this inequality, when the group is O(1) ∼= Z/2Z
and all the offsets are −1. In that case the problem is equivalent to the Max-Cut problem. Therefore, this
O(1) inequality gives a performance guarantee for a spectral method to solve Max-Cut [32].

It is worth mentioning that there are several other adaptations of Cheeger’s inequality. Recent progress in
multi-way partitioning problem gives a Cheeger inequality for the partitioning problem where one wants to
partition the graph into more than 2 subsets (see [12, 19]). There is also a generalization of the Cheeger
inequality for simplicial complexes, instead of graphs (see, [23, 24, 30]).

The rest of this section includes both mathematical preliminaries that are needed in later sections and the
formulation of the problem. Section 2 consists of our main contributions, algorithms to solve different forms
of the Synchronization problem and Cheeger-type inequalities that provide guarantees for these methods,
as well as a brief overview of the proofs. In Section 3 we provide the rigorous proofs for the core results
described in Section 2. We discuss an ℓ1 version of the Synchronization problem in Section 4 and show a few
tightness results in Section 5. We end with some concluding remarks and a few open problems in Section 6.

1.1. Notation. Throughout the paper we use the notation [n] to refer to {1, . . . , n}. Also, we make
use of several matrix and vector notations. Given a matrix A we denote by ‖A‖F its Frobenius norm. If A
is symmetric we denote by λ1(A), λ2(A), . . . its eigenvalues in increasing order. Assuming further that A is
positive semi-definite we define the A-inner product of vectors x and y as 〈x, y〉A = xTAy (and say that two
vectors are A-orthogonal if this inner product is zero). Also, we define the A-norm of x as ‖x‖A =

√

〈x, x〉A
and we represent the ℓ2 norm of x by ‖x‖. Given x ∈

(

Rd
)n

we denote by xi the i-th d× 1 block of x (that
will correspond to the value of x on the vertex i) and, for any u > 0 we define xu as

xu
i =

{ xi

‖xi‖ if ‖xi‖2 ≥ u,

0 if ‖xi‖2 < u.
(1.1)
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Furthermore, for u = 0 we denote x0 by x̃, that is,

x̃i =

{ xi

‖xi‖ if xi 6= 0,

0 if xi = 0.
(1.2)

Finally, Sd−1 denotes the unit sphere in Rd.

1.2. Cheeger’s Inequality and the Graph Laplacian. Before considering the synchronization prob-
lem we will briefly present the classical graph Cheeger’s inequality in the context of spectral partitioning.
The material presented in this Section is well known but it will help motivate the ideas that follow in the
next Sections.

Let G = (V,E) be an undirected weighted graph with n vertices. In this section we discuss the problem of
partitioning the vertices in two similarly sized sets in a way that minimizes the cut: the volume of edges
across the subsets (of the partition).

There are several ways to measure the performance of a particular partition of the graph, we will consider

the one known as the Cheeger constant. Given a partition (S, Sc) of V let hS := cut(S)
min{vol(S),vol(Sc)} , where

the value of the cut associated with S is cut(S) =
∑

i∈S

∑

j∈Sc wij , its volume is vol(S) =
∑

i∈S di, and
di =

∑

j∈V wij is the weighted degree of vertex i. We want to partition the graph so that hS is minimized,
and the minimum value is referred to as the Cheeger number of the graph, denoted hG = minS⊂V hS .
Finding the optimal S is known to be NP-hard, as it seems to require searching over an exponential number
of possible partitions.

There is another way to measure the performance of a partition (S, Sc) known as the normalized cut:

Ncut(S) = cut(S)

(

1

vol(S)
+

1

vol(Sc)

)

.

As before, we want to find a subset with as small of an Ncut as possible. Note that the normalized cut and
the Cheeger constant are closely related:

1

2
Ncut(S) ≤ hS ≤ Ncut(S).

Let us introduce a few important definitions. Let W0 be the weighted adjacency matrix of G and D0

the degree matrix, a diagonal matrix with elements di. If we consider a vector f ∈ Rn whose entries
take only 2 possible values, one associated with vertices in S and another in Sc, then the quadratic form
Qf = 1

2

∑

ij wij (fi − fj)
2
is of fundamental importance as a measure of the cut between the sets. The

symmetric positive semi-definite matrix that corresponds to this quadratic form, L0, is known as the graph
Laplacian of G. It is defined as L0 = D0 −W0 and satisfies vTL0v = Qv for any v ∈ Rn. It is also useful

to consider the normalized graph Laplacian L0 = D
−1/2
0 L0D

−1/2
0 = I−D

−1/2
0 W0D

−1/2
0 , which is also a

symmetric positive semi-definite matrix.

Let us represent a partition (S, Sc) by a cut-function fS : V → R given by

fS(i) =







√

vol(Sc)
vol(S) vol(G) if i ∈ S,

−
√

vol(Sc)
vol(S) vol(G) if i ∈ Sc.

It is straightforward to show that QfS = fT
S L0fS = Ncut(S), fT

S D0fS = 1, and fT
S D01 = 0, where 1 is the

all-ones vector in Rn. This is the motivation for a spectral method to approximate the minimum normalized
cut problem. If we drop the constraint that f needs to be a cut-function and simply enforce the properties
established above then one would formulate the following relaxed problem

min
f :V→R,fTD0f=1,fTD01=0

fTL0f. (1.3)
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Since 1TL01 = 0, we know by the Courant-Fisher formula that (1.3) corresponds to an eigenvector problem
whose minimum is λ2(L0) and whose minimizer can be obtained by the corresponding eigenvector.

Since problem (1.3) is a relaxation of the minimum Ncut problem we automatically have 1
2λ2(L0) ≤

1
2 minS⊂V Ncut ≤ hG. Remarkably one can show that the relaxation is not far from the partitioning problem.
In fact, one can round the solution of (1.3) so that it corresponds to a partition (S, Sc) of G, whose hS we
can control. This is made precise by the following classical result in spectral graph theory (several different
proofs for this inequality can be found in [8]):

Theorem 1.1 (Cheeger Inequality [2, 3]). Let G = (V,E) be a graph and L0 its normalized graph Laplacian.
Then

1

2
λ2(L0) ≤ hG ≤

√

2λ2(L0),

where hG is the Cheeger constant of G. Furthermore, the bound is constructive: using the solution of the
eigenvector problem one can produce partition (S, Sc) that achieves the upper bound

√

2λ2(L0).

An alternative way to interpret Theorem 1.1 is through random walks on graphs. Note that the matrix
D−1

0 W0 is the transition probability matrix of a random walk in G, whose transition probabilities are
proportional to the edge weights. It is known that the eigenvalues of L0 encode important information
about the random walk. In fact, the second smallest eigenvalue1 is a good measure of how well the random
walk mixes. More specifically, the smaller λ2(L0), the slower the convergence to the limiting stationary
distribution. It is clear that clusters will constitute obstacles to rapid mixing of the random walk, since the
probability mass might be trapped inside such a set for a while. Cheeger’s inequality (Theorem 1.1) shows
that, in some sense, these sets are the only obstacles to rapid mixing.

1.3. Frustration, Vector-Valued Walks and the Connection Laplacian. If, in addition to a
graph, we are given an orthogonal transformation ρij ∈ O(d) for each edge (i, j) ∈ E, we can consider a
random walk that takes the transformations into account. One way of doing this is by defining a random
walk that, instead of moving point masses, moves a vector from vertex to vertex and transforms it via the
orthogonal transformation associated with the edge. One can similarly define a random walk that moves
group elements on vertices. The Connection Laplacian was defined by Singer and Wu [27] to measure the
convergence of such random walks. The construction requires that ρji = ρ−1

ij = ρTij . Define the symmetric

matrix W1 ∈ Rdn×dn so that the (i, j)-th d× d block is given by (W1)ij = wijρij , where wij is the weight of
the edge (i, j). Also, let D1 ∈ Rdn×dn, be the diagonal matrix such that (D1)ii = diId×d. We assume di > 0,
for every i. The graph Connection Laplacian L1 is defined to be L1 = D1 −W1, and the normalized graph
Connection Laplacian is

L1 = I−D
−1/2
1 W1D

−1/2
1 .

If v : V → S
d−1 assigns a unit vector in R

d to each vertex, we may think of v as a vector in dn dimensions.
In this case the quadratic form

vTL1v =
∑

(i,j)∈E

wij ‖vi − ρijvj‖2 =
1

2

∑

i,j

wij ‖vi − ρijvj‖2

is a measure of how well v satisfies the edges. This will be zero if vi = ρijvj for all edges (i, j). As wij = 0
when (i, j) /∈ E, we can sum over all pairs of vertices without loss of generality. An assignment satisfying all
edges will correspond to a stationary distribution in the vector-valued random walk.

Following our analogy with Cheeger’s inequality for the normalized graph Laplacian, we normalize this

1We note that the smallest eigenvalue is always 0.
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measure by defining the frustration of v as

η(v) =
vTL1v

vTD1v
=

1

2

∑

i,j wij ‖vi − ρijvj‖2
∑

i di ‖vi‖
2 . (1.4)

We then define the Sd−1 frustration constant of G as

ηG = min
v:V →Sd−1

η(v). (1.5)

The smallest eigenvalue of L1 provides a relaxation of ηG, as

λ1(L1) = min
z∈Rdn

zTL1z

zT z
= min

x∈Rdn

(D
1

2

1 x)
TL1(D

1

2

1 x)

(D
1

2

1 x)
T (D

1

2

1 x)
= min

x∈Rdn

xTL1x

xTD1x
= min

x:V→Rd
η(x).

If there is a group potential g : V → O(d) that satisfies all the edges (which would again correspond to a
stationary distribution for the O(d)-valued random walk), then we can obtain d orthogonal vectors on which
the quadratic form defined by L1 is zero. For each 1 ≤ k ≤ d we obtain one of these vectors by setting v(i)
to the kth column of g(i) for all i ∈ V . In particular, this means that the columns of the matrices of the
group potential that satisfies all of the edges lie in the nullspace of L1. Since g(i) ∈ O(d) these vectors are
orthogonal. If G is connected, one can show that these are the only vectors in the nullspace of L1. This
observation is the motivation for the use of a spectral algorithm for synchronization.

We define the frustration of a group potential g : V → O(d) to be

ν(g) =
1

2d

1

vol(G)

∑

i,j

wij‖gi − ρijgj‖2F . (1.6)

We then define the O(d) frustration constant of G to be

νG = min
g:V →O(d)

ν(g).

In Theorem 2.6, we prove that this frustration constant is small if and only if the sum of the first d eigenvalues
of L1 is small as well.

2. Cheeger’s type inequalities for the synchronization problem. In this Section we present our
main results. We present three spectral algorithms to solve three different formulations of synchronization
problems and obtain for each a guarantee of performance in the form of a Cheeger’s type inequality. We will
briefly summarize both the results and the ideas to obtain them, leaving the rigorous proofs to Section 3.

We start by considering the Sd−1 synchronization problem. This corresponds to finding, for each vertex i
of the graph, a vector vi ∈ Sd−1 in way that for each edge (i, j) the vectors agree with the edges, meaning
vi = ρijvj . Since this might not always be possible we look for a function v : V → Sd−1 for which the
frustration η(v) is minimum (see (1.4)). Motivated by an algorithm to solve Max-Cut by Trevisan [32],
we first consider a version of the problem for which we allows ourselves to synchronize only a subset of
the vertices, corresponding to the partial synchronization in Sd−1. We then move on to consider the full
synchronization problem in Sd−1.

Finally we will present our main result, an algorithm for O(d) synchronization and a Cheeger-like inequality
that equips it with a worst-case guarantee. Recall that the O(d) synchronization corresponds to finding
an assignment of an element gi ∈ O(d) to each vertex i in a way that minimizes the discrepancy with
the pairwise measurements ρij ∼ gig

−1
j obtained for each edge. This corresponds to minimizing the O(d)

frustration, ν(g), (see (1.6)).
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2.1. Partial synchronization in Sd−1. The motivation for considering a spectral relaxation for the
synchronization problem in Sd−1 is the observation that λ1(L1) = minx:V→Rd η(x). In order to understand
how tight the relaxation is we need to relate λ1(L1) with ηG = minx:V→Sd−1 η(x).

Consider, however, the following example: a graph consisting of two disjoint components, one whose ρij
measurements are perfectly compatible and another one on which they are not. Its graph Connection
Laplacian would have a non-zero vector in its null space, corresponding to synchronizations on the compatible
component and zero on the incompatible part (thus λ1(L1) = 0). On the other hand, the constraint that v
has to take values on Sd−1, will force it to try to synchronize the incompatible part thereby bounding ηG
away from zero. This example motivates a different formulation of the Sd−1 synchronization problem where
vertices are allowed not to be labeled (labeled with 0). We thus define the partial Sd−1 frustration constant
of G, as the minimum possible frustration value for such an assignment,

η∗G = min
v:V →Sd−1∪{0}

η(v). (2.1)

We propose the following algorithm to solve the partial Sd−1 synchronization problem.

Algorithm 2.1. Given a graph G = (V,E) and a function ρ : E → O(d), construct the normalized
Connection Laplacian L1 and the degree matrix D1. Compute z, the eigenvector corresponding to the smallest

eigenvalue of L1. Let x = D
− 1

2

1 z. For each vertex index i, let ui = ‖xi‖, and set vi : V → Sd−1 ∪ {0} as
vi = xui , according to (1.1). Output v equal to the vi that minimizes η

(

vi
)

.

Lemma 3.1 guarantees that the solution v given by Algorithm 2.1 satisfies η(v) ≤
√

10η(x). Since x was
computed so that η(x) = λ1(L1), Algorithm 2.1 is guaranteed to output a solution v such that

η(v) ≤
√

10λ1(L1).

Note that λ1(L1) ≤ η∗G, which is the optimum value for the partial Sd−1 synchronization problem (see (2.1)).
The proof for Lemma 3.1 will appear below. The idea to show that the rounding, from x, to the solution
v done by Algorithm 2.1 produces a solution with η(v) ≤

√

10η(x) is to use the probabilistic method. One
considers a random rounding scheme by rounding x as in Algorithm 2.1 and (1.1) but thresholding at a
random value u, drawn from a well-chosen distribution. One then shows that, in expectation, the frustration
of the rounded vector is bounded by

√

10η(x). This automatically ensures that there must exist a value u

that produces a solution with frustration bounded by
√

10η(x). The rounding described in Algorithm 2.1
runs through all possible such roundings and is thus guaranteed to produce a solution satisfying the bound.
An O(1) version of this algorithm and analysis appeared in [32], when ρ is the constant function equal to
−1, in the context of the Max-Cut problem. In fact, if d = 1 the factor 10 can be substituted by 8 and the
stronger inequality holds η(v) ≤

√

8λ1(L1).

The above performance guarantee for Algorithm 2.1 automatically implies the following Cheeger-like in-
equality.

Theorem 2.2. Let G = (V,E) be a weighted graph. Given a function ρ : E → O(d), let η∗G be the partial Sd−1

frustration constant of G and λ1(L1) the smallest eigenvalue of the normalized graph Connection Laplacian.
Then

λ1(L1) ≤ η∗G ≤
√

10λ1(L1). (2.2)

Furthermore, if d = 1, the stronger inequality holds, η∗G ≤
√

8λ1(L1).

We note that Trevisan [32], in the context of Max-Cut, iteratively performs this partial synchronization
procedure in the subgraph composed of the vertices left unlabeled by the previous iteration, in order to label
the entire graph. We, however, consider only one iteration.
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2.2. Full synchronization in Sd−1. In this section we adapt Algorithm 2.1 to solve (full) synchro-
nization in Sd−1 and show performance guarantees, under reasonable conditions, by obtaining bounds for
ηG, the frustration constant for synchronization in Sd−1. The intuition given to justify the relaxation to
partial Sd−1 synchronization was based on the possibility of poor connectivity of the graph (small spectral
gap). In this section we show that poor connectivity, as measured by a small spectral gap in the normalized
graph Laplacian, is the only condition under which one can have large discrepancy between the frustration
constants and the spectra of the graph Connection Laplacian. We will show that, as long as the spectral
gap is bounded away from zero, one can in fact control the full frustration constants.

Algorithm 2.3. Given a weighted graph G = (V,E) and a function ρ : E → O(d), construct the normalized
Connection Laplacian L1 and the degree matrix D1. Compute z, the eigenvector corresponding to the smallest

eigenvalue of L1. Let x = D
− 1

2

1 z. Output the solution v : V → Sd−1 ∪ {0} where each vi is defined as

vi =
xi

‖xi‖
.

If xi = 0, have vi be any vector in Sd−1.

Similarly to Algorithm 2.1, Lemma 3.6 guarantees that the solution v given by Algorithm 2.3 satisfies
η(v) ≤ 44 1

λ2(L0)
η(x). Again, since x was computed so that η(x) = λ1(L1), then Algorithm 2.1 is guaranteed

to output a solution v such that

η(v) ≤ 44
λ1(L1)

λ2(L0)
.

Recall that, trivially, λ1(L1) ≤ ηG, which is the optimum value for the (full) Sd−1 synchronization problem
(see (1.5)). The proof for Lemma 3.6 is also deferred until Section 3. The idea here is to look at the vector of

the local norms of x: nx ∈ Rn where nx(i) = ‖xi‖. It is not hard to show that
nT
x L0nx

nT
x D0nx

≤ η(x), which means

that, if η(x) is small then nx cannot vary much between two vertices that share an edge. Since λ2(L0) is
large one can show that such a vector needs to be close to constant, which means that the norms of x across
the vertices are similar. If the norms were all the same then the rounding vi =

xi

‖vi‖ would not affect the

value of η(·), we take this slightly further by showing that if the norms are similar then we can control how
much the rounding affects the penalty function.

The above performance guarantee for Algorithm 2.3 automatically implies another Cheeger-like inequality.

Theorem 2.4. Let G = (V,E) be a graph. Given a function ρ : E → O(d), let ηG be the Sd−1 frustration
constants of G, λ1(L1) the smallest eigenvalue of the normalized graph Connection Laplacian and λ2(L0)
the second smallest eigenvalue of the normalized graph Laplacian. Then,

λ1(L1) ≤ ηG ≤ 44
λ1(L1)

λ2(L0)
.

2.3. The O(d) synchronization problem. We present now our main contribution, a spectral algo-
rithm for O(d) synchronization together with a Cheeger-type inequality that provides a worst-case perfor-
mance guarantee for the algorithm.

Before presenting the Algorithm and the results let us note the differences between this problem and the Sd−1

synchronization problem, presented above. For the Sd−1 case, the main difficulty that we faced in trying to
obtain candidate solutions from eigenvectors was the local unit norm constraint. This is due to the fact that
the synchronization problem requires its solution to be a function from V to Sd−1, corresponding to a vector
in Rdn whose vertex subvectors have unit norm, while the eigenvector, in general, does not satisfy such a
constraint. Nevertheless, the results in the previous section show that, by simply rounding the eigenvector,
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one does not lose more than a linear term, given that the graph Laplacian has a spectral gap bounded away
from zero.

However, the O(d) synchronization setting is more involved. The reason being that, besides the local
normalization constraint, there is also a local orthogonality constraint (at each vertex, the d vectors have to
be orthogonal so that they can be the columns of an orthogonal matrix). For Sd−1 we locally normalized
the vectors, by choosing for each vertex the unit vector closest to xi. For O(d) synchronization we will
pick, for each vertex, the orthogonal matrix closest (in the Frobenius norm) to the matrix

[

x1
i · · ·xd

i

]

, where

xj
i corresponds to the d−dimensional vector assigned to vertex i by the j’th eigenvector. This rounding

can be achieved by the Polar decomposition. Given a d × d matrix X , the matrix U(X), solution of
minU∈O(d) ‖U(X) − X‖F , is one of the components of the Polar decomposition of X (see [16, 20] and
references therein). We note that U(X) can be computed efficiently through the SVD decomposition of X .
In fact, given the SVD of X , X = UΣV T , the closest orthogonal matrix to X is given by U(X) = UV T (see
[16]). This approach is made precise in the following spectral algorithm for O(d)-synchronization.

Algorithm 2.5. Given a weighted graph G = (V,E) and a function ρ : E → O(d), construct the nor-
malized Connection Laplacian L1 and the degree matrix D1. Compute z1, . . . , zd, the first d eigenvectors

corresponding to the d smallest eigenvalues of L1. Let xj = D
− 1

2

1 zj, for each j = 1, . . . , d. Output the
solution g : V → O(d) where each gi is defined as

gi = U(Xi),

where Xi =
[

x1
i · · ·xd

i

]

and U(Xi) is the closest orthogonal matrix of Xi, which can be computed via the SVD
of Xi, if Xi = UiΣiV

T
i , then U(Xi) = UiV

T
i . If Xi is singular2 simply set U(Xi) to be Id.

Similarly to how the performance of the Sd−1 synchronization algorithms was obtained, Lemma 3.11 bounds
the effect of the rounding step in Algorithm 2.5. Before rounding, the frustration of the solution

[

x1 · · ·xd
]

is 1
d

∑d
i=1 η

(

xi
)

. Lemma 3.11 guarantees that the solution g obtained by the rounding in Algorithm 2.5

satisfies ν(g) ≤ 1026d3 1
λ2(L0)

∑d
i=1 η

(

xi
)

. Because of how the vectors x1, . . . , xd were built,
∑d

i=1 η
(

xi
)

=
∑d

i=1 λi(L1), and this means that the solution g computed by Algorithm 2.5 satisfies

ν(g) ≤ 1026d3
1

λ2(L0)

d
∑

i=1

λi(L1).

This performance guarantee automatically implies our main result, a Cheeger inequality for the Connection
Laplacian.

Theorem 2.6. Let λi(L1) and λi(L0) denote the i-th smallest eigenvalues of the normalized Connection
Laplacian L1 and the normalized graph Laplacian L0 respectively. Let νG denote the frustration constant for
O(d) Synchronization. Then,

1

d

d
∑

i=1

λi(L1) ≤ νG ≤ 1026d3
1

λ2(L0)

d
∑

i=1

λi(L1).

Note that, once again, the lower bound is trivially obtained by noting that the eigenvector problem is a
relaxation of the original synchronization problem.

Although the rigorous statement and proof of Lemma 3.11 will be presented in Section 3, we give a brief
intuitive explanation of how the result is obtained.

2In this case the uniqueness of U(Xi) is not guaranteed and thus the map is not well-defined.
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As discussed above, the performance guarantee for Algorithm 2.3 relies on a proper understanding of the
effect of the rounding step. In particular we showed that if λ2(L0) is small, then locally normalizing the
candidate solution (which corresponds to the rounding step) has an effect over the penalty function that we
can control. The case of O(d) Synchronization is dealt with similarly. Instead of local normalization, the
rounding step for Algorithm 2.5 is based on the polar decomposition. We start by understanding when the
polar decomposition is stable (in the sense of changing the penalty function on a given edge) and see that this
is the case when the candidate solution Xi ∈ Rd×d is not close to being singular. The idea then is to show
that only a small portion (which will depend on

∑d
i=1 λi(L1) and λ2(L0)) of the graph can have candidate

solutions Xi close to singular and use that to show that, overall, we can bound the harmful contribution
potentially caused by the rounding procedure on the penalty function.

3. Proof of the main results. In this Section we prove the results described above.

3.1. Proofs for Synchronization in Sd−1. We start with the main Lemma regarding partial Sd−1

Synchronization.

Lemma 3.1. Given x ∈ Rdn there exists u > 0 such that

η(xu) ≤
√

10η(x).

Moreover, if d = 1 the right-hand side can be replaced by
√

8η(x).

Proof. This Lemma immediately follows from Lemma 3.2 as

η(xu) =
1

2

∑

ij wij‖xu
i − ρijx

u
j ‖2

∑

i di‖xu
i ‖2

≤
(

1

2
max
i,j

‖xu
i − ρijx

u
j ‖
)

∑

ij wij‖xu
i − ρijx

u
j ‖

∑

i di‖xu
i ‖

≤
∑

ij wij‖xu
i − ρijx

u
j ‖

∑

i di‖xu
i ‖

,

where the last inequality was obtained by noting that ‖xu
i − ρijx

u
j ‖ ≤ ‖xu

i ‖+ ‖xu
j ‖ ≤ 2

Lemma 3.2. Given x ∈ Rdn there exists u > 0 such that
∑

ij wij‖xu
i − ρijx

u
j ‖

∑

i di‖xu
i ‖

≤
√

10η(x).

Moreover, if d = 1 the right-hand side can be replaced by
√

8η(x).

Proof. Let us suppose, without loss of generality, that x is normalized so that maxi ‖xi‖ = 1. We will use a
probabilistic argument. Let us consider the random variable u drawn uniformly from [0, 1] and recall that xu

is defined by xu
i = xi

‖xi‖ if ‖xi‖2 > u or xu
i = 0 if ‖xi‖2 ≤ u. We will show that 1

2

E
∑

ij
wij‖xu

i −ρijx
u
j ‖

E
∑

i
di‖xu

i
‖ ≤

√

5
2η(x),

which implies that at least one of the realizations of u must satisfy the inequality, and proves the Lemma.

We start by showing that, for each edge (i, j),

E‖xu
i − ρijx

u
j ‖ ≤

√
5

2
‖xi − ρijxj‖ (‖xi‖+ ‖xj‖) . (3.1)

Without loss of generality we can consider ρij = I and ‖xj‖ ≤ ‖xi‖ and get,

E‖xu
i − xu

j ‖ = ‖xj‖2
∥

∥

∥

∥

xi

‖xi‖
− xj

‖xj‖

∥

∥

∥

∥

+
(

‖xi‖2 − ‖xj‖2
)

.

Thus, it suffices to show

‖xj‖2
∥

∥

∥

∥

xi

‖xi‖
− xj

‖xj‖

∥

∥

∥

∥

+
(

‖xi‖2 − ‖xj‖2
)

≤
√
5

2
‖xi − xj‖ (‖xi‖+ ‖xj‖) ,
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which is a consequence of Proposition A.1 for y =
xj

‖xj‖ , z = xi

‖xi‖ and α = ‖xi‖
‖xj‖ . Now, using (3.1), the

linearity of expectation, and the Cauchy-Schwartz inequality we have

E

∑

ij

wij‖xu
i − ρijx

u
j ‖ ≤

√
5

2

∑

ij

wij‖xi − ρijxj‖(‖xi‖+ ‖xj‖)

≤
√
5

2

√

∑

ij

wij‖xi − ρijxj‖2
√

∑

ij

wij(‖xi‖+ ‖xj‖)2.

Since
∑

ij wij‖xi − ρijxj‖2 = 2η(x)
∑

i di‖xi‖2 and

∑

ij

wij(‖xi‖+ ‖xj‖)2 ≤ 2
∑

ij

wij(‖xi‖2 + ‖xj‖2) = 4
∑

i

di‖xi‖2,

we have

E

∑

ij

wij‖xu
i − ρijx

u
j ‖ ≤

√
5

2

√

8η(x)
∑

i

di‖xi‖2 =

√
5

2

√

8η(x)E
∑

i

di‖xu
i ‖ = 2

√

5

2
η(x)E

∑

i

di‖xu
i ‖,

which completes the proof. When d = 1 the sharper result can be obtained by noting that (3.1) holds even

without the
√
5
2 factor.

In the context of full Sd−1 Synchronization, the intuition given to justify a requirement in connectivity of
the graph is that it forces the solution of the relaxed problem to have balanced norm across the vertices of
the graph. The following Lemma makes this thought precise.

Lemma 3.3. Given x ∈ Rdn, there exists αx ≥ 0, such that rx = x − αxx̃ satisfies ‖rx‖2D1
≤ η(x)

λ2(L0)
‖x‖2D1

.

Proof. Let us define nx ∈ Rn by (nx)i = ‖xi‖ and recall x̃ defined in (1.2). We now set αx = argminα ‖nx−
α1‖D0

. A simple calculation reveals that this gives

αx =
1TD0nx

1TD01
.

Since nx is a non-negative vector, αx is non-negative as well. Let us also define ux ∈ Rn so that (rx)i =

(ux)ix̃i. This implies that ux = nx −
(

1
TD0nx

1TD01

)

1. Thus,

uT
xL0ux = nT

xL0nx =
1

2

∑

ij

wij(‖xi‖ − ‖xj‖)2 ≤ 1

2

∑

ij

wij‖xi − ρijxj‖2 = η(x)‖x‖2D1

Since uT
xD01 = 0, we have (ux)

TL0ux

‖ux‖2

D0

≥ λ2(L0). This shows that ‖rx‖2D1
= ‖ux‖2D0

≤ 1
λ2(L0)

η(x)‖x‖2D1
. ✷

This allows one to bound the volume of the subset of vertices where the norm of x is not typical. Let us
first define this set.

Definition 3.4. Given x ∈ Rdn, normalized so that ‖x‖2D1
= vol(G), and a positive number δ, we define

the Ill-balanced vertex subset of the graph G as Ibx(δ) = {i ∈ V : |‖xi‖ − 1| ≥ δ}.

The volume of Ibx(δ) is controlled by the following Lemma.

Lemma 3.5. Let x ∈ Rdn satisfy ‖x‖2D1
= vol(G). Then,

vol(Ibx(δ))
vol(G)

≤ 4

δ2
η(x)

λ2(L0)
.
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Proof. Lemma 3.3 guarantees the existence of αx ∈ R+ such that rx = x − αxx̃ satisfies ‖rx‖2D1
≤

η(x)
λ2(L0)

‖x‖2D1
.

Let us start by bounding αx; by the triangle inequality,

(1− αx)
2
vol(G) = (‖x‖D1

− αx‖x̃‖D1
)
2 ≤ ‖rx‖2D1

≤ η(x)

λ2(L0)
vol(G),

which implies (1− αx)
2 ≤ η(x)

λ2(L0)
.

If i ∈ Ibx(δ) then |‖xi‖ − 1| ≥ δ, which implies ‖(rx)i‖ = |‖xi‖ − αx| ≥ |‖xi‖ − 1| − |1− αx| ≥ δ−
√

η(x)
λ2(L0)

.

Squaring both sides of the inequality and summing over all i ∈ Ibx(δ) gives,

η(x)

λ2(L0)
vol(G) ≥ ‖rx‖2D1

≥
∑

i∈Ibk

di‖(rx)i‖22 ≥ vol(Ibk)
(

δ −
√

η(x)

λ2(L0)

)2

, (3.2)

as long as δ >
√

η(x)
λ2(L0)

. Let us separate in two cases:

If δ
2 >

√

η(x)
λ2(L0)

, then, using (3.2) we have,

vol(Ibk)
vol(G)

≤ η(x)

λ2(L0)

(

δ −
√

η(x)

λ2(L0)

)−2

≤ η(x)

λ2(L0)

(

δ − δ

2

)−2

=
4

δ2
η(x)

λ2(L0)
.

If, on the other hand, δ
2 ≤

√

η(x)
λ2(L0)

, then, since vol(Ibk)
vol(G) ≤ 1,

vol(Ibk)
vol(G)

≤ 1 ≤ η(x)

λ2(L0)

(

δ

2

)−2

=
4

δ2
η(x)

λ2(L0)
.

✷

By placing an upper bound on the number of Ill-balanced vertices, (Lemma 3.5) we can control how much
η(x) is affected when we locally normalize x. This is achieved in the following Lemma, which contains the
central technical result regarding full Sd−1 Synchronization.

Lemma 3.6. For every x ∈ Rdn, η(x̃) ≤ 44
λ2(L0)

η(x).

Proof. We want to bound η(x̃) = 1
2 vol(G)

∑

ij wij‖x̃i − ρij x̃j‖2. Without loss of generality we can assume

‖x‖2D1
= vol(G). Let 0 < γ < 1, then

η(x̃) ≤ 1

2 vol(G)





∑

i∈Ibx(γ)

∑

j

wij‖x̃i − ρij x̃j‖2 +
∑

j∈Ibx(γ)

∑

i

wij‖x̃i − ρij x̃j‖2 +
∑

i,j /∈Ibx(γ)
wij‖x̃i − ρij x̃j‖2





≤ 4
vol(Ibx(γ))

vol(G)
+

1

2 vol(G)

∑

i,j /∈Ibx(γ)
wij‖x̃i − ρij x̃j‖2.

By Lemma 3.5 we have 4 vol(Ibx(γ))
vol(G) ≤ 16

γ2

η(x)
λ2(L0)

.
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Note that, for any y, z ∈ Rd,
∥

∥

∥

y
‖y‖ − z

‖z‖

∥

∥

∥ ≤ ‖y−z‖
min{‖y‖,‖z‖} . By setting y = xi and z = ρijxj we get

‖x̃i − ρij x̃j‖ ≤ ‖xi−ρijxj‖
min{‖xi‖,‖xj‖} . This implies that

1

2 vol(G)

∑

i,j /∈Ibx(γ)
wij‖x̃i − ρij x̃j‖2 ≤ 1

2 vol(G)

∑

i,j /∈Ibx(γ)
wij

( ‖xi − ρijxj‖
min{‖xi‖, ‖xj‖}

)2

≤ 1

2 vol(G)

1

(1− γ)2

∑

i,j /∈Ibx(γ)
wij ‖xi − ρijxj‖2 .

This means that

η(x̃) ≤ 16

γ2

η(x)

λ2(L0)
+

1

2 vol(G)

1

(1− γ)2

∑

i,j /∈Ibx(γ)
wij ‖xi − ρijxj‖2

≤
(

16

γ2

1

λ2(L0)
+

1

(1− γ)2

)

η(x).

Since λ2(L0) ≤ 1 (see, e.g., [9]), it is possible to pick γ (e.g. 0.7) such that 16
γ2

1
λ2(L0)

+ 1
(1−γ)2 ≤ 44

λ2(L0)
. ✷

3.2. Proofs for Synchronization in O(d). As described, the rounding procedure for O(d) Synchro-
nization is based on the polar decomposition. We need to understand how much the polar decomposition
can potentially affect the penalty on each edge. With this purpose we use the following result of Li [20].

Lemma 3.7 (Theorem 1 in [20]). Let A,B ∈ Cd×d be non-singular matrices with polar decompositions
A = U(A)P and B = U(B)P ′. Then ‖U(A) − U(B)‖F ≤ 2

σmin(A)+σmin(B)‖A − B‖F , where σmin(A) is the

smallest singular value of the matrix A.

This means that, in order to bound possible instabilities of the polar decomposition, one needs to control
the size of the smallest singular value of Xi =

[

x1
i · · ·xd

i

]

. To achieve this, we will introduce a notion similar
to Ibx(δ) but designed to take into account local orthogonality instead of local normalization.

Definition 3.8. Given x, y ∈ Rdn two D1-orthogonal vectors, normalized so that ‖x‖2D1
= ‖y‖2D1

= vol(G),
and a positive number δ, we define the following Ill-balanced vertex subset of the graph G as

Ibxy(δ) = {i ∈ V : |〈xi, yi〉| ≥ δ} .

The next Lemma shows that, for an edge whose incident vertices are not ill-balanced (see Definitions 3.8
and 3.4), the polar decomposition only slightly affects the penalty function.

Lemma 3.9. Let x1, . . . , xd ∈ Rdn be D1-orthogonal vectors, normalized so that ‖xk‖2D1
= vol(G). Let

us define the “balanced” set B as the complement of
⋃

k∈[d]

(

Ibxk

(

1
8d

)

∪⋃m∈[d]\{k} Ibxkxm

(

1
2d

)

)

. For all

i, j ∈ B, we have

‖U(Xi)− ρijU(Xj)‖F ≤
√
2‖Xi − ρijXj‖F .

Proof. For i ∈ B, consider the gram matrix XT
i Xi. Its k-th diagonal entry satisfies ‖xk

i ‖2 ≥
(

1− 1
8d

)2 ≥
1 − 1

4d . On the other hand the non-diagonal entries are, in magnitude, smaller or equal to 1
2d . By

the Gershgorin circle theorem, the smallest eigenvalue of XT
i Xi, which is equal to σmin(Xi)

2, satisfies
σmin(Xi)

2 ≥ 1 − 1
4d − (d − 1) 1

2d . Hence, σmin(Xi) ≥ 1√
2
. By observing that U(ρijXj) = ρijU(Xj), and
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using Lemma 3.7, we get ‖U(Xi)− ρijU(Xj)‖F ≤
√
2‖Xi − ρijXj‖F . ✷

The last step is to control the size of the ill-balanced sets.

Lemma 3.10. Let x, y ∈ R
dn be D1-orthogonal vectors such that ‖x‖2D1

= ‖y‖2D1
= vol(G). Then,

vol
(

Ibxy
(

1
2d

)

\
(

Ibx
(

1
8d

)

∪ Iby
(

1
8d

)))

vol(G)
≤ 4(8d)2

η(x) + η(y)

λ2(L0)
.

Proof. Let us consider the vector u = 1√
2
(x+y). It satisfies ‖u‖2D1

= vol(G) and by the triangle inequality on

the norm ‖ · ‖L1
, η(u) ≤ η(x) + η(y). By Lemma 3.5 we get

vol(Ibu( 1

8d ))
vol(G) ≤ 4(8d)2 η(x)+η(y)

λ2(L0)
. We conclude the

proof by noting that Ibxy
(

1
2d

)

⊂ Ibx
(

1
8d

)

∪Iby
(

1
8d

)

∪Ibu
(

1
8d

)

. In fact, if i 6∈ Ibx
(

1
8d

)

∪Iby
(

1
8d

)

∪Ibu
(

1
8d

)

then |〈xi, yi〉| =
∣

∣

∣‖ui‖2 − ‖xi‖2+‖yi‖2

2

∣

∣

∣ ≤
(

1 + 1
8d

)2 −
(

1− 1
8d

)2
= 1

2d . ✷

At this point we have build all the foundations needed for the proof of the central lemma regarding O(d)
Synchronization.

Lemma 3.11. Given x1, . . . , xd ∈ R
dn such that 〈xk, xl〉D1

= 0 for all k 6= l, consider the potential g : V →
O(d) given as gi = U (Xi) where Xi =

[

x1
i · · ·xd

i

]

and U(X) is the closest (in the Frobenius norm) orthogonal
matrix of X. If Xi is singular U(Xi) is simply set to be Id. Then,

ν(g) ≤
(

2d−1 + 210d3
) 1

λ2(L0)

d
∑

i=1

η
(

xi
)

.

Proof.

Let us consider B as defined in Lemma 3.9, meaning Bc =
⋃

k∈[d]

(

Ibxk

(

1
8d

)

∪⋃m∈[d]\{k} Ibxkxm

(

1
2d

)

)

. We

want to bound ν(g) = 1
2d vol(G)

∑

ij wij‖gi − ρijgj‖2F . Since (B × B)c ⊂ (Bc × V ) ∪ (V × Bc),

∑

ij

wij‖gi − ρijgj‖2F ≤
∑

(i,j)∈B×B
wij‖U(Xi)− ρijU(Xj)‖2F + 2

∑

i∈Bc

∑

j∈V

wij‖gi − ρijgj‖2F

≤ 2
∑

ij

wij‖Xi − ρijXj‖2F + 8d vol (Bc) ,

where the second inequality was obtained by using Lemma 3.9 and noting that Oi is an orthogonal matrix.

To bound vol (Bc) we make use of Lemmas 3.5 and 3.10 and get that vol(Bc)
vol(G) is bounded above by

∑

k∈[d]

vol
(

Ibxk

(

1
8d

))

vol(G)
+

1

2

∑

k∈[d]

∑

m∈[d]\k

vol
(

Ibxkxm

(

1
2d

)

\
(

Ibx
(

1
8d

)

∪ Iby
(

1
8d

)))

vol(G)
≤ 28d3

∑

k∈[d] η(x
k)

λ2(L0)
.

Since
∑

ij wij‖Xi − ρijXj‖2F = 2vol(G)
∑d

k=1 η(x
k), we get ν(g) ≤

(

2d−1 + 210d3
)

1
λ2(L0)

∑d
k=1 η(x

k). ✷

4. An unsquared version of the frustration constant. We formulated the Synchronization prob-
lem as minimizing the square of the Frobenius norm of the incompatibilities (in some sense, an ℓ2 penalty
function). This penalty function is particularly nice because it is close in spirit to the Rayleigh quotient for-
mulation of an eigenvector problem and thus more related to what the spectral method will try to minimize,
as we indeed showed in the theorems above.
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On the other hand, considering the sum of the Frobenius norms of the incompatibilities (in some sense, an
ℓ1 penalty function) will induce sparsity on the edge inconsistencies, meaning that it will favor candidate
solutions for which some edges are perfectly correct even if there are some edges with large errors. This
type of penalty function is often favorable under some noise models. In fact, the noise model analyzed in
[25] consists of a few randomly chosen edges having a measurement that is randomly drawn with respect to
the uniform distribution in the space of possible measurements (in our case O(d), in [25] SO(2) ), therefore
the original rotation potential will perfectly agree with some edges and have a large error on others. This
motivates us to look at ℓ1 versions of frustration constants. Let us define

ν1(O) =
1√

d vol(G)

∑

ij

wij‖Oi − ρijOj‖F ,

and the O(d) frustration ℓ1 constant of G as νG,1 = minO:V→O(d) ϑ(O). Similarly,

η1(v) =

∑

ij wij‖vi − ρijvj‖
∑

i di‖vi‖

and the ℓ1 constant of G, as ηG,1 = minv:V→Sd−1 ζ(v). We also define a partial version of it η∗G,1 =
minv:V →Sd−1∪{0} ζ(v).

From our results in the above section it is easy to obtain the following Cheeger type inequalities for these
frustration constants

Theorem 4.1. Let λi(L1) and λi(L0) denote the i-th smallest eigenvalue of, respectively, the normalized
Connection Laplacian L1 and the normalized graph Laplacian L0. Let η∗G,1, ηG,1,and νG,1, denote the ℓ1
frustration constants defined above. Then,

λ1(L1) ≤ η∗G,1 ≤
√

10λ1(L1), (4.1)

λ1(L1) ≤ ηG,1 ≤ 2

√

22

λ2(L0)
λ1(L1), (4.2)

and,

1

d

d
∑

i=1

λi(L1) ≤ νG,1 ≤ 6d

√

√

√

√

57d

λ2(L0)

d
∑

i=1

λi(L1). (4.3)

Proof.

For any v : V → Sd−1 ∪ {0} we have

η(v) =
1

2

∑

ij wij‖vi − ρijvj‖2
∑

i di‖vi‖2
≤

(

∑

ij wij‖vi − ρijvj‖
)

maxij ‖vi−ρijvj‖
2

(
∑

i di‖vi‖)min ‖vi‖
≤
∑

ij wij‖vi − ρijvj‖
∑

i di‖vi‖
= η1(v),

which, together with Theorems 2.2 and 2.4, gives the lower bound on both (4.1) and (4.2).

Note that Lemma 3.2 actually guarantees that there exists v : V → Sd−1∪{0} such that η1(v) ≤
√

10λi(L1)
which concludes the proof of (4.1).

Let v : V → Sd−1 ∪ {0} be a solution that satisfies η(v) ≤ 44λ1(L1)
λ2(L0)

, guaranteed to exist by Theorem 2.4.

14



We then have,

η1(v) =

∑

ij wij‖vi − ρijvj‖
∑

i di‖vi‖
=

1

vol(G)

∑

ij

(

w
1

2

ij‖vi − ρijvj‖
)

w
1

2

ij

≤ 1

vol(G)





∑

ij

wij‖vi − ρijvj‖2




1

2





∑

ij

wij





1

2

=

√

∑

ij wij‖vi − ρijvj‖2
∑

i di‖vi‖2
=
√

2η(v), (4.4)

where the inequality is obtained using Cauchy-Schwarz. This completes the proof of (4.2).

Inequality (4.3) is shown in the same way as (4.2): since gi, gj ∈ O(d), we have ‖gi − ρijgj‖F ≤ 2
√
d

which gives ν1(g) ≥ ν(g). On the other hand, using Cauchy Schwarz in the same way as in (4.4) gives
ν1(g) ≤

√

2ν(g), which implies (4.3) and concludes the proof of the Theorem.

In fact Wang and Singer [34] recently showed that under the random outlier’s noise model (described above),
a semidefinite relaxation of the O(d) Synchronization problem formulated with the ℓ1 penalty function was
able to recover the ground truth solution with high probability, provided the underlying graph is drawn from
the Erdős-Rényi random graph model and the ratio of outliers is below a certain threshold.

5. Tightness of results. Let us consider the ring graph on n vertices Gn = (Vn, En) with Vn = [n]
and E = {(i, (i+1)mod n), i ∈ [n]} with the edge weights all equal to 1 and ρ : V → O(d) as ρ(n,1) = − I and

ρ = I for all other edges. Define x ∈ Rdn by xk =
[

2 k
n − 1, 0, . . . , 0

]T
. It is easy to check that η(x) = O(n−2)

and that, for any u > 0, if xu 6≡ 0, there will have to be at least one edge that is not compatible with xu,
implying η(xu) ≥ 1

2n . This shows that the 1/2 exponent in Lemma 3.1 is needed. In fact, by adding a few
more edges to the graph Gn one can also show the tightness of Theorem 2.2: Consider the “rainbow” graph
Hn that is constructed by adding to Gn, for each non-negative integer k smaller than n/2, an edge between
vertex k and vertex n − k with ρ(k,n−k) = − I. The vector x still satisfies η(x) = O(n−2), however, for any

non-zero vector v : V → Sd−1∪{0}, it is not hard to show that η(v) has to be of order at least n−1, meaning
that η∗G is Ω(

√

λ1(L1)). This also means that, even if considering η∗G, one could not get a linear bound (as
provided by Lemma 3.6) without the control on λ2(L0).

Theorem 2.6 provides a non-trivial bound only if λ2(L0) is sufficiently large. It is clear that if one wants to
bound full frustration constants, a dependency on λ2(L0) is needed. It is, nevertheless, non-obvious that this
dependency is still needed if we consider partial versions of O(d) frustration constants, ϑ∗

G or ν∗G. This can,
however, be illustrated by a simple example in O(2); consider a disconnected graph G with two sufficiently
large complete components, G1 = (V 1, E1) and G2 = (V 2, E2). For each edge let ρi,j =

[

−1 0

0 1

]

. It is
clear that the vectors x1 and x2 defined such that x1

i = [0, 1V 1(i)]T and x2
i = [0, 1V 2(i)]T are orthogonal to

each other and lie in the null space of the graph Connection Laplacian of G. This implies that λ2(L1) = 0.
On the other hand, it is straightforward to check that ν∗G is not zero because it is impossible to perfectly
synchronize the graph (or any of the components, for that matter).

6. Concluding Remarks. Synchronization is a challenging problem. Recent discoveries suggest that
spectral relaxations are promising as feasible methods to solve this problem. In fact, in [25], probability guar-
antees of performance are given for the performance of a spectral method to solve the SO(2) synchronization
problem under a certain random noise model. Nevertheless, to the best of our knowledge, Algorithm 2.5 is
the first method for O(d) synchronization having a (deterministic) worst case performance guarantee. As one
would expect, the worst case performance is significantly weaker than the kind of probabilistic guarantees,
given a specific noise model, e.g. as the one given in [25]. In fact, the guarantees in [25] and [34] are given in
terms of distance between the candidate solution and the ground truth, while the one we provide is given in
terms of the compatibility error. Recently, in the context of the Phase Retrieval problem, the guarantees on
this paper were used to obtain guarantees on the distance between the candidate solution and the ground
truth (see [1]).
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In special applications one knows, a priori, that every element in the potential has positive determinant.
This corresponds to a synchronization problem in SO(d). Although this can be viewed as a special case of
the O(d) problem it is expected that the additional structure can be leveraged to improve the algorithm (and
the analysis). In particular, the first d− 1 columns of a matrix in SO(d) completely determine the matrix.
This suggests that the SO(d) synchronization problem is solvable by just the first d− 1 eigenvectors of the
Connection Laplacian, instead of the d first ones. In fact, the SO(2) Synchronization problem is equivalent
to the S1 localization one, and the guarantees for the S1 localization problem were given solely in terms of
the first eigenvalue of the graph Connection Laplacian. We leave the improved SO(d) analysis for future
work.

The performance guarantee for this algorithm relies on the fact that the vectors obtained are D1-orthogonal.
However, in practice, due to possible errors in the calculations this condition might be perturbed and the
D1 inner products of these vectors, although small, may no longer be exactly zero. It is easy to adapt the
analysis to this setting and show that it is in fact robust to such perturbations.

The results in this paper also suggest an alternative to Algorithm 2.5 which corresponds to, instead of solving
the eigenvector problem, determining the d vectors sequentially and, at each step, constraining on the vector
being locally orthogonal to the previous ones (this can still be done efficiently, see [14]). After the d vectors
are obtained one can simply locally normalize each one and output that as the Synchronization solution
candidate. The issue with this method is that its iterative nature 3 makes its analysis more difficult, as it
is hard to guarantee that small errors in the first few vectors would not greatly affect the remaining ones.
Also, numerical simulations suggest that the performance, in practice, of both methods is roughly the same.
Independently of which method is used, the solution, although guaranteed to have a certain performance,
is not guaranteed to be a local optimum. Recently, Boumal et al. [5] suggest that an iterative smooth
optimization (in manifolds) method, when started in the solution given by the rounding procedure, can be
used to locally search for a better solution.

One might argue that, in some applications, the weights on the edges of the graph do not have a clear
meaning. The reason being that we may be given a few relative measurements ρij and it is unclear how
to give weights to such measurements. In such cases, since we have the freedom of choosing the weights
of the edges and Theorems 2.4 and 2.6 suggest that our method will work better with a large λ2(L0), one
could compute the weights of the edges in such a way that λ2(L0) is maximized. This problem is solved
in [31]. The caveat is that, the new weights will affect the way the compatibility error is measured, as well
as the eigenvalues of the Connection Laplacian. It is thus still unclear if such an approach would improve
the method. Another interesting possible outcome of a procedure of this nature is a possible ranking of the
edges, large weights would likely tend to be given to edges that are more important to ensure the connectivity
of the graph.

The classical Cheeger inequality has an analogous result on smooth manifolds (actually, the first to be
shown [7]). One interesting question is whether the theorems in this paper have an analogous smooth
version. One difficulty is to understand what would correspond to the frustration constant in the smooth
case. Recent work on Vector Diffusion Maps [27] suggests that an analogous result on smooth manifolds
would be related to the parallel transport and its incompatibility and some results in Differential Geometry
[4] suggest that the Holonomy could be a geometric property that corresponds to the frustration constant.
These suggestions are “coherent” because Holonomy can, in some sense, be viewed as the incompatibility of
the Parallel transport (due to the curvature of the manifold).

In some cases the incompatibilities have some structure; the continuous setting described above may be
such an example. Although, in this paper, we make no attempt to understand or take advantage of such
structure, we believe this would be an interesting direction for future work and we direct the reader to
papers on which topological tools are used to understand (and leverage) the structure of inconsistencies in
synchronization-like problems [6, 18, 22].

3The fact that the calculation of one of the vectors greatly depends on the ones already computed.

16



Acknowledgments. The authors thank Hau-Tieng Wu for interesting discussions on the topic of this
paper and Leor Klainerman for reading a preliminary version of this manuscript. The authors also acknowl-
edge the comments made by the referees and the editor, that helped to significantly improve this paper.
Afonso S. Bandeira was supported by Award Number DMS-0914892 from the NSF. Amit Singer was par-
tially supported by Award Numbers FA9550-09-1-0551 and FA9550-12-1-0317 from AFOSR, Award Number
R01GM090200 from the National Institute of General Medical Sciences, the Alfred P. Sloan Foundation, and
Award Number LTR DTD 06-05-2012 from the Simons Foundation. Daniel A. Spielman was supported by
the NSF under Grant No. 091548.

REFERENCES

[1] B. Alexeev, A. S. Bandeira, M. Fickus, and D. G. Mixon. Phase retrieval with polarization. available online, 2012.
[2] N. Alon. Eigenvalues and expanders. Combinatorica, 6:83–96, 1986.
[3] N. Alon and V. Milman. Isoperimetric inequalities for graphs, and superconcentrators. Journal of Combinatorial Theory,

38:73–88, 1985.
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Appendix A. Some Technical Steps.

Proposition A.1. For any y and z unit vectors in Rd, the following holds for any α ≥ 1,

‖y − z‖+ α2 − 1 ≤
√
5

2
‖y − αz‖(1 + α).

Proof. Let t = ‖y − z‖, which implies that 0 ≤ t ≤ 2. Since y and z are unit vectors it is straightforward to

check that ‖y − αz‖ =
√

1 + α2 − 2α
(

1− 1
2 t

2
)

. Thus, it suffices to show

t+ α2 − 1 ≤
√
5

2

√

1 + α2 − 2α

(

1− 1

2
t2
)

(1 + α), (A.1)

for all 0 ≤ t ≤ 2 and α ≥ 1. Since both sides of (A.1) are positive, it is enough to show the inequality with
both sides squared. Squaring and rearranging yields,

t2 + 2tα2 − 2t+
(

α2 − 1
)2 ≤ 5

4

(

(α2 − 1)2 + αt2(1 + α)2
)

.

This is equivalent to the non-negativity, in the interval [0, 2], of a certain quadratic function of t:

(

5

4
α(1 + α)2 − 1

)

t2 −
(

2α2 − 2
)

t+
1

4

(

α2 − 1
)2 ≥ 0.

Since, for α ≥ 1,

(

2α2 − 2
)2 − 4

(

5

4
α(1 + α)2 − 1

)

1

4

(

α2 − 1
)2

=
(

α2 − 1
)2
(

4− 5

4
α(1 + α)2 + 1

)

≤ 0,

the quadratic is always non-negative and thus non-negative in [0, 2]. ✷
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