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Abstract

Euclidean distance geometry is the study of Euclidean geometry based on the concept of distance.

This is useful in several applications where the input data consists of an incomplete set of distances,

and the output is a set of points in Euclidean space that realizes the given distances. We survey some

of the theory of Euclidean distance geometry and some of the most important applications: molecular

conformation, localization of sensor networks and statics.
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1 Introduction

In 1928, Menger gave a characterization of several geometric concepts (e.g. congruence, set convexity)
in terms of distances [151]. The results found by Menger, and eventually completed and presented by
Blumenthal [28], originated a body of knowledge which goes under the name of Distance Geometry (DG).
This survey paper is concerned with what we believe to be the fundamental problem in DG:

Distance Geometry Problem (DGP). Given an integer K > 0 and a simple undirected
graph G = (V,E) whose edges are weighted by a nonnegative function d : E → R+, determine
whether there is a function x : V → RK such that:

∀{u, v} ∈ E ‖x(u)− x(v)‖ = d({u, v}). (1)

Throughout this survey, we shall write x(v) as xv and d({u, v}) as duv or d(u, v); moreover, norms ‖ · ‖
will be Euclidean unless marked otherwise (see [57] for an account of existing distances).

Given the vast extent of this field, we make no claim nor attempt to exhaustiveness. This survey is
intended to give the reader an idea of what we believe to be the most important concepts of DG, keeping
in mind our own particular application-oriented slant (i.e. molecular conformation).

The function x satisfying (1) is also called a realization of G in RK . If H is a subgraph of G and x̄ is
a realization of H , then x̄ is a partial realization of G. If G is a given graph, then we sometimes indicate
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its vertex set by V (G) and its edge set by E(G).

We remark that, for Blumenthal, the fundamental problem of DG was what he called the “subset
problem” [28, Ch. IV §36, p.91], i.e. finding necessary and sufficient conditions to decide whether a given
matrix is a distance matrix (see Sect. 1.1.3). Specifically, for Euclidean distances, necessary conditions
were (implicitly) found by Cayley [39], who proved that five points in R3, four points on a plane and three
points on a line will have zero Cayley-Menger determinant (see Sect. 2). Some sufficient conditions were
found by Menger [152], who proved that it suffices to verify that all (K+3)× (K+3) square submatrices
of the given matrix are distance matrices (see [28, Thm. 38.1]; other necessary and sufficient conditions
are given in Thm. 2.1). The most prominent difference is that a distance matrix essentially represents
a complete weighted graph, whereas the DGP does not impose any structure on G. The first explicit
mention we found of the DGP as defined above dates 1978:

The positioning problem arises when it is necessary to locate a set of geographically distributed
objects using measurements of the distances between some object pairs. (Yemini, [232])

The explicit mention that only some object pairs have known distance makes the crucial transition from
classical DG lore to the DGP. In the year following his 1978 paper, Yemini wrote another paper on the
computational complexity of some problems in graph rigidity [233], which introduced the position-location
problem as the problem of determining the coordinates of a set of objects in space from a sparse set of
distances. This was in contrast with typical structural rigidity results of the time, whose main focus was
the determination of the rigidity of given frameworks (see [223] and references therein). Meanwhile, Saxe
had published a paper in the same year [188] where the DGP was introduced as the K-embeddability
problem and shown to be strongly NP-complete when K = 1 and strongly NP-hard for general K > 1.

The interest of the DGP resides in the wealth of its applications (molecular conformation, wireless
sensor networks, statics, data visualization and robotics among others), as well as in the beauty of the
related mathematical theory. Our exposition will take the standpoint of a specific application which we
have studied for a number of years, namely the determination of protein structure using Nuclear Magnetic
Resonance (NMR) data. Two of the pioneers in this application of DG are Crippen and Havel [50]. A
discussion about the relationship between DG and real-world problems in computational chemistry is
presented in [49].

NMR data is usually presented in current DG literature as consisting of a graph whose edges are
weighted with intervals, which represent distance measurements with errors. This, however, is already
the result of data manipulation carried out by the NMR specialists. The actual situation is more complex:
the NMR machinery outputs some frequency readings for distance values related to pairs of atom types.
Formally, one could imagine the NMR machinery as a black box whose input is a set of distinct atom
type pairs {a, b} (e.g. {H,H}, {C,H} and so on), and whose output is a set of triplets ({a, b}, d, q). Their
meaning is that q pairs of atoms of type a, b were observed to have (interval) distance d within the
molecule being analysed. The chemical knowledge about a protein also includes other information, such
as covalent bond and angles, certain torsion angles, and so on (see [189] for definitions of these chemical
terms). Armed with this knowledge, NMR specialists are able to output an interval weighted graph which
represents the molecule with a subset of its uncertain distances (this process, however, often yields errors,
so that a certain percentage of interval distances might be outright wrong [17]). The problem of finding
a protein structure given all practically available information about the protein is not formally defined,
but we name it anyway, as the Protein Structure from Raw Data (PSRD) for future reference.
Several DGP variants discussed in this survey are abstract models for the PSRD.

The rest of this paper is organized as follows. Sect. 1.1 introduces the mathematical notation and basic
definitions. Sect. 1.2-1.3 present a taxonomy of problems in DG, which we hope will be useful in order
for the reader not to get lost in the scores of acronyms we use. Sect. 2 presents the main fundamental
mathematical results in DG. Sect. 3 discusses applications to molecular conformation, with a special focus
to proteins. Sect. 4 surveys engineering applications of DG: mainly wireless sensor networks and statics,
with some notes on data visualization and robotics.
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1.1 Notation and definitions

In this section, we give a list of the basic mathematical definitions employed in this paper. We focus on
graphs, orders, matrices, realizations and rigidity.

1.1.1 Graphs

The main objects being studied in this survey are weighted graphs. Most of the definitions below can be
found on any standard textbook on graph theory [58]. We remark that we only employ graph theoretical
notions to define paths (most definitions of paths involve an order on the vertices).

1. A simple undirected graph G is a couple (V,E) where V is the set of vertices and E is a set of
unordered pairs {u, v} of vertices, called edges. For U ⊆ V , we let E[U ] = {{u, v} ∈ E | u, v ∈ U}
be the set of edges induced by U .

2. H = (U, F ) is a subgraph of G if U ⊆ V and F ⊆ E[U ]. The subgraph H of G is induced by U
(denoted H = G[U ]) if F = E[U ].

3. A graph G = (V,E) is complete (or a clique on V ) if E = {{u, v} | u, v ∈ V ∧ u 6= v}.

4. Given a graph G = (V,E) and a vertex v ∈ V , we let NG(v) = {u ∈ V | {u, v} ∈ E} be the
neighbourhood of v and δG(v) = {{u,w} ∈ E | u = v} be the star of v in G. If no ambiguity arises,
we simply write N(v) and δ(v).

5. We extend NG and δG to subsets of vertices: given a graph G = (V,E) and U ⊆ V , we let
NG(U) =

⋃

v∈U NG(v) be the neighbourhood of U and δG(U) =
⋃

v∈U δG(v) be the cutset induced
by U in G. A cutset δ(U) is proper if U 6= ∅ and U 6= V . If no ambiguity arises, we write N(U)
and δ(U).

6. A graph G = (V,E) is connected if no proper cutset is empty.

7. Given a graph G = (V,E) and s, t ∈ V , a simple path H with endpoints s, t is a connected subgraph
H = (V ′, E′) of G such that s, t ∈ V ′, |NH(s)| = |NH(t)| = 1, and |NH(v)| = 2 for all v ∈ V ′r{s, t}.

8. A graph G = (V,E) is a simple cycle if it is connected and for all v ∈ V we have |N(v)| = 2.

9. Given a simple cycle C = (V ′, E′) in a graph G = (V,E), a chord of C in G is a pair {u, v} such
that u, v ∈ U and {u, v} ∈ E r E′.

10. A graph G = (V,E) is chordal if every simple cycle C = (V ′, E′) with |E′| > 3 has a chord.

11. Given a graph G = (V,E), {u, v} ∈ E and z 6∈ V , the graph G′ = (V ′, E′) such that V ′ =
(V ∪ {z})r {u, v} and E′ = (E ∪ {{w, z} | w ∈ NG(u)∪NG(v)})r {{u, v}} is the edge contraction
of G w.r.t. {u, v}.

12. Given a graph G = (V,E), a minor of G is any graph obtained from G by repeated edge contraction,
edge deletion and vertex deletion operations.

13. Unless otherwise specified, we let n = |V | and m = |E|.

1.1.2 Orders

Algorithms for realizing graphs in Euclidean spaces are often iterative on the graph vertices, and therefore
require (or define) a vertex order. The names of the orders listed below refer to acronyms that indicate
the problems they originate from; the acronyms themselves will be explained in Sect. 1.2. Orders are
defined with respect to a graph and sometimes an integer (which will turn out to be the dimension of the
embedding space).
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1. For any positive integer p ∈ N, we let [p] = {1, . . . , p}.

2. For a set V , a total order< on V , and v ∈ V , we let γ(v) = {u ∈ V | u < v} be the set of predecessors
of v w.r.t. <, and let ρ(v) = |γ(v)|+1 be the rank of v in <. We also define η(v) = {u ∈ V | v < u}
to be the set of successors of v w.r.t. <.

3. The notation N(v) ∩ γ(v) indicates the set of adjacent predecessors of a vertex v; N(v) ∩ η(v)
indicates the set of adjacent successors of v.

4. It is easy to show that if G = (V,E) is a simple path then there is an order < on V such that for
all {u, v} ∈ E we have ρ(u) = ρ(v)− 1, and that the vertices of minimum and maximum rank in <
are the endpoints of the path.

5. A perfect elimination order (PEO) on G = (V,E) is an order on V such that, for each v ∈ V ,
G[N(v) ∩ η(v)] is a clique in G.

6. A DVOP order on G = (V,E) w.r.t. an integer K ∈ [n] is an order on V where (a) the first K
vertices induce a clique in G and (b) each v ∈ V of rank ρ(v) > K has |N(v) ∩ γ(v)| ≥ K.

7. A Henneberg type I order is a DVOP order where each v with ρ(v) > K has |N(v) ∩ γ(v)| = K.

8. A K-trilateration (or K-trilaterative) order is a DVOP order where (a) the first K + 1 vertices
induce a clique in G and (b) each v with ρ(v) > K + 1 has |N(v) ∩ γ(v)| ≥ K + 1.

9. A DDGP order is a DVOP order where for each v with ρ(v) > K there exists Uv ⊆ N(v) ∩ γ(v)
with |Uv| = K and G[Uv] a clique in G.

10. A KDMDGP order is a DVOP order where, for each v with ρ(v) > K, there exists Uv ⊆ N(v)∩γ(v)
with (a) |Uv| = K, (b) G[Uv] a clique in G, (c) ∀u ∈ Uv (ρ(v) −K − 1 ≤ ρ(u) ≤ ρ(v)− 1).

Directly from the definitions, it is clear that:

• KDMDGP orders are also DDGP orders;

• DDGP, K-trilateration and Henneberg type I orders are also DVOP orders;

• KDMDGP orders on graphs with a minimal number of edges are inverse PEOs where each clique
of adjacent successors has size K;

• K-trilateration orders on graphs with a minimal number of edges are inverse PEOs where each
clique of adjacent successors has size K + 1.

Furthermore, it is easy to show that DDGP, K-trilateration and Henneberg type I orders have a non-
empty symmetric difference, and that there are PEO instances not corresponding to any inverse KDMDGP
or K-trilateration orders.

1.1.3 Matrices

The incidence and adjacency structures of graphs can be well represented using matrices. For this reason,
DG problems on graphs can also be seen as problems on matrices.

1. A distance space is a pair (X, d) where X ⊆ RK and d : X ×X → R+ is a distance function (i.e., a
metric on X).

2. A distance matrix for a finite distance space (X = {x1, . . . , xn}, d) is the n × n square matrix
D = (duv) where for all u, v ≤ |X | we have duv = d(xu, xv).
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3. A partial matrix on a field F is a pair (A,S) where A = (aij) is an m × n matrix on F and S
is a set of pairs (i, j) with i ≤ m and j ≤ n; the completion of a partial matrix is a pair (α,B),
where α : S → F and B = (bij) is an m × n matrix on F, such that ∀(i, j) ∈ S (bij = αij) and
∀(i, j) 6∈ S (bij = aij).

4. An n × n matrix D = (dij) is a Euclidean distance matrix if there exists an integer K > 0 and a
set X = {x1, . . . , xn} ⊆ RK such that for all i, j ≤ n we have dij = ‖xi − xj‖.

5. An n× n symmetric matrix A = (aij) is positive semidefinite if all its eigenvalues are nonnegative.

6. Given two n × n matrices A = (aij), B = (bij), the Hadamard product C = A ◦ B is the n × n
matrix C = (cij) where cij = aijbij for all i, j ≤ n.

7. Given two n× n matrices A = (aij), B = (bij), the Frobenius (inner) product C = A •B is defined
as trace(A⊤B) =

∑

i,j≤n aijbij .

1.1.4 Realizations and rigidity

The definitions below give enough information to define the concept of rigid graph, but there are several
definitions concerning rigidity concepts. For a more extensive discussion, see Sect. 4.2.

1. Given a graph G = (V,E) and a manifold M ⊆ RK , a function x : G → M is an embedding
of G in M if: (i) x maps V to a set of n points in M ; (ii) x maps E to a set of m simple arcs
(i.e. homeomorphic images of [0, 1]) in M ; (iii) for each {u, v} ∈ E, the endpoints of the simple arc
xuv are xu and xv. We remark that x can also be seen as a vector in RnK or as an K × n real
matrix.

2. An embedding such that M = RK and the simple arcs are line segments is called a realization of
the graph in RK . A realization is valid if it satisfies Eq. (1). In practice we ignore the action of x
on E and only denote realizations as functions x : V → RK .

3. Two realizations x, y of a graph G = (V,E) are congruent if for every u, v ∈ V we have ‖xu−xv‖ =
‖yu − yv‖. If x, y are not congruent then they are incongruent. If R is a rotation, translation or
reflection and Rx = (Rx1, . . . , Rxn), then Rx is congruent to x [28].

4. A framework in RK is a pair (G, x) where x is a realization of G in RK .

5. A displacement of a framework (G, x) is a continuous function y : [0, 1] → RnK such that: (i)
y(0) = x; (ii) y(t) is a valid realization of G for all t ∈ [0, 1].

6. A flexing of a framework (G, x) is a displacement y of x such that y(t) is incongruent to x for any
t ∈ (0, 1].

7. A framework is flexible if it has a flexing, otherwise it is rigid.

8. Let (G, x) be a framework. Consider the linear system Rα = 0, where R is the m×nK matrix each
{u, v}-th row of which has exactly 2K nonzero entries xui − xvi and xvi − xui (for {u, v} ∈ E and
i ≤ K), and α ∈ RnK is a vector of indeterminates. The framework is infinitesimally rigid if the
only solutions of Rα = 0 are translations or rotations [208], and infinitesimally flexible otherwise.
By [78, Thm. 4.1], infinitesimal rigidity implies rigidity.

9. By [91, Thm. 2.1], if a graph has a unique infinitesimally rigid framework, then almost all its
frameworks are rigid. Thus, it makes sense to define a rigid graph as a graph having an infinitesimally
rigid framework. The notion of a graph being rigid independently of the framework assigned to it
is also known as generic rigidity [45].
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A few remarks on the concept of embedding and congruence, which are of paramount importance
throughout this survey, are in order. The definition of an embedding (Item 1) is similar to that of a
topological embedding. The latter, however, also satisfies other properties: no graph vertex is embedded
in the interior of any simple arc (∀v ∈ V, {u,w} ∈ E (xv 6∈ x◦

uw), where S◦ is the interior of the set S),
and no two simple arcs intersect (∀{u, v} 6= {v, z} ∈ E (x◦

uv ∩ x◦
vz = ∅)). The graph embedding problem

on a given manifold, in the topological sense, is the problem of finding a topological embedding for a
graph in the manifold: the constraints are not given by the distances, but rather by the requirement
that no two edges must be mapped to intersecting simple arcs. Garey and Johnson list a variant of this
problem as the open problem Graph Genus [76, OPEN3]. The problem was subsequently shown to be
NP-complete by Thomassen in 1989 [210].

The definition of congruence concerns pairs of points: two distinct pairs of points {x1, x2} and {y1, y2}
are congruent if the distance between x1 and x2 is equal to the distance between y1 and y2. This definition
is extended to sets of points X,Y in a natural way: X and Y are congruent if there is a surjective function
f : X → Y such that each pair {x1, x2} ⊆ X is congruent to {f(x1), f(x2)}. Set congruence implies that
f is actually a bijection; moreover, it is an equivalence relation [28, Ch. II §12].

1.2 A taxonomy of problems in distance geometry

Given the broad scope of the presented material (and the considerable number of acronyms attached to
problem variants), we believe that the reader will appreciate this introductory taxonomy, which defines
the problems we shall discuss in the rest of this paper. Fig. 1 contains a graphical depiction of the
logical/topical existing relations between problems. Although some of our terminology has changed from
past papers, we are now attempting to standardize the problem names in a consistent manner.

We sometimes emphasize problem variants where the dimension K is “fixed”. This is common in
theoretical computer science: it simply means that K is a given constant which is not part of the
problem input. The reason why this is important is that the worst-case complexity expression for the
corresponding solution algorithms decreases. For example, in Sect. 3.3.4 we give an O(nK+3) algorithm
for a problem parametrized on K. This is exponential time whenever K is part of the input, but it
becomes polynomial when K is a fixed constant.

1. Distance Geometry Problem (DGP) [28, Ch. IV §36-42], [121]: given an integer K > 0 and
a nonnegatively weighted simple undirected graph, find a realization in RK such that Euclidean
distances between pairs of points are equal to the edge weigths (formal definition in Sect. 1). We
denote by DGPK the subclass of DGP instances for a fixed K.

2. Protein Structure from Raw Data (PSRD): we do not mean this as a formal decision problem,
but rather as a practical problem, i.e. given all possible raw data concerning a protein, find the
protein structure in space. Notice that the “raw data” might contain raw output from the NMR
machinery, covalent bonds and angles, a subset of torsion angles, information about the secondary
structure of the protein, information about the potential energy function and so on [189] (discussed
above).

3. Molecular Distance Geometry Problem (MDGP) [50, §1.3], [141]: same as DGP3 (discussed
in Sect. 3.2).

4. Discretizable Distance Geometry Problem (DDGP) [115]: subset of DGP instances for
which a vertex order is given such that: (a) a realization for the first K vertices is also given; (b)
each vertex v of rank >K has ≥K adjacent predecessors (discussed in Sect. 3.3.5).

5. Discretizable Distance Geometry Problem in fixed dimension (DDGPK) [159]: subset of
DDGP for which the dimension of the embedding space is fixed to a constant value K (discussed
in Sect. 3.3.5). The case K = 3 was specifically discussed in [159].
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DGP

PSRD

MDGP

DVOP

DDGP

K-TRILAT

KDMDGP
DMDGPK

DMDGP

DDGPK

iDGP

iDMDGP

iMDGP

MCP

EDMCP
EDM

PSDMCP

PSD

WSNL

GRP

IKP

MDS

molecular structure
interval dist.

exact distances

matrices

robotics

statics

visualization

sensor networks

Acronym Full Name

Distance Geometry
DGP Distance Geometry Problem [28]
MDGP Molecular DGP (in 3 dimensions) [50]
DDGP Discretizable DGP [115]
DDGPK DDGP in fixed dimension [159]
KDMDGP Discretizable MDGP (a.k.a. GDMDGP [145])
DMDGPK DMDGP in fixed dimension [140]
DMDGP DMDGPK with K = 3 [122]
iDGP interval DGP [50]
iMDGP interval MDGP [155]
iDMDGP interval DMDGP [123]

Vertex orders
DVOP Discretization Vertex Order Problem [115]
K-TRILAT K-Trilateration order problem [69]

Applications
PSRD Protein Structure from Raw Data
MDS Multi-Dimensional Scaling [55]
WSNL Wireless Sensor Network Localization [232]
IKP Inverse Kinematic Problem [211]

Mathematics
GRP Graph Rigidity Problem [233]
MCP Matrix Completion Problem [113]
EDM Euclidean Distance Matrix problem [28]
EDMCP Euclidean Distance MCP [111]
PSD Positive Semi-Definite determination [112]
PSDMCP Positive Semi-Definite MCP [111]

Figure 1: Relation map for problems related to distance geometry.
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6. Discretization Vertex Order Problem (DVOP) [115]: given an integer K > 0 and a simple
undirected graph, find a vertex order such that the first K vertices induce a clique and each vertex
of rank >K has ≥K adjacent predecessors (discussed in Sect. 3.3.4).

7. K-Trilateration order problem (K-TRILAT) [69]: like the DVOP, with “K” replaced by “K+1”
(discussed in Sect. 3.3).

8. Discretizable Molecular Distance Geometry Problem (KDMDGP) [145]: subset of DDGP
instances for which the K immediate predecessors of v are adjacent to v (discussed in Sect. 3.3).

9. Discretizable Molecular Distance Geometry Problem in fixed dimension (DMDGPK)
[144]: subset of KDMDGP for which the dimension of the embedding space is fixed to a constant
value K (discussed in Sect. 3.3).

10. Discretizable Molecular Distance Geometry Problem (DMDGP) [122]: the DMDGPK

with K = 3 (discussed in Sect. 3.3).

11. interval Distance Geometry Problem (iDGP) [50, 121]: given an integer K > 0 and a
simple undirected graph whose edges are weighted with intervals, find a realization in RK such that
Euclidean distances between pairs of points belong to the edge intervals (discussed in Sect. 3.4).

12. interval Molecular Distance Geometry Problem (iMDGP) [155, 121]: the iDGP with
K = 3 (discussed in Sect. 3.4).

13. interval Discretizable Molecular Distance Geometry Problem (iDMDGP) [166]: given:
(i) an integer K > 0; (ii) a simple undirected graph whose edges can be partitioned in three sets
EN , ES , EI such that edges in EN are weighted with nonnegative scalars, edges in ES are weighted
with finite sets of nonnegative scalars, and edges in EI are weighted with intervals; (iii) a vertex
order such that each vertex v of rank >K has at least K immediate predecessors which are adjacent
to v using only edges in EN ∪ ES , find a realization in R3 such that Euclidean distances between
pairs of points are equal to the edge weights (for edges in EN ), or belong to the edge set (for edges
in ES), or belong to the edge interval (for edges in EI) (discussed in Sect. 3.4).

14. Wireless Sensor Network Localization problem (WSNL) [232, 187, 69]: like the DGP, but
with a subset A of vertices (called anchors) whose position in RK is known a priori (discussed in
Sect. 4.1). The practically interesting variants have K fixed to 2 or 3.

15. Inverse Kinematic Problem (IKP) [211]: subset of WSNL instances such that the graph is a
simple path whose endpoints are anchors (discussed in Sect. 4.3.2).

16. Multi-Dimensional Scaling problem (MDS) [55]: given a setX of vectors, find a set Y of smaller
dimensional vectors (with |X | = |Y |) such that the distance between the i-th and j-th vector of Y
approximates the distance of the corresponding pair of vectors of X (discussed in Sect. 4.3.1).

17. Graph Rigidity Problem (GRP) [233, 111]: given a simple undirected graph, find an integer
K ′ > 0 such that the graph is (generically) rigid in RK for all K ≥ K ′ (discussed in Sect. 4.2).

18. Matrix Completion Problem (MCP) [113]: given a square “partial matrix” (i.e. a matrix with
some missing entries) and a matrix property P , determine whether there exists a completion of the
partial matrix that satisfies P (discussed in Sect. 2).

19. Euclidean Distance Matrix problem (EDM) [28]: determine whether a given matrix is a Eu-
clidean distance matrix (discussed in Sect. 2).

20. Euclidean Distance Matrix Completion Problem (EDMCP) [111, 112, 95]: subset of MCP
instances with P corresponding to “Euclidean distance matrix for a set of points in RK for some
K” (discussed in Sect. 2).

21. Positive Semi-Definite determination (PSD) [112]: determine whether a given matrix is positive
semi-definite (discussed in Sect. 2).
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22. Positive Semi-Definite Matrix Completion Problem (PSDMCP) [111, 112, 95]: subset of
MCP instances with P corresponding to “positive semi-definite matrix” (discussed in Sect. 2).

1.3 DGP variants by inclusion

The research carried out by the authors of this survey focuses mostly on the subset of problems in the
Distance Geometry category mentioned in Fig. 1. These problems, seen as sets of instances, are related
by the inclusionwise lattice shown in Fig. 2. For reasons relating to our own development of these ideas,
the names of some problems in this paper are different than those given in previously published papers;
the definitions, however, coincide.

iDGP

iMDGP

iDMDGP

DMDGPK

MDGP

DGP

DDGP

DDGPKKDMDGP

DMDGP

Figure 2: Inclusionwise lattice of DGP variants (arrows mean ⊂).

2 The mathematics of distance geometry

This section will briefly discuss some fundamental mathematical notions related to DG. As is well known,
DG has strong connections to matrix analysis, semidefinite programming, convex geometry and graph
rigidity [53]. On the other hand, the fact that Gödel discussed extensions to differentiable manifolds is
perhaps less known (Sect. 2.2), as well as perhaps the exterior algebra formalization (Sect. 2.3).

Given a set U = {p0, . . . , pK} of K + 1 points in ⊆ RK , the volume of the K-simplex defined by the
points in U is given by the so-called Cayley-Menger formula [151, 152, 28]:

∆K(U) =

√

(−1)K+1

2K(K!)2
CM(U), (2)

where CM(U) is the Cayley-Menger determinant [151, 152, 28]:

CM(U) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 . . . 1
1 0 d201 . . . d20K
1 d201 0 . . . d21K
...

...
...

. . .
...

1 d20K d21K . . . 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (3)

with duv = ‖pu − pv‖ for all u, v ∈ {0, . . . ,K}. The Cayley-Menger determinant is proportional to
the quantity known as the oriented volume [50] (sometimes also called the signed volume), which plays
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an important role in the theory of oriented matroids [27]. Opposite signed values of simplex volumes
correspond to the two possible orientations of a simplex keeping one of its facets fixed (see e.g. the two
positions for vertex 4 in Fig. 4, center). In [231], a generalization of DG is proposed to solve spatial
constraints, using an extension of the Cayley-Menger determinant.

2.1 The Euclidean Distance Matrix problem

Cayley-Menger determinants were used in [28] to give necessary and sufficient conditions for the EDM
problem, i.e. determining whether for a given n× n matrix D = (dij) there exists an integer K and a set
{p1, . . . , pn} of points of R

K such that dij = ‖pi− pj‖ for all i, j ≤ n. Necessary and sufficient conditions
for a matrix to be a Euclidean distance matrix are given in [199].

Theorem 2.1 (Thm. 4 in [199]) A n× n distance matrix D is embeddable in RK but not in RK−1 if
and only if: (i) there is a principal (K + 1) × (K + 1) submatrix R of D with nonzero Cayley-Menger
determinant; (ii) for µ ∈ {1, 2}, every principal (K +µ)× (K +µ) submatrix of D containing R has zero
Cayley-Menger determinant.

In other words, the two conditions of this theorem state that there must be a K-simplex S of reference
with nonzero volume in RK , and all (K + 1)- and (K + 2)-simplices containing S as a face must be
contained in RK .

2.2 Differentiable manifolds

Condition (ii) in Thm. 2.1 fails to hold in the cases of (curved) manifolds. Gödel showed that, for K = 3,
the condition can be updated as follows (paper 1933h in [71]): for any quadruplet Un of point sequences
pnu (for u ∈ {0, . . . , 3}) converging to a single non-degenerate point p0, the following holds:

lim
n→∞

CM(Un)
∑

u<v
‖pnu − pnv‖

6
= 0.

In a related note, Gödel also showed that if U = {p0, . . . , p3} with CM(U) 6= 0, then the distance
matrix over U can be realized on the surface of a 2-sphere where the distances between the points are
the lengths of the arcs on the spherical surface (paper 1933b in [71]). This observation establishes a
relationship between DG and the Kissing Number Problem [108] and, more in general, to coding theory
[46].

2.3 Exterior algebras

Cayley-Menger determinants are exterior products [11]. The set of all possible exterior products of
a vector space forms an exterior algebra, which is a special type of Clifford algebra [40]; specifically,
exterior algebras are tensor algebras modulo the ideal generated by x2. The fact that any square element
of the algebra is zero implies 0 = (x + y)2 = x2 + xy + yx + y2 = xy + yx, and hence xy = −yx.
Accordingly, exterior algebras are used in the study of alternating multilinear forms. The paper [65] gives
an in-depth view of the connection between DG and Clifford algebras.

In the setting of distance geometry, we define the product of vectors x1, . . . , xn ∈ RK (for n ≥ K)
by the corresponding Cayley-Menger determinant on U = {x0, . . . , xn} where x0 is the origin. It is clear
that, if xi = xj for some i 6= j, then the corresponding n-simplex is degenerate and certainly has volume
0 in RK (even if n = K), hence CM(U) = 0. Equivalently, if a product

∏

i xi can be written as x2
j

∏

i6=j

xi,
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then it belongs to the ideal 〈x2〉 and is replaced by 0 in the exterior algebra. This immediately implies
that the Cayley-Menger determinant is an alternating form.

Abstract relationships between an exterior algebra and its corresponding vector space are specialized
to relationships between Cayley-Menger determinants and vectors in RK . Thus, for example, one can
derive a well-known result in linear algebra: x1, . . . , xK are linearly independent if and only if CM(U) 6= 0
where U = {x0, . . . , xK} with x0 being the origin [11, 40]. A more interesting example consists in
deriving certain invariants expressed in Plücker coordinates [40]: given a basis x1, . . . , xK of RK and a
basis y1, . . . , yh of Rh where h ≤ K, it can be shown that for any subset S of {1, . . . ,K} of size h there
exist constants αS such that

∑

S αS

∏

i∈S

xi =
∏

i≤h

yi. In our setting, product vectors correspond to Cayley-

Menger determinants derived from the given points x1, . . . , xK and an origin x0. It turns out that the
ratios of various αS ’s are invariant over different bases y′1, . . . , y

′
h of Rh, which allows their employment

as a convenient coordinate system for Rh. Invariants related to the Plücker coordinates are exploited in
[50] to find realizations of chirotopes (orientations of vector configurations [27]).

2.4 Bideterminants

For sets of more than K + 1 points, the determination of the relative orientation of each K-simplex
in function of a K-simplex of reference (see e.g. Fig. 8, center and right) is important. Such relative
orientations are given by the Cayley-Menger bideterminant of two K-simplices U = {p0, . . . , pK} and
V = {q0, . . . , qK}, with dij = ‖pi − qj‖:

CM(U ,V) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 . . . 1
1 d200 . . . d20K
1 d210 . . . d21K
...

...
. . .

...
1 d2K0 . . . d2KK

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (4)

These bideterminants allow, for example, the determination of stereoisometries in chemistry [27].

2.5 Positive semidefinite and Euclidean distance matrices

Schoenberg proved in [190] that there is a one-to-one relationship between Euclidean distance matrices
and positive semidefinite matrices. Let D = (dij) be an (n + 1) × (n + 1) matrix and A = (aij) be the
(n+ 1)× (n+ 1) matrix given by aij =

1
2 (d

2
0i + d20j − d2ij).

The bijection given by Thm. 2.2 below can be exploited to show that solving the PSD and the EDM
is essentially the same thing [198].

Theorem 2.2 (Thm. 1 in [198]) A necessary and sufficient condition for the matrix D to be a Eu-
clidean distance matrix with respect to a set U = {p0, . . . , pn} of points in RK but not in RK−1 is that
the quadratic form x⊤Ax (where A is given above) is positive semidefinite of rank K.

Schoenberg’s theorem was cast in a very compact and elegant form in [54]:

EDM = Sh ∩ (S⊥c − S+), (5)

where EDM is the set of n × n Euclidean distance matrices, S is the set of n × n symmetric matrices,
Sh is the projection of S on the subspace of matrices having zero diagonal, Sc is the kernel of the matrix
map Y → Y 1 (with 1 the all-one n-vector), S⊥c is the orthogonal complement of Sc, and S+ is the set of
symmetric positive semidefinite n × n matrices. The matrix representation in (5) was exploited in the
Alternating Projection Algorithm (APA) discussed in Sect. 3.4.4.
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2.6 Matrix completion problems

Given an appropriate property P applicable to square matrices, the Matrix Completion Problem (MCP)
schema ask whether, given an n × n partial matrix A′, this can be completed to a matrix A such that
P (A) holds. MCPs are naturally formulated in terms of graphs: given a weighted graph G = (V,E, a′),
with a′ : E → R, is there a complete graph K on V (possibly with loops) with an edge weight function
a such that auv = a′uv for all (u, v) ∈ E?

MCPs are an interesting class of inverse problems which find applications in the analysis of data,
such as for example the reconstruction of 3D images from several 2D projections on random planes in
cryo-electron microscopy [197]. When P (A) is the (informal) statement “A has low rank”, there is an
interesting application is to recommender systems: voters submit rankings for a few items, and consistent
rankings for all items are required. Since few factors are believed to impact user’s preferences, the data
matrix is expected to have low rank [196].

Two celebrated specializations of this problem schema are the Euclidean Distance MCP (EDMCP) and
the Positive Semidefinite MCP (PSDMCP). These two problems have a strong link by virtue of Thm. 2.2,
and, in fact, there is a bijection between EDMCP and PSDMCP instances [111]. MCP variants where a′ij
is an interval and the condition (i) is replaced by aij ∈ a′ij also exist (see e.g. [95], where a modification
of the EDMCP in this sense is given).

2.6.1 Positive semidefinite completion

Laurent [112] remarks that the PSDMCP is an instance of the Semidefinite Programming (SDP) feasibility
problem: given integral n × n symmetric matrices Q0, . . . , Qm, determine whether there exist scalars
z1, . . . , zm satisfying Q0 +

∑

i≤m

ziQi � 0. Thus, by Thm. 2.2, the EDMCP can be seen as an instance of

the SDP feasibility problem too. The complexity status of this problem is currently unknown, and in
particular it is not even known whether this problem is in NP. The same holds for the PSDMCP, and of
hence also for the EDMCP. If one allows ε-approximate solutions, however, the situation changes. The
following SDP formulation correctly models the PSDMCP:

max
∑

(i,j) 6∈E aij
A = (aij) � 0

∀i ∈ V aii = a′ii
∀{i, j} ∈ E aij = a′ij .















Accordingly, SDP-based formulations and techniques are common in DG (see Sect. 4.1.2).

Polynomial cases of the PSDMCP are discussed in [111, 112] (and citations therein). These include
chordal graphs, graphs without K4 minors, and graphs without certain induced subgraphs (e.g. wheels
Wn with n ≥ 5). Specifically, in [112] it is shown that if a graph G is such that adding m edges makes
it chordal, then the PSDMCP is polynomial on G for fixed m. All these results naturally extend to the
EDMCP.

Another interesting question is, aside from actually solving the problem, to determine conditions on
the given partial matrix to bound the cardinality of the solution set (specifically, the cases of one or
finitely many solutions are addressed). This question is addressed in [95], where explicit bounds on the
number of non-diagonal entries of A′ are found in order to ensure uniqueness or finiteness of the solution
set.
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2.6.2 Euclidean distance completion

The EDMCP differs from the DGP in that the dimension K of the embedding space is not provided
as part of the input. An upper bound to the minimum possible K that is better than the trivial one
(K ≤ n) was given in [13] as:

K ≤

√

8|E|+ 1− 1

2
. (6)

Because of Thm. 2.2, the EDMCP inherits many of the properties of the PSDMCP. We believe that
Menger was the first to explicitly state a case of EDMCP in the literature: in [151, p. 121] (also see
[152, p. 738]) he refers to the matrices appearing in Cayley-Menger determinants with one missing entry.
These, incidentally, are also used in the dual Branch-and-Prune (BP) algorithm (see Sect. 3.3.7.1).

As mentioned in Sect. 2.6.1, the EDMCP can be solved in polynomial time on chordal graphs G =
(V,E) [87, 111]. This is because a graph is chordal if and only if it has a perfect elimination order (PEO)
[59], i.e. a vertex order on V such that, for all v ∈ V , the set of adjacent successors N(v) ∩ η(v) is a
clique in G. PEOs can be found in O(|V |+ |E|) [180], and can be used to construct a sequence of graphs
G = (V,E) = G0, G1, . . . , Gs where Gs is a clique on V and E(Gi) = E(Gi−1) ∪ {{u, v}}, where u is
the maximum ranking vertex in the PEO of Gi−1 such that there exists v ∈ η(u) with {u, v} 6∈ E(Gi−1).
Assigning to {u, v} the weight duv =

√

d21u + d21v guarantees that the weighted (complete) adjacency
matrix of Gs is a distance matrix completion of the weighted adjacency matrix of G, as required [87].
This result is introduced in [87] (for the PSDMCP rather than the EDMCP) and summarized in [111].

3 Molecular Conformation

According to the authors’ personal interest, this is the largest section in the present survey. DG is mainly
(but not exclusively [29]) used in molecular conformation as a model of an inverse problem connected to
the interpretation of NMR data. We survey continuous search methods, then focus on discrete search
methods, then discuss the extension to interval distances, and finally present recent results specific to the
NMR application.

3.1 Test instances

The methods described in this section have been empirically tested according to different instance sets
and on different computational testbeds, so a comparison is difficult. In general, researchers in this area
try to provide a “realistic” setting; the most common choices are the following.

• Geometrical instances: instances are generated randomly from a geometrical model that is also
found in nature, such as grids [154].

• Random instances: instances are generated randomly from a physical model that is close to
reality, such as [114, 139].

• Dense PDB instances: real protein conformations are downloaded from the Protein Data Bank
(PDB) [18], and then, for each residue, all within-residue distances as well as all distances between
each residue and its two neighbours are generated [155, 3, 4];

• Sparse PDB instances: real protein conformations are downloaded from the Protein Data Bank
(PDB) [18], and then all distances within a given threshold are generated [83, 122].

When the target application is the analysis of NMR data, as in the present case, the best test setting is
provided by sparse PDB instances, as NMR can only measure distances up to a given threshold. Random
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instances are only useful when the underlying physical model is meaningful (as is the case in [114]).
Geometrical instance could be useful in specific cases, e.g. the analysis of crystals. The problem with
dense PDB instances is that, using the notions given in Sect. 3.3 and the fact that a residue contains
more than 3 atoms, it is easy to show that the backbone order on these protein instances induces a
3-trilateration order in R3 (see Sect. 4.1.1). Since graphs with such orders can be realized in polynomial
time [69], they do not provide a particularly hard class of test instances. Moreover, since there are
actually nine backbone atoms in each set of three consecutive residues, the backbone order is actually a
7-trilateration order. In other words there is a surplus of distances, and the problem is overdetermined.

Aside from a few early papers (e.g. [117, 138, 139]) we (the authors of this survey) always used test
sets consisting mostly of sparse PDB instances. We also occasionally used geometric and (hard) random
instances, but never employed “easy” dense PDB instances.

3.1.1 Test result evaluation

The test results always yield: a realization x for the given instance; accuracy measures for x, which
quantify either how far is x from being valid, or how far is x from a known optimal solution; and a
CPU time taken by the method to output x. Optionally, certain methods (such as the BP algorithm, see
Sect. 3.3.6) might also yield a whole set of valid realizations. Different methods are usually compared
according to their accuracy and speed.

There are three popular accuracy measures. The penalty is the evaluation of the function defined in
(9) for a given realization x. The Largest Distance Error (LDE) is a scaled, averaged and square-rooted

version of the penalty, given by 1
|E|

∑

{u,v}∈E
|‖xu−xv‖−duv |

duv
. The Root Mean Square Deviation (RMSD) is

a difference measure for sets of points in Euclidean space having the same center of mass. Specifically, if
x, y are embeddings of G = (V,E), then RMSD(x, y) = minT ‖y− Tx‖, where T varies over all rotations
and translations in RK . Accordingly, if y is the known optimal configuration of a given protein, different
realizations of the same protein yield different RMSD values. Evidently, RMSD is a meaningful accuracy
measure only for test sets where the optimal conformations are already known (such as PDB instances).

3.2 The Molecular Distance Geometry Problem

The MDGP is the same as DGP3. The name “molecular” indicates that the problem originates from the
study of molecular structures.

The relationship between molecules and graphs is probably the deepest one existing between chemistry
and discrete mathematics: a wonderful account thereof is given in [19, Ch. 4]. Molecules were initially
identified by atomic formulæ (such as H2O) which indicate the relative amounts of atoms in each molecule.
When chemists started to realize that some compounds with the same atomic formula have different
physical properties, they sought the answer in the way the same amounts of atoms were linked to each
other through chemical bonds. Displaying this type of information required more than an atomic formula,
and, accordingly, several ways to represent molecules using diagrams were independently invented. The
one which is still essentially in use today, consisting in a set of atom symbols linked by segments, is
originally described in [34]. The very origin of the word “graph” is due to the representation of molecules
[205].

The function of molecules rests on their chemical composition and three-dimensional shape in space
(also called structure or conformation). As mentioned in Sect. 1, NMR experiments can be used to
determine a subset of short Euclidean distances between atoms in a molecule. These, in turn, can be
used to determine its structure, i.e. the relative positions of atoms in R3. The MDGP provides the
simplest model for this inverse problem: V models the set of atoms, E the set of atom pairs for which a
distance is avaiable, and the function d : E → R+ assigns distance values to each pair, so that G = (V,E)
is the graph of the molecule. Assuming the input data is correct, the set X of solutions of the MDGP on
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G will yield all the structures of the molecule which are compatible with the observed distances.

In this section we review the existing methods for solving the MDGP with exact distances on general
molecule graphs.

3.2.1 General-purpose approaches

Finding a solution of the set of nonlinear equations (1) poses several numerical difficulties. Recent
(unpublished) tests performed by the authors of this survey determined that tiny, randomly generated
weighted graph instances with fewer than 10 vertices could not be solved using Octave’s nonlinear equation
solver fsolve [66]. Spatial Branch-and-Bound (sBB) codes such as Couenne [14] could solve instances
with |V | ∈ {2, 3, 4} but no larger in reasonable CPU times: attaining feasibility of local iterates with
respect to the nonlinear manifold defined by (1) is a serious computational challenge. This motivates the
following formulation using Mathematical Programming (MP):

min
x∈RK

∑

{u,v}∈E

(‖xu − xv‖
2 − d2uv)

2. (7)

The Global Optimization (GO) problem (7) aims to minimize the squared infeasibility of points in RK

with respect to the manifold (1). Both terms in the squared difference are themselves squared in order
to decrease floating point errors (NaN occurrences) while evaluating the objective function of (7) when
‖xu − xv‖ is very close to 0. We remark that (7) is an unconstrained nonconvex Nonlinear Program
(NLP) whose objective function is a nonnegative polynomial of fourth degree, with the property that
x ∈ X if and only if the evaluation of the objective function at x yields 0.

In [117], we tested formulation (7) and some variants thereof with three GO solvers: a Multi-Level
Single Linkage (MLSL) multi-start method [109], a Variable Neighbourhood Search (VNS) meta-heuristic
for nonconvex NLPs [134], and an early implementation of sBB [146, 132, 135] (the only solver in the set
that guarantees global optimality of the solution to within a given ε > 0 tolerance). We found that it
was possible to solve artificially generated, but realistic protein instances [114] with up to 30 atoms using
the sBB solver, whereas the two stochastic heuristics could scale up to 50 atoms, with VNS yielding the
best performance.

3.2.2 Smoothing based methods

A smoothing of a multivariate multimodal function f(x) is a family of functions Fλ(x) such that F0(x) =
f(x) for all x ∈ RK and Fλ(x) has a decreasing number of local optima as λ increases. Eventually Fλ

becomes convex, or at least invex [15], and its optimum xλ can be found using a single run of a local
NLP solver. A homotopy continuation algorithm then traces the sequence xλ in reverse as λ → 0, by
locally optimizing Fλ−∆λ(x) for a given step ∆λ with xλ as a starting point, hoping to identify the global
optimum x∗ of the original function f(x) [102]. A smoothing operator based on the many-dimensional
diffusion equation ∆F = ∂F

∂λ , where ∆ is the Laplacian
∑

i≤n ∂2/∂x2
i , is derived in [102] as the Fourier-

Poisson formula

Fλ(x) =
1

πn/2λn

∫

Rn

f(y)e−
||y−x||2

λ2 dy, (8)

also called Gaussian transform in [154]. The Gaussian transform with the homotopy method provides a
successful methodology for optimizing the objective function:

f(x) =
∑

{u,v}∈E

(‖xu − xv‖
2 − d2uv)

2, (9)

where x ∈ R3. More information on continuation and smoothing-based methods applied to the iMDGP
can be found in Sect. 3.4.
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In [154], it is shown that the closed form of the Gaussian transform applied to (9) is:

〈f〉λ = f(x) + 10λ2
∑

{u,v}∈E

(‖xu − xv‖
2 − 6d2uvλ

2) + 15λ4|E|. (10)

Based on this, a continuation method is proposed and successfully tested on a set of cubical grids. The
implementation of this method, DGSOL, is one of the few MDGP solution codes that are freely available
(source included): see http://www.mcs.anl.gov/~more/dgsol/. DGSOL has several advantages: it is
efficient, effective for small to medium-sized instances, and, more importantly, can naturally be extended
to solve iMDGP instances (which replace the real edge weights with intervals). The one disadvantage
we found with DGSOL is that it does not scale well to large-sized instances: although the method is
reasonably fast even on large instances, the solution quality decreases. On large instances, DGSOL
often finds infeasibilities that denote not just an offset from an optimal solution, but a completely wrong
conformation (see Fig. 3).

Figure 3: Comparison of a wrong molecular conformation for 1mbn found by DGSOL (left) with the
correct one found by the BP Alg. 1 (right).

In [3, 4] an exact reformulation of a Gaussian transform of (7) as a difference of convex (d.c.) functions
is proposed, and then solved using a method similar to DGSOL, but where the local NLP solution is carried
out by a different algorithm, called DCA. Although the method does not guarantee global optimality,
there are empirical indications that the DCA works well in that sense. This method has been tested on
three sets of data: the artificial data from Moré and Wu [154] (with up to 4096 atoms), 16 proteins in the
PDB [18] (from 146 up to 4189 atoms), and the data from Hendrickson [92] (from 63 up to 777 atoms).

In [139], VNS and DGSOL were combined into a heuristic method called Double VNS with Smoothing
(DVS). DVS consists in running VNS twice: first on a smoothed version 〈f〉λ of the objective function
f(x) of (7), and then on the original function f(x) with tightened ranges. The rationale behind DVS
is that 〈f〉λ is easier to solve, and the homotopy defined by λ should increase the probability that the
global optimum xλ of 〈f〉λ is close to the global optimum x∗ of f(x). The range tightening that allows
VNS to be more efficient in locating x∗ is based on a “Gaussian transform calculus” that gives explicit
formulæ that relate 〈f〉λ to f(x) whenever λ and d change. These formulæ are then used to identify
smaller ranges for x∗. DVS is more accurate but slower than DGSOL.

It is worth remarking that both DGSOL and the DCA methods were tested using (easy) dense PDB
instances, whereas the DVS was tested using geometric and random instances (see Sect. 3.1).

http://www.mcs.anl.gov/~more/dgsol/
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3.2.3 Geometric build-up methods

In [64], a combinatorial method called geometric build-up (GB) algorithm is proposed to solve the MDGP
on sufficiently dense graphs. A subgraph H of G, initially chosen to only consist of four vertices, is given
together with a valid realization x̄. The algorithm proceeds iteratively by finding xv for each vertex
v ∈ V (G) r V (H). When xv is determined, v and δH(v) are removed from G and added to H . For this
to work, at every iteration two conditions must hold:

1. |δH(v)| ≥ 4;

2. at least one subgraph H ′ of H , with V (H ′) = {u1, u2, u3, u4} and |δH′(v)| = 4, must be such that
the realization x̄ restricted to H ′ is non-coplanar.

These conditions ensure that the position xv can be determined using triangulation. More specifically,
let x̄|H′ = {xui

| i ≤ 4} ⊆ R3. Then xv is a solution of the following system:

||xv − xu1 || = dvu1 ,

||xv − xu2 || = dvu2 ,

||xv − xu3 || = dvu3 ,

||xv − xu4 || = dvu4 .

Squaring both sides of these equations, we have:

||xv||
2 − 2xv

⊤xu1 + ||xu1 ||
2 = d2vu1

,

||xv||
2 − 2xv

⊤xu2 + ||xu2 ||
2 = d2vu2

,

||xv||
2 − 2xv

⊤xu3 + ||xu3 ||
2 = d2vu3

,

||xv||
2 − 2xv

⊤xu4 + ||xu4 ||
2 = d2vu4

.

By subtracting one of the above equations from the others, one obtains a linear system that can be used
to determine xv. For example, subtracting the first equation from the others, we obtain

Ax = b, (11)

where

A = −2







(xu1 − xu2)
⊤

(xu1 − xu3)
⊤

(xu1 − xu4)
⊤







and

b =





(

d2vu1
− d2vu2

)

−
(

||xu1 ||
2 − ||xu2 ||

2
)

(

d2vu1
− d2vu3

)

−
(

||xu1 ||
2 − ||xu3 ||

2
)

(

d2vu1
− d2vu4

)

−
(

||xu1 ||
2 − ||xu4 ||

2
)



 .

Since xu1 , xu2 , xu3 , xu4 are non-coplanar, (11) has a unique solution.

The GB is very sensitive to numerical errors [64]. In [226], Wu and Wu propose an updated GB
algorithm where the accumulated errors can be controlled. Their algorithm was tested on a set of sparse
PDB instances consisting of 10 proteins with 404 up to 4201 atoms. The results yielded RMSD measures
ranging from O(10−8) to O(10−13). It is interesting to remark that if G is a complete graph and duv ∈ Q+

for all {u, v} ∈ E, this approach solves the MDGP in linear time O(n) [63]. A more complete treatment
of MDGP instances satisfying the K-dimensional generalization of conditions 1-2 above is given in [69, 9]
in the framework of the WSNL and K-TRILAT problems.

An extension of the GB that is able to deal with sparser graphs (more precisely, δH(v) ≥ 3) is given
in [37]; another extension along the same lines is given in [227]. We remark that the set of graphs such
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that δH(v) ≥ 3 and the condition 2. above hold are precisely the instances of the DDGP such that K = 3
(see Sect. 3.3.5): this problem is discussed extensively in [159]. The main conceptual difference between
these GB extensions and the Branch-and-Prune (BP) algorithm for the DDGP [159] (see Sect. 3.3 below)
is that BP exploits a given order on V (see Sect. 1.1.2). Since the GB extensions do not make use of
this order, they are heuristic algorithms: if δH(v) < 3 at iteration v, then the GB stops, but there is
no guarantee that a different choice of “next vertex” might not have carried the GB to termination. A
very recent review on methods based on the GB approach and on the formulation of other DGPs with
inexact distances is given in [218]. The BP algorithm (Alg. 1) marks a striking difference insofar as the
knowledge of the order guarantees the exactness of the algorithm.

3.2.4 Graph decomposition methods

Graph decomposition methods are mixed-combinatorial algorithms based on graph decomposition: the
input graph G = (V,E) is partitioned or covered by subgraphs H , each of which is realized independently
(the local phase). Finally, the realizations of the subgraphs are “stitched together” using mathematical
programming techniques (the global phase). The global phase is equivalent to applying MDGP techniques
to the minor G′ of G obtained by contracting each subgraph H to a single vertex. The nice feature of
these methods is that the local phase is amenable to efficient yet exact solutions. For example, if H is
uniquely realizable, then it is likely to be realizable in polynomial time. More precisely, a graph H is
uniquely realizable if it has exactly one valid realization in RK modulo rotations and translations, see
Sect. 4.1.1. A graph H is uniquely localizable if it is uniquely realizable and there is no K ′ > K such
that H also has a valid realization affinely spanning RK′

. It was shown in [201] that uniquely localizable
graphs are realizable in polynomial time (see Sect. 4.1.2). On the other hand, no graph decomposition
algorithm currently makes a claim to overall exactness: in order to make them practically useful, several
heuristic steps must also be employed.

In ABBIE [92], both local and global phases are solved using local NLP solution techniques. Once
a realization for all subgraphs H is known, the coordinates of the vertex set VH of H can be expressed
relatively to the coordinates of a single vertex in VH ; this corresponds to a starting point for the realization
of the minor G′. ABBIE was the first graph decomposition algorithm for the DGP, and was able to realize
sparse PDB instances with up to 124 amino acids, a considerable feat in 1995.

In DISCO [131], V is covered by appropriately-sized subgraphs sharing at least K vertices. The local
phase is solved using an SDP formulation similar to the one given in [25]. The local phase is solved using
the positions of common vertices: these are aligned, and the corresponding subgraph is then rotated,
reflected and translated accordingly.

In [24], G is covered by appropriate subgraphs H which are determined using a swap-based heuristic
from an initial covering. Both local and global phases are solved using the SDP formulation in [25]. A
version of this algorithm targeting the WSNL (see Sect. 4.1) was proposed in [23]: the difference is that,
since the positions of some vertices is known a priori, the subgraphs H are clusters formed around these
vertices (see Sect. 4.1.2).

In [105], the subgraphs include one or more (K+1)-cliques. The local phase is very efficient, as cliques
can be realized in linear time [199, 63]. The global phase is solved using an SDP formulation proposed
in [2] (also see Sect. 4.1.2).

A very recent method called 3D-ASAP [52], designed to be scalable, distributable and robust with
respect to data noise, employs either a weak form of unique localizability (for exact distances) or spectral
graph partitioning (for noisy distance data) to identify clusters. The local phase is solved using either
local NLP or SDP based techniques (whose solutions are refined using appropriate heuristics), whilst the
global phase reduces to a 3D synchronization problem, i.e. finding rotations in the special orthogonal
group SO(3,R), reflections in Z2 and translations in R3 such that two similar distance spaces have the
best possible alignment in R3. This is addressed using a 3D extension of a spectral technique introduced
in [195]. A somewhat simpler version of the same algorithm tailored for the case K = 2 (with the WSNL
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as motivating application, see Sect. 4.1) is discussed in [51].

3.3 Discretizability

Some DGP instances can be solved using mixed-combinatorial algorithms such as GB-based (Sect. 3.2.3)
and graph decomposition based (Sect. 3.2.4) methods. Combinatorial methods offer several advantages
with respect to continuous ones, for example accuracy and efficiency. In this section, we shall give an
in-depth view of discretizability of the DGP, and discuss at length an exact combinatorial algorithm for
finding all solutions to those DGP instances which can be discretized.

We let X be the set of all valid realizations in RK of a given weighted graph G = (V,E, d) modulo
rotations and translations (i.e. if x ∈ X then no other valid realization y for which there exists a rotation
or translation operator T with y = Tx is in X). We remark that we allow reflections for technical
reasons: much of the theory of discretizability is based on partial reflections, and since any reflection is
also a partial (improper) reflection, disallowing reflections would complicate notation later on. In practice,
the DGP system (1) can be reduced modulo translations by fixing a vertex v1 to xv1 = (0, . . . , 0) and
modulo rotations by fixing an appropriate set of components out of the realizations of the other K − 1
vertices {v2, . . . , vK} to values which are consistent with the distances in the subgraph of G induced by
{vi | 1 ≤ i ≤ K}.

Assuming X 6= ∅, every x ∈ X is a solution of the polynomial system:

∀{u, v} ∈ E ‖xu − xv‖
2 = d2uv, (12)

and as such it has either finite or uncountable cardinality (this follows from a fundamental result on the
structure of semi-algebraic sets [16, Thm. 2.2.1], also see [153]). This feature is strongly related to graph
rigidity (see Sect. 1.1.4, 4.2.2): specifically, |X | is finite for a rigid graph, and almost all non-rigid graphs
yield uncountable cardinalities for X whenever X is non-empty. If we know that G is rigid, then |X | is
finite, and a posteriori, we only need to look for a finite number of realizations in RK : a combinatorial
search is better suited than a continuous one.

When K = 2, it is instructive to inspect a graphical representation of the situation (Fig. 4). The

1 2

3
4

1 2

3
4

4′ 1 2

3
4

Figure 4: A flexible framework (left), a rigid graph (center), and a uniquely localizable (rigid) graph
(right).

framework for the graph ({1, 2, 3, 4}, {{1, 2}, {1, 3}, {2, 3}, {2, 4}}) shown in Fig. 4 (left) is flexible: any
of the uncountably many positions for vertex 4 (shown by the dashed arrow) yield a valid realization of
the graph. If we add the edge {1, 4} there are exactly two positions for vertex 4 (Fig. 4, center), and if
we also add {3, 4} there is only one possible position (Fig. 4, right). Accordingly, if we can only use one
distance d24 to realize x4 in Fig. 4 (left) X is uncountable, but if we can use K = 2 distances (Fig. 4,
center) or K + 1 = 3 distances (Fig. 4, right) then |X | becomes finite. The GB algorithm [64] and the
triangulation method in [69] exploit the situation shown in Fig. 4 (right); the difference between these
two methods is that the latter exploits a vertex order given a priori which ensures that a solution could
be found for every realizable graph.
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The core of the work that the authors of this survey have been carrying out (with the help of several
colleagues) since 2005 is focused on the situation shown in Fig. 4 (center): we do not have one position
to realize the next vertex v in the given order, but (in almost all cases) two: x0

v, x
1
v, so that the graph

is rigid but not uniquely so. In order to disregard translations and rotations, we assume a realization x̄
of the first K vertices is given as part of the input. This means that there will be two possible positions
for xK+1, four for xK+2, and so on. All in all, |X | = 2n−K . The situation becomes more interesting if
we consider additional edges in the graph, which sometimes make one or both of x0

v, x
1
v infeasible with

respect to Eq. (1). A natural methodology to exploit this situation is to follow the binary branching
process whenever possible, pruning a branch xℓ

v (ℓ ∈ {0, 1}) only when there is an additional edge {u, v}
whose associated distance duv is incompatible with the position xℓ

v. We call this methodology Branch-
and-Prune (BP).

Our motivation for studying non-uniquely rigid graphs arises from protein conformation: realizing
the protein backbone in R3 is possibly the most difficult step to realizing the whole protein (arranging
the side chains can be seen as a subproblem [184, 183]). As discussed in the rest of this section, protein
backbones conveniently also supply a natural atomic ordering, which can be exploited in various ways
to produce a vertex order that will guarantee exactness of the BP. The edges necessary to pruning are
supplied by NMR experiments. A definite advantage of the BP is that it offers a theoretical guarantee
of finding all realizations in X , instead of just one as most other methods do.

3.3.1 Rigid geometry hypothesis and molecular graphs

Discretizability of the search space turns out to be possible only if the molecule is rigid in physical space,
which fails to be the case in practice. In order to realistically model the flexing of a molecule in space,
it is necessary to consider the bond-stretching and bond-bending effects, which increase the number of
variables of the problem and also the computational effort to solve it. However, it is common in molecular
conformational calculations to assume that all bond lengths and bond angles are fixed at their equilibrium
values, which is known as the rigid-geometry hypothesis [77].

It follows that for each pair of atomic bonds, say {u, v}, {v, w}, the covalent bond lengths duv, dvw are
known, as well as the angle between them. With this information, it is possible to compute the remaining
distance duw . Every weighted graph G representing bonds (and their lengths) in a molecule can therefore
be trivially completed with weighted edges {u,w} whenever there is a path with two edges connecting u
and w. Such a completion, denoted G2, is called a molecular graph [99]. We remark that all graphs that
the BP can realize are molecular, but not vice versa.

3.3.2 Development of the Branch-and-Prune algorithm

To the best of our knowledge, the first discrete search method for the MDGP that exploits the intersection
of three spheres in R3 was proposed by three of the co-authors of this survey (CL, LL, NM) in 2005 [116], in
the framework of a quantum computing algorithm. Quite independently, the GB algorithm was extended
in 2008 [227] to deal with intersections of three rather than four spheres. Interestingly, as remarked in
Sect. 3.2.3, another extension to the same case was proposed by a different research group in the same
year [37]. By contrast, the idea of a vertex order used to find realizations iteratively was already present
in early works in statics [185, 93] (see Sect. 4.2) and was first properly formalized in [94] (see Sect. 4.2.3).

The crucial idea of combining the intersection of three spheres with a vertex ordering which would
offer a theoretical guarantee of exactness occurred in june 2005, when two of the co-authors of this
survey (CL, LL) met during an academic visit to Milan. The first version of the BP algorithm was
conceived, implemented and computationally validated during the summer of 2005: this work, however,
only appeared in 2008 [138] due to various editorial mishaps. Between 2005 and 2008 we kept on working
at the theory of the DMDGP; we were able to publish an arXiv technical report in 2006 [118], which was
eventually completed in 2009 and published online in 2011 [122]. Remarkably, our own early work on
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BP and an early version of [227] were both presented at the International Symposium on Mathematical
Programming (ISMP) in Rio de Janeiro already in 2006.

Along the years we improved and adapted the original BP [138] to further settings. We precisely
defined the DGP subclasses on which it works, and proved it finds all realizations in X for these subclasses
[118, 124, 122, 159]. We discussed how to determine a good vertex order automatically [115]. We tested
and fine-tuned the BP to proteins [165]. We compared it with other methods [168]. We tried to decompose
the protein backbone in order to reduce the size of the BP trees [171]. We adapted it to work with intervals
instead of exact distances [156, 128, 161, 123]. We engineered it to work on distances between atoms of
given type (this is an important restriction of NMR experiments) [125, 126, 160, 127, 129]. We generalized
it to arbitrary values of K and developed a theory of symmetries in protein backbones [142, 145, 143].
We exploited these symmetries in order to immediately reconstruct all solutions from just one [157, 158].
We showed that the BP is fixed-parameter tractable on protein-like instances and empirically appears
to be polynomial on proteins [144, 140]. We derived a dual BP which works in distance rather than
realization space [136]. We put all this together so that it would work on real NMR data [166, 148].
We started working on embedding the side chains [183]. We took some first steps towards applying BP
to more general molecular conformation problems involving energy minimization [130]. We provided an
open-source [167] implementation and tested some parallel ones [164, 82]. We wrote a number of other
surveys [119, 141, 121, 162], but none as extensive as the present one. We also edited a book on the
subject of distance geometry and applications [163].

3.3.3 Sphere intersections and probability

For a center c ∈ RK and a radius r ∈ R+, we denote by SK−1(c, r) the sphere centered at c with radius
r in RK . The intersection of K spheres in RK might contain zero, one, two or uncountably many points
depending on the position of the centers x1, . . . , xK and the lengths d1,K+1, . . . , dK,K+1 of the radii.
Call P =

⋂

i≤K SK−1(xi, di,K+1) be the intersection of these K spheres and U− = {xi | i ≤ K}. If

dim aff(U−) < K − 1 then |P | is uncountable [115, Lemma 3] (see Fig. 5). Otherwise, if dim aff(U−) =
K − 1, then |P | ∈ {0, 1, 2} [115, Lemmata 1-2]. We also remark that the condition dim aff(U−) < K − 1

Figure 5: When three sphere centers are collinear in 3D, a non-empty sphere intersection (the thick circle)
has uncountable cardinality.

corresponds to requiring that CM(U−) = 0. See [172] for a detailed treatment of sphere intersections in
molecular modelling.

Now assume dim aff(U−) = K − 1, let xK+1 be a given point in P and let U = U− ∪ {xK+1}. The
inequalities ∆K(U) ≥ 0 (see Eq. (2)) are called simplex inequalities (or strict simplex inequalities if
∆K(U) > 0). We remark that, by definition of the Cayley-Menger determinant, the simplex inequalities
are expressed in terms of the squared values duv of the distance function, rather than the points in U .
Accordingly, given a weighted clique K = (U,E, d) where |U | = K + 1, we can also denote the simplex
inequalities as ∆K(U, d) ≥ 0. If the simplex inequalities fail to hold, then the clique cannot be realized
in RK , and P = ∅. If ∆K(U, d) = 0 the simplex has zero volume, which implies that |P | = 1 by [115,
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Lemma 1]. If the strict simplex inequalities hold, then |P | = 2 by [115, Lemma 2] (see Fig. 6). In

Figure 6: General case for the intersection P of three spheres in R3.

summary, if CM(U−) = 0 then P is uncountable, if ∆K(U, d) = 0 then |P | = 1, and all other cases lead
to |P | ∈ {0, 2}.

Considering the usual probability space on RK defined by the Lebesgue measure, the probability of
any sampled point belonging to any given set having Lebesgue measure zero is equal to zero. Since both
{x ∈ RK2

| CM(U−)} and {x ∈ RK2

| ∆K(U, d) = 0} are (strictly) lower dimensional manifolds in RK2

,
they have Lebesgue measure zero. Thus the probability of having |P | = 1 or P uncountable for any given

x ∈ RK2

is zero. Furthermore, if we assume P 6= ∅, then |P | = 2 with probability 1. We extend this notion
to hold for any given sentence p(x): the statement “∀x ∈ Y (p(x) with probability 1)” means that the
statement p(x) holds over a subset of Y that has Lebesgue measure 1. Typically, this occurs whenever p is
a geometrical statement about Euclidean space that fails to hold for strictly lower dimensional manifolds.
These situations, such as collinearity causing an uncountable P in Fig. 5, are generally described by
equations. Notice that an event can occur with probability 1 conditionally to another event happening
with probability 0. For example, we shall show in Sect. 3.3.9 that the cardinality of the solution set of
YES instances of the KDMDGP is a power of two with probability 1, even though a KDMDGP instance
has probability 0 of being a YES instance, when sampled uniformly in the set of all KDMDGP instances.

We remark that our notion of “statement holding with probability 1” is different from the genericity
assumption which is used in early works in graph rigidity (see Sect. 4.2 and [45]): a finite set S of real
values is generic if the elements of S are algebraically independent over Q, i.e. there exists no rational
polynomial whose set of roots is S. This requirement is sufficient but too stringent for our aims; and
besides, since most computer implementations will only employ (a subset of) rational numbers, it makes
the theory completely inapplicable, as is also remarked in [92]. The notion we propose might be seen as
an extension to Graver’s own definition of genericity, which he appropriately modified to suit the purpose
of combinatorial rigidity: all minors of the complete rigidity matrix must be nontrivial (see Sect. 4.2.2
and [84]).

3.3.4 The Discretizable Vertex Ordering Problem

The theory of sphere intersections, as described in Sect. 3.3.3, implies that if there exists a vertex order on
V such that each vertex v such that ρ(v) > K has exactly K adjacent predecessors, then with probability
1 we have |X | = 2n−K . If there are at least K adjacent predecessors, |X | ≤ 2n−K as either or both
positions x0

v, x
1
v for v might be infeasible with respect to some distances. In the rest of the paper, to

simplify notation we identify each vertex v ∈ V with its (unique) rank ρ(v), let V = {1, . . . , n}, and
write, e.g. u− v to mean ρ(u)− ρ(v) or v > K to mean ρ(v) > K.

In this section we discuss the problem of identifying an order with the properties above. Formally,
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the DVOP asks to find a vertex order on V such that G[{1, . . . ,K}] is a K-clique and such that ∀v >
K (|N(v)∩γ(v)| ≥ K). We ask that the first K vertices should induce a clique in G because this will allow
us to realize the first K vertices uniquely — it is a requirement of discretizable DGPs that a realization
should be known for the first K vertices.

The DVOP is NP-complete by trivial reduction from K-clique. An exponential time solution algo-
rithm consists in testing each subset of K vertices: if one is a clique, then try to build an order by
greedily choosing a next vertex with the largest number of adjacent predecessors, stopping whenever this
is smaller than K. This yields an O(nK+3) algorithm. If K is a fixed constant, then of course this
becomes a polynomial algorithm, showing that the DVOP with fixed K is in P. Since DGP applications
rarely require a variable K, this is a positive result.

The computational results given in [115] show that solving the DVOP as a pre-processing step some-
times allows the solution of a sparse PDB instance whose backbone order is not a DVOP order. This
may happen if the distance threshold used to generate sparse PDB instances is set to values that are
lower than usual (e.g. 5.5Å instead of 6Å).

3.3.5 The Discretizable Distance Geometry Problem

The input of the DDGP consists of:

• a simple weighted undirected graph G = (V,E, d);

• an integer K > 0;

• an order on V such that:

– for each v > K, the set N(v) ∩ γ(v) of adjacent predecessors has at least K elements;
– for each v > K, N(v) ∩ γ(v) contains a subset Uv of exactly K elements such that:
∗ G[Uv] is a K-clique in G;
∗ strict triangular inequalities ∆K−1(Uv, d) > 0 hold (see Eq. (2));

• a valid realization x̄ of the first K vertices.

The DDGP asks to decide whether x̄ can be extended to a valid realization of G [115]. The DDGP with
fixed K is denoted by DDGPK ; the DDGP3 is discussed in [159].

We remark that any method that computes xv in function of its adjacent predecessors is able to employ
a current realization of the vertices in Uv during the computation of xv. As a consequence, ∆K−1(Uv, d)
is well defined (during the execution of the algorithm) even though G[Uv] might fail to be a clique in
G. Thus, more DGP instances beside those in the DDGP can be solved with a DDGP method of this
kind. To date, we failed to find a way to describe such instances aprioristically. The DDGP is NP-hard
because it contains the DMDGP (see Sect. 3.3.8 below), and there is a reduction from Subset-Sum [76]
to the DMDGP [122].

3.3.6 The Branch-and-Prune algorithm

The recursive step of an algorithm for realizing a vertex v given an embedding x′ for G[Uv], where Uv is
as given in Sect. 3.3.5, is shown in Alg. 1. We recall that SK−1(y, r) denotes the sphere in RK centered at
y with radius r. By the discretization due to sphere intersections, we note that |P | ≤ 2. The Branch-and-
Prune (BP) algorithm consists in calling BP(K+1, x̄,∅). The BP finds the set X of all valid realizations
of a DDGP instance graph G = (V,E, d) in RK modulo rotations and translations [138, 122, 159]. The
structure of its recursive calls is a binary tree (called the BP tree), which contains 2n−K nodes in the
worst case; this makes BP a worst-case exponential algorithm. Fig. 7 gives an example of a BP tree.

Realizations x ∈ X can also be represented by sequences χ(x) ∈ {−1, 1}n such that: (i) χ(x)v = 1
for all v ≤ K; (ii) for all v > K, χ(x)v = −1 if axv < a0 and χ(x)v = 1 if axv ≥ a0, where ax = a0 is
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Algorithm 1 BP(v, x̄, X)

Require: A vertex v ∈ V r [K], an embedding x′ for G[Uv], a set X .
1: P =

⋂

u∈N(v)
u<v

SK−1(x′
u, duv);

2: for xv ∈ P do
3: x = (x′, xv)
4: if v = n then
5: X ← X ∪ {x}
6: else
7: BP(v + 1, x,X)
8: end if
9: end for
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Figure 7: An example of BP tree on the random instance lavor11 7 [114]. Pruning edges (see
Sect. 3.3.6.1) are as follows: N(2) = {9}, N(3) = N(4) = {8, 9, 10}, N(5) = {9, 10}, N(6) = {10},
N(7) = {11}.

the equation of the hyperplane through x(Uv) = {xu | u ∈ Uv}, which is unique with probability 1. The
vector χ(x) is also known as the chirality [50] of x (formally, the chirality is defined to be χ(x)v = 0 if
ax = a0, but since this case holds with probability 0, we disregard it).

The BP (Alg. 1) can be run to termination to find all possible valid realizations of G, or stopped after
the first leaf node at level n is reached, in order to find just one valid realization of G. Compared to
most continuous search algorithms we tested for DGP variants, the performance of the BP algorithm is
impressive from the point of view of both efficiency and reliability, and, to the best of our knowledge, it is
currently the only method that is able to find all valid realizations of DDGP graphs. The computational
results in [122], obtained using sparse PDB instances as well as hard random instances [114], show that
graphs with thousands of vertices and edges can be realized on standard PC hardware from 2007 in fewer
than 5 seconds, to an LDE accuracy of at worst O(10−8). Complete sets X of incongruent realizations
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were obtained for 25 sparse PDB instances (generation threshold fixed at 6Å) having sizes ranging from
n = 57,m = 476 to n = 3861,m = 35028. All such sets contain exactly one realization with RMSD
value of at worst O(10−6), together with one or more isomers, all of which have LDE values of at worst
O(10−7) (and most often O(10−12) or less). The cumulative CPU time taken to obtain all these solution
sets is 5.87s of user CPU time, with one outlier taking 90% of the total.

3.3.6.1 Pruning devices We partition E into the sets ED = {{u, v} ∈ E | u ∈ Uv} and EP =
E r ED. We call ED the discretization edges and EP the pruning edges. Discretization edges guarantee
that a DGP instance is in the DDGP. Pruning edges are used to reduce the BP search space by pruning
its tree. In practice, pruning edges might make the set T in Alg. 1 have cardinality 0 or 1 instead of 2,
if the distance associated with them is incompatible with the distances of the discretization edges.

The pruning carried out using pruning edges is called Direct Distance Feasibility (DDF), and is by far
the easiest, most efficient, and most generally useful. Other pruning tests have been defined. A different
pruning technique called Dijkstra Shortest Path (DSP) was considered in [122, Sect. 4.2], based on the
fact that G is a Euclidean network. Specifically, the total weight of a shortest path from u to v provides
an upper bound to the Euclidean distance between xu and xv, and can therefore be employed to prune
positions xv which are too far from xu. The DSP was found to be effective in some instances but too often
very costly. Other, more effective pruning tests, based on chemical observations, have been considered in
[166].

3.3.7 Dual Branch-and-Prune

There is a close relationship between the DGPK and the EDMCP (see Sect. 2.6.2) with K fixed: each
DGPK instance G can be transformed in linear time to an EDMCP instance (and vice versa) by just
considering the weighted adjacency matrix of G where vertex pairs {u, v} 6∈ E correspond to entries
missing from the matrix. We shall call M (G) the EDMCP instance corresponding to G and G (A) the
DGPK instance corresponding to an EDMCP instance A.

As remarked in [174], the completion in R3 of a distance (sub)matrix D with the following structure:













0 d12 d13 d14 δ
d21 0 d23 d24 d25
d31 d32 0 d34 d35
d41 d42 d43 0 d45
δ d52 d53 d54 0













(13)

can be carried out in constant time by solving a quadratic system in the unknown δ derived from setting
the Cayley-Menger determinant (Sect. 2) of the distance space (X, d) to zero, where X = {x1, . . . , x5}
and d is given by Eq. (13). This is because the Cayley-Menger determinant is proportional to the volume
of a 4-simplex, which is the (unique, up to congruences) realization of the weighted 5-clique defined by a
full distance matrix. Since a simplex on 5 points embedded in R3 necessarily has 4-volume equal to zero,
it suffices to set the Cayley-Menger determinant of (13) to zero to obtain a quadratic equation in δ.

We denote the pair {u, v} indexing the unknown distance δ by e(D), the Cayley-Menger determinant
of D by CM(D), and the corresponding quadratic equation in δ by CM(D)(δ) = 0. If D is a distance
matrix, then CM(D)(δ) = 0 has real solutions; furthermore, in this case it has two distinct solutions δ1, δ2

with probability 1, as remarked in Sect. 3.3. These are two valid values for the missing distance d15.
This observation extends to general K, where we consider a (K + 1)-simplex realization of a weighted
near-clique (defined as a clique with a missing edge) on K + 2 vertices.

3.3.7.1 BP in distance space We are given a DDGP instance with a graph G = (V,E) and a partial
embedding x̄ for the subgraph G[[K]] of G induced by the set [K] of the first K vertices. The DDGP
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order on V guarantees that the vertex of rank K +1 has K adjacent predecessors, hence it is adjacent to
all the vertices of rank v ∈ [K]. Thus, G[[K+1]] is a full (K+1)-clique. Consider now the vertex of rank
K + 2: again, the DDGP order guarantees that it has at least K adjacent predecessors. If it has K + 1,
then G[[K + 2]] is the full (K + 2)-clique. Otherwise G[[K + 2]] is a near-clique on K + 2 vertices with
a missing edge {u,K + 2} for some u ∈ [K + 1]. We can therefore use the Cayley-Menger determinant
(see Eq. (13) for the special case K = 3, and Sect. 2 for the general case) to compute two possible values
for du,K+2. Because the vertex order always guarantees at least K adjacent predecessors, this procedure
can be generalized to vertices of any rank v in V r [K], and so it defines a recursive algorithm which:

• branches whenever a distance can be assigned two different values;

• simply continues to the next rank whenever the subgraph induced by the current K + 2 vertices is
a full clique;

• prunes all branches whenever the partial distance matrix defined on the current K +2 vertices has
no Euclidean completion.

In general, this procedure holds for DDGP instances G whenever there is a vertex order such that
each next vertex v is adjacent to K predecessors. This ensures G has a subgraph (containing v and K+1
predecessors) consisting of two (K + 1) cliques whose intersection is a K-clique, i.e. a near-clique with
one missing edge. There are in general two possible realizations in RK for such subgraphs, as shown in
Fig. 8.

Figure 8: On the left, a near clique on 5 vertices with one missing edge (dotted line). Center and right,
its two possible realizations in R3 (missing distance shown in red).

Alg. 2 presents the dual BP. It takes as input a vertex v of rank greater than K + 1, a partial matrix
A and a set A which will eventually contain all the possible completions of the partial matrix given as
the problem input. For a given partial matrix A, a vertex v of G (A) and an integer ℓ ≤ K, let Aℓ

v be
the ℓ × ℓ symmetric submatrix of A including row and column v that has fewest missing components.
Whenever AK+2

v has no missing elements, the equation CM(AK+2
v , δ) = 0 is either a tautology if AK+2

v

is a Euclidean distance matrix, or unsatisfiable in R otherwise. In the first case, we define it to have
δ = duv as a solution, where u is the smallest row/column index of AK+2

v . In the second case, it has no
solutions.

Theorem 3.1 ([137]) At the end of Alg. 2, A contains all possible completions of the input partial
matrix.

The similarity of Alg. 1 and 2 is such that it is very easy to assign dual meanings to the original
(otherwise known as primal) BP algorithms. This duality stems from the fact that weighted graphs and
partial symmetric matrices are “dual” to each other through the inverse mappings M and G . Whereas
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Algorithm 2 dBP(v, A, A )

Require: A vertex v ∈ V r [K + 1], a partial matrix A, a set A .
1: P = {δ | CM(AK+2

v , δ) = 0}
2: for δ ∈ P do
3: {u, v} ← e(AK+2

v )
4: duv ← δ
5: if A is complete then
6: A ← A ∪ {A}
7: else
8: dBP(v + 1, A, A )
9: end if

10: end for

in the primal BP we decide realizations of the graph, in the dual BP we decide the completions of partial
matrices, so realizations and distance matrix completions are dual to each other. The primal BP decides
on points xv ∈ RK to assign to the next vertex v, whereas the dual BP decides on distances δ to assign
to the next missing distance incident to v and to a predecessor of v; there are at most two choices of xv

as there are at most two choices for δ; only one choice of xv is available whenever v is adjacent to strictly
more than K predecessor, and the same happens for δ; finally, no choices for xv are available in case the
current partial realization cannot be extended to a full realization of the graph, as well as no choices for
δ are available in case the current partial matrix cannot be completed to a Euclidean distance matrix.
Thus, point vectors and distance values are dual to each other. The same vertex order can be used by
both the primal and the dual BP (so the order is self-dual).

There is one clear difference between primal and dual BP: namely, that the dual BP needs an initial
(K + 1)-clique, whereas the primal BP only needs an initial K-clique. This difference also has a dual
interpretation: a complete Euclidean distance matrix corresponds to two (rather than one) realizations,
one being the reflection of the other through the hyperplane defined by the first K points (this is the
“fourth level symmetry” referred to in [122, Sect. 2.1] for the case K = 3). We remark that this difference
is related to the reason why the exact SDP-based polynomial method for realizing uniquely localizable
(see Sect. 3.2.4) networks proposed in [201] needs the presence of at least K + 1 anchors.

3.3.8 The Discretizable Molecular Distance Geometry Problem

The DMDGP is a subset of instances of the DDGP3; its generalization to arbitrary K is called KDMDGP.
The difference between the DMDGP and the DDGP is that Uv is required to be the set of K immediate
(rather than arbitrary) predecessors of v. So, for example, the discretization edges can also be expressed
as ED = {{u, v} ∈ E | |u − v| ≤ K} (see Sect. 3.3.6.1), and x(Uv) = {xv−K , . . . , xv−1}. This restriction
originates from the practically interesting case of realizing protein backbones with NMR data.

Since such graphs are molecular (see Sect. 3.3.1), they have vertex orders guaranteeing that each
vertex v > 3 is adjacent to two immediate predecessors, as shown in Fig. 9. The distance dv,v−2 is

covalent covalent
known

v

v − 1

v − 2
computed

Figure 9: Vertex v is adjacent to its two immediate predecessors.
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computed using the covalent bond lengths and the angle (v− 2, v− 1, v), which are known because of the
rigid geometry hypothesis [77]. In general, this is only enough to guarantee discretizability for K = 2.
By exploting further protein properties, however, we were able to find a vertex order (different from the
natural backbone order) that satisfies the DMDGP definition (see Sect. 3.5.2).

Requiring that all adjacent predecessors of v must be immediate provides sufficient structure to prove
several results about the symmetry of the solution set X (Sect. 3.3.9) and about the fixed-parameter
tractabililty of the BP algorithm (Alg. 1) when solving KDMDGPs on protein backbones with NMR
data (Sect. 3.3.10). The DMDGP is NP-hard by reduction from Subset-Sum [122]. The result can be
generalized to the KDMDGP [140].

3.3.8.1 Mathematical programming formulation For completeness, and convenience of math-
ematical programming versed readers, we provide here a MP formulation of the DMDGP. We model
the choice between x0

v, x
1
v by using torsion angles [120]: these are the angles φv defined for each v > 3

by the planes passing through xv−3, xv−2, xv−1 and xv−2, xv−1, xv (Fig. 10). More precisely, we sup-
pose that the cosines cv = cos(φv) of such angles are also part of the input. In fact, the values for
c : V r {1, 2, 3} → R can be computed using the DMDGP structure of the weighted graph in constant
time using [90, Eq. (2.15)]. Conversely, if one is given precise values for the torsion angle cosines, then
every quadruplet (xv−3, xv−2, xv−1, xv) must be a rigid framework (for v > 3). We let α : V r{1, 2} → R3

i− 3

i− 2

i− 1

i

φi

Figure 10: The torsion angle φi.

be the normal vector to the plane defined by three consecutive vertices:

∀v ≥ 3 αv =

∣

∣

∣

∣

∣

∣

i j k
xv−2,1 − xv−1,1 xv−2,2 − xv−1,2 xv−2,3 − xv−1,3

xv,1 − xv−1,1 xv,2 − xv−1,2 xv,3 − xv−1,3

∣

∣

∣

∣

∣

∣

=





(xv−2,2 − xv−1,2)(xv,3 − xv−1,3)− (xv−2,3 − xv−1,3)(xv,2 − xv−1,2)
(xv−2,1 − xv−1,1)(xv,3 − xv−1,3)− (xv−2,3 − xv−1,3)(xv,1 − xv−1,1)
(xv−2,1 − xv−1,1)(xv,2 − xv−1,2)− (xv−2,2 − xv−1,2)(xv,1 − xv−1,1)



 ,

so that αv is expressed a function αv(x) of x and represented as a matrix with entries xvk. Now, for
every v > 3, the cosine of the torsion angle φv is proportional to the scalar product of the normal vectors
αv−1 and αv:

∀v > 3 αv−1(x) · αv(x) = ‖αv−1(x)‖‖αv(x)‖ cosφv.

Thus, the following provides a MP formulation for the DMDGP:

minx

∑

{u,v}∈E

(‖xu − xv‖
2 − d2uv)

2

s.t. ∀v > 3 αv−1(x) · αv(x) = ‖αv−1(x)‖‖αv(x)‖cv.

}

(14)

We remark that generalizations of (14) to arbitrary (fixed) K are possible by using Graßmann-Plücker
relations [30] (also see [50, Ch. 2]).
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3.3.9 Symmetry of the solution set

When we first experimented with the BP on the DMDGP, we observed that |X | was always a power of two.
An initial conjecture in this direction was quickly disproved by hand-crafting an instance with 54 solutions
derived by the polynomial reduction of the Subset-Sum to the DMDGP used in the NP-hardness proof
of the DMDGP [122]. Notwithstanding, all protein and protein-like instances we tested yielded |X | = 2ℓ

for some integer ℓ. Years later, we were able to prove that the conjecture holds on KDMDGP instances
with probability 1, and also derived an infinite (but countable) class of counterexamples [145]. Aside
from explaining our conjecture arising from empirical evidence, our result is also important insofar as it
provides the core of a theory of partial reflections for the KDMDGP. References to partial reflections are
occasionally found in the DGP literature [91, 201], but our group-theoretical treatment is an extensive
addition to the current body of knowledge.

In this section we give an exposition which is more compact and hopefully clearer than the one in
[145]. We focus on KDMDGP and therefore assume that Uv contains the K immediate predecessors of v
for each v > K. We also assume G is a YES instance of the KDMDGP, so that |P | = 2 with probability
1.

3.3.9.1 The discretization group Let GD = (V,ED, d) be the subgraph of G consisting of the
discretization edges, andXD be the set of realizations of GD; since GD has no pruning edges by definition,
the BP search tree for GD is a full binary tree and |XD| = 2n−K . The discretization edges arrange the
realizations so that, at level ℓ, there are 2ℓ−K possible positions for the vertex v with rank ℓ. We assume
that |P | = 2 (see Alg. 1) at each level v of the BP tree, an event which, in absence of pruning edges,
happens with probability 1. Let P = {x0

v, x
1
v} be the two possible realizations of v at a certain recursive

call of Alg. 1 at level v of the BP tree; then because P is an intersection of K spheres, x1
v is the reflection

of x0
v through the hyperplane defined by x(Uv) = {xv−K , . . . , xv−1}. We denote this reflection operator

by Rv
x.

Theorem 3.2 (Cor. 4.6 and Thm. 4.9 in [145]) With probability 1, for all v > K and u < v − K
there is a set Huv of 2v−u−K real positive values such that for each x ∈ X we have ‖xv − xu‖ ∈ Huv.
Furthermore, ∀x′ ∈ X, ‖xv − xu‖ = ‖x

′
v − xu‖ if and only if x′

v ∈ {xv, R
u+K
x (xv)}.

We sketch the proof in Fig. 11 for K = 2; the solid circles at levels 3, 4, 5 mark the locus of feasible
realizations for vertices at rank 3, 4, 5 in the KDMDGP order. The dashed circles represent the spheres
Sx
uv (see Alg. 1). Intuitively, two branches from level 1 to level 4 or 5 will have equal segment lengths but

different angles between consecutive segments, which will cause the end nodes to be at different distances
from the node at level 1. Observe that the number of solid circles at each level is a power of two where
the exponent depends on the level index ℓ, and each solid circle contains exactly two realizations (that
are reflections of each other) of the same vertex at rank ℓ.

We now give a basic result on reflections in RK . For any nonzero vector y ∈ RK let R(y) be the
reflection operator through the hyperplane passing through the origin and normal to y. If y is normal to
the hyperplane defined by xv−K , . . . , xv−1, then R

y = Rv
x.

Lemma 3.3 (Lemma 4.2 in [140]) Let x 6= y ∈ RK and z ∈ RK such that z is not in the hyperplanes
through the origin and normal to x, y. Then R(x)R(y)z = R(R(x)y)R(x)z.

Thm. 3.3 provides a commutativity for reflections acting on points and hyperplanes. Fig. 12 illustrates
the proof for K = 2.

For v > K and x ∈ X we now define partial reflection operators:

gv(x) = (x1, . . . , xv−1, R
v
x(xv), . . . , R

v
x(xn)). (15)
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Figure 11: A pruning edge {1, 4} prunes either ν6, ν7 or ν5, ν8.
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R(x)R(y)z = R(R(x)y)R(x)z

Figure 12: Reflecting through R(y) first and R(x) later is equivalent to reflecting through R(x) first and
the reflection of R(y) through R(x) later.

The gv’s map a realization x to its partial reflection with first branch at v. It is easy to show that the
gv’s are injective with probability 1 and idempotent.

Lemma 3.4 (Lemma 4.3 in [140]) For x ∈ X and u, v ∈ V such that u, v > K, gugv(x) = gvgu(x).

We define the discretization group to be the symmetry group GD = 〈gv | v > K〉 generated by the
partial reflection operators gv.

Corollary 3.5 With probability 1, GD is an Abelian group isomorphic to Cn−K
2 (the Cartesian product

consisting of n−K copies of the cyclic group of order 2).
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For all v > K let γv = (1, . . . , 1,−1v, . . . ,−1) be the vector consisting of one’s in the first v−1 components
and −1 in the last components. Then the gv actions are naturally mapped onto the chirality functions.

Lemma 3.6 (Lemma 4.5 in [140]) For all x ∈ X, χ(gv(x)) = χ(x) ◦ γv, where ◦ is the Hadamard
product.

This follows by definition of gv and of chirality of a realization. Since, by Alg. 1, each x ∈ X has a
different chirality, for all x, x′ ∈ X there is g ∈ GD such that x′ = g(x), i.e. the action of GD on X is
transitive. By Thm. 3.2, the distances associated to the discretization edges are invariant with respect
to the discretization group.

3.3.9.2 The pruning group Consider a pruning edge {u, v} ∈ EP . By Thm. 3.2, with probability 1
we have duv ∈ Huv, otherwise G cannot be a YES instance (against the initial assumption). Also, again
by Thm. 3.2, duv = ‖xu − xv‖ 6= ‖gw(x)u − gw(x)v‖ for all w ∈ {u + K + 1, . . . , v} (e.g. the distance
‖ν1 − ν9‖ in Fig. 11 is different from all its reflections ‖ν1 − νh‖, with h ∈ {10, 11, 12}, w.r.t. g4, g5). We
therefore define the pruning group

GP = 〈gw | w > K ∧ ∀{u, v} ∈ EP (w 6∈ {u+K + 1, . . . , v})〉.

By definition, GP ≤ GD and the distances associated with the pruning edges are invariant with respect
to GP .

Theorem 3.7 (Thm. 4.6 in [145]) The action of GP on X is transitive with probability 1.

Theorem 3.8 (Thm. 4.7 in [140]) With probability 1, ∃ℓ ∈ N |X | = 2ℓ.

Proof. The argument below holds with probability 1. Since GD ∼= Cn−K
2 , |GD| = 2n−K . Since GP ≤ GD,

|GP | divides the order of |GD|, which implies that there is an integer ℓ with |GP | = 2ℓ. By Thm. 3.7, the
action of GP on X only has one orbit, i.e. GPx = X for any x ∈ X . By idempotency, for g, g′ ∈ GP , if
gx = g′x then g = g′. This implies |GPx| = |GP |. Thus, for any x ∈ X , |X | = |GPx| = |GP | = 2ℓ. ✷

3.3.9.3 Practical exploitation of symmetry These results naturally find a practical application
to speed up the BP algorithm. The BP proceeds until a first valid realization is identified. It can be
shown that, at that point, a set of generators for the group GP are known. These are used to generate all
other valid realizations of the input graph, up to rotations and translations [157, 158]. Empirically, this
cuts the CPU time to roughly 2/|X | (the factor 2 is due to the fact that the original BP already takes
one reflection symmetry into account, see [122, Thm. 2]).

3.3.10 Fixed parameter tractability

As the theory of partial reflections, the proof that the BP is Fixed-Parameter Tractable (FPT) on proteins
also stems from empirical evidence. All the CPU time plots versus instance size for the BP algorithm on
protein backbones look roughly linear, suggesting that perhaps such instances are a “polynomial case” of
the DMDGP. The results that follow provide sufficient conditions for this to be the case. We were able
to verify empirically that PDB proteins conform to these conditions. These results are a consequence of
the theory in Sect. 3.3.9 insofar as they rely on an exact count of the BP tree nodes at each level. We
formalize this in a DAG Duv that represents the number of valid BP search tree nodes in function of
pruning edges between two vertices u, v ∈ V such that v > K and u < v − K (see Fig. 13). The first
row in Fig. 13 shows different values for the rank of v w.r.t. u; an arc labelled with an integer i implies
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Figure 13: Number of valid BP nodes (vertex label) at level u+K+ℓ (column) in function of the pruning
edges (path spanning all columns).

the existence of a pruning edge {u + i, v} (arcs with ∨-expressions replace parallel arcs with different
labels). An arc is unlabelled if there is no pruning edge {w, v} for any w ∈ {u, . . . , v − K − 1}. The
vertices of the DAG are arranged vertically by BP search tree level, and are labelled with the number of
BP nodes at a given level, which is always a power of two by Thm. 3.8. A path in this DAG represents
the set of pruning edges between u and v, and its incident vertices show the number of valid nodes at the
corresponding levels. For example, following unlabelled arcs corresponds to no pruning edge between u
and v and leads to a full binary BP search tree with 2v−K nodes at level v.

For a given GD, each possible pruning edge set EP corresponds to a path spanning all columns in
D1n. Instances with diagonal (Prop. 3.9) or below-diagonal (Prop. 3.10) EP paths yield BP trees whose
width is bounded by O(2v0) where v0 is small w.r.t. n.

Proposition 3.9 (Prop. 5.1 in [140]) If ∃v0 > K s.t. ∀v > v0 ∃u < v −K with {u, v} ∈ EP then the
BP search tree width is bounded by 2v0−K.

This corresponds to a path p0 = (1, 2, . . . , 2v0−K , . . . , 2v0−K) that follows unlabelled arcs up to level v0
and then arcs labelled v0 −K − 1, v0 −K − 1 ∨ v0 −K, and so on, leading to nodes that are all labelled
with 2v0−K (Fig. 14, top).

Proposition 3.10 (Prop. 5.2 in [140]) If ∃v0 > K such that every subsequence s of consecutive ver-
tices > v0 with no incident pruning edge is preceded by a vertex vs such that ∃us < vs (vs − us ≥
|s| ∧ {us, vs} ∈ EP ), then the BP search tree width is bounded by 2v0−K.

This situation corresponds to a below-diagonal path (Fig. 14, bottom). In general, for those instances
for which the BP search tree width has a O(2v0 logn) bound, the BP has a worst-case running time
O(2v0L2logn) = O(Ln), where L is the complexity of computing T . Since L is typically constant in n
[64], for such cases the BP runs in time O(2v0n). Let V ′ = {v ∈ V | ∃ℓ ∈ N (v = 2ℓ)}.
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Figure 14: A path p0 yielding treewidth 4 (top) and another path below p0 (bottom).

Proposition 3.11 (Prop. 5.3 in [140]) If ∃v0 > K s.t. for all v ∈ VrV ′ with v > v0 there is u < v−K
with {u, v} ∈ EP then the BP search tree width at level n is bounded by 2v0n.

This corresponds to a path roughly along the diagonal apart from logarithmically many vertices in V
(those in V ′), at which levels the BP doubles the number of search nodes (Fig. 15). For a pruning edge
set EP as in Prop. 3.11, or yielding a path below it, the BP runs in O(2v0n2).

3.3.10.1 Empirical verification On a set of 45 protein instances from the Protein Data Bank
(PDB), 40 satisfy Prop. 3.9, and 5 satisfy Prop. 3.10, all with v0 = 4 [140]. This is consistent with the
computational insight [122] that BP empirically displays a polynomial (specifically, linear) complexity on
real proteins.

3.4 Interval data

In this section we discuss methods that target an MDGP variant, called iMDGP, which is closer to the
real NMR data: edges {u, v} ∈ E are weighted with real intervals duv = [dLuv, d

U
uv] instead of real values.

These intervals occur in practice because, as all other physical experiments, NMR outputs data with some
uncertainty, which can be modelled using intervals. The iMDGP therefore consists in finding x ∈ RK

that satisfies the following set of nonlinear inequalities:

∀{u, v} ∈ E dLuv ≤ ‖xu − xv‖ ≤ dUuv. (16)
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Figure 15: A path yielding treewidth O(n).

The MP formulation (7) can be adapted to deal with this situation in a number of ways, such as, e.g.:

min
x

∑

{u,v}∈E

(max(dLuv − ||xu − xv||, 0) + max(||xu − xv|| − dUuv, 0)), (17)

min
x

∑

{u,v}∈E

(max((dLuv)
2 − ||xu − xv||

2, 0) + max(||xu − xv||
2 − (dUuv)

2, 0), (18)

min
x

∑

{u,v}∈E

(max2((dLuv)
2 − ||xu − xv||

2, 0) + max2(||xu − xv||
2 − (dUuv)

2, 0)). (19)

Problem (19) is often appropriately modified to avoid bad scaling (which occurs whenever the observed
distances differ in the order of magnitude):

min
x

∑

{u,v}∈E

(max2(
(dLuv)

2 − ||xu − xv||
2

(dLuv)
2

, 0) + max2(
||xu − xv||

2 − (dUuv)
2

(dUuv)
2

, 0)). (20)

3.4.1 Smoothing-based methods

Several smoothing-based methods (e.g. DGSOL and DCA, see Sect. 3.2.2) have been trivially adapted to
solve (19) and/or (20).

3.4.1.1 Hyperbolic smoothing The hyperbolic smoothing described in [202] is specifically suited to
the shape of each summand in (17), as shown in Fig. 16. The actual solution algorithm is very close to the
one employed by DGSOL (see Sect. 3.2.2). Given the fact that the smoothing is not “general-purpose”
(as the Gaussian transform is), but is specific to the problem at hand, the computational results improve.
It should be noted, however, that this approach gives best results for near cubic grid arrangements.
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Figure 16: The function max(x, 0) and its hyperbolic smoothing F (x, λ).

3.4.2 The EMBED algorithm

The EMBED algorithm, proposed by Crippen and Havel [50], first completes the missing bounds and
refines the given bounds using triangle and tetrangle inequalities. Then, a trial distance matrix D′ is
randomly generated, and a solution is sought using a matrix decomposition method [28]. Since the
distance matrix D′ is not necessarily Euclidean [67], the solution may not satisfy (16). If this is the case,
the final step of the algorithm is to minimize the distance violations using the previous solution as the
initial guess. More details can be found in [219, 89].

3.4.3 Monotonic Basin Hopping

A Monotonic Basin Hopping (MBH) algorithm for solving (19)-(20) is employed in [88]. Let L be
the set of local optima of (9) and N : R3 → P(R3) (where P(S) denotes the power set of S) be
some appropriate neighbourhood structure. A artial order ❂ on L is assumed to exist: x ❂ y implies
y ∈ N (x) and f(x) > f(y). A funnel is a subset F ⊆ L such that for each x ∈ F there exists a chain
x = x0

❂ x1
❂ · · · ❂ xt = minF (the situation is described in Fig. 17). The MBH algorithm is as

follows. Starting with a current solution x ∈ F , sample a new point x′ ∈ N (x) and use it as the starting
point for a local NLP solver; repeating this sufficiently many times will yield the next optimum x1 in the
funnel. This is repeated until improvements are no longer possible. The MBH is also employed within a
population-based metaheuristic called Population Basin Hopping (PBH), which explores several funnels
in parallel.

3.4.4 Alternating Projections Algorithm

The Alternating Projection Algorithm (APA) [177] is an application of the more general Successive
Projection Methodology (SPM) [86, 214] to the iMDGP. The SPM takes a starting point and projects it
alternately on the two convex sets, attempting to reach a point in their intersection (Fig. 18).

In the APA, the starting point is a given pre-distance matrix D = (δuv), i.e. an n×n symmetric matrix
with non-negative components and zero diagonal. D is generated randomly so that dLuv ≤ δuv ≤ dUuv for all
{u, v} ∈ E and δuv = 0 otherwise. By Schoenberg’s Theorem 2.2 and Eq. (5), if we let P = I− 1

n11
⊤ and

A = − 1
2PDP , where I is the n×n identity matrix and 1 is the all-one n-vector, D is a Euclidean distance

matrix if and only if A is positive semi-definite. Notice that P is the orthogonal projection operator on
the subspace M = {x ∈ Rn | x⊤1 = 0} of vectors orthogonal to 1, so D is a Euclidean distance matrix
if and only if D is negative semidefinite on M [79]. On the other hand, a necessary condition for any
matrix to be a Euclidean distance matrix is that it should have zero diagonal. This identifies the two
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Figure 17: The dashed horizontal lines indicate the extent of the neighbourhoods. The set F = {x, x1, x∗}
is a funnel, because x ❂ x1

❂ x∗ = minF . The set {x∗, y} is not a funnel, as y 6∈ N (x∗).

Figure 18: The SPM attempts to find a point in the intersection of two convex sets.

convex sets on which the SPM is run: the set P of matrices which are negative semidefinite on M , and
the set Z of zero-diagonal matrices. The projection operator for P is Q(D) = PUΛ−UP , where UΛU is
the spectral decomposition of D and Λ− is the nonpositive part of Λ, and the projection operator for Z
is Q′(D) = D − diag(D).

Although the convergence proofs for the SPM assumes an infinite number of iterations in the worst
case, empirical tests suggest that five iterations of the APA are enough to get satisfactory results. The
APA was tested on the bovine pancreatic trypsin inhibitor protein (qlq), which has 588 atoms including
side-chains.

3.4.5 The GNOMAD iterative method

The GNOMAD algorithm [225] (see Alg. 3) is a multi-level iterative method, which tries to arrange
groups of atoms at the highest level, then determines an appropriate order within each group using the
contribution of each atom to the total error, and finally, at the lowest level, performs a set of atom
moves within each group in the prescribed order. The method exploits several local NLP searches (in
low dimension) at each iteration, as detailed below. The constraints exploited in Step 7 are mostly given
by van der Waals distances [189], which are physically inviolable separation distances between atoms.
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Algorithm 3 GNOMAD

1: {C1, . . . , Cℓ} is a vertex cover for V
2: for i ∈ {1, . . . , ℓ} do
3: while termination condition not met do
4: determine an order < on Ci

5: for v ∈ (Ci, <) do
6: find search direction ∆v for xv (obtained by solving an NLP locally)
7: determine step sv minimizing constraint infeasibility
8: xv ← xv + sv∆v

9: end for
10: end while
11: end for

3.4.6 Sthochastic Proximity Embedding heuristic

The basic idea of the Stochastic Proximity Embedding (SPE) [230] heuristic is as follows. All the atoms
are initially placed randomly into a cube of a given size. Pairs of atoms in E are repeatedly and randomly
selected; for each pair {u, v}, the algorithm checks satisfaction of the corresponding constraint in (16). If
the constraint is violated, the positions of the two atoms are changed according to explicit formulae in
order to improve the current embedding (two examples are shown in Fig. 19).

u
u

v
vdd

λλ

Figure 19: Local changes to positions according to discrepancy with respect to the corresponding distance.

Algorithm 4 SPE Heuristic

while termination condition not met do
Pick {u, v} ∈ E (‖xu − xv‖ 6∈ duv)
Update λ
Let xu ← xu + λ(xu − xv)
Let xv ← xv + λ(xv − xu).

end while

The SPE heuristic is shown in Alg. 4. SPE offers no guarantee to obtain a solution satisfying all
constraints in (16), however the “success stories” reported in [97] seem to indicate this as a valid method-
ology.

3.5 NMR data

Nuclear Magnetic Resonance experiments are performed in order to estimate distances between some
pairs of atoms forming a given molecule [228]. In solution, the molecule is subjected to a strong external
magnetic field, which induces the alignment of the spin magnetic moment of the observed nuclei. The
analysis of this process allows the identification of a subset of distances for certain pairs of atoms, mostly
those involving hydrogens, as explained in the introduction (p. 4). In proteins, nuclei of carbons and
nitrogens are also sometimes considered.

It is important to remark that some NMR signals may fail to be precise, because it is not always
possible to distinguish between the atoms of the molecule. We can have this situation, for example, in
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proteins containing amino acids such as valines and leucines. In such a case, the distance restraints (a
term used in proteomics meaning “constraints”) involve a “pseudo-atom” that is placed halfway between
the two undistinguished atoms [229]. Once the upper bound for the distance has been chosen when
considering the pseudo-atom, its value is successively increased in order to obtain an upper bound for
the real atoms.

There are also other potential sources of errors that can affect NMR data. If the molecule is not
stable in solution, its conformation may change during the NMR experiments, and therefore the obtained
information could be inconsistent. Depending on the machine and on the magnetic field, some noise
may spoil the quality of the NMR signals from which the intervals are derived. Moreover, due to a
phenomenon called “spin diffusion”, the NMR signals related to two atoms could also be influenced by
neighboring atoms [42].

Fortunately, for molecules having a known chemical composition, such as proteins, there are a priori
known distances that can be considered together with the ones obtained through NMR experiments.
If two atoms are chemically bonded, their relative distance is known; this distance is subject to small
variations, but it can still be considered as fixed in several applications (see the rigid geometry hypothesis,
Sect. 3.3.1). Moreover, the distance between two atoms bonded to a common atom can also be estimated,
because they generally form a specific angle that depends upon the kind of involved atoms. Such distances
can therefore be considered precise, and provide valuable information for the solution of distance geometry
problems (this follows because protein graphs are molecular, see Sect. 3.3.1).

As explained in the introduction, on p. 4, the output of a Nuclear Magnetic Resonance experiment
on a given molecule can be taken to consist of a set of triplets ({a, b}, d, q), meaning that q pairs of
atoms of type a, b were observed to have distance d [17]. It turns out that NMR data can be further
manipulated so that it yields a list of pairs {u, v} of atoms with a corresponding nonnegative distance duv.
Unfortunately this manipulation is rather error-prone, resulting in interval-type errors, so that the exact
inter-atomic distances duv are in fact contained in given intervals [dLuv, d

U
uv] [17]. For practical reasons,

NMR experiments are most often performed on hydrogen atoms [17] (although sometimes carbons and
nitrogens are also considered). Other known molecular information includes [189, 62]: the number and
type of atoms in the molecules, all the covalent bonds with corresponding Euclidean distances, and all
distances between atoms separated by exactly two covalent bonds.

3.5.1 Virtual backbones of hydrogens

In order to address the NMR limitation concerning the lack of data reliability for inter-atomic distances of
non-hydrogen atoms, we define atomic orders limited to hydrogens, and disregard the natural backbone
order during discretization. Even though we showed that this approach works on a set of artificially
generated instances [129], we remarked its limitations when we tried to apply it to real NMR data. These
limitations have been addressed by using re-orders (see Sect. 3.5.2).

3.5.2 Re-orders and interval discretization

In [123] we define an atomic ordering which ensures that every atom of rank > 3 is adjacent to its three
immediate predecessors by means of either real-valued distances d, or interval distances d̄ that arise from
geometrical considerations rather than NMR experiments. Specifically, with reference to Fig. 10, the
distance di−3,i belongs to a range determined by the uncertainty associated with the torsion angle φi.

We exploited three protein features to this aim: (i) using hydrogen atoms off the main backbone
whenever appropriate, (ii) using the same atom more than once, (iii) remarking that interval distances d̄
can be replaced with finite (small) sets D of real-valued distances. Considering these properties, we were
able to define a new atomic ordering for which v can be placed in a finite number of positions in the set
{0, 1, 2, 2|D|}, consistently with the known positions of the three immediate predecessors of v. Feature
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(i) allows us to exploit atoms for which NMR data are available. Feature (ii) allows us to exploit more
than just two bond lengths on atoms with valence > 2, such as carbons and nitrogens, by defining an
order that includes the atom more than once. Since atoms are repeated in the order, we call these orders
re-orders [123]. Feature (iii) rests on an observation concerning the resolution scope of NMR experimental
techniques [170]. Fig. 20 shows a re-order for a small protein backbone containing 3 amino acids.

Figure 20: The order used for discretizing MDGPs with interval data.

Re-orders (v1, . . . , vp) deserve a further remark. We stressed the importance of strict simplex inequal-
ities in Sect. 3.3.3, but requiring that vi = vj for some i 6= j introduces a zero distance d(vi, vj) = 0. If
this distance is ever used inappropriately, we might end up with a triangle with a side of zero length,
which might in turn imply an infinity of possible positions for the next atom. We recall that, for any
v > K, strict simplex inequalities ∆K−1(Uv) > 0 in dimension K − 1 are necessary to discretization, as
they avoid unwanted affine dependencies (see e.g. Fig. 5). By contrast, if ∆K(Uv∪{v}) > 0 hold, then we
have a K-simplex with nonzero volume, which has two possible orientations in RK : in other words, the
two possible positions for xv are distinct. If ∆K(Uv ∪ {v}) = 0, however, then there is just one possible
position for xv. Thus, to preserve discretization, zero distances can never occur between pairs vi, vj fewer
than K atoms apart, but they may occur for |i− j| = K: in this case we shall have no branching at level
max(i, j).

Re-orders make it possible to only employ non-NMR distances for discretization. More precisely, over
each set of three adjacent predecessors, only one is related by an interval distance; this interval, however,
is not due to experimental imprecision in NMR, but rather to a molecular property of torsion angles. In
particular, we can compute tight lower and upper bounds to these intervals; consequently, they can be
discretized without loss of precision [123]. We refer to such intervals as discretizable.

3.5.3 Discrete search with interval distances

The interval BP (iBP) [123] is an extension of the BP algorithm which is able to manage interval
data. The main idea is to replace, in the sphere intersections necessary for computing candidate atomic
positions, a sphere by a spherical shell. Given a center c ∈ RK and an interval d = [dL, dU ] the spherical
shell centered at c w.r.t. d is SK−1(c, dU ) r SK−1(c, dL). With K = 3, the intersection of two spheres
and a spherical shell gives, with probability one, two disjoint curves in three-dimensional space (Fig. 21).
The discretization is still possible if some sample distances are chosen from the interval associated to the
curves [170].

Similarly to the basic BP algorithm, the two main components of iBP are the branching and the
pruning phases. In the branching phase, we can have 3 different situations, depending on the distance
d(i − 3, i) (see Fig. 20). If d(i − 3, i) = 0, the current atom i already appeared previously in the order,
which means that the only feasible position for i is the same as i − 3. If d(i − 3, i) is a precise distance,
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Figure 21: The intersection of two spheres with a spherical shell.

then 3 spheres are intersected, and only two positions are found with probability one. Finally, if d(i−3, i)
is a discretizable interval [dLi−3,i, d

U
i−3,i], as specified in Sect. 3.5.2, we choose D values from the interval.

This yields a choice of 2D candidate atomic solutions for i.

If the discretization order in Fig. 20 is employed for solving NMR instances, (precise) distances derived
from the chemical composition of proteins are used for performing the discretization, whereas interval
distances from NMR experiments are used for pruning purposes only. The consequent search tree is no
longer binary: every time a discretizable interval is used for branching, the current node has at most 2D
subnodes. The advantage is that the generation of the search tree is not affected by experimental errors
caused by the NMR machinery.

In order to discretize instances related to entire protein conformations, it is necessary to identify
a discretization order for all side chains for the 20 amino acids that can be involved in the protein
synthesis. This is a nontrivial task, because side chains have more complex structures with respect to
the part which is common to each amino acid, and they may contain many atoms. However, side chains
can be of fundamental importance in the identification of protein conformations, because many distances
obtained by NMR experiments may regard hydrogen atoms contained in side chains. First efforts towards
extending the BP algorithm so that it can calculate the whole three-dimensional structure of a protein,
including its side chains, can be found in [183].

4 Engineering applications

In this section, we discuss other well-known applications of distance geometry: wireless networks, statics,
data visualization and robotics. In wireless networks, mobile sensors can usually estimate their pairwise
distance by measure how much battery they use in order to communicate. These distances are then
used to find the positions of each sensor (see Sect. 4.1). Statics is the field of study of the equilibrium
of rigid structures (mostly man-made, such as buildings or bridges) under the action of external forces.
A well-known model for such structures is the bar-and-joint framework, which is essentially a weighted
graph. The main problem is that of deciding whether a given graph, with a given distance function on
the edges, is rigid or not. An associated problem is that of deciding whether a given graph models a rigid
structure independently of the distance function (see Sect. 4.2).
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4.1 Wireless sensor networks

The position of wireless mobile sensors (e.g. smartphones, identification badges and so on) is, by its very
definition, local to the sensor carrier at any given time. Notwithstanding, in order to be able to properly
route communication signals, the network routers must be aware of the sensor positions, and adapt routes,
frequencies, and network ID data accordingly. The information available to solve this problem is given
by the fact that mobile sensors are always aware of their neighbouring peers (to within a certain radius r
from their positions, which we shall assume constant), as well as of the amount of battery charge they use
in order to communicate with each other sensor in their neighbourhood. It turns out that this quantity
is strongly correlated with the Euclidean distance between the communicating sensors [187]. Moreover,
certain network elements, such as routers and wireless repeaters, are fixed, hence their positions are
known (such elements are called anchors or beacons). The problem of determining the sensor positions
using these data was deemed as an important one from the very inception of wireless networks [222, 74].
There are several good reasons why Global Positioning System (GPS) enabled devices may not be a valid
alternative: they are usually too large, they consume too much power, and they need a line of sight with
the satellites, which may not always be the case in practice (think for example of localizing sensors within
a building) [187]. This problem is formalized as the WSNL (see Item 14 in the list of Sect. 1.2).

In practice, K ∈ {2, 3}. The 3D case might occur when a single network is spread over several floors of
a building, or whenever a mobile battlefield network is parachuted over a mountainous region. Moreover,
because the realization represents a practically existing network, an important question is to determine
what amount of data suffices for the graph to have a unique realization in RK . This marks a striking
difference with the application of DG techniques to molecular conformation, where molecules can exist
in different isomers.

The earliest connections of WSNL with DG are an SDP formulation [60] for a relaxation of the
problem where the Euclidean distance between two sensors is at most the corresponding edge weight, and
an in-depth theoretical study of the WSNL from the point of view of graph rigidity [69] (see Sect. 4.2).

4.1.1 Unique realizability

In [69, 9], the WSNL is defined to be solvable if the given graph has a unique valid realization, a notion
which is also known as global rigidity. A graph is globally rigid if it has a generic realization x, and
for all other realizations x′, x is congruent to x′. For example, if a graph has a K-trilateration order,
then it is globally rigid: comparing with DVOP orders, where each vertex is adjacent to K predecessors,
the additional adjacency makes it possible to identify at most one position in RK where the next vertex
in the order will be placed, if a position for all predecessors is already known. Any graph possessing a
K-trilateration order is called a K-trilateration graph. Such graphs are globally rigid, and can be realized
in polynomial time by simply remarking that the BP would never branch on such instances.

A graph G = (V,E) is redundantly rigid if (V,E r {e}) is rigid for all e ∈ E. It was shown in [98, 45]
that G is globally rigid for K = 2 if and only if either G is the 2-clique or 3-clique, or G is 3-connected and
redundantly rigid. Hendrickson had conjectured in [91] that these conditions would be sufficient for any
value of K, but this was disproved by Connelly [44]. He also proved, in [45], that if a generic framework
(G, x) has a self-stress (see Sect. 4.2.1) ω : E → R such that the n× n stress matrix, with (u, v)-th entry
(−ωuv) if {u, v} ∈ E,

∑

t∈δ(v) ωut if u = v, and 0 otherwise, has rank n−K − 1, then (G, x) is globally

rigid in any dimension K. Some graph properties ensuring global rigidity for K ∈ {2, 3} are given in
[5]. A related problem, that of choosing a given subset of vertices to take the role of anchors, such that
the resulting sensor network is uniquely localizable (see Sect. 3.2.4), is discussed in [72]. Several results
on global rigidity (with particular attention to the case K = 2) are surveyed in [100]. In particular, it
is shown in [100, Thm. 11.3] that Henneberg type II steps (replace an edge {u,w} by two edges {u, v}
and {v, w}, where v is a new vertex, then add new edges from v to K − 1 other vertices different from
u,w) are related to global rigidity in a similar way as Henneberg type I steps (see Sect. 4.2.3) are related
to rigidity: if a globally rigid graph H is derived from a graph G with at least K + 2 vertices using a
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Henneberg type II step in RK , then G is also globally rigid.

There is an interesting variant of unique localizability which yields a subclass of DGP instances that
can be realized in polynomial time. Recall that the DGP is strongly NP-hard [188] in general. Moreover,
it remains NP-hard even when the input is a unit disk graph (Sect. 4.1.4) [9], and there exists no
randomized efficient algorithm even when it is known that the input graph is globally rigid [10]. The
problem becomes tractable under the equivalent assumptions of K-unique localizability (a sort of unique
localizability for fixed K) [201] and universal rigidity [235] (see Sect. 3.2.4). Specifically, a graph is
K-uniquely localizable if: (i) it has a unique realization x : V → RK , (ii) it has a unique realization
yℓ : V → Rℓ for all ℓ > K, and (iii) for all v ∈ V, ℓ > K we have yℓv = (xv,0), where 0 is the zero
vector in Rℓ−K . Anchors play a crucial role in ensuring that the graph should be globally rigid in RK :
the subgraph induced by the anchors should yield a generic globally rigid framework in RK , thus the set
of anchors must have at least K + 1 elements. Under these assumptions, an exact polynomial algorithm
(exploiting the SDP formulation and its dual) for realizing K-uniquely localizable graphs was described
in [201].

4.1.2 Semidefinite Programming

Most of the recent methods addressing the WNSL make use of SDP techniques. This is understandable
in view of the relationship between DG and SDP via Thm. 2.2, and because PSD completion is actually
a special case of the general SDP feasibility problem (see Sect. 2.6.1). We also mention that most SDP
methods can target DGP problem variants where the edge weight d maps into bounded intervals, not
only reals, and are therefore suitable for applications where distance measurements are not precise.

We believe [101] is the first reference in the literature that proposes an SDP-based method for solving
MCPs (specifically, the PSDMCP). In [2], the same approach is adapted to a slightly different EDMCP
formulation. Instead of a partial matrix, an n× n pre-distance matrix A is given, i.e. a matrix with zero
diagonal and nonnegative off-diagonal elements. We look for an n× n Euclidean distance matrix D that
minimizes ‖H ◦(A−D)‖F , where H is a given matrix of weights, ◦ is the Hadamard product, and ‖·‖F is

the Frobenius norm (‖Q‖F =
√

∑

i,j≤n q2ij). An optional linear constraint can be used to fix some of the

values of D. A reformulation of the constraint “D is a Euclidean distance matrix” to X � 0, is derived
by means of the statement that D is a Euclidean distance matrix if and only if D is negative semidefinite
on the orthogonal complement of the all-one vector [81, 177] (see Sect. 3.4.4). In turn, this is related to
Thm. 2.2.

In [32, 60], interestingly, the connection with SDP is not given by Thm. 2.2, but rather because the
WSNL variants mentioned in the paper make use of convex norm constraints which are reformulated
using Linear Matrix Inequalities (LMI). For example, if there is a direct communication link between two
nodes u, v ∈ V , then ‖xu − xv‖ ≤ r, where r is a scalar threshold given by the maximum communication
range, the inequality can be reformulated to the following LMI:

(

rI2 xu − xv

(xu − xv)
⊤

r

)

� 0,

where IK is the K ×K identity matrix (with K = 2).

Biswas and Ye proposed in [25] an SDP formulation of the WSNL problem which then gave rise to a
series of papers [21, 26, 22, 20, 23, 24] focusing on algorithmic exploitations of their formulation. In the
spirit of [133], this can be derived from the “classic” WSNL feasibility formulation below by means of a
sequence of basic reformulations:

∀{u, v} ∈ E (‖xu − xv‖2 = duv)

∀u ∈ A, v 6∈ A ({u, v} ∈ E → ‖au − xv‖ = duv),

where A ⊆ V is the set of anchors whose positions {au | u ∈ A} ⊆ RK are known a priori. Let X be the
K × n decision variable matrix whose v-th column is xv. The authors remark that:
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• for all u < v ∈ V , ‖xu − xv‖
2 = euv

⊤X⊤Xeuv, where euv = 1 at component u, −1 at component
v, and 0 elsewhere;

• for all u ∈ A, v ∈ V , ‖au − xv‖
2 = (au; ev)

⊤
[IK ;X ]

⊤
[IK ;X ](au; ev), where (au; ev) is the column

(K + n)vector consisting of au on top of ev, with eV = 1 at component v and 0 elsewhere, and
[IK ;X ] is the K × (K + n) matrix consisting of IK followed by X ;

• [IK ;X ]
⊤
[IK ;X ] =

(

IK X
X⊤ X⊤X

)

, a (K + n)× (K + n) matrix denoted by Z;

• the scalar products of decision variable vectors in X⊤X (rows of X⊤ by columns of X) can be
linearized, replacing each xuxv by yuv, which results in substituting X⊤X by an n × n matrix
Y = (yuv) such that Y = X⊤X .

This yields the following formulation of the WSNL:

∀{u, v} ∈ E euv
⊤Y euv = d2uv

∀u ∈ A, v 6∈ A ({u, v} ∈ E → (au; ev)
⊤
Z(au; ev) = d2uv)

Y = X⊤X.

The SDP relaxation of the constraint Y = X⊤X , which is equivalent to requiring that Y has rank K,
consists in replacing it with Y −X⊤X � 0, which is equivalent to Z � 0. The whole SDP can be written
in function of the indeterminate matrix Z as follows, using Matlab-like notation to indicate submatrices:

Z1:K,1:K = IK (21)

∀u, v ∈ V rA ({u, v} ∈ E → (0; euv)(0; euv)
⊤ • Z = d2uv) (22)

∀u ∈ A, v ∈ V rA ({u, v} ∈ E → (au; ev)(au; ev)
⊤ • Z = d2uv) (23)

Z � 0, (24)

where • is the Frobenius product. This formulation was exploited algorithmically in a number of ways.
As mentioned in Sect. 4.1.1 and 3.2.4, solving the SDP formulation (21)-(24) yields a polynomial-time
algorithm for the DGP on uniquely localizable graphs (see Sect. 3.2.4). The proof uses the dual SDP
formulation to (21)-(24) in order to show that the interior point method for SDP yields an exact solution
[201, Cor. 1] and the fact that the SDP solution on uniquely localizable graphs has rank K [201, Thm. 2].
Another interesting research direction employing (21)-(24) is the edge-based SDP (ESDP) relaxation
[221]: this consists in relaxing (24) to only hold on principal submatrices of Z indexed by A. To address
the fact that SDP and ESDP formulations are very sensitive to noisy data, a robust version of the ESDP
relaxation was discussed in [173] (see Sect. 3.2.4).

Among the methods based on formulation (21)-(24), [23, 24] are particularly interesting. They address
the limited scaling capabilities of SDP solution techniques by identifying vertex clusters where embedding
is easier, and then match those embeddings in space using a modified SDP formulation. The vertex
clusters cover V in such a way that neighbouring clusters share some vertices (these are used to “stitch
together” the embeddings restricted to each cluster). The clustering technique is based on permuting
columns of the distance matrix (dij) so as to try to pool the nonzeros along the main diagonal. The
partial embeddings for each cluster are computed by first solving an SDP relaxation of the quadratic
system (16) restricted to edges in the cluster, and then applying a local NLP optimization algorithm
that uses the optimal SDP solution as a starting point. When the distances have errors, there may not
exist any valid embedding satisfying all the distance constraints. In this case, it is likely that the SDP
approach (which relaxes these constraints anyhow) will end up yielding an embedding x′ which is valid
in a higher dimensional space RK′

where K ′ > K. In such cases, x′ is projected onto an embedding
x in RK . Such projected embeddings usually exhibit clusters of close vertices (none of which satisfies
the corresponding distance constraints), due to correct distances in the higher dimensional space being
“squeezed” to their orthogonal projection into the lower dimensional space. In order to counter this type
of behaviour, a regularization objective max

∑

i,j∈V ||xi − xj ||
2 is added to the feasibility SDP.
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In [105, 104], Krislock and Wolkowicz also exploit the SDP formulations of [2] together with ver-
tex clustering techniques in order to improve the scaling abilities of SDP solution methods (also see
Sect. 3.2.4). Their facial reduction algorithm identifies cliques in the input graph G and iteratively ex-
pands them using a K-trilateration order (see Sect. 3.3). Rather than “stitching together” pieces, as
in [24], the theory of facial reduction methods works by considering the SDP relaxation of the whole
problem and showing how it can be simplified in presence of one or more cliques (be they intersecting or
disjoint). The computational results of [105] show that the facial reduction algorithm scales extremely
well (graphs up to 100,000 vertices were embedded in R2). A comparison with the BP algorithm (see
Sect. 3.3.6) appears in [122, Table 6]. The BP algorithm is less accurate (the most common LDE values
are O(10−12) for BP and O(10−13) for facial reduction) but faster (BP scores between 1% and 10% of
the time taken by facial reduction).

4.1.3 Second-order cone programming

A second-order cone programming (SOCP) relaxation of the WSNL was discussed in [215]. The NLP
formulation (7) is first reformulated as follows:

min
∑

{u,v}∈E

zuv

∀{u, v} ∈ E xu − xv = wuv

∀{u, v} ∈ E yuv − zuv = d2uv
∀{u, v} ∈ E ‖wuv‖

2 = yuv
u ≥ 0.



























(25)

Next, the constraint ‖wuv‖
2 = yuv is relaxed to ‖wuv‖

2 ≤ yuv. The SOCP relaxation is weaker than
the SDP one ((21)-(24)), but scales much better (4000 vs. 500 vertices). It was abandoned by Tseng in
favour of the ESDP [173], which is stronger than the SOCP relaxation but scales similarly.

4.1.4 Unit disk graphs

Unit disk graphs are intersection graphs of equal circles in the plane, i.e. vertices are the circle centers,
and there is an edge between two vertices u, v if their Euclidean distance is at most twice the radius.
Unit disk graphs provide a good model for broadcast networks, with each center representing a mobile
transmitter/receiver, and the radius representing the range. In [41], it is shown that several standard
NP-complete graph problems are just as difficult on unit disk graphs as on general graphs, but that the
maximum clique problem is polynomial on unit disk graphs (the problem is reduced to finding a maximum
independent set in a bipartite graph). In [33], it is shown that even recognizing whether a graph is a unit
disk graph is NP-hard. A slightly different version of the problem, consisting in determining whether
a given weighted graph can be realized in R2 as a unit disk graph of given radius, is also NP-hard [9].
From the point of view of DG, it is interesting to remark that the DGP, restricted to sufficiently dense
unit disk graphs and provided a partial realization is known for a subset of at least K + 1 vertices, can
be solved in polynomial time [201]. If the graph is sparse, however, the DGP is still NP-hard [10].

The study of unit disk graphs also arises when packing equal spheres in a subset of Euclidean space
[46]: the contact graph of the sphere configuration are unit disk graphs.

4.2 Statics

Statics is the study of forces acting on physical systems in static equilibrium. This means that the
barycenter of the system undergoes no linear acceleration (we actually assume the barycenter to have
zero velocity), and that the system does not rotate. Geometrically, with respect to a frame of reference,
the system undergoes no translations and no rotations. The physical systems we are concerned with are
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bar-and-joint structures, i.e. three-dimensional embodiments of graph frameworks (G, x) where G is a
simple weighted undirected graph and x is a valid realization thereof: joints are vertices, bars are edges,
and bar lengths are edge weights. The placement of the structure in physical space provides a valid
realization of the underlying graph. Because we suppose the structures to be stiff, they cannot undergo
reflections, either. In short, the equivalence class of a rigid graph frameworks modulo congruences is a
good representation of a structure in static equilibrium. Naturally, the supporting bar-and-joint structures
of man-made constructions such as houses, buildings, skyscrapers, bridges and so on must always be in
static equilibrium, for otherwise the construction would collapse.

Statics was a field of study ever since humans wanted to have rooves over their heads. The main
question is the estimation of reaction forces that man-made structures have to provide in order to remain
in static equilibrium under the action of external forces. In 1725, Varignon published a textbook [217]
which implemented ideas he had sketched in 1687 about the application of systems of forces to different
points of static structures. By the mid-1800s, there was both an algebraic and a graphical method for
testing rigidity of structures. Because of the absence of computing machinery, the latter (called graphical
statics) was preferred to the former [47, 186, 94]. Cremona proposed a graphical axiomatization of
arithmetic operations in [48], whose purpose was probably that of giving an implied equivalence between
two methods. The algebraic method attracted some attention notwithstanding its numerical difficulties:
Maxwell proposed a simplified version [150] in 1864.

4.2.1 Infinitesimal rigidity

Since statics is mainly concerned with the physical three-dimensional world, we fix K = 3 for the rest of
this section. Consider a function F : V → R3 that assigns a force vector Fv ∈ R3 to each point xv ∈ R3

of a framework (G, x). If the framework is to be stationary, the total force and torque acting on it must
be null to prevent translations (assuming a zero initial velocity of the barycenter) and rotations. This
can be written algebraically [181, 208] as:

∑

v∈V

Fv = 0 (26)

∀i < j ≤ K
∑

v∈V

(Fvixvj − Fvjxvi) = 0. (27)

A force F satisfying Eq. (26)-(27) is called an equilibrium force (or equilibrium load). Applied to bar-
and-joint structures, equilibrium forces tend to compress or extend the bars without moving the joints in
space. Since bars are assumed to be stiff (or equivalently, the graph edge weights are given constants),
the corresponding reaction forces at the endpoint of each bar should be equal in magnitude and opposite
in sign. We can define these reaction forces by means of an edge weighting ω : E → R representing
the amount of force in each bar per unit length (ω is negative for bar tensions and positive for bar
compressions). Stiffness of the structure translates algebraically to a balance of equilibrium force and
reaction:

∀u ∈ V Fu +
∑

v∈N(u)

ωuv(xu − xv) = 0. (28)

A vector ω ∈ Rm satisfying Eq. (28) is called a resolution, or resolving stress, of the equilibrium force F
[181]. If F = 0, then ω is a self-stress.

For the following, we introduce (squared) edge functions and displacements. The edge function of a
framework (G, x) is a function φ : RnK → Rm given by φ(x) = (‖xu − xv‖ | {u, v} ∈ E). We denote
the squared edge function (‖xu − xv‖

2 | {u, v} ∈ E) by φ2. The edge displacement of a framework
(G, x), with respect to a displacement y, is a continuous function µ : [0, 1] → Rm given by µ(t) =
(‖yu(t) − yv(t)‖ | {u, v} ∈ E). We denote the squared edge displacement (‖yu(t) − yv(t)‖

2 | {u, v} ∈ E)
by µ2.



DISTANCE GEOMETRY PROBLEMS 48

Eq. (28) can also be written as
1

2
(dφ2)

⊤
ω = −F, (29)

where dφ2 is the matrix whose {u, v}-th row encodes the derivatives of the {u, v}-th component of the
squared edge function φ2(x) with respect to each component xvi of x. Observe that the {u, v}-th row of
this matrix only has the six nonzero components 2(xui − xvi) and 2(xvi − xui) for i ∈ {1, 2, 3} (see [181,
p. 13]). If we now consider Eq. (29) applied to a displacement y(t) of x, differentiate it with respect to
t and evaluate it at t = 0, we obtain the linear system ωA = 0 where A = 1

2dφ
2, i.e. the homogeneous

version of Eq. 29.

Consider now a squared edge displacement µ2(t) with respect to a flexing y of the framework (G, x).
By definition of flexing, we have µ2(t) = (d2uv | {u, v} ∈ E) for all t ∈ [0, 1]. Differentiating with respect

to t, we obtain the scalar product relation 2(yu(t)−yv(t)) · (
dyu(t)

dt
− dyv(t)

dt
) = 0 (because the edge weights

duv are constant with respect to t) for all {u, v} ∈ E. Evaluating the derivative at t = 0 yields

∀{u, v} ∈ E (xu − xv) · (αu − αv) = 0, (30)

where α : V → R3 is a map that assigns initial velocities αv = dxu

dt
|0 to each v ∈ V . We remark that

the system (30) can be written as Aα = 0 [78, Thm. 3.9]. We therefore have the dual relationship
ωA = 0 = Aα between α and ω.

By definition, (G, x) is infinitesimally rigid if α only encodes rotations and translations. The above
discussion should give an intuition as to why this is equivalent to stating that every equilibrium force
has a resolution (see [78, 181, 208] for a full description). Indeed, infinitesimal rigidity was defined in
this dual way by Whiteley [223] (who called it static rigidity). The matrix A above is called the rigidity
matrix of the framework (G, x). Notice that, when a valid realization x is known for G, then even those
distances for {u, v} 6∈ E can be computed for G: when the rows of A are indexed by all unordered pairs
{u, v} we call A the complete rigidity matrix of (G, x).

Infinitesimal rigidity is a stricter notion than rigidity: all infinitesimally rigid frameworks are also
rigid [78, Thm. 4.1]. Counterexamples to the converse of this statements, i.e. rigid frameworks which are
infinitesimally flexible, usually turn out to have some kind of degeneracy: a flat triangle, for example,
is rigid but infinitesimally flexible [181, Ex. 4.2]. In general, infinitesimally rigid frameworks in RK (for
some integer K > 0) might fail to be infinitesimally rigid in higher-dimensional spaces [191].

4.2.2 Graph rigidity

An important practical question to be asked about rigidity is whether certain graphs give rise to in-
finitesimally rigid frameworks just because of their graph topology, independently of their edge weights.
Bar-and-joint frameworks derived from such graphs are extremely useful in architecture and construc-
tion engineering. An important concept in answering this question is that of genericity: a realization is
generic if all its vertex coordinates are algebraically independent over Q. Because the algebraic numbers
have Lebesgue measure zero in the real numbers, this means that the set of non-generic realizations have
Lebesgue measure 0 in the set of all realizations.

Rigidity and infinitesimal rigidity are defined as properties of frameworks, rather than of graphs.
It turns out, however, that if a graph possesses a single generic rigid framework, then all its generic
frameworks are rigid [7, Cor. 2]. This also holds for infinitesimal rigidity [8]. Moreover, rigidity and
infinitesimal rigidity are the same notion over the set of all generic frameworks [8, Sect. 3]. By genericity,
this implies that in almost all cases it makes sense to speak of a “rigid graph” (rather than a rigid
framework). The Graph Rigidity Problem asks, given a simple undirected graph G, whether it is
generically rigid. Notice that the input, in this case, does not involve edge weights. For example, any
graph is almost always flexible for large enough values of K unless it is a clique [7, Cor. 4].
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We remark as an aside that, although genericity is required for laying the theoretical foundations
of graph rigidity (see the proof of [78, Thm. 6.1]), in practice it is too strong. For an edge weighting
to be algebraically independent over Q, at most one edge weight can be rational (or even algebraic).
Since computers are usually programmed to only represent rational (or at best algebraic) numbers, no
generic realization can be treated exactly in any practical algorithmic implementation. The conceptual
requirement that genericity is really meant to convey is that an infinitesimally rigid generic realization
will stay rigid even though the edge weighting is perturbed slightly [191]. The definition given in [84] is
more explicit in this sense: a realization is generic if all the nontrivial minors of the complete rigidity
matrix have nonzero value. Specifically, notice that the polynomials induced by each minor are algebraic
relations between the values of the components of each vector in the realization. Naturally, asking for full
algebraic independence with respect to any polynomial in Q guarantees Graver’s definition, but in fact,
as Graver points out [85], it is sufficient to enforce algebraic independence with respect to the system of
polynomials induced by the nontrivial minors of the rigidity matrix (also see Sect. 3.3.3).

Generic graph rigidity can also be described using the graphical matroid M(G) on G: a set of edges
is independent if it does not contain simple cycles. The closure of an edge subset F ⊆ E contains F and
all edges which form simple cycles with edges of F . We call the edge set F rigid if its closure is the clique
on the vertices incident on F . A graphical matroid M(G) is an abstract rigidity matroid if it satisfies
two requirements: (i) if two edge sets are incident to fewer than K common vertices, the closure of their
union should be the union of their closures; and (ii) if two edge sets are incident to at least K common
vertices, their union should be a rigid edge set [191]. Condition (i) loosely says that if the two edge
sets are not “connected enough”, then their union should give rise to flexible frameworks in RK , as the
common vertices can be used as a “hinge” in RK around which the two edge sets can rotate. Condition
(ii) says that when no such hinges can be found, the union of the two edge sets gives rise to rigid graphs.
If the only resolution to the zero equilibrium force is the zero vector, then the complete rigidity matrix
has maximum rank (i.e. it has the maximum possible rank over all embeddings in RnK), and its rows
naturally induce a matroid on the complete set of edges {{u, v} | u 6= v ∈ V }, called the rigidity matroid
of the framework (G, x). It was shown in [84] that if x is generic, then the rigidity matroid is abstract.

4.2.3 Some classes of rigid graphs

Euler conjectured in 1766 that all graphs given by the edge incidence of any triangulated polyhedral
surface are rigid in R3. This conjecture was proven true for special cases but eventually disproved in
general. Cauchy proved in 1813 that the conjecture holds for strictly convex polyhedra [38], Alexandrov
proved in 1950 that it holds for convex polyhedra [1], and Gluck proved in 1975 that it also almost always
holds for any triangulation of a topological sphere [78]. The general conjecture was finally disproved by
Connelly in 1977 [43] using a skew octahedron.

This does not mean to say that there are no purely topological characterizations of rigid graphs. In
1911, Henneberg described two local procedures (or “steps”) to construct new, larger rigid graphs from
given rigid graphs [94] (if a given graph can be “deconstructed” by using the same procedures backwards,
then the graph is rigid). The Henneberg type I step is as follows: start with a K-clique and add new
vertices adjacent to at least K existing vertices. This defines a vertex order known as Henneberg type I
order (see Sect. 1.1.2). The Henneberg type II step is somewhat more involved, and we refer the interested
reader to the extensive account of Henneberg and Henneberg-like procedures which can be found in [208].
Here follows a philological note on Henneberg type I orders: although they are always referred to [94],
they were actually first defined in a previous book by Henneberg [93, p. 267]. But in fact, a picture with
a Henneberg type I order in R2 appeared one year earlier, in 1885, in [185, Fig. 30, Pl. XV].

Limited to R2, a characterization of all rigid graphs G in R2 was described by Laman in 1970 [110]:
|E| = 2|V |−3 and for every subgraph (V ′, E′) of G, |E′| ≤ 2|V ′|−3. Equivalent but more easily verifiable
conditions were proposed in [147, 178, 207]. Unluckily, such conditions do not hold for R3. For K > 2,
no such complete characterization is known as yet; an account of the current conjectures can be found in
[224, 99], and a heuristic method was introduced in [200].
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4.3 Other applications

DG is not limited to these applications, however. For example, an application to the synchronization of
clocks from the measure of time offsets between pairs of clocks is discussed in [195]. This, incidentally, is
the only engineering application of the DGP1 we are aware of. The solution method involves maximizing
a quadratic form subject to normalization constraints; this is relaxed to the maximization of the same
quadratic form over a sphere, which is solved by the normalized eigenvector corresponding to the largest
eigenvalue. Another application is the localization and control of fleets of autonomous underwater vehicles
(AUVs) [12]. This is essentially a time-dependent DGP, as the delays in sound measurements provide
an estimate of AUV-to-AUV distance and an indication of how it varies in time. We remark that GPS
cannot be used under water, so AUVs must resurface in order to determine their positions precisely. A
third application to the quantitative analysis of music and rhythm is discussed in [56].

In the following section, we briefly discuss two other important engineering applications of DG: data
visualization by means of multidimensional scaling, and robotics, specifically inverse kinematic calcula-
tions. In the former, we aim to find a projection in the plane or the space which renders the graph
visually as close as possible to the higher-dimensional picture (see Sect. 4.3.1). In the latter, the main
issue is to study how a robotic arm (or system of robotic arms) moves in space in order to perform certain
tasks. Known distances include those from a joint to its neighbouring joints. The main problem is that
of assigning coordinate values to the position vector of the farthest joint (see Sect. 4.3.2).

4.3.1 Data visualization

Multidimensional Scaling (MDS) [31, 70] is a visualization tool in data analysis for representing mea-
surements of dissimilarity among pairs of objects as distances between points in a low-dimensional space
in such a way that the given dissimilarities are well-approximated by the distances in that space. The
choice of dimension is arbitrary, but the most frequently used dimensions are 2 and 3. MDS methods
differ mainly according to the distance model, but the most usual model is the Euclidean one (in order to
represent correlation measurements, a spherical model can also be used). Other distances, such as the ℓ1
norm (also called Manhattan distance) are used [6, 216]. The output of MDS provides graphical displays
that allow decision makers to discover hidden structures in complex data sets.

MDS techniques have been used primarily in psychology. According to [103], the first important
contributions to the theory of MDS are probably [203, 204], but they did not lead to practical methods.
The contributions to the MDS methods are due to Thurstonian approach, summarized in chapter 11
of [212], although the real computational breakthrough was due to Shepard [192, 193, 194]. The next
important step was given by Kruskal [106, 107], who puts Shepard’s ideas on a formal way in terms of
optimization of a least squares function. Two important contributions after Shepard-Kruskal works are
[36] and [206].

Measurements of dissimilarity among n objects can be represented by a dissimilarity matrix D = (dij).
The goal of MDS is to construct a set of points xi ∈ RK (for i ≤ n and K low, typically K ∈ {2, 3})
corresponding to those n objects such that pairwise distances approximate pairwise object dissimilarities
(also see the APA method in Sect. 3.4.4). MDS is complementary to Principal Component Analysis
(PCA) [80], in the following sense. Given a set X of n points in RH (with H “high”), PCA finds a K-
dimensional subspace of RH (with K “small”) on which to project X in such a way that the variance of
the projection is maximum (essentially, PCA attempts to avoid projections where two distant points are
projected very close). PCA might lose some distance information in the projection, but the remaining
information is not distorted. MDS identifies a K-dimensional subspace τ of RH which minimizes the
discrepancy between the original dissimilarity matrix D of the points in X and the dissimilarity matrix
D′ obtained by the projection on τ of the points in X [61]. In other words, MDS attempts to represents
all distance information in the projection, even if this might mean that the information is distorted.
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4.3.2 Robotics

Kinematics is the branch of mechanics concerning the geometric analysis of motion. The kinematic
analysis of rigid bodies connected by flexible joints has many similarities with the geometric analysis of
molecules, when the force effects are ignored.

The fundamental DG problem in robotics is known as the Inverse Kinematic Problem (IKP — see
Item 15 in the list of Sect. 1.2). Geometric constructive methods can be applied to solve the IKP [75],
but algebraic techniques are more suitable to handle more general instances. Reviews of these techniques
in the context of robotics and molecular conformation can be found, for example, in [169, 68, 179]. There
are three main classes of methods in this category: those that use algebraic geometry, those based on
continuation techniques, and those based on interval analysis.

In general, the solution of the IKP leads to a system of polynomial equations. The methods based
on algebraic geometry reduce the polynomial system to a univariate polynomial, where the roots of
this polynomial yield all solutions of the original system [149, 35]. Continuation methods, originally
developed in [182], start with an initial system, whose solutions are known, and transform it into the
system of interest, whose solutions are sought. In [213], using continuation methods, it was shown that
the inverse kinematics of the general 6R manipulator (an arm system with six rotatable bonds with fixed
lengths and angles [96]) has 16 solutions; more information can be found in [220].

A type of interval method applied to IKP is related to the interval version of the Newton method
[176], and others are based on the iterative division of the distance space of the problem [137]. An
interesting method in the latter class [209] essentially consists in solving a EDMCP whose entries are
intervals (see Sect. 2.6 and 2.6.2). When the distance matrix is complete, the realization of the selected
points can be carried out in polynomial time (see e.g. [199, 63]). In order to determine the values for the
unknown distances, in [175], a range is initially assigned to the unknowns and their bounds are reduced
using a branch-and-prune technique, which iteratively eliminates from the distance space entire regions
which cannot contain any solution. This elimination is accomplished by applying conditions derived from
the theory of distance geometry. This branch-and-prune technique is different from the BP algorithm
discussed in Sect. 3.3 and 3.5, as the search space is continuous in the former and discrete in the latter.
Another branch-and-prune scheme for searching continuous space is described in [234]. This is applied
to molecular conformational calculations related to computer-assisted drug design.

5 Conclusion

Euclidean distance geometry is an extensive field with major biological, statistical and engineering appli-
cations. The foundation of its theory was laid around a century ago by mathematicians such as Cayley,
Menger, Schoenberg, Blumenthal and Gödel. Recent extensions, targeting the inverse problem of de-
termining a distance space given a partial distance function, contribute further mathematical as well as
applied interest to the field. Because of the breadth and maturity of this field, our survey makes no
claim to completeness; furthermore, we admit to a personal bias towards applications to molecular con-
formation. We strove, however, to give the reader a sufficiently informative account of the most useful,
interesting, and beautiful results of Euclidean distance geometry.
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