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Abstract

The homodyned K-distribution appears naturally in the context of random walks and provides a 

useful model for the distribution of the received intensity in a wide range of non-Gaussian 

scattering configurations, including medical ultrasonics. An estimation method for the homodyned 

K-distribution based on the first moment of the intensity and two log-moments (XU method), 

namely the X and U-statistics previously studied in the special case of the K-distribution, is 

proposed as an alternative to a method based on the first three moments of the intensity (MI 

method) or the amplitude (MA method), and a method based on the signal-to-noise ratio (SNR), 

the skewness and the kurtosis of two fractional orders of the amplitude (labeled RSK method). 

Properties of the X and U statistics for the homodyned K-distribution are proved, except for one 

conjecture. Using those properties, an algorithm based on the bisection method for monotonous 

functions was developed. The algorithm has a geometric rate of convergence. Various tests were 

performed to study the behavior of the estimators. It was shown with simulated data samples that 

the estimations of the parameters 1/α and 1/(κ + 1) of the homodyned K-distribution are 

preferable to the direct estimations of the clustering parameter α and the structure parameter κ 
(with respective relative root mean squared errors (RMSEs) of 0.63 and 0.13 as opposed to 1.04 

and 4.37, when N = 1000). Tests on simulated ultrasound images with only diffuse scatterers (up 

to 10 per resolution cell) indicated that the XU estimator is overall more reliable than the other 

three estimators for the estimation of 1/α, with relative RMSEs of 0.79 (MI), 0.61 (MA), 0.53 

(XU) and 0.67 (RSK). For the parameter 1/(κ + 1), the relative RMSEs were equal to 0.074 (MI), 

0.075 (MA), 0.069 (XU) and 0.100 (RSK). In the case of a large number of scatterers (11 to 20 per 

resolution cell), the relative RMSEs of 1/α were equal to 1.43 (MI), 1.27 (MA), 1.25 (XU) and 
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1.33 (RSK), and the relative RMSEs of 1/(κ + 1) were equal to 0.14 (MI), 0.16 (MA), 0.17 (XU) 

and 0.20 (RSK). The four methods were also tested on simulated ultrasound images with a 

variable density of periodic scatterers to test images with a coherent component. The addition of 

noise on ultrasound images was also studied. Results showed that the XU estimator was overall 

better than the three other ones. Finally, on the simulated ultrasound images, the average 

computation times per image were equal to 6.0 ms (MI), 8.0 ms (MA), 6.8 ms (XU) and 500 ms 

(RSK). Thus, a fast, reliable, and novel algorithm for the estimation of the homodyned K-

distribution was proposed.

Keywords

homodyned K-distribution; statistical parameter estimation; random walks; non-Gaussian 
scattering; optical propagation through turbulent media; microwave sea echo; land clutter; medical 
ultrasonics; echo envelope

1. Introduction

The homodyned K-distribution appears naturally in the context of a limiting random walk 

modeling physical scattering process, with a constant-amplitude coherent component and 

with a negative binomial distribution for the number of steps [13, 15]. As a special case, the 

K-distribution [21, 14] corresponds to a vanishing coherent component of the amplitude of 

that process. Also, the Rice distribution corresponds to the limiting case where the scatterer 

clustering parameter implicit in the negative binomial distribution is infinite [24, 30, 15]. 

Finally, the Rayleigh distribution [29, 15] corresponds to the Rice distribution with a 

vanishing coherent component. Both the Rice and the Rayleigh distributions correspond to a 

Gaussian random walk, but not the homodyned K-distribution (nor the K-distribution). The 

random variable of these distributions is called the amplitude and is denoted by A. The 

intensity I is defined as the square of the amplitude.

K-distributions and, more generally, homodyned K-distributions turned out to provide a 

useful model for the received amplitude in a wide range of non-Gaussian scattering 

configurations, such as optical propagation through turbulent media [27], microwave sea 

echo [38], land clutter [26] and medical ultrasonics [33, 8, 23, 10, 28, 25]. See [6] for a 

presentation of the homodyned K-distribution and related distributions in the context of 

ultrasound imaging.

The homodyned K-distribution is determined by three parameters that carry a physical 

meaning: the mean intensity μ; the scatterer clustering parameter α (i.e. the clustering 

parameter in the negative binomial distribution); and the structure parameter κ (i.e. the ratio 

of the coherent signal power to the diffuse signal power). Given a sample of the received 

amplitude, one is then interested in estimating those three parameters, or related parameters, 

such as the signal-to-noise ratio (SNR) of the intensity and the ratio of coherent signal to 

diffuse signal, denoted k in [8, 11]. The goal is then to use the estimated parameters in the 

context of tissue characterization or quantitative ultrasound (QUS) based on medical 

ultrasound images. See [25, 11] as examples.
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A simple estimation method of the homodyned K-distribution based on the first three 

moments of the intensity E[I], E[I2], and E[I3] was proposed in [8]. In [11], the SNR, the 

skewness and the kurtosis of two fractional orders (namely, 0.72 and 0.88) of the amplitude 

were used as statistics for the estimation of the homodyned K-distribution. In the case of the 

estimation method of [11], one obtains an overdetermined non-linear system of equations 

that is solved in the sense of the least mean square.

In this paper, an estimation method based on the first moment of the intensity E[I], the U-

statistics E[log I] − log E[I] and the X-statistics E[I log I]/E[I] − E[log I] is proposed. These 

two statistics were introduced in the context of K-distributions in [26] and [4], respectively. 

Moreover, an algorithm with geometric rate of convergence for the computation of this new 

estimator is proposed.

The remaining part of this paper is organized as follows. In Section 2, the definition of the 

homodyned K-distribution is recalled. In Section 3, the proposed estimation method is 

explained. Experimental results based on simulations of sample sets and of ultrasound 

images are presented in Section 4. The results are discussed in Section 5, and we conclude in 

Section 6.

Table 1 presents the definition of the main parameters and statistics discussed in this paper. 

Given a sample set {A1, …, AN}, the notation  means the average value of the function 

f over the sample set, i.e. . In particular, the notation I̅, for instance, means 

. The notation  is used for the partial derivative with respect to, say, α. For 

example, the notation PK does not mean partial derivative, but rather that K is used as a 

subscript (identifying the K-distribution).

2. The homodyned K-distribution

The reader is referred to [15] for a presentation of the homodyned K-distribution and the 

related Rice distribution in the context of random walks, and to [6] for a presentation in the 

context of ultrasound imaging. The reader may consult [2] for the notions of Bessel 

functions.

The 2-dimensional homodyned K-distribution is defined by

(2.1)

where ε ≥ 0, σ2 > 0 and α > 0, and J0 denotes the Bessel function of the first kind of order 0. 

The limiting case of a homodyned K-distribution with parameters ε,  and α, where 

 is a positive real number and α → ∞, yields the Rice distribution
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(2.2)

where I0 denotes the modified Bessel function of the first kind of order 0.

The compound representation of Theorem 2.1 is useful in simulating the homodyned K-

distribution, and in evaluating its values.

Theorem 2.1 (Jakeman-Tough [15])

The compound representation of the homodyned K-distribution is

(2.3)

where (w | α, 1) = wα−1e−w/Γ(α) is the gamma distribution with mean and variance α, and 

Γ denotes the Euler gamma function.

Two functions of the three parameters of the homodyned K-distribution are invariant under 

scaling of the mean intensity μ = ε2 + 2σ2α: 1) the scatterer clustering parameter α; 2) the 

structure parameter κ = ε2/(2σ2α), i.e. the ratio of the coherent signal power ε2 to the 

diffuse signal power 2σ2α. Let us mention also the ratio of the coherent to diffuse signal 

 adopted in [8, 11]. It was found convenient to also consider the 

parameter γ = κα = ε2/(2σ2). This parameter should not be confused with the structure 

parameter  of the Rice distribution . See Table 1 for a summary of 

these parameters. The special case where ε = 0 yields the K-distribution PK(A | σ2, α) [21, 

15] and the Rayleigh distribution  [29].

3. A new method for estimating the homodyned K-distribution

A new method for estimating the parameters (ε, σ2, α) of the homodyned K-distribution 

based on an independent and identically distributed (i.i.d.) sample set (A1, …, AN) of 

positive real numbers is now discussed.

Two statistics will play an important role in the sequel: 1) the U-statistics defined by 

 and 2) the X-statistics defined as . For parametric models, 

such as the homodyned K-distribution or the Rice distribution, the U-statistics is defined as 

E[log I] − log E[I], where expectation is taken with respect to the distribution. Similarly, the 

X-statistics is defined as E[I log I]/E[I] − E[log I]. A subindex (such as “HK”) is then used to 

identify the distribution (e.g. “UHK”).

For later reference, it is instructive to observe the following result.

DESTREMPES et al. Page 4

SIAM J Imaging Sci. Author manuscript; available in PMC 2014 May 02.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



Lemma 3.1

a. For any non-constant random variable, the U-statistics is negative.

b. For any non-constant random variable, the X-statistics is positive.

The proof of Lemma 3.1 is presented in Appendix A.

3.1. Proposed estimator

The proposed method of estimation consists in solving the following (non-linear) system of 

equations in the variables ε2, σ2, and α:

(3.1)

Sufficient conditions for this system to admit a solution are presented below. For that 

purpose, it will be convenient to adopt the following change of variables

(3.2)

Proposition 3.2—Let  be distributed according to the homodyned K-distribution 

PHK(A | ε, σ2, α). With the notation of (3.2), one has

(3.3)

(3.4)

where γE denotes the Euler constant, ψ is the digamma function, pFq(a1, …, ap; b1, …, bq; 

z) is the generalized hypergeometric series and Kp denotes the modified Bessel function of 

the second kind of order p.

As one can see, Equations (3.3) and (3.4) depend only on the variables γ and α. Thus, the 

proposed method amounts to solving the second and third equations of (3.1) in the variables 

γ and α, and then using the identities
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(3.5)

with the estimator I̅ of the mean intensity μ.

The proof of Proposition 3.2 is presented in Appendix A.

3.2. Estimating γ, when α is known

Let α > 0 be known. A method for finding γ > 0 satisfying Equation (3.4) is now discussed. 

Thus, one wants to solve the equation XHK(γ, α) = X.

In Appendix B, the following result is shown.

Theorem 3.3—Notation as above.

a. One has the left boundary condition limγ→0 XHK(γ, α) = XK(α), where XK(α) 

= 1 + 1/α.

b. One has the right boundary condition limγ→∞ XHK(γ, α) = 0.

c. For any α > 0, the function XHK(γ, α) is decreasing in the variable γ.

See Fig. 1 for an illustration of Theorem 3.3. Part c) of Theorem 3.3 implies that a binary 

search algorithm can be used to find the unique solution to Equation (3.4), whenever it 

exists. See Section 3.4 for details.

Corollary 3.4—Let X > 0. Then, there is at most one solution to the equation XHK(γ, α) = 

X.

a. If X ≤ 1, then there is a solution for any α > 0.

b. If X > 1, then there is a solution if and only if 0 < α = α0, where 

.

Thus, one obtains a well-defined function

(3.6)

on the domain described by Corollary 3.4.

3.3. Estimating γ and α

From Corollary 3.4, one knows that for any α in an interval of the form (0, α0] or (0, ∞), 

there exists a unique solution γ = γ(α, X) to the equation XHK(γ, α) = X. Substituting this 

solution in the second equation of (3.1), one obtains a function UHK(γ(α, X), α) in the 

variable α. Thus, one now wants to solve the equation UHK(γ(α, X), α) = U.

See Appendix C for a proof of the following result.
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Theorem 3.5—Let X > 0.

a. One has the left boundary condition limα→0 UHK(γ(α, X), α) = 0.

b. Let X > 1. One has the right boundary condition limα→α0 UHK(γ(α, X), α) = 

UK(α0), where UK(α) = − γE − log α + ψ(α), XK(α) = 1 + 1/α, and 

.

c. Let X ≤ 1. One has the right boundary condition limα→∞ UHK(γ(α, X), α) = 

URi(κ0), where , and . 

The function XRi(κ) is decreasing and has the interval (0, 1] for range.

Since the function XRi(κ) is decreasing on its domain [0, ∞) and has range (0, 1], the 

function  is well-defined on the interval X ∈ (0, 1].

Conjecture 1—The function UHK(γ(α, X), α) is decreasing on its domain.

See Fig. 2 for an illustration of Theorem 3.5 and the conjecture. The conjecture implies that 

a binary search algorithm can be used to find the unique solution to the second and third 

equations of (3.1), whenever a solution exists. The details are presented in Section 3.4. In 

Appendix D, a discussion on the Conjecture is presented.

Combining Theorems 3.3 and 3.5 with the conjecture yields the following result.

Corollary 3.6—Let U < 0 and X > 0 be given. Then, there exists a simultaneous solution to 

the system UHK(γ, α) = U and XHK(γ, α) = X if and only if

a. X > 1 and 

or

b. X ≤ 1 and .

Moreover, if a solution exists, it is unique.

Thus, one obtains well-defined functions

(3.7)

where X and U are restricted to the domain described by parts a) and b) of Corollary 3.6. 

See Fig. 3 for an illustration of this domain.

3.4. Algorithms for solving the system (3.1)

The algorithm presented in Fig. 4 is used as sub-routine in the algorithm of Fig. 5 that 

computes the unique solution (according to Conjecture 1) to the system (3.1), whenever U 
and X satisfy the conditions of Corollary 3.6.
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First of all, Fig. 4 gives a binary search algorithm for computing the function γ(α, X) of 

equation (3.6) (α being known) by solving the equation XHK(γ, α) = X. Since (from 

Theorem 3.3) the function XHK(γ, α) is decreasing in the variable γ and since (by 

assumption) X is between the upper bound XK(α) = 1 + 1/α and the lower bound 0, it 

follows that the algorithm of Fig. 4 converges to the unique solution of the equation XHK(γ, 

α) = X, as follows from the Intermediate Value Theorem. Note that this binary search 

algorithm corresponds to the bisection method [9] and converges at a geometric rate; 

namely, after each iteration the distance between the current value of γ and the solution 

decreases by a factor of 2.

Having this algorithm as a tool, one can solve the equation UHK(γ(α, X), α) = U using the 

binary search algorithm of Fig. 5 for similar reasons as above, based on Conjecture 1. 

Indeed, according to the Conjecture, the function UHK(γ(α, X), α) is decreasing and 

Theorem 3.5 gives the upper and lower bounds of that function. Note that the assumptions 

on X and U of the algorithm are those of Corollary 3.6. Moreover, observe that the 

assumption of the sub-routine of Fig. 4 is satisfied whenever it is called in the algorithm of 

Fig. 5. Details on the computation of the functions XHK and UHK are given in Appendix E. 

Since the value of γ = γ(α, X) is computed for each value of α considered in the algorithm 

of Fig. 5, an error on that computation propagates on the error in the estimation of α. So, 

one has to allow enough precision. In the implementation of the reported tests, we adopted a 

tolerance of 10−4 and 10−2 in the algorithms of Figs 4 and 5, respectively.

3.5. Overall algorithm

We now discuss an extension of the above method in the case where the system (3.1) has no 

solution, i.e. whenever U and X do not satisfy the conditions of Corollary 3.6. Also, there is 

a further issue on the size of α with respect to numerical considerations. On that matter, one 

has to know that the various functions appearing in the expression of XHK and UHK (such as 

the digamma function) have a finite support in any implementation. Therefore, in practice, 

one has to limit the size of α to a finite interval (0, αmax]. So, we resort to the algorithm of 

Fig. 6 for a practical implementation of the proposed approach. This algorithm finds a 

solution to the system:

(3.8)

as follows directly from Conjecture 1 (i.e., the function UHK(γ(α, X), α) is decreasing in the 

variable α). Observe that a solution to the system (3.1) such that α ≤ αmax is automatically a 

solution to the system (3.8). Note that in the algorithm of Fig. 6, a homodyned K-

distribution with parameters ε, σ2, α > αmax is approximated by the distribution with 

parameters

(3.9)
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where .

In the reported tests, we chose αmax = 59.5, i.e. as large as possible but within a range for 

which the various functions used in the C++ implementation of the method could be 

supported numerically. In view of the numerical behavior of the function XHK at integral 

values of α (see Appendix E), one might as well choose an odd integer divided by 2 for the 

value of αmax. Finally, we have checked numerically that the Kullback-Leibler distance [20] 

between a homodyned K-distribution with parameters ε, σ2, α and the distribution with 

parameters as in equation (3.9) is less than 1.8 × 10−4 for parameter values in the range 

 and α, αmax ∈ {59.5, 61.5, …, 79.5}. Note that the 

Kullback-Leibler distance is independent of the scaling factor μ, so that we assumed μ = 1 in 

the numerical computations. Thus, we are inclined to think that a homodyned K-distribution 

with α > αmax is approximated sufficiently well by the algorithm of Fig. 6 and that the 

choice of αmax ≥ 59.5 is not crucial, at least if k ≤ 2. However, we do not have a proof of this 

hypothesis because the analytical computations appeared to be intractable.

3.6. Are k and α the right parameters to estimate

The biases and normalized standard deviations reported in [11] are rather high. For instance, 

from [11, Fig. 3], the relative biases for k and α go up to about 600% and 100%, 

respectively, and their normalized standard deviations reach to about 300%. This suggests 

that one should consider a transformation of these parameters. In [8], the parameter β = 1/α 
is considered rather than α itself. For one estimation, the two solutions are equivalent, but 

for numerous estimations, the biases and standard deviations are not necessarily equivalent, 

because the averaging operator is not invariant under a transformation unless that 

transformation is linear. Thus, for instance, the relative bias of 1/α might be lower than the 

relative bias of α.

In this study, the parameters 1/(κ + 1) and 1/α were adopted. As will be presented in Section 

4.1, the relative biases and normalized standard deviations were improved considerably with 

that choice of transformations. So, in the applications considered, the parameters 1/(κ + 1) 

and 1/α are estimated in each frame of a sequence of ultrasound images, and those estimated 

values are then averaged out over all frames. See Section 4.2 for such an application.

The advantage of the proposed choice of parameters is that, even if α = ∞ (corresponding to 

the Rice model), the parameter 1/α has a meaningful finite value (namely 0). In fact, the 

parameters 1/(κ + 1) and 1/α have values within the intervals (0, 1] and [0, ∞), respectively, 

even in the case of the Rice, Rayleigh or K-distribution model. See Section 5.6 for further 

discussion on this issue.

4. Experimental results

4.1. Comparison of estimators based on simulation of data samples

In order to compare the reported experimental results with those of [11], it was decided to 

present the results in terms of the scatterer clustering parameter α and the ratio of coherent 

to diffuse signal , where κ = ε2/(2σ2α) is the structure parameter. Following the 
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same approach as in [11], 100 sets of values of the parameters k and α were considered in 

the domains k ∈ {0.1, 0.2, …, 0.9, 1.0} and α ∈ {1, 2, …, 9, 10}, and the value of σ2 was 

taken as 1/α, so that the diffuse signal power 2σ2α = 2 was kept constant. For each of these 

sets, 1000 samples of size N = 1000 each were simulated, according to the homodyned K-

distribution model. The parameters from each sample were then estimated using 1) the 

moments of intensity method [8] (MI), 2) a method based on the first three moments of the 

amplitude (MA), 3) the proposed method based on the mean intensity and the X and U 
statistics (XU), and 4) the method [11] based on the SNR, skewness and kurtosis of two 

fractional orders of the amplitude (RSK). For each estimation method, the relative biases 

(E[k̂] − k)/k and (E[α̂] − α)/α, the normalized standard deviations  and 

, and the relative root mean squared errors (RMSE) defined by 

and  were computed, based on the 1000 estimates k̂ and α̂ of those 

parameters. The relative bias and normalized standard deviation of the proposed estimator 

are presented in Fig. 7. As in [11], the computation of the bias and standard deviation did not 

include the instances where α was outside a reasonable range (i.e., α ≥ 59.5 for the MI, MA 

and XU methods). In Table 2, the sums of the quantities represented in Fig. 7 over the sets of 

parameters that were considered are presented for each of the tested methods. See Appendix 

F for the implementation of the MI method in the reported tests. The implementation of the 

MA method follows a similar strategy as the one presented in Section 3. We decided to skip 

the details in this paper since the MA method performed less well than the proposed 

estimator. For the MI and MA methods, a minimization problem similar to Equation (3.8) is 

considered to circumvent the case where the system of non-linear equations has no solution.

Next, the relative RMSE of the various tested estimators were evaluated for the parameters 

k, α, as well as the parameters κ, , 1/(κ + 1) and 1/α, but without excluding high 

values of α for the MI, MA and XU methods (since 1/α = 0 is a solution). The results are 

presented in Table 3.

4.2. Estimation based on simulated ultrasound images

4.2.1. Experimental setup—The reported computational simulations were inspired by 

the work of [11, III-D-2]. Namely, radiofrequency (RF) data were simulated using the Field 

II ultrasound simulation program [17, 18]. A single-element oscillating focused (f/4) 

transducer with a focal length of 50.8 mm was used. Its center frequency was 10 MHz, and it 

was excited with a Gaussian windowed sinusoidal pulse with a 50% fractional bandwidth at 

−6 dB. The excitation pulse length was 0.616 mm, i.e. 4 times the wavelength (that 

information is missing from [11]). The sampling frequency was 200 MHz and the scan lines 

to produce an image were separated by 0.43 mm. The speed of sound was equal to 1540 m/s. 

These choices amount to an axial and a lateral discretization of 0.00385 mm and 0.43 mm 

per pixel, respectively. As in [11], no tissue attenuation was added in these simulations. The 

ultrasound echo envelope was computed as the norm of the Hilbert transform of the RF data 

(see [19]). The resulting unfiltered and uncompressed B-mode image was then decimated 

along the beam axis by a factor of 10 in order to have an independent identically distributed 

sample modeled by a single homodyned K-distribution.
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A computational phantom of height 17.2 mm, length 20.7 mm, and width 1.72 mm was also 

considered. The center of the volume was located at the geometric focus of the transducer. 

The resolution cell (a volume which corresponds to the smallest resolvable detail [5]) was 

obtained by scanning one scatterer located at the geometric focus of the transducer and 

considering the −20 dB contour of the echo envelope (as in [8]). The resolution cell size was 

then estimated using the correlation length method (as in [8]) along the axial and lateral 

directions. The resolution cell volume (based on an ellipsoid model) was 0.2153 mm3 (the 

ellipsoid semi-principal axis in the beam direction measured 0.2180 mm and the two other 

semi-principal axes were 0.4856 mm long). Thus, a density (i.e., average number of 

scatterers per unit volume) of Ns scatterers per resolution cell corresponded to Ns × 2844 

scatterers within the numerical phantom (Ns was variable in the reported tests).

4.2.2. Variation of the density of randomly located scatterers—Randomly located 

scatterers were placed in the phantom volume at spatial locations distributed according to a 

uniform distribution. The amplitude of each scatterer (related to the contrast in acoustic 

impedance between the scatterer and the surrounding medium) was distributed according to 

a normal distribution of mean 0 and variance 1, as in [17] (that information is missing in 

[11]). Sequences of ultrasound images were simulated with an average number of randomly 

located scatterers per resolution cell varying from 1 to 10 (for a total of 10 simulated 

sequences). For each value of the scatterer density, a total of 60 images were simulated. See 

Fig. 8 for examples of simulated images.

For each simulated sequence, the estimated values of 1/(κ + 1) and 1/α were averaged over 

the 60 images of the sequence within a region of interest (ROI), based on the XU estimator. 

The ROI consisted of the rectangle covered by 6 resolution cells in the axial direction and of 

about 35 resolution cells in the lateral direction (for a sample size of N = 13299 pixels), 

centered at the geometric focus of the transducer. In Fig. 9, the theoretical and estimated 

values (with the XU estimator) of these parameters are presented. For the theoretical values, 

the parameter 1/(κ + 1) should be equal to 1, since there are no periodic scatterers in this 

simulation (see Section 4.2.3). Also, the parameter 1/α should be inversely proportional to 

the number of randomly located scatterers per resolution cell. In fact, from [33, Eq. (4)], the 

parameter α is of the form αsNs, where Ns is the number of randomly located scatterers per 

resolution cell and αs > 0 is related to the homogeneity of the scattering cross-sections. 

Thus, one obtains 1/α = 1/(α sNs). The constant 1/αs was obtained with the Blacknell-

Tough estimator [4], assuming a K-distribution. Namely, for each simulated sequence, 

corresponding to an average of i = 1, …, 10 randomly located scatterers per resolution cell, 

the estimated value of 1/α[i] was averaged over the 60 images. Then, the average 

 was considered as the constant 1/αs (because the index i in the sum represents 

Ns). In the reported tests, a value of 1/αs = 2.243 was obtained in that manner.

4.2.3. Variation of the coherent component—A fixed density of 3 randomly located 

scatterers per resolution cell was considered. Coherent scattering was created by using 

periodically spaced scatterers along the transducer axis. So, their coordinates in the plane 

perpendicular to the transducer axis were random, whereas their coordinates along that axis 

were separated by a distance of around λ/2, where λ is the wavelength. This corresponds to 
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a subresolvable periodic alignment of scatterers. The amplitude of the periodic scatterers 

was fixed to the constant 1 for each simulation of 60 images, in order to match the average 

intensity value of the randomly located scatterers. Indeed, the amplitude of the randomly 

located scatterers was distributed according to a Gaussian distribution of mean 0 and 

variance 1, which implies a Rayleigh distribution of mean 1 for the intensity (i.e., the square 

of the amplitude). The average number of periodic scatterers per resolution cell (i.e., their 

density) varied from 0 to 9 (with a step of 1), for a total of 10 simulations of 60 images each.

For each simulated sequence, the estimated values of 1/(κ +1) and 1/α were averaged over 

the 60 images of the sequence within the ROI of Section 4.2.2. In Fig. 10, the theoretical and 

estimated values of these parameters (with the XU method) are presented. As a first 

approximation, the theoretical value of κ is equal to the ratio of periodic to randomly located 

scatterers. Moreover, one would expect that the theoretical value of α is constant and 

corresponds to a density of 3 randomly located scatterers per resolution cell (and no periodic 

scatterers) times the constant αs of Section 4.2.2. Hence, it can be deduced as in that section.

4.2.4. Presence of noise—The simulations of Sections 4.2.2 and 4.2.3 were repeated 

with the addition of noise on the RF signals (prior to the computation of the echo envelope) 

to create RF signals with SNRs of 20 dB, 10 dB or 5 dB. Namely, an SNR of n dB on the RF 

signal was simulated by adding to the RF signal a Gaussian noise of mean 0 and of variance 

τ2 equal to 10−n/10 E[IRF], where IRF denotes the square of the RF signal. In that manner, the 

SNR of the RF signal was equal to E[IRF]/τ2 = 10n/10, which corresponds indeed to n dB. A 

comparison with the simulations with no added noise is presented in Table 4. Four methods 

were tested: 1) the MI method [8]; 2) the MA method; 3) the XU (proposed) method; and 4) 

the RSK method [11]. In that table, the relative RMSE are reported. Note that the value of 

the constant 1/αs of Section 4.2.2 has to be evaluated for each level of noise. We obtained 

the values 2.225, 2.106, and 1.896 for SNRs of 20 dB, 10 dB, and 5 dB, respectively.

5. Discussion

5.1. Comparison of estimators based on simulations of data samples

As can be seen from Table 2, the XU method for the homodyned K-distribution yielded the 

lowest total relative RMSE for the parameter α. On the other hand, the total relative RMSE 

for the parameter k was lowest with the RSK method, whereas the MA and XU methods 

ranked second.

Note that the values obtained for α and k with the RSK method agree with [11, Table 1]. 

The values obtained for α with the MI method agree with [11, Table 1], but not the values 

obtained for k. This is explained by the fact that in the present study, as well as in [11], 

estimated values were excluded when α was outside its range. However, in [11], estimated 

values were excluded whenever α was outside its domain for either method [8] or [11]. In 

the present study, estimated values were excluded for a given estimator only if α was outside 

its domain for that estimator. We proceeded in that manner in order to test the performance 

of each method as it stands alone.
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Moreover, Table 3 indicates clearly that it is preferable to estimate the parameters 1/(κ + 1) 

and 1/α rather than k (or κ or ) and α. The XU method yielded a lower relative RMSE 

than the MI method, whereas it was barely better than the MA method, for the parameters α, 

1/α and . On the other hand, the reported tests on simulated images indicate that the XU 

estimator is preferable to the MA estimator. The RSK method presented the lowest relative 

RMSE for the parameters α, k and 1/(κ + 1), but the XU method was best for the parameters 

1/α and .

5.2. Estimation based on simulated ultrasound images

5.2.1. Variation of the density of randomly located scatterers—Table 4 (left part) 

shows that the XU estimation method performs better than the other tested methods. These 

results are in agreement with the RMSEs obtained on simulated data samples of Section 4.1, 

as far as the XU and RSK methods are concerned. On the other hand, the XU method 

appears to be much better than the MA method on simulated images, whereas the tests 

performed on simulated data samples did not stress this fact. This is explained by the fact 

that the X and U statistics arise in the limiting case where the fractional exponent of the 

fractional moment estimator is small [4] (i.e., near 0 or 1), since higher order moments are 

more sensitive to noise. Note that the estimates improve in the presence of less noise on the 

RF signal.

As can be seen from Fig. 9, the estimation of the parameters 1/(κ + 1) and 1/α is reliable up 

to 3 scatterers per resolution cell (1/α > 0.7) in the context of the reported tests. This is due 

to the behavior of the estimator for large values of α when κ = 0. Namely, the normalized 

bias and standard deviation of the estimator of  increase with the size of α, as can be 

seen from Fig. 7 (right) on the axis k = 0. Moreover, the normalized standard deviation of 

the estimator of α increases with the size of α (left of Fig. 7), which is consistent with the 

asymptotic expression 1/α2 of the Fisher information of the K-distribution [1] 

(corresponding to k = 0). Indeed, the larger the value of α, the smaller the information 

revealed by the data, so that a larger sample size is needed for a finer estimation. Henceforth, 

the limitation of the XU estimator for large values of α is intrinsic to the model. To further 

study this issue, we have experimented with simulated ultrasound images with 11 to 20 

scatterers per resolution cell. The relative RMSEs for 1/α were equal to 1.43 (MI), 1.27 

(MA), 1.25 (XU) and 1.33 (RSK); for 1/(κ + 1), we obtained 0.14 (MI), 0.16 (MA), 0.17 

(XU) and 0.20 (RSK). So, the XU estimator is better than the three others for 1/α, but for 1/

(κ + 1), the MI estimator is best, whereas the XU estimator is still better than the RSK 

estimator.

One way to remedy this limitation is to consider the median of the estimator over a sequence 

of images. Fig. 11 shows that this approach yields much better results for the parameter 1/(κ 
+ 1) and slightly better results for 1/α. Taking the median over all frames, instead of the 

mean, reduced the normalized bias1 of the XU estimator for the parameter 1/(κ + 1) down to 

0.08 in the case of the simulations with 11 to 20 diffuse scatterers. So, the bias was smaller 

1The bias may be defined as E[θ̂] − θ, where θ̂ is the parameter estimator and θ is the gold-standard, or as median(θ̂) − θ, when using 
the median instead of the mean.

DESTREMPES et al. Page 13

SIAM J Imaging Sci. Author manuscript; available in PMC 2014 May 02.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



when using the median instead of the mean. Moreover, the standard deviation (or the median 

absolute deviation - MAD -) is proportional to  for the average of an estimator over N 
images. Thus, taking the median value of the estimator over a sequence of images greatly 

improves its performance.

Note also from Fig. 11 that although the XU estimator does not allow the exact number of 

scatterers per resolution cell for 1/α < 0.7 to be distinguished, this estimator nevertheless 

indicates the range of the number of scatterers. This is consistent with the fact that the 

homodyned K-distribution gets close to a Rice distribution2 as α increases, so that it 

becomes harder to determine the exact value of α. So, again, this phenomenon is intrinsic to 

the model.

5.2.2. Variation of the coherent component—As can be seen from Fig. 10, the 

estimation of the parameter 1/(κ + 1) is quite reliable except when the number of coherent 

scatterers is 1 or 2. Also, the estimated parameter 1/α is smaller than the expected constant 

value, in the case of the simulations with a variable coherent component. So, as it stands, the 

proposed theoretical model is only an approximation. For that reason, we have chosen two 

evaluation measures that do not depend on a theoretical ground-truth in Table 4 (right). For 

the parameter 1/α, the coefficient of variation (CV) of the estimated parameter indicates the 

variability of the estimator with respect to its mean. If θ̂ is the estimator of a parameter θ, 

the CV is defined as . For the parameter 1/(κ + 1), the root Fisher’s J criterion 

(RFJC) applied to pairs of distinct values of the parameter is an indicator of the 

discrimination power of the estimator. For two distinct values of a parameter θ, say θ1 and 

θ2, the RFJC is defined as .

Table 4 (right) shows that the XU estimation method performed better than the other tested 

methods, even with RF SNRs of 20 dB to 5 dB. Note that overall, the estimates improved in 

the presence of less noise on the RF signal, as expected.

5.3. Computational load

In the case of the experiments of Section 4.1, one estimation took on average 1.0 ms (MI), 

1.6 ms (MA), 1.8 ms (XU) and 295.2 ms (RSK). In the case of the experiments of Sections 

4.2.2 and 4.2.3, the computation times per image were equal to 6.0 ms (MI), 8.0 ms (MA), 

6.8 ms (XU), and 500 ms (RSK). So, the MI, MA and XU methods share a comparable 

efficiency, whereas the RSK method is slower. That being said, the implementation for the 

first three methods was in C++, whereas the RSK method was implemented with Matlab. 

Nevertheless, the first three methods resort to a binary search algorithm with geometric rate 

of convergence, whereas the RSK method does not.

2We checked numerically that the Kullback-Leibler distance between a homodyned K-distribution with parameters ε, σ2, α and the 

Rice distribution with parameters ε and  is less than 8.8 × 10−3 for values in the range 

 and α ∈ {10, 11, …, 20}. This represents a very good approximation. Note that the Kullback-
Leibler distance is independent of the scaling factor μ so that one may assume that μ = 1.
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5.4. Hypothesis underlying the simulations of ultrasound images

As in [8, 11], we have made the hypothesis that the scatterers are dimensionless (upon using 

the Field II ultrasound simulation program [17, 18]). In the case of biological tissues, this 

hypothesis is false. In fact, the cell nuclei may be viewed as weak scatterers embedded in 

cytoplasm, considered as the ambient medium (see [31, 34]). Assuming spherical nuclei 

with a radius of 4.5 μm, one obtains a volume of 382 μm3. For flowing red blood cells, 

which do not have a nucleus, the cells themselves are viewed as scatterers (of volume 94 

μm3 [32]), whereas the plasma is considered as the ambient medium. The point is that a 

sufficiently large density of scatterers with non-zero volume creates a scattering field that 

departs from the scattering behavior of uniformly distributed dimensionless scatterers, due to 

the so-called packing factor [36, 37]. Thus, the simulations reported in the present study are 

to be interpreted in the context of a low density of uniformly distributed weak scatterers of 

sufficiently small size (with respect to the resolution cell). The study of the homodyned K-

distribution in the context of more realistic simulations with scatterers of finite dimensions 

would need to be addressed.

5.5. Conjecture 1

The statement that the algorithm of Fig. 4 converges to a unique solution is proved in 

Appendix B. For the algorithm of Fig. 5, all statements of Theorem 3.5 are proved in 

Appendix C. But Conjecture 1 remains to be proven to obtain the convergence of the 

algorithm of Fig. 5 to a unique solution of the system of equations (3.1). Yet, we have 

explained in Appendix D how that conjecture would follow from two claims. The former 

claim is illustrated in Fig. 12, whereas the latter is proved in Appendix D. We are convinced 

that the first claim is also true, but we do not know if this strategy for proving the conjecture 

is the easiest one. Note that the algorithm of Fig. 6 also relies on the conjecture.

5.6. Upper bound on the parameter α

If one does not impose an upper bound on α (unlike what was done in Section 3.5), then one 

can consider the following minimization problem, which is similar to Eq. (3.8)

(5.1)

where κ = ε2/(2σ2α) and β = 1/α. Observe that a solution to the system (3.1) yields 

automatically the solution μ = I̅, κ = ε2/(2σ2α) = γ/α and β = 1/α to the system (5.1).

The first case where the conditions of Corollary 3.6 are not satisfied (i.e., when the system 

(3.1) has no solution) corresponds to X > 1 and . Since  is 

the lower bound of the function UHK(γ(α, X), α) (c.f. Theorem 3.3), it follows that |UHK − 

U| is minimized at α = α0 = 1/(X − 1), assuming the conjecture. But then, one must have 

γ(α0, X) = 0, because of Theorem 3.3. Thus, one obtains the K-distribution model with μ = 

I ̅, κ = 0 and α = α0 (and hence β = 1/α0).
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The other case to consider corresponds to X ≤ 1 and . Then, |UHK − U| is 

minimized at α = ∞, assuming the conjecture. Indeed, the lower bound of the function 

UHK(γ (α, X), α) is equal to  and is reached asymptotically at infinity (c.f. 

Theorem 3.5, part c)). Thus, one obtains the Rice distribution. In fact, as α → ∞, the 

homodyned K-distribution with parameters ε2,  and α tends to the Rice 

distribution with parameters ε2 and . Moreover, from Appendix B, Proof of Theorem 3.5, 

Part c), we have XRi(κ) = limα→∞ XHK(γ, α), where  and . 

Furthermore, one obtains β = limα→∞ 1/α = 0. The special case where X = 1 yields the 

Rayleigh distribution because XRi(0) = 1. Thus, if one is willing to include the Rice 

distribution to the homodyned K-distribution model as a limit case, then the system (5.1) 

always admits a solution.

However, the value of α is unbounded with that formulation, which is problematic in any 

implementation. For that reason, we adopted the minimization formulation of Eq. (3.8). Note 

that the MI and MA methods present a similar behavior. Moreover, the RSK method also 

restricts the parameters k and α to a bounded domain.

5.7. Biomedical applications

The K-distribution was used in the context of breast cancer classification in [33]. The 

parameters of the K-distribution have also been studied in the context of tissue 

characterization under shear wave propagation [3]. The homodyned K-distribution was used 

for cardiac tissue characterization [10], cancerous lesion classification [25, 12, 22], breast 

lesion classification [35] and determination of red blood cell aggregation [7]. In all these 

applications, the statistical parameters of the distributions considered are viewed as 

classifying features. The underlying assumption is that the scattering properties of the 

biological tissues leave a signature on the echo envelope of the received RF signal.

6. Conclusions

A method for the estimation of the parameters of the homodyned K-distribution was 

proposed, based on the first moment of the intensity and two log-moments (i.e., the U and X 
statistics). It was proven that the proposed algorithm converges to an estimation of the 

parameters. It was shown that it is preferable to estimate the parameters 1/(κ + 1) and 1/α, 

rather than k or κ, and α. The experimental results reported here show that the resulting 

estimator is, overall, more reliable than the method [8] based on the first three intensity 

moments, or a method based on the first three moments of the amplitude, or the estimator 

[11] based on the SNR, the skewness and the kurtosis of two fractional orders of the 

amplitude. These results hold even in the presence of noise corresponding to RF SNRs of 20 

dB to 5 dB. For simulated data samples, the method [11] was slightly better for the 

parameter 1/(κ + 1). For simulated ultrasound images with more than 10 scatterers per 

resolution cell, the estimator [8] was slightly better for the parameter 1/(κ + 1). Otherwise, 

the proposed estimator ranked best among the four tested estimation methods. Moreover, the 

proposed method has a geometric rate of convergence, since it is based on the bisection 

algorithm for monotonous functions. Thus, a fast, reliable, and novel algorithm for the 
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estimation of the homodyned K-distribution was proposed. On theoretical grounds, the 

uniqueness of the solution produced by the proposed method remains to be proven.
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Appendix A. The statistics U and X for the homodyned K-distribution

In this appendix and those which follow, the software Mathematica (Wolfram Research, Inc., 

Champaign, IL, USA, version 7.0) was used whenever possible for the computations of 
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integrals or limits. We have indicated any step that could not be obtained directly from that 

software.

Proof of Lemma 3.1

Part a). The function log I is concave. Therefore, from Jensen’s inequality [16], one obtains 

E[log I] < log E[I], since the random variable I is non-constant.

Part b). The function I log I is convex. Thus, E[I log I] > E[I] log E[I]. From part a), one 

concludes that E[I log I] > E[I]E[log I].

Proof of Proposition 3.2

Part a). First of all, using the change of variable I = A2, one computes

(A.1)

which is a Laplace transform equal to , where Γ(0, x) is the incomplete 

gamma function . Then, taking a2 = σ2w, multiplying by (w|α, 1), and integrating 

with respect to w, one obtains

(A.2)

Subtracting log E[I] from equation (A.2), with the identity E[I] = ε2 + 2σ2α, and setting γ = 

ε2/(2σ2) yields the result.

Part b). Again, using the change of variable I = A2, one computes

(A.3)

This Laplace transform is equal to . Then, 

subtracting by  (corresponding to the term − E[I]E[log 

I]), taking a2 = σ2w, and multiplying by (w | α, 1), one obtains

(A.4)
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Then, integrating with respect to w yields

(A.5)

which gives an expression for E[I log I]−E[I]E[log I]. Dividing equation (A.5) by E[I] = ε2 

+2σ2α and setting γ = ε2/(2σ2) yields the result. ■

Appendix B. Estimating γ, when α is known

Proof of Theorem 3.3

Part a). By definition of the hypergeometric series as a power series, one has pFq(a1, …, ap; 

b1, …, bq; x) = 1 at x = 0. Using this fact, one concludes that the sum of the last four terms 

in Equation (3.4) is equal to 0 at γ = 0. Next, from [2, p.375, (9.6.9)], one has the asymptotic 

behavior  at x = 0. Hence, the second term of equation (3.4) admits the 

asymptotic form , at γ = 0. Collecting all terms, 

one obtains . Since γ = 0 corresponds to the K-distribution, this 

also shows that XK(α) = 1 + 1/α.

Part b). Writing equation (A.4) in terms of γ and α, and dividing by μ = E[I], one obtains

(B.1)

The third term of equation (B.1) is irrelevant because its integral with respect to w is equal 

to 0. Thus, one has

(B.2)

Claim 1

 for any x > 0.
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Proof

Let . On one hand, limx→0 f (x) = 0. On the other hand, 

, for x > 0. This last statement is equivalent to , for x > 0, 

or 4z < e2z, for z > 0 (with the change of variable z = 1/x). But now, the function g(z) = e2z 

−4z has an absolute minimum at  (because  for z < z0, whereas 

for z > z0), and furthermore, g(z0) = 2(1 − log 2) > 0. So, g(z) > 0 for all z > 0, which 

completes the proof of the claim. ■

From the claim, . Therefore, the absolute value of the function F (w, γ, α) 

of equation (B.2) admits the upper bound

(B.3)

Integrating equation (B.3) with respect to w yields . Thus, limγ→∞ 
XHK(γ, α) = 0.

Part c). From equation (B.2), the function XHK(γ, α) can be written as the sum of the two 

following functions

(B.4)

It is now shown that the first function is decreasing in γ and that the second one is strictly 

decreasing in γ.

First of all, one computes

(B.5)

where . So, one concludes that , from Claim 

2 below.

Claim 2

For γ > 0 and α > 0, E(1 + α, γ) ≤ e−γ/α.
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Proof

Since e−γt ≤ e−γ for t ≥ 1 and t−α−1 > 0, one computes immediately 

. ■

Next, one may write XHK,B(γ, α) as , where

(B.6)

Hence, . Thus, in order to show 

that XHK,B is strictly decreasing, it is sufficient to show that XHK,C(γ, α) > 0 and that 

XHK,C(γ, α) is decreasing. Therefore, it is sufficient to prove Claims 3 and 4 below.

Claim 3

For γ > 0 and α > 0, .

Proof

One computes

Claim 4

For α> 0, limγ→∞ XHK,C(γ, α) = 0.

Proof

Observe that |Γ(0, 1/x)| = Γ(0, 1/x) ≤ x, for x > 0. Indeed, let f(x) = Γ(0, 1/x) − x. Then, 

limx→0 f(x) = 0, and , because e1/x > 1/x, for x > 0. Hence, one has 

. But, .

This completes the proof of the Theorem. ■

Appendix C. Estimating γ and α

Lemma C.1

a. limα→0 XHK(α/x, α) = ∞, for any x > 0.

b. limα→0 UHK(α/x, α) = − log(1 + x), for any x > 0.
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Proof

Part a). Setting γ = α/x, equation (3.4) reads as

(C.1)

Using the definition of the hypergeometric series, one sees immediately that 1 ≤ 1F2(α; 1 + 

α; α/x) ≤ 1F2(1/2; 1, 1; α/x), for α ≤ 1/2; moreover, . Therefore, 

, for α sufficiently small. 

Now, 1F2(1/2; 1, 1; α/x) is a power series in the variable α; moreover, 

 and , for n > 1. Therefore, 

 for α sufficiently small. Arguing as 

above, limα→0 1F2(1 + α; 2 + α, 2 + α; α/x) = 1. In the same manner, one sees that 1 ≤ 

2F3(1, 1; 2, 2, 1− α; α/x) ≤ 2F3(1, 1; 2, 2, 1/2; α/x), for α ≤ 1/2; but, one has that 

limα→0 2F3(1, 1; 2, 2, 1/2; α/x) = 1. Similarly, for 2F3(1, 1; 2, 2, 2 − α; α/x). From there, 

one obtains

(C.2)

Using the limiting form K1(z) ~ z−1 [2, p.375, (9.6.9)] valid for small arguments z, one 

computes

(C.3)

Finally, combining (C.1), (C.2), and (C.3), one has 

.

Part b). Setting γ = α/x, equation (3.3) reads as
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(C.4)

Using the definition of the hypergeometric series, one sees immediately that 1 ≤ 2F3(1, 1; 2, 

2, 2 − α; α/x) ≤ 2F3(1, 1; 2, 2, 3/2; α/x), for α ≤ 1/2; but, on the other hand, one has 

limα→0 2F3(1, 1; 2, 2, 3/2; α/x) = 1. So, limα→0 2F3(1, 1; 2, 2, 2 − α; α/x) = 1. Since 

, one concludes that 

. Next, one writes 1F2(α; 1 + α, 1 + α; 

α/x) = 1 + h(x, α), where . Let us observe that 

 (for α sufficiently small), and from there it follows 

that . Finally, one has 

.

Lemma C.2

For any γ > 0 and α > 0 .

Proof

From the proof of Proposition 3.2, part a), one has

(C.5)

So, one computes

(C.6)

where . Since the function E(α, γ) is obviously decreasing in the 

variable α for a fixed value of γ, the result follows. ■
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Proof of Theorem 3.5

Part a). Let x > 0 be fixed for now. From Lemma C.1, part a), and Theorem 3.3, part c), one 

has that γ (α, X) > α/x, for α sufficiently small. Then, from Lemma C.2, one obtains that 

UHK(α/x, α) < UHK(γ (α, X), α) < 0, for α sufficiently small. Therefore, using Lemma C.1, 

part b), one has −log(1 + x) = limα→0 UHK(α/x, α) ≤ lim supα→0 UHK(γ (α, X), α) ≤ 0. 

Since x > 0 can be taken arbitrarily small, one deduces that limα→0 UHK(γ (α, X), α) = 0.

Part b). Let X > 1. From Theorem 3.3, one has that  implies that 

γ( α, X) = 0. Then, taking γ = 0 and  in Equation (3.3) yields the result.

Part c). Let X ≤ 1. The homodyned K-distribution with parameters ε2, , α tends to 

the Rice distribution with parameters ε2 and , as α → ∞. The structure parameter κ for 

that Rice distribution is equal to , and this is the same value for the homodyned K-

distribution (because ). Therefore, limα→∞ XHK(κα, α) = XRi(κ), 

since γ = κα. In the same manner, one obtains limα→∞ UHK(κα, α) = URi(κ). Now, take 

 and let 0 < η < κ. Then, for α sufficiently large, one has (κ − η) α < γ( α, X) < 

(κ + η) α. Therefore, one obtains UHK((κ − η) α, α) < UHK(γ (α, X), α) < UHK((κ + η) α, 

α), since from Lemma C.2, the function UHK(γ, α) is increasing in the variable γ. Taking 

the limit as α→∞ (which is possible since 0 < X ≤ 1 implies that γ( α, X) is well-defined 

for any α > 0), one deduces that URi(κ − η) ≤ lim infα→∞ UHK(γ (α, X), α) ≤ lim supα→∞ 
UHK(γ (α, X), α) ≤ URi(κ + η). Since η > 0 can be taken arbitrarily small, the result 

follows.

Next, an argument similar to the proof of Theorem 3.3 (i.e., making the change of variable I 

= A2 and computing Laplace transforms) shows that  and 

. Finally, from basic calculus, one obtains the statement on the function 

XRi(κ). ■

Appendix D. Discussion on Conjecture 1

Let f(α) = UHK(γ (α, X), α) (X being known). Then, Conjecture 1 amounts to the inequality

(D.1)

where γ = γ (α, X). Since γ(α, X) is defined by the identity XHK(γ (α, X), γ) ≡ X, the 

implicit function Theorem implies that . Moreover, since 

, we conclude that equation (D.1) is equivalent to
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(D.2)

In particular, it is sufficient to prove the inequality Δ(γ, α) > 0, for any γ > 0 and α > 0. For 

that purpose, it is sufficient to show the two following claims.

Claim 5

For any fixed value of x > 0, the function Δ(αx, α) is decreasing in the variable α > 0.

We have not succeeded in proving the Claim 5, but Fig. 12 convinced us that it is true.

Claim 6

For any fixed value of x > 0, limα→∞ Δ( αx, α) = 0.

Proof

Using the identity γ = xα and making the change of variable w = αw′, we obtain from 

Equation (C.6)

(D.3)

The distribution (w′ | α, 1/α) is concentrated on w′ = 1 as α→∞. Therefore, 

, for large values of κ. Similarly, we have

(D.4)

Thus,  for 

large values of α.

Next, we have for the X-statistics

DESTREMPES et al. Page 26

SIAM J Imaging Sci. Author manuscript; available in PMC 2014 May 02.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



(D.5)

Hence,  for large values of α. Also, 

the partial derivative of X with respect to α is given by

(D.6)

So, 

for large values of α.

Finally, since limα→∞ (log α − ψ( α))/α = 0, the claim follows. ■

Appendix E. Implementation issues

Using standard identities of the Euler gamma function and permuting the terms, one rewrites 

(3.4) as

(E.1)

which is valid for α > 1. If α < 1, the last term  is replaced by 

.

Either expression can be computed directly for α > 0, if α is not an integer. When α is a 

positive integer, the four terms of lines three and four of (E.1) tend to ±∞. Nevertheless, it 

can be shown that the corresponding sum has a finite value. In the implementation used in 
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the reported tests, we chose the simplest solution that consists in approximating XHK(γ, α) 

by interpolation of the values XHK(γ, n − 10−7) and XHK(γ, n + 10−7) in the interval n 

− 10−7 ≤ α ≤ n + 10−7, where n is an integer. On the other hand, the first two terms of (E.1) 

are well-defined for any value of α > 0.

Similar remarks apply to the computation of UHK. In particular, one obtains

(E.2)

which is valid for α > 1. If α < 1, the last term  is replaced by 

. These expressions are valid for α not an integer. 

One uses an approximation as explained above for values of α near integers.

Appendix F. Method [8] revisited

The method [8] is equivalent to solving the following (non-linear) system of equations in the 

variables ε2, σ2, and α:

(F.1)

Sufficient and necessary conditions for this system to admit a solution are presented below. 

For that purpose, the change of variables (3.2) was adopted.

Proposition F.1

Let  be distributed according to the homodyned K-distribution PHK(A | ε, σ2, α). 

With the notation of (3.2), one has

(F.2)

(F.3)
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As one can see, Equations (F.2) and (F.3) depend only on the variables γ and α. Thus, the 

method [8] amounts to solving Equations (F.2) and (F.3) in the variables γ and α, and then 

using Equations (3.5) with μ = E[I].

Let α > 0 be known. Using Equation (F.2), one deduces the value of γ ≥ 0 explicitly.

Proposition F.2

Let M > 1 be a real number and α be fixed. Then, there exists at most one solution γ ≥ 0 to 

the equation MHK(γ, α) = M, namely

(F.4)

a. If M ≤ 2, then there is a solution for any α > 0.

b. If M > 2, then there is a solution if and only if .

Thus, one obtains a well-defined function γ = γ( α, M) on the domain described by 

Proposition F.2. Next, proceeding as in Section 3.3, the expression of Equation (F.4) is 

substituted in Equation (F.3), thus yielding a function LHK(γ (α, M), α) in the single 

variable α.

Proposition F.3

Let M > 1 be a real number.

a. One has the left boundary condition limα→0 LHK(γ (α, M), α) = ∞.

b. If M ≤ 2, then limα→∞ LHK(γ (α, M), α) = LRi(κ0), where 

.

c. If M > 2, then limα→α0 LHK(γ (α, M), α) = LK(α0), where 

.

d. The function LHK(γ (α, M), α) is decreasing on its domain.

In Proposition F.3, part b), the functions MK(α) = 2 (1+1/α) and LK(α) = 6 (1+1/α) (1+2/α) 

correspond to the computation of the M and L statistics for the K-distribution. In part c), the 

functions  and  correspond to the computation of the 

M and L statistics for the Rice distribution.

Part d) of the Proposition implies that a binary search algorithm can be used to find the 

unique solution to Equations (F.2) and (F.3), whenever a solution exists.
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Corollary F.4

Let M > 1 and L > 1 be given. Then, there exists a simultaneous solution to the system 

MHK(γ, α) = M and LHK(γ, α) = L if and only if

a. M ≤ 2 and .

or

b. M > 2 and .

Moreover, if a solution exists, it is unique.

Thus, one obtains well-defined functions γ = γ(M, L) and α = α(M, L), where M and L are 

restricted to the domain described by parts a) and b) of Corollary F.4.
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Fig. 1. 
Illustration of the typical behavior of the X-statistics for the homodyned K-distribution as a 

function of γ ≥ 0 with a fixed value of α > 0 (here, α = 2.1).
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Fig. 2. 
Illustration of the typical behavior of the U-statistics for the homodyned K-distribution as a 

function of α > 0, with a fixed value of X > 0 and γ = γ(α, X). Here, X = 2.5. Since X > 1, 

the upper bound for α is α0 = 1/(X − 1).
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Fig. 3. 
Illustration of the domain in the (X, U)-plane in which the parameters γ ≥ 0 and α are well-

defined. The domains where either the K-distribution, the Rice distribution, or the Rayleigh 

distribution model apply are also indicated. The Rayleigh distribution corresponds to the 

vertical line.
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Fig. 4. 
Algorithm for computing the function γ(α, X) of equation (3.6). Left: block diagram; right: 

flow chart.
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Fig. 5. 
Algorithm for solving simultaneously XHK(γ, α) = X and UHK(γ, α) = U. Left: block 

diagram; right: flow chart.
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Fig. 6. 
Algorithm for estimating the parameters ε2, σ2, α of the homodyned K-distribution with the 

constraint that α is less than an upper bound αmax. Left: block diagram; right: flow chart.
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Fig. 7. 
Relative bias and normalized standard deviation (SD) of the parameter estimates based on 

the XU estimator. The sample size is N = 1000. The computation of the biases and standard 

deviations excluded the instances where α was greater than αmax.
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Fig. 8. 
Examples of simulated B-mode images with Ns randomly located scatterers per resolution 

cell, Nc periodic scatterers per resolution cell, with or without noise added to the RF signal. 

Top left: Ns = 1, Nc = 0, no noise; Top right: Ns = 10, Nc = 0, no noise. Middle left: Ns = 3, 

Nc = 0, no noise; Middle right: Ns = 3, Nc = 3, no noise. Bottom left: Ns = 3, Nc = 0, RF 

SNR of 20 dB; Bottom right: Ns = 3, Nc = 3, RF SNR of 20 dB. A log-compression was 

applied to the echo envelope solely for visualization purposes.
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Fig. 9. 
Values of the parameter 1/(κ + 1) (left) and of the scatterer clustering parameter 1/α (right) 

as a function of the average number of randomly located scatterers per resolution cell. No 

coherent component was included in these simulations. The sample size of each frame is 

13299 and the number of frames is N = 60 (used for the computation of the standard 

deviations). The computation of the biases and standard deviations did not exclude any 

values of α, because 1/α = 0 is a possible solution.
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Fig. 10. 
Values of the parameter 1/(κ + 1) (left) and of the scatterer clustering parameter 1/α (right) 

as a function of the number of coherent scatterers per resolution cell. The sample size of 

each frame is 13299 and the number of frames is N = 60 (used for the computation of the 

standard deviations). The computation of the biases and standard deviations did not exclude 

any values of α, because 1/α = 0 is a possible solution.
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Fig. 11. 
Median values of the parameter 1/(κ + 1) (left) and of the scatterer clustering parameter 1/α 
(right) as a function of the average number of randomly located scatterers per resolution cell. 

No coherent component was included in these simulations. The sample size of each frame is 

13299 and the number of frames is N = 60 (used for the computation of the median absolute 

deviations).
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Fig. 12. 
Left: A few level curves of the function Δ( γ, α) by steps of 1.2 × 10−4. The function Δ is 

increasing in the direction pointing to the origin. Right: Typical graph of Δ(xα, α) for a 

fixed value of x.
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DESTREMPES et al. Page 43

Table 1

Main parameters and statistics discussed in this paper.

Definition Notion

A and I = A2 amplitude and intensity

I̅ mean intensity of a sample A1, … AN

U-statistics

X-statistics

Homodyned K-distribution with parameters ε ≥ 0, σ2 > 0 and α > 0

α scatterer clustering parameter

ε2 coherent signal power

2σ2α diffuse signal power

μ = ε2 + 2σ2α total signal power (mean intensity)

κ = ε2/(2σ2α) structure parameter

γ = ε2/(2σ2) = κα algorithmic parameter

ratio of the coherent to diffuse signal

Rice distribution with parameters ε ≥ 0 and 

mean intensity

structure parameter

ratio of the coherent to diffuse signal
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DESTREMPES et al. Page 44

Table 2

Improvements in bias and variance of estimators. The sample size is N = 1000. Estimation methods: 1) MI [8]; 

2) MA; 3) XU (proposed method); 4) RSK [11]. The computation of the biases and standard deviations 

excluded the instances where α was greater than αmax for the MI, MA, XU methods. A star (*) indicates the 

best relative RMSE value among the four estimators.

MI MA XU RSK

Total absolute value of the relative bias of α̂ 47.9 19.6 17.5 23.9

Total absolute value of the relative bias of κ̂ 42.2 33.2 34.7 60.7

Total normalized standard deviation of α̂ 108.9 73.7 70.3 84.5

Total normalized standard deviation of κ̂ 117.0 92.0 91.1 62.1

Total value of the relative RMSE of α̂ 120.3 76.7 72.7* 88.2

Total value of the relative RMSE of κ̂ 126.6 99.1 99.1 92.7*
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DESTREMPES et al. Page 45

Table 3

Relative RMSE of estimators for various parameters of the homodyned K-distribution. The sample size is N = 

1000. Estimation methods: 1) MI [8]; 2) MA; 3) XU (proposed method); 4) RSK [11]. For the MI, MA, XU 

methods, the computation of the biases and standard deviations did not exclude any values of α, because 1/α = 

0 is a solution. A star (*) indicates the best MSE value among the four estimators.

MI MA XU RSK

Mean relative RMSE of α̂ 1.69 1.06 1.04 0.88*

Mean relative RMSE of 

1.37 0.64 0.63* 0.67

Mean relative RMSE of k̂ 1.26 0.99 0.99 0.93*

Mean relative RMSE of κ̂ 6.90 4.29* 4.37 4.87

Mean relative RMSE of 

1.04 0.86 0.85* 0.88

Mean relative RMSE of 

0.18 0.12 0.13 0.11*
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