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Abstract

For random graphs distributed according to a stochastic block model, we consider

the inferential task of partioning vertices into blocks using spectral techniques. Spectral

partioning using the normalized Laplacian and the adjacency matrix have both been

shown to be consistent as the number of vertices tend to infinity. Importantly, both

procedures require that the number of blocks and the rank of the communication

probability matrix are known, even as the rest of the parameters may be unknown.

In this article, we prove that the (suitably modified) adjacency-spectral partitioning

procedure, requiring only an upper bound on the rank of the communication probability

matrix, is consistent. Indeed, this result demonstrates a robustness to model mis-

specification; an overestimate of the rank may impose a moderate performance penalty,

but the procedure is still consistent. Furthermore, we extend this procedure to the

setting where adjacencies may have multiple modalities and we allow for either directed

or undirected graphs.
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1 Background and overview

Our setting is the stochastic block model [12, 25]—a random graph model in which a set

of n vertices is randomly partitioned into K blocks and then, conditioned on the partition,

existence of edges between all pairs of vertices are independent Bernoulli trials with param-

eters determined by the block membership of the pair. (The model details are specified in

Section 2.1.)

The realized partition of the vertices is not observed, nor are the Bernoulli trial param-

eters known. However, the realized vertex adjacencies (edges) are observed, and the main

inferential task is to estimate the partition of the vertices, using the realized adjacencies as

a guide. Such an estimate will be called consistent if and when, in considering a sequence

of realizations for n = 1, 2, 3, . . . with common model parameters, it happens almost surely

that the fraction of misassigned vertices converges to zero as n→∞.

Rohe et al. [20] proved the consistency of a block estimator that is based on spectral

partitioning applied to the normalized Laplacian, and Sussman et al. [24] extended this to

prove the consistency of a block estimator that is based on spectral partitioning applied to

the adjacency matrix. Importantly, both of these procedures assume that K and the rank of

M are known (where M ∈ [0, 1]K×K is the matrix consisting of the Bernoulli parameters for

all pairs of blocks), even as the rest of the parameters may be unknown. In this article, we

prove that the (suitably modified) adjacency-spectral partitioning procedure, requiring only

an upper bound for rankM , gives consistent block estimation. We demonstrate a robustness

to mis-specification of rankM ; in particular, if a practitioner overestimates the rank of M in

carrying out adjacency spectral partitioning to estimate the blocks, then the consistency of

the procedure is not lost. Indeed, this is a model selection result, and we provide estimators

for K and prove their consistency.

Our analysis and results are valid for both directed and undirected graphs. We also

allow for more than one modality of adjacency. For instance, the stochastic block model can

model a social network in which the vertices are people, and the blocks are different com-

munities within the network such that probabilities of communication between individual

people are community dependent, and there is available information about several differ-

ent modes of communication between the people; e.g. who phoned whom on cell phones,

who phoned whom on land lines, who sent email to whom, who sent snail mail to whom,

with a separate adjacency matrix for each modality of communication. Indeed, if there are
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different matrices M for each mode of communication, even if there is dependence in the

communications between two people across different modalities, our analysis and results will

hold—provided that every pair of blocks is “probabilistically discernable” within at least one

mode of communication. (This will be made more precise in Section 2.1.)

Latent space models (e.g. Hoff et al. [11]) and, specifically, random dot product models

(e.g. Young and Scheinerman [26]) give rise to the stochastic block model. Indeed, the

techniques that we use in this article involve generating latent vectors for a random dot

product model structure which we then use in our analysis. Nonetheless, our results can

be used without awareness of such random-dot-product-graph underlying structure, and we

do not concern ourselves here with estimating latent vectors for the blocks. (In any event,

latent vectors are not uniquely determinable here).

Consistent block estimation in stochastic block models has received much attention. For-

tunato [10] and Fjallstrom [9] provide reviews of partitioning techniques for graphs in general.

Consistent partitioning of stochastic block models for two blocks was accomplished by Sni-

jders and Nowicki [23] in 1997 and for equal-sized blocks by Condon and Karp [7] in 2001.

For the more general case, Bickel and Chen [1] in 2009 demonstrated a stronger version of

consistency via maximizing Newman-Girvan modularity [18] and other modularities. For

a growing number of blocks, Choi et al. [3] in 2010 proved consistency of likelihood based

methods. In 2012, Bickel et al. [2] provided a method to consistently estimate the stochastic

block model parameters using subgraph counts and degree distributions. This work and the

work of Bickel and Chen [1] both consider the case of very sparse graphs.

Rohe et al. [20] in 2011 used spectral partitioning on the normalized Laplacian to consis-

tently estimate a growing number of blocks and they allow the minimum expected degree to

be at least Θ(n/
√

log n). Sussman et al. [24] extended this to prove consistency of spectral

partitioning directly on the adjacency matrix for directed and undirected graphs. Finally,

Rohe et al. [21] proved consistency of bi-clustering on a directed version of the Laplacian

for directed graphs. Unlike modularity and likelihood based methods, these spectral parti-

tioning methods are computationally fast and easy to implement. Our work extends these

spectral partitioning results to the situation when the number of blocks and the rank of the

communication matrix is unknown. We present the situation for fixed parameters, and in

Section 9 we discuss possible extensions.

The adjacency matrix has been previously used for block estimation in stochastic block

models by McSherry [17], who proposed a randomized algorithm when the number of blocks
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as well as the block sizes are known. Coja-Oghlan [6] further investigate the methods pro-

posed in McSherry and extend the work to sparser graphs. This method relies on bounds

in the operator norm which have also been investigated by Oliveira [19] and Chung et al.

[5]. In 2012, Chaudhuri et al. [4] used an algorithm similar to the one in McSherry [17] to

prove consistency for the degree corrected planted partition model, a slight restriction of the

degree corrected stochastic block model proposed in [15]. Notably, Chaudhuri et al. [4] do

not assume the number of blocks is known and provide an alternative method to estimate

the number of blocks. This represents another important line of work for model selection in

the stochastic block model.

The organization of the remainder of this article is as follows. In Section 2 we describe

the stochastic block model, then we describe the inferential task and the adjacency-spectral

partitioning procedure for the task—when very little is known about the parameters of the

stochastic block model. In Section 3 ancillary results and bounds are proven, followed in

Section 4 by a proof of the consistency of our adjacency-spectral partitioning. However,

through Section 4, there is an extra assumption that the number of blocks K is known. In

Section 5 we provide a consistent estimator for K, and in Section 6 we prove the consistency

of an extended adjacency-spectral procedure that does not assume that K is known. Indeed,

at that point, the only aspect of the model parameters which is still assumed to be known

is just an upper bound for the rank of the communication probability matrix M .

Bickel et al. [2] mention the work of Rohe et al. [20] as an important step, and then opine

that “unfortunately this does not deal with the problem [of] how to pick a block model

which is a good approximation to the nonparametric model.” Taking these words to heart,

our focus in this article is on showing a robustness in the consistency of spectral partitioning

in the stochastic block model when using the adjacency matrix. Our focus is on removing

the need to know a priori the parameters, and to still attain consistency in partitioning. This

robustness opens the door to explore principled use of spectral techniques even for settings

where the stochastic block model assumptions do not strictly hold, and we anticipate more

future progress in consistency results for spectral partitioning in nonparametric models.

We conclude the article with additional discussion of consistent estimation of K (Sec-

tion 7), illustrative simulations (Section 8), and a brief discussion (Section 9).
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2 The model, the adjacency-spectral partitioning pro-

cedure, and its consistency

2.1 The stochastic block model

The random graph setting in which we work is the stochastic block model, which has param-

eters K, ρ,M where positive integer K is the number of blocks, the block probability vector

ρ ∈ (0, 1]K satisfies
∑K

k=1 ρk = 1, and the communication probability matrix M ∈ [0, 1]K×K

satisfies the model identifiability requirement that, for all p, q ∈ {1, 2, . . . , K} distinct, either

it holds that Mp,· 6= Mq,· (i.e. the pth and qth rows of M are not equal) or M·,p 6= M·,q

(i.e. the pth and qth columns of M are not equal). The model is defined (and the parameters

have roles) as follows:

There are n vertices, labeled 1, 2, . . . , n, and they are each randomly assigned to blocks

labeled 1, 2, . . . , K by a random block membership function τ : {1, 2, . . . , n} → {1, 2, . . . , K}
such that for each vertex i and block k, independently of the other vertices, the probability

that τ(i) = k is ρk.

Then there is a random adjacency matrix A ∈ {0, 1}n×n where, for all pairs of vertices

i, j that are distinct, Ai,j is 1 or 0 according as there is an i, j edge or not. Conditioned on

τ , the probability of there being an i, j edge is Mτ(i),τ(j), independently of the other pairs

of vertices. Our analysis and results will cover both the undirected setting in which edges

are unordered pairs (in particular, A and M are symmetric) and also the directed setting in

which edges are ordered pairs (in particular, A and M are not necessarily symmetric). In

both settings the diagonals of A are all 0’s (i.e. there are no “loops” in the graph).

We assume that the parameters of the stochastic block model are not known, except

for one underlying assumption; namely, that a positive integer R is known that satisfies

rankM ≤ R. (Of course, R may be taken to be rankM or K if either of these happen to be

known.) However, for now through Section 4, we also assume that K is known; in Section 5

we will provide a consistent estimator for K if K is not known, and then in Section 6 we

utilize this consistent estimator for K to extend all of the previous procedures and results

to the scenario where K is also not known (and then the only remaining assumption is our

one underlying assumption that a positive integer R is known such that rankM ≤ R).

Although the realized adjacency matrix A is observed, the block membership function τ is

not observed and, indeed, the inferential task here is to estimate τ . In Section 2.2, adjacency-
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spectral partitioning is used to obtain a block assignment function τ̂ : {1, 2, . . . , n} →
{1, 2, . . . , K} that serves as an estimator for τ , up to permutation of the block labels

1, 2, . . . , K on the K blocks. Then Theorem 1 in Section 2.3 asserts that almost always the

number of misassignments minbijections π:{1,2,...,K}→{1,2,...,K} |{j = 1, 2, . . . , n : τ(j) 6= π(τ̂(j))}|
is negligible.

A more complicated scenario is where there are multiple “modalities of communica-

tion” for the vertices. Specifically, instead of one probability communication matrix, there

are several probability communication matrices M (1),M (2), . . . ,M (S) ∈ [0, 1]K×K which

are all parameters of the model, and there are corresponding random adjacency matrices

A(1), A(2), . . . , A(S) ∈ {0, 1}n×n such that for each modality s = 1, 2, . . . , S and for each

pair of vertices i, j that are distinct, Ai,j is 1 with probability M
(s)
τ(i),τ(j) independently of

the other pairs of vertices but possibly with dependence across the modalities. As above,

for model identifiability purposes we assume that, for each p, q ∈ {1, 2, . . . , K} distinct,

there exists an s ∈ {1, 2, . . . , S} such that M
(s)
p,· 6= M

(s)
q,· or M

(s)
·,p 6= M

(s)
·,q . Also, it is

assumed that we know positive integers R(1), R(2), . . . , R(S) which are upper bounds on

rankM (1), rankM (2), . . . , rankM (S) respectively. We will also describe next in Section 2.2

how the adjacency-spectral partitioning procedure of that section can be modified for this

more complicated scenario so that Theorem 1 will still hold for it.

2.2 The adjacency-spectral partitioning procedure

The adjacency-spectral partitioning procedure that we work with is given as follows:

First, take the realized adjacency matrix A, and compute a singular value decomposi-

tion A = [U |Ur](Σ ⊕ Σr)[V |Vr]T where U, V ∈ Rn×R, Ur, Vr ∈ Rn×(n−R), Σ ∈ RR×R, and

Σr ∈ R(n−R)×(n−R) are such that [U |Ur] and [V |Vr] are each real-orthogonal matrices, and

Σ⊕Σr is a diagonal matrix with its diagonals non-increasingly ordered σ1 ≥ σ2 ≥ σ3 . . . ≥ σn.

Let
√

Σ ∈ RR×R denote the diagonal matrix whose diagonals are the nonnegative square roots

of the respective diagonals of Σ, and then compute X := U
√

Σ and Y := V
√

Σ.

Then, cluster the rows of X or Y or [X|Y ] into at most K clusters using the minimum

least squares criterion, as follows: If it is known that the rows of M are pairwise not equal,

then compute C ∈ Rn×R which minimizes ‖C −X‖F over all matrices C ∈ Rn×R such that

there are at most K distinct-valued rows in C, otherwise, if it is known that the columns of M

are pairwise not equal, then compute C ∈ Rn×R which minimizes ‖C−Y ‖F over all matrices
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C ∈ Rn×R such that there are at most K distinct-valued rows in C, otherwise compute

C ∈ Rn×2R which minimizes ‖C − [X|Y ]‖F over all matrices C ∈ Rn×2R such that there are

at most K distinct-valued rows in C. (Although our analysis will assume the use of this

minimum least squares criterion, note that popular clustering algorithms such as K-means

will also (empirically) produce good results for our inferential task of block assignment.)

The clusters obtained are estimates for the true blocks; i.e. define the block assign-

ment function τ̂ : {1, 2, . . . , n} → {1, 2, . . . , K} such that the inverse images {τ̂−1(i) : i =

1, 2, . . . K} partition the rows of C (by index) so that rows in each part are equal-valued.

This concludes the procedure.

In the more complicated scenario of multiple modalities of communication, carry out the

above procedure in the same way, mutatis mutandis: For each modality s, compute the sin-

gular value decomposition A(s) = [U (s)|U (s)
r ](Σ(s) ⊕ Σ

(s)
r )[V (s)|V (s)

r ]T for U (s), V (s) ∈ Rn×R(s)
,

U
(s)
r , V

(s)
r ∈ Rn×(n−R(s)), Σ ∈ RR(s)×R(s)

, and Σr ∈ R(n−R(s))×(n−R(s)) such that [U (s)|U (s)
r ] and

[V (s)|V (s)
r ] are each real-orthogonal matrices and Σ(s) ⊕ Σ

(s)
r is a diagonal matrix with its

diagonals non-increasingly ordered, then define X(s) := U (s)
√

Σ(s) and Y (s) := V (s)
√

Σ(s)

and then, according as the rows of all M (s) are known to be distinct-valued, the columns

of M (s) are known to be distinct-valued, or neither, compute C which minimizes ‖C −
[X(1)|X(2)| · · · |X(S)]‖F or ‖C−[Y (1)|Y (2)| · · · |Y (S)]‖F or ‖C−[X(1)|X(2)| · · · |X(S)|Y (1)|Y (2)| · · · |Y (S)]‖F
such that there are at most K distinct-valued rows in C, and then define τ̂ as the partition

of the vertices into K blocks according to equal-valued corresponding rows in C.

2.3 Consistency of the adjacency-spectral partitioning of Section

2.2

We consider a sequence of realizations of the stochastic block model given in Section 2.1 for

successive values n = 1, 2, 3, . . . with all stochastic block model parameters being fixed. In

this article, an event will be said to hold almost always if almost surely the event occurs

for all but a finite number of n. The following consistency result asserts that the number

of misassignments in the adjacency-spectral procedure of Section 2.2 is negligible; it will be

proven in Section 4.

Theorem 1. With the adjacency-spectral partitioning procedure of Section 2.2, for any fixed

ε > 3
4
, the number of misassignments minbijections π:{1,2,...,K}→{1,2,...,K} |{j = 1, 2, . . . , n : τ(j) 6=

π(τ̂(j))}| is almost always less than nε.
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Theorem 1 holds for all of the scenarios we described in Section 2.1; whether the edges are

directed or undirected, whether there is one modality of communication or multiple modali-

ties. It also doesn’t matter if for each successive n the partition function and adjacencies are

re-realized for all vertices or if instead they are carried over from previous n’s realization with

just one new vertex randomly assigned to a block and just this vertex’s adjacencies to the

previous vertices being newly realized. (Note that if the partition function and adjacencies

are re-realized for all vertices for successive n then when we invoke the Strong Law of Large

Numbers we will be using the version of the Law in [14].)

In Sussman et al. [24], it was shown that ifR = rankM then the number of misassignments

of the adjacency spectral procedure in Section 2.2 is almost always less than a constant times

log n (where the constant is a function of the model parameters). Indeed, both log n and nε,

when divided by the number of vertices n, converge to zero, and in that sense we can now

say that whether rankM is known or if it is overestimated then either way the number of

misassignments of spectral-adjacency partitioning is negligible. This is a useful robustness

result.

3 Ancillary results

3.1 Latent vectors and constants from the model parameters

In this section we identify relevant constants α, β, and γ which depend on the specific values

of the stochastic block model parameters; these constants will be used in our analysis. We

also consider a particular decomposition of a model parameter (the communication proba-

bility matrix M) into latent vectors which we may then usefully associate with the respective

blocks.

We first emphasize that knowing the values of these constants α, β, and γ which we are

about to identify and knowing the values of the latent vectors which we are about to define

are not at all needed to actually perform the adjacency-spectral clustering procedure of

Section 2.2, nor is any such knowledge needed in order to invoke and use the consistency

result Theorem 1. These constants and latent vectors will be used here in developing the

analysis and then proving Theorem 1.

The stochastic block model parameters are K, ρ, M ; the constants α, β, γ are defined

as follows: Recall that ρk > 0 for all k; choose constant α > 0 such that α < ρk for all k.
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Next, choose matrices µ, ν ∈ RK×RankM such that M = µνT ; indeed, such matrices µ and ν

(exist and) can be easily computed using a singular value decomposition of M . It is trivial

to see that if any two rows of M are not equal-valued then those two corresponding rows of

µ must be not equal-valued, and if any two columns of M are not equal-valued then those

two corresponding rows of ν are not equal-valued. Choose constant β > 0 be such that, for

all pairs of nonequal-valued rows µk,·, µk′,· of µ it holds that ‖µk,· − µk′,·‖2 > β, and for all

pairs of nonequal-valued rows νk,·, νk′,· of ν it holds that ‖νk,· − νk′,·‖2 > β. Lastly, since µ

and ν are full column rank, choose constant γ > 0 such that the eigenvalues of µTµ and νTν

are all greater than γ.

The rows of µ and ν are respectively called left latent vectors and right latent vectors, and

are associated with the vertices as follows. The matrices X ∈ Rn×rankM and Y ∈ Rn×rankM

are defined such that for all i = 1, 2, . . . , n, Xi,· := µτ(i),· and Yi,· := ντ(i),·. The significance

of the latent vectors is that for any pair of distinct vertices i and j the probability of an i, j

edge is the inner product of the left latent vector associated with i (which is Xi,·) with the

right latent vector associated with j (which is Yj,·). Of course, these latent vectors are not

observed; indeed, M is not known and τ is not observed.

Finally, let XYT = UΛVT be a singular value decomposition, i.e. U ,V ∈ Rn×rankM each

have orthonormal columns and Λ ∈ RrankM×rankM is a diagonal matrix with diagonals ordered

in nonincreasing order ς1 ≥ ς2 ≥ ς3 ≥ · · · ≥ ςrankM . It is useful to observe that X (YTVΛ−1) =

U and (Λ−1UTX )YT = VT imply that rows of X which are equal-valued correspond to rows

of U that are equal-valued, and rows of Y which are equal-valued correspond to rows of V
that are equal-valued.

In the more complicated scenario of more than one communication modality these defi-

nitions are made in the same way, mutatis mutandis: For all modalities s, choose µ(s), ν(s) ∈
RK×RankM(s)

such that M (s) = µ(s)ν(s)
T
, then choose β > 0 such that for every modality

s and all pairs of nonequal-valued rows µ
(s)
k,· , µ

(s)
k′,· of µ(s) it holds that ‖µ(s)

k,· − µ
(s)
k′,·‖2 > β,

and for all pairs of nonequal-valued rows ν
(s)
k,· , ν

(s)
k′,· of ν(s) it holds that ‖ν(s)k,· − ν

(s)
k′,·‖2 > β.

Choose constant γ > 0 such that all eigenvalues of µ(s)Tµ(s) and ν(s)
T
ν(s) for all modalities

s are greater than γ. Then, for each modality s, define the rows of X (s) ∈ Rn×RankM(s)

and Y(s) ∈ Rn×RankM(s)
to be the rows from µ(s) and ν(s), respectively, corresponding to the

blocks of the respective vertices, and then define U (s), V(s), and Λ(s) (with ordered diagonals

ς
(s)
1 , ς

(s)
2 , . . . ς

(s)

rankM(s)) to form singular value decompositions X (s)Y(s)T = U (s)Λ(s)V(s)T .
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3.2 Bounds

In this section we prove a number of bounds involving A, XYT , their singular values and

matrices constructed from components of their singular value decompositions. These bounds

will then be used in Section 4 to prove Theorem 1, which asserts the consistency of the

adjacency-spectral partitioning procedure of Section 2.2.

The results in this section are stated and proved for both the directed setting and the

undirected setting of Section 2.1. However, we directly treat only the setting with one

modality of communication; if there are multiple modalities of communication then all of

the statements and proofs in this section apply to each modality separately. Some of the

results in this section can be found in similar or different form in [24]; we include all necessary

results for completeness, and in order to incorporate many substantive changes needed for

treatment of this article’s focus.

Lemma 2. It almost always holds that ‖AAT − XYT (XYT )T‖F ≤
√

3n3/2
√

log n and it

almost always holds that ‖ATA− (XYT )TXYT‖F ≤
√

3n3/2
√

log n.

Proof: Let Xi,· and Yi,· denote the ith rows of X and Y , respectively. For all i 6= j,

[AAT ]ij − [XYT (XYT )T ]ij =
∑
l 6=i,j

(AilAjl −Xi,·YTl,·Xj,·YTl,·)−Xi,·YTi,·Xj,·YTi,· −Xi,·YTj,·Xj,·YTj,· (1)

Hoeffding’s inequality states that if Υ is the sum ofm independent random variables that take

values in the interval [0, 1], and if c > 0 then P [(Υ− E[Υ])2 ≥ c] ≤ 2e−
2c
m . Thus, for all i, j

such that i 6= j, if we condition on X and Y , we have for l 6= i, j that the m := n−2 random

variables AilAjl have distribution Bernoulli(Xi,·YTl,·Xj,·YTl,·) and are independent. Thus, taking

c = 2(n− 2) log n in Equation (1), we obtain that

P
[
([AAT ]ij − [XYT (XYT )T ]ij)

2 ≥ 2(n− 2) log n+ 4n− 4
]
≤ 2

n4
. (2)

Integrating Equation (2) over X and Y yields that Equation (2) is true unconditionally. By

probability subadditivity, summing over i, j such that i 6= j in Equation (2), we obtain that

P

[ ∑
i,j:i 6=j

([AAT ]ij − [XYT (XYT )T ]ij)
2 ≥ 2n(n− 1)(n− 2) log n+ 4n(n− 1)2

]
≤ 2n(n− 1)

n4
. (3)

By the Borel-Cantelli Lemma (which states that if a sequence of events have probabilities

with bounded sum then almost always the events do not occur) we obtain from Equation
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(3) that almost always∑
i,j:i 6=j

([AAT ]ij − [XYT (XYT )T ]ij)
2 ≤ 5

2
n3 log n

and thus almost always ‖AAT − XYT (XYT )T‖2F ≤ 3n3 log n because each of the diagonals

of AAT −XYT (XYT )T are bounded in absolute value by n. The very same argument holds

mutatis mutandis for ‖ATA− (XYT )TXYT‖2F .

The next lemma, Lemma 3, provides bounds on the singular values ς1, ς2, ς3, . . . of matrix

XYT and then, in Corollary 4, we obtain bounds on the singular values σ1, σ2, σ3, . . . of

matrix A. Recall that the rank of XYT is (almost always) rankM , while A may in fact have

rank n.

Lemma 3. It almost always holds that αγn ≤ ςrankM , and it always holds that ς1 ≤ n.

Proof: Because XYT is in [0, 1]n×n, the nonnegative matrix XYT (XYT )T has all of its

entries bounded by n, thus all of its row sums bounded by n2, and thus its spectral radius

ς21 is bounded by n2, ie we have ς1 ≤ n as desired.

Next, for all k = 1, 2, . . . , K, let random variable nk denote the number of vertices in block

k. The nonzero eigenvalues of (XYT )(XYT )T = XYTYX T are the same as the nonzero

eigenvalues of YTYX TX . By the definition of α and the Law of Large Numbers, almost

always nk > αn for each k, thus we express X TX =
∑K

k=1 nkµ
T
k,·µk,· = αnµTµ+

∑K
k=1(nk −

αn)µTk,·µk,· as the sum of two positive semidefinite matrices and obtain that the minimum

eigenvalue of X TX is at least αγn. Similarly the minimum eigenvalue of YTY is at least

αγn. The minimum eigenvalue of a product of positive semidefinite matrices is at least

the product of their minimum eigenvalues [27], thus the minimum eigenvalue of YTYX TX

(which is equal to ς2rankM) is at least αγn · αγn, as desired.

Corollary 4. It almost always holds that αγn ≤ σrankM , it always holds that σ1 ≤ n, and it

almost always holds that σrankM+1 ≤ 31/4n3/4 log1/4 n.

Proof: By Lemma 2 and Weyl’s Lemma (e.g., see [13]), we obtain that for all m it almost al-

ways holds that |σ2
m − ς2m| ≤ ‖AAT −XYT (XYT )T‖F ≤

√
3n3/2

√
log n. For all m > rankM ,

the mth singular value of XYT is zero, thus almost always σrankM+1 ≤ 31/4n3/4 log1/4 n.

Lemma 3 can in fact be strengthened to show that there is an δ > 0 such that almost
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always (αγ + δ)n ≤ ςrankM , hence (αγ + δ)2n2 ≤ ς2rankM , thus we have almost always that

(αγ)2n2 ≤ σ2
rankM , as desired. Showing that σ1 ≤ n is done the same way that ς1 ≤ n was

shown in Lemma 3.

It is worth noting that a consequence of Corollary 4 is that, for any chosen real number

ω such that 3
4
< ω < 1, the random variable which counts the number of σ1, σ2, . . . , σn which

are greater than nω is a consistent estimator for rankM (is almost always equal to rankM).

Our goal in this article is to show a robustness result, that “overestimating” rankM with R in

the adjacency-spectral partitioning procedure does not ruin the consistency of the procedure.

Recall from Section 2.2 the singular value decomposition A = [U |Ur](Σ⊕Σr)[V |Vr]T . At

this point it will useful to further partition U = [U`|Uc], V = [V`|Vc], and Σ = Σ`⊕Σc where

U`, V` ∈ Rn×rankM , Uc, Vc ∈ Rn×(R−rankM), Σ` ∈ RrankM×rankM , and Σc ∈ R(R−rankM)×(R−rankM).

(The subscripts `, c, r are mnemonics for “left”, “center”, and “right”, respectively.) Also

define the matrices X` := U`
√

Σ`, Y` := V`
√

Σ`, Xc := Uc
√

Σc, Yc := Vc
√

Σc, Xr := Ur
√

Σr,

and Yr := Vr
√

Σr. Referring back to the definition of X and Y in Section 2.2, note that

X = [X`|Xc] and Y = [Y`|Yc].
From the definition of β in Section 3.1 if follows that for any i and j such that Xi,· 6= Xj,·

(or Yi,· 6= Yj,·) it holds that ‖Xi,· − Xj,·‖ ≥ β (respectively, ‖Yi,· − Yj,·‖ ≥ β ). The next

result shows how this separation extends to the rows of the singular vectors of XYT .

Lemma 5. Almost always the following are true:

For all i, j such that ‖Xi,· −Xj,·‖2 ≥ β, it holds that ‖Ui,· − Uj,·‖2 ≥ β
√

αγ
n

.

For all i, j such that ‖Yi,· − Yj,·‖2 ≥ β, it holds that ‖Vi,· − Vj,·‖2 ≥ β
√

αγ
n

.

For all i, j such that ‖Xi,·−Xj,·‖2 ≥ β, it holds that ‖Ui,·Q
√

Σ`−Uj,·Q
√

Σ`‖2 ≥ αβγ for any

orthogonal matrix Q ∈ RrankM×rankM .

For all i, j such that ‖Yi,·−Yj,·‖2 ≥ β, it holds that ‖Vi,·Q
√

Σ`−Vj,·Q
√

Σ`‖2 ≥ αβγ for any

orthogonal matrix Q ∈ RrankM×rankM .

Proof: Recall the singular value decomposition XYT = UΛVT from Section 3.1 (where

U ,V ∈ Rn×rankM each have orthonormal columns and Λ ∈ RrankM×rankM is diagonal). Let

YTY = W∆2W T be a spectral decomposition; that is, W ∈ RrankM×rankM is orthogonal and

∆ ∈ RrankM×rankM is a diagonal matrix with positive diagonal entries. Note that

(XW∆)(XW∆)T = XW∆2W TX T = XYTYX T = UΛVTVΛUT = (UΛ)(UΛ)T . (4)

12



For any i, j distinct, let e ∈ Rn denote the vector with all zeros except for the value 1 in the

ith coordinate and the value −1 in the jth coordinate. By Equation (4), we thus have that

‖(XW∆)i,· − (XW∆)j,·‖22 = eT (XW∆)(XW∆)T e = eT (UΛ)(UΛ)T e = ‖(UΛ)i,· − (UΛ)j,·‖22. (5)

From Lemma 3 and its proof, we have that the diagonals of ∆ are almost always at least
√
αγn and that the diagonals of Λ are at most n. Using this and Equation (5), we get that

if i, j are such that ‖Xi,· −Xj,·‖ ≥ β then it holds that

β ≤ ‖Xi,· −Xj,·‖2 = ‖(XW )i,· − (XW )j,·‖2 ≤
1√
αγn
‖(XW∆)i,· − (XW∆)j,·‖2

=
1√
αγn
‖(UΛ)i,· − (UΛ)j,·‖2 ≤

1√
αγn

n‖Ui,· − Uj,·‖2.

Thus ‖Ui,· − Uj,·‖2 ≥ β
√

αγ
n

, as desired. Now, if Q ∈ RrankM×rankM is any orthogonal matrix

then, by Corollary 4,

‖Ui,· − Uj,·‖2 = ‖Ui,·Q− Uj,·Q‖2 ≤
1√
αγn
‖Ui,·Q

√
Σ` − Uj,·Q

√
Σ`‖2

which, together with ‖Ui,· − Uj,·‖2 ≥ β
√

αγ
n

, implies ‖Ui,·Q
√

Σ` − Uj,·Q
√

Σ`‖2 ≥ αβγ, as

desired. The same argument applies mutatis mutandis for ‖Yi,· − Yj,·‖ ≥ β.

In the following, the sum of vector subspaces will refer to the subspace consisting of all

sums of vectors from the summand subspaces; equivalently, it will be the smallest subspace

containing all of the summand subspaces. The following theorem is due to Davis and Kahan

[8] in the form presented in [20].

Theorem 6. (Davis and Kahan) Let H,H ′ ∈ Rn×n be symmetric, suppose S ⊂ R is an

interval, and suppose for some positive integer d that W ,W ′ ∈ Rn×d are such that the

columns of W form an orthonormal basis for the sum of the eigenspaces of H associated

with the eigenvalues of H in S, and the columns of W ′ form an orthonormal basis for the

sum of the eigenspaces of H ′ associated with the eigenvalues of H ′ in S. Let δ be the minimum

distance between any eigenvalue of H in S and any eigenvalue of H not in S. Then there

exists an orthogonal matrix Q ∈ Rd×d such that ‖WQ−W ′‖F ≤
√
2
δ
‖H −H ′‖F .

Corollary 7. There almost always exist real orthogonal matrices QU , QV ∈ RrankM×rankM

which satisfy ‖UQU − U`‖F ≤
√
6

α2γ2
·
√

logn
n

and ‖VQV − V`‖F ≤
√
6

α2γ2
·
√

logn
n

. Furthermore,

it holds that ‖X̃` − X`‖F ≤
√
6

α2γ2
· √log n and ‖Ỹ` − Y`‖F ≤

√
6

α2γ2
· √log n, where we define

X̃` := UQU
√

Σ` and Ỹ` := VQV
√

Σ`.
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Proof: Take S in Theorem 6 to be the interval (1
2
α2γ2n2,∞). By Lemma 3 and Corol-

lary 4, we have almost always that precisely the greatest rankM eigenvalues of each of

H := XYT (XYT )T and H ′ := AAT are in S. By Lemma 3, almost always δ ≥ α2γ2n2 (for

the δ in Theorem 6) so, by Lemma 2, almost always
√
2
δ
‖H − H ′‖F ≤

√
2

α2γ2n2

√
3n3/2

√
log n.

With this, the first statements of Corollary 7 follow from the Davis and Kahan Theorem

(Theorem 6). The last statements of Corollary 7 follow from postmultiplying UQU −U` with
√

Σ` and then using Corollary 4 and the definition of X`.

Now, choose Uc ∈ Rn×(R−rankM) and Ur ∈ Rn×(n−R) such that [U|Uc|Ur] ∈ Rn×n is an

orthogonal matrix. In particular, note that the columns of Uc together with the columns of

Ur form an orthonormal basis for the eigenspace associated with eigenvalue 0 in the matrix

H := XYT (XYT )T .

Corollary 8. There almost always exists a real orthogonal matrix Q ∈ R(n−rankM)×(n−rankM)

such that ‖ [Uc|Ur] Q − [Uc|Ur] ‖F ≤
√
6

α2γ2
·
√

logn
n

. Define X̃c ∈ Rn×(R−rankM) and X̃r ∈
Rn×(n−R) such that [X̃c|X̃r] := [Uc|Ur]Q

√
Σc ⊕ Σr. Then ‖ [X̃c|X̃r] − [Xc|Xr] ‖F ≤ 31/861/2

α2γ2
·

n−1/8 log5/8 n.

Proof: The first statement of Corollary 8 is proven in the exact manner that we proved

Corollary 7, except that S is instead taken to be the complement of (1
2
α2γ2n2,∞). The second

statement of Corollary 8 follows by postmultiplying [Uc|Ur]Q − [Uc|Ur] with
√

Σc ⊕ Σr and

then using Corollary 4 and the definitions of Xc and Xr.

Note 9. Almost always it holds that ‖X̃c‖F ≤
√
R− rankM 31/8n3/8 log1/8 n.

Proof: It is clear (with the matrix Q from Corollary 8) that [Uc|Ur] Q has orthonormal

columns, hence the Froebenius norm of the first R−rankM columns is exactly
√
R− rankM .

The result follows from postmultiplying these columns by
√

Σc and using Corollary 4.

4 Proof of Theorem 1, consistency of the adjacency-

spectral procedure of Section 2.2

In this section we prove Theorem 1. Assuming that the number of blocksK is known and that

an upper bound R is known for rankM , Theorem 1 states that, for the adjacency-spectral
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procedure described in Section 2.2, and for any fixed real number ε > 3
4
, the number of

misassignments minbijections π:{1,2,...,K}→{1,2,...,K} |{j = 1, 2, . . . , n : τ(j) 6= π(τ̂(j))}| is almost

always less than nε. We focus first on the scenario where there is a single modality of

communication, and we also suppose for now that it is known that the rows of M are

pairwise nonequal.

First, an observation: Recall from Section 3.1 that, for each vertex, the block that the

vertex is a member of via the block membership function τ is characterized by which of

the K distinct-valued rows of U the vertex is associated with in U . In Corollary 7, we

defined X̃` := UQU
√

Σ`. Because X̃` is U times an invertible matrix (since
√

Σ` is almost

always invertible by Corollary 4), the block that the vertex is truly a member of is thus

characterized by which of the K distinct-valued rows of X̃` the vertex is associated with in

X̃`. Also recall that the block which the vertex is assigned to by the block assignment

function τ̂ is characterized by which of the at-most-K distinct-valued rows of C the vertex is

associated with in C—where C ∈ Rn×R was defined as the matrix which minimized ‖C−X‖F
over all matrices C ∈ Rn×R such that there are at most K distinct-valued rows in C.

Denote by 0n×(R−rankM) the matrix of zeros in Rn×(R−rankM). We next show the following:

For any fixed ξ >
3

8
, almost always it holds that ‖C − [X̃`|0n×(R−rankM)]‖F ≤ nξ. (6)

Indeed, by the definition of C, the fact that [X̃`|0n×(R−rankM)] has K distinct-valued rows,

and the triangle inequality, we have that

‖C −X‖F ≤ ‖ [X̃`|0n×(R−rankM)]−X‖F ≤ ‖[X̃`|X̃c]−X‖F + ‖X̃c‖F . (7)

Then, by two uses of the triangle inequality and then Equation (7), we have

‖C − [X̃`|0n×(R−rankM)]‖F ≤ ‖C − [X̃`|X̃c]‖F + ‖X̃c‖F
≤ ‖C −X‖F + ‖X − [X̃`|X̃c]‖F + ‖X̃c‖F
≤ 2 · ‖[X̃`|X̃c]−X‖F + 2 · ‖X̃c‖F

which, by Corollary 7, Corollary 8, and Note 9, is almost always bounded by

2

( √6

α2γ2
·
√

log n

)2

+

(
31/861/2

α2γ2
· n−1/8 log5/8 n

)2
1/2

+ 2R1/2 31/8n3/8 log1/8 n,

which is almost always bounded by nξ for any fixed ξ > 3
8
. Thus Line (6) is shown.
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Now, it easily follows from Line (6) that

For any fixed ε >
3

4
, the number of rows of C − [X̃`|0n×(R−rankM)]

with Euclidean norm at least
αβγ

3
is almost always less than nε; (8)

indeed, if this was not true, then ‖C − [X̃`|0n×(R−rankM)]‖F ≥
√
nε
(
αβγ
3

)2
would contradict

Line 6.

Lastly, form balls B1, B2, . . . , BK of radius αβγ
3

about the K distinct-valued rows of

[X̃`|0n×(R−rankM)]; by Lemma 5, these balls are almost always disjoint. The number of vertices

which the block membership function τ assigns to each block is almost always at least αn,

thus (by Line (8) and the Pigeonhole Principle) almost always each ball B1, B2, . . . , BK

contains exactly one of the K distinct-valued rows of C. And, for any fixed ε > 3
4
, the

number of misassignments from τ̂ is thus almost always less than nε. Theorem 1 is now

proven in the scenario where there is a single modality of communication and it is known

that the rows of M are pairwise nonequal.

In the general case where there are multiple modalities of communication and/or the

rows of M are not known to be pairwise nonequal, then the above proof holds mutatis mu-

tandis (affecting relevant bounds by at most a constant factor); in place of X use Y or [X|Y ]

or [X(1)|X(2)| · · · |X(S)] or [Y (1)|Y (2)| · · · |Y (S)] or [X(1)|X(2)| · · · |X(S)|Y (1)|Y (2)| · · · |Y (S)] and

in place of [X̃`|X̃c] use [Ỹ`|Ỹc] or [X̃`|X̃c|Ỹ`|Ỹc] or [X̃ (1)
` |X̃

(1)
c |X̃ (2)

` |X̃
(2)
c | · · · |X̃ (S)

` |X̃
(S)
c ], or

[Ỹ(1)
` |Ỹ

(1)
c |Ỹ(2)

` |Ỹ
(2)
c | · · · |Ỹ(S)

` |Ỹ
(S)
c ], or [X̃ (1)

` |X̃
(1)
c |X̃ (2)

` |X̃
(2)
c | · · · |X̃ (S)

` |X̃
(S)
c |Ỹ(1)

` |Ỹ
(1)
c |Ỹ(2)

` |Ỹ
(2)
c | · · · |Ỹ(S)

` |Ỹ
(S)
c ],

as appropriate, and similar kinds of adjustments.

5 Consistent estimation for the number of blocks K

In this section we provide a consistent estimator K̂ for the number of blocks K, if indeed K

is not known. (The only assumption used is our basic underlying assumption that an upper

bound R is known for rankM .)

To simplify the notation, in this section we assume that there is only one modality of

communication and we also assume that it is known that the rows of M are distinct-valued.

These simplifying assumptions do not affect the results we obtain, and the analysis can be

easily generalized to the general case in the same manner as was done at the end of Section 4.
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In the adjacency-spectral partitioning procedure from Section 2.2, recall that one of the

steps was to compute C ∈ Rn×R which minimized ‖C−X‖F over all matrices C ∈ Rn×R such

that there are at mostK distinct-valued rows in C. Then the block assignment function τ̂ was

defined as partitioning the vertices into K blocks according to equal-valued corresponding

rows in C. Let us now generalize the procedure of Section 2.2. Suppose that, for any fixed

positive integer K ′, we instead compute C ∈ Rn×R which minimizes ‖C − X‖F over all

matrices C ∈ Rn×R such that there are at most K ′ distinct-valued rows in C. Then the block

assignment function τ̂ is defined as partitioning the vertices into K ′ parts (some possibly

empty) according to equal-valued corresponding rows in C. We shall call this adjusted

procedure “the adjacency-spectral partitioning procedure from Section 2.2 with K ′ parts.”

Theorem 10. Let real number ξ such that 3
8
< ξ < 1

2
be chosen and fixed. For the adjacency-

spectral procedure from Section 2.2 with K ′ parts, if K ′ = K then almost always ‖C−X‖F ≤
nξ, and if K ′ < K then almost always ‖C −X‖F > nξ.

Proof: Using Equation (7), Corollary 7, Corollary 8, and Note 9 in the manner used to

prove Line (6), we obtain that almost always ‖ [X̃`|0n×(R−rankM)] − X‖F ≤ nξ, and that if

K ′ = K then almost always ‖C −X‖F ≤ nξ.

However, if K ′ < K then, as we did in Section 4, consider balls B1, B2, . . . , BK of radius αβγ
3

about the K distinct-valued rows of [X̃`|0n×(R−rankM)]. By Lemma 5, these balls are almost

always disjoint and, in fact, their centers are almost always at least αβγ distance one from

the other. By the pigeonhole principle, there is at least one ball that contains none of the

K ′ distinct-valued rows of C. Together with the fact that each block almost always has more

than αn vertices, we obtain almost always that ‖C − [X̃`|0n×(R−rankM)]‖F ≥
√
αn
(
αβγ
3

)2
.

Thus, almost always ‖C −X‖ ≥ ‖C − [X̃`|0n×(R−rankM)]‖F −‖ [X̃`|0n×(R−rankM)]−X‖F > nξ.

Let real number ξ such that 3
8
< ξ < 1

2
be chosen and fixed. Define the random variable

K̂ to be the least positive integer K ′ such that for the adjacency-spectral procedure from

Section 2.2 with K ′ parts it happens that ‖C − X‖F ≤ nξ. By Theorem 10, we have the

following consistency result for K̂.

Theorem 11. Almost always K̂ = K.
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6 The extended adjacency-spectral partitioning proce-

dure

The adjacency-spectral partitioning procedure of Section 2.2 assumed that an integer R was

known such that R ≥ rankM , but it also assumed that the number of blocks K was known.

We next extend the adjacency-spectral partitioning procedure of Section 2.2 (we call it “the

extended adjacency-spectral partitioning procedure”) so that it only has the assumption that

an integer R is known such that R ≥ rankM , and it is not assumed that K is known. The

procedure is as follows:

Let real number ξ such that 3
8
< ξ < 1

2
be chosen and fixed. Successively for K ′ =

1, 2, 3 . . ., do the spectral partitioning procedure of Section 2.2 with K ′ parts until it happens

that ‖C −X‖F ≤ nξ, then return the τ̂ from the last successive iteration (i.e. the iteration

where K ′ = K̂).

Theorem 12. With the extended adjacency-spectral partitioning procedure, for any fixed

ε > 3
4
, the number of misassignments minbijections π:{1,2,...,K}→{1,2,...,K} |{j = 1, 2, . . . , n : τ(j) 6=

π(τ̂(j))}| is almost always less than nε.

Proof: Indeed, almost always the last value of K ′ (which is K̂) is equal to K by Theorem 11,

and then almost always the number of misassignments is less than nε by Theorem 1.

7 Another consistent estimator for K

In Section 5 we provided the consistent estimator K̂ for the number of blocks K. It was based

on Theorem 10, which contrasted—for the adjacency-spectral procedure from Section 2.2

with K ′ parts—what would happen when K ′ = K versus when K ′ < K. In this section

we are interested in contrasting—for the adjacency-spectral procedure from Section 2.2 with

K ′ parts—what would happen when K ′ = K versus when K ′ > K. This yields another

consistent estimator for K.

For the adjacency-spectral procedure from Section 2.2 with K ′ parts, the at-most K ′

distinct-valued rows of C will be called the centroids, the centroid separation will refer to the

minimum Euclidean distance between all pairs of distinct centroids, and the minimum part

size will refer to the least cardinality of the K ′ parts as partitioned by τ̂ ; in particular, if one
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of the parts is empty then the minimum part size is zero, whereas the centroid separation

would still be positive.

Theorem 13. For the adjacency-spectral procedure from Section 2.2 with K ′ parts, if K ′ = K

then almost always the minimum part size is greater than αn and the centroid separation is

at least αβγ
3

. Let ζ > 0 and ϑ > 0 be any fixed real numbers. If K ′ > K then almost always

it will not hold that the minimum part size is greater than ϑn and the centroid separation is

at least ζ.

Proof: As we did in Section 4, consider balls B1, B2, . . . , BK of radius αβγ
3

about the K

distinct-valued rows of [X̃`|0n×(R−rankM)]. By Lemma 5, these balls are almost always disjoint

and, in fact, their centers are almost always at least αβγ distance one from the other. If

K = K ′ then recall from Section 4 that almost always each ball contains exactly one centroid.

By the αβγ separation between the balls’ centers, we thus have almost always that the

centroid separation is at least αβγ
3

. Also, by Theorem 1 there is almost always a strictly

sublinear number of misassignments, hence almost always the minimum part size is greater

than αn.

Now to the case of K ′ > K. Suppose by way of contradiction that the minimum

part size is greater than ϑn and the centroid separation is at least ζ. Since there are

strictly more centroids than balls B1, B2, . . . , BK , and because of the ζ separation be-

tween the centroids, by the pigeonhole principle there is at least one centroid with dis-

tance greater than ζ
3

from each row of [X̃`|0n×(R−rankM)] (these rows are the centers of the

balls). Since this centroid appears as a row of C more than ϑn times, this would imply

that ‖C − [X̃`|0n×(R−rankM)]‖F ≥
√
ϑn
(
ζ
3

)2
. However we have by the triangle inequality,

the definition of C, and the first few line of the proof of Theorem 10 that almost always

‖C − [X̃`|0n×(R−rankM)]‖F ≤ ‖C − X‖F + ‖X − [X̃`|0n×(R−rankM)]‖F ≤ ‖CK − X‖F + ‖X −
[X̃`|0n×(R−rankM)]‖F ≤ 2nξ <

√
ϑn
(
ζ
3

)2
(where ξ such that 3

8
< ξ < 1

2
is fixed and CK denotes

what C would have been if we instead did the adjacency-spectral procedure from Section 2.2

with K parts instead of K ′ parts), which gives us the desired contradiction.

With Theorem 13 we obtain another consistent estimator for K. However, we would need

to assume that positive real numbers ζ and ϑ are known that satisfy ϑ ≤ α and ζ ≤ αβγ
3

.

Assuming that such ζ and ϑ are indeed known, we can define the random variable Ǩ to

be the greatest positive integer K ′ among the values 1, 2, 3, . . . b 1
ϑ
c (note that 1

ϑ
is an upper
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bound on K) such that for the adjacency-spectral procedure from Section 2.2 with K ′ parts

the minimum part size is greater than ϑn and the centroid separation is at least ζ. By

Theorem 13 we immediately obtain the following consistency result for Ǩ.

Theorem 14. Almost always Ǩ = K.

In order to define Ǩ, lower bounds on αβγ
3

and α need to be known in addition to an upper

bound on rankM that needs to be known. This contrasts with K̂, for which we only need to

assume that an upper bound on rankM is known. (Because K̂ requires fewer assumptions,

the extended adjacency-spectral partitioning procedure in Section 6 utilizes K̂ and not Ǩ.)

Nonetheless, it is useful to be aware of how the adjacency-spectral procedure from Section 2.2

with K ′ parts changes in behavior when K ′ becomes greater than K—besides how it changes

in behavior when K ′ becomes less than K. And when lower bounds on αβγ
3

and α are also

known then, in practice for a single value of n, we can check for K̂ = Ǩ in order to have

more confidence that their common value is indeed K.

8 A simulated example and discussion

As an illustration, consider the stochastic block model with parameters

K = 3, ρ =


.3

.3

.4

 M =


.205 .045 .150

.045 .205 .150

.150 .150 .180

 , (9)

(in particular, there is only one modality of communication) and suppose edges are undi-

rected. Here rankM = 2,

For each of the valuesR = 1, 2, 3, 10, 25 and for each number of vertices n = 100, 200, 300, . . . , 1400,

we generated 2500 Monte Carlo replications of this stochastic block model and to each of these

2500 realizations we applied the adjacency-spectral partitioning procedure of Section 2.2 us-

ing R as the upper bound on rankM (which, in the case of R = 1, is purposely incorrect

for illustration purposes) assuming that we know K = 3. Note that rather than finding

the actual minimum of ‖C −X‖F , we use the K-means algorithm which approximates this

minimum. The five curves in Figure 1 correspond to R = 1, 2, 3, 10, 25 respectively, and they

plot the mean fraction of misassignments (the number of misassigned vertices divided by the

total number of vertices n, such fractions averaged over the 2500 Monte Carlo replicates)

along the y-axis, against the value of n along the x-axis.
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Figure 1: The mean misassignment fraction plotted against n, for each of R = 1, 2, 3, 10, 25.

Note that when R = 2 the performance of the adjacency-spectral partitioning is excellent

(in fact, the number of misassignments becomes effectively zero as n gets to 1600). Indeed,

even when R = 10 and R = 25 (which is substantially greater than rankM = 2) the

adjacency-spectral partitioning partitioning performs very well. However, when R = 1,

which is not an upper bound on rankM (violating our one assumption in this article), the

misassignment rate of adjacency-spectral partitioning is almost as bad as chance.

Next we will consider the estimator forK proposed in Section 5. Recall that this estimator

is defined as K̂ = arg minK′{‖CK′ −X‖F ≤ nξ} = arg minK′{logn(‖CK′ −X‖F ) ≤ ξ} where

CK′ is the n × R matrix of centroids associated with each vertex, the adjacency spectral

clustering procedure in Section 2.2 is done with K ′ parts, and ξ ∈ (3/8, 1/2) is fixed. We

now consider stochastic block model parameters with stronger differences between blocks to

illustrate the effectiveness of the estimator. In particular we let

K = 3, ρ =


.3

.3

.4

 M =


.5 .1 .1

.1 .5 .1

.1 .1 .5

 (10)

so that rankM = 3. For each n = 100, 200, 400, 800, 1600, 3200, 6400 we generated 50 Monte

Carlo replications of this stochastic block model. To each of these 50 realizations we per-
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Figure 2: Test statistic for estimating K using the parameters in line (10) for R = 3, 6 and

K ′ = 2, 3, 4. The unmarked dash line shows ξ = 3/8.

formed the adjacency spectral clustering procedure using R = 3 (Figure 2, left panel) and

R = 6 (Figure 2, right panel) as our upper bound but this time assuming K is not known.

We used K ′ = 2, 3, 4 and computed the statistic logn(‖CK′−X‖F ). Figure 2 shows the mean

and standard deviation of this test statistic over the 50 Monte Carlo replicates for each R,

K ′ and n.

The results demonstrate that for n = 6400, K̂ is a good estimate when R = 3 = rankM

when we choose ξ close to 3/8. On the other hand for smaller values of n, our estimator will

select too few blocks regardless of the choice of ξ ∈ (3/8, 1/2). Interestingly, choosing ξ close

to 3/8, K̂ always equals the true number of blocks when we let R = 6 = 2rankM , suggesting

that this estimator has interesting behavior as a function of R. Note that for larger values

of ξ, K̂ will tend to be smaller, and for smaller values of ξ, K̂ will tend to be larger.

9 Discussion

Our simulation experiment for estimating K demonstrates that good performance is possible

for moderate n under certain parameter selections. This buttresses the theoretical and

practical interest, as this estimator may serve as a stepping stone for the development of

other more effective estimators. Indeed, bounds shown in [19] suggest that it may be possible
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to allow ξ to be as small as 1/4 using different proof methods. These methods in terms of

the operator norm are an important area for further investigation when considering spectral

techniques for inference on random graphs.

Note additionally that for our first simulation, we used k-means rather than minimizing

‖C − X‖F since the latter is computationally unfeasible. This, together with fast methods

to compute the singular value decomposition, indicates that this method can be used even

on quite large graphs. For even larger graphs, there are also techniques to approximate the

singular value decomposition that should be considered in future work.

Further extensions of this work can be made in various directions. Rohe et al. [20]

and others allow for the number of blocks to grow. We believe that this method could be

extended to this scenario, though careful analysis is necessary to show that the estimator for

the number of blocks is still consistent.

Another avenue is the problem of missing data, in the form of missing edges; results for

this setting follow immediately provided that the edges are missing uniformly at random.

This is because the observed graph will still be a stochastic block model with the same block

structure. Other forms of missing data are deserving of further study. Sparse graphs are

also of interest and this work can likely be extended to the case of moderately sparse graphs,

for example with minimum degree Θ(n/
√

log n), without significant additional machinery.

Another form of missing data is that since we consider graphs with no self-loops, the diagonal

of the adjacency matrix are all zeros. Marchette et al. [16] and Scheinerman and Tucker [22]

both suggest methods to impute the diagonals, and this has been show to improve inference

in practice.

This is related to one final point to mention: Is it better to do spectral partitioning on

the adjacency matrix (as we do here in this article) or on the Laplacian (to be used in place

of the adjacency matrix in our procedure of this article)? There doesn’t currently seem to be

a clear answer; for some choices of stochastic block model parameters it seems empirically

that the adjacency matrix gives fewer misassignments than the Laplacian, and for other

choices of parameters the Laplacian seems to be better. A determination of exact criterion

(on the stochastic block model parameters) for which the adjacency matrix is better than

the Laplacian and vice versa deserves attention in future work. But the analysis that we

used here to reduce the required knowledge of the model parameters and to show robustness

in the procedure will hopefully serve as an impetus to achieve formal results for spectral

partitioning in the nonparametric setting for which the block model assumptions don’t hold.
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