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Abstract. This paper presents estimates of the convergence rate and complexity of an algebraic
multilevel preconditioner based on piecewise constant coarse vector spaces applied to the graph
Laplacian. A bound is derived on the energy norm of the projection operator onto any piecewise
constant vector space, which results in an estimate of the two-level convergence rate where the
coarse level graph is obtained by matching. The two-level convergence of the method is then used
to establish the convergence of an Algebraic Multilevel Iteration that uses the two-level scheme
recursively. On structured grids, the method is proven to have convergence rate ≈ (1 − 1/ logn)
and O(n logn) complexity for each cycle, where n denotes the number of unknowns in the given
problem. Numerical results of the algorithm applied to various graph Laplacians are reported. It
is also shown that all the theoretical estimates derived for matching can be generalized to the case
of aggregates containing more than two vertices.

1. Introduction

Algebraic Multigrid (AMG) attempts to mimic the main components of Geometric Multigrid in
an algebraic fashion, that is, by using information from the coefficient matrix only to construct the
multilevel solver. The basic algorithm uses a setup phase to construct a nested sequence of coarse
spaces that are then used in the solve phase to compute the solution. The two main approaches to
the AMG setup algorithm are classical AMG [3, 4] and (smoothed) aggregation AMG [13, 17, 9,
18, 11], which are distinguished by the type of coarse variables used in the construction of AMG
interpolation.

In the classical AMG algorithm, the coarse variables are chosen using a coloring algorithm
which is designed to find a suitable maximal independent subset of the fine variables. Then, given
the coarse degrees of freedom, a row of interpolation is constructed for each fine point from its
neighboring coarse points. In contrast, the aggregation-based AMG setup algorithm partitions the
fine variables into disjoint subdomains, called aggregates. Then, a column (or several columns as
in [18]) of interpolation is associated to each aggregate, which has nonzero entries only for the
unknowns belonging to this aggregate. The focus of this paper is on the development and, in
particular, the analysis of the latter aggregation-type methods.

The idea of aggregating unknowns to coarsen a system of discretized partial differential equations
dates back to work by Leont’ev in 1959 [12]. Simon and Ando developed a related technique for
aggregating dynamic systems in 1961 [13] and a two-grid aggregation-based scheme was consid-
ered in the context of solving Markov chain systems by Takahashi in 1975 [15]. Aggregation-based
methods have been studied extensively since and numerous algorithms and theoretical results have
followed [9, 18, 11]. Vanék introduced an extension of these methods known as smoothed aggre-
gation multigrid in which smoothing steps are applied to the columns of the aggregation-based
interpolation operator to accelerate two-level convergence and a modification of this two-level algo-
rithm with overcorrection is presented in [17]. A multilevel smoothed aggregation algorithm and its
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convergence analysis are found in [16] and, in [19], an improved convergence theory of the method
is presented. The latter theory is then extended to allow for aggressive coarsening, provided an
appropriate polynomial smoother is used [8]. A further generalization known as adaptive smoothed
aggregation is developed in [7]. Variants of the above approaches continue to be developed for
use in scientific computing and have been developed for higher order partial differential equations
[18], convection diffusion problems [11], Markov chains [14, 2], and the Dirac equation in quantum
chromodynamics [5].

In this paper, an aggregation based Algebraic Multigrid method for the graph Laplacian is
presented. The approach constructs the sequence of coarse graphs recursively using a pair-wise
aggregation, or matching, form of interpolation. However, it is demonstrated here, that the con-
vergence rate of a two-level method based on such a construction is uniformly bounded for the
graph Laplacian on general graphs and, thus, can be used within an Algebraic Multilevel Iteration
(AMLI) [1, 19] as a preconditioner to the Conjugate Gradient iteration to obtain a nearly optimal
solver. A noteworthy feature of the approach is its simplicity, which makes it possible to analyze
the convergence and complexity of the method with few assumptions and without any geometric
information.

The remainder of the paper is organized as follows. In Section 2, we introduce the graph Laplacian
problem and discuss some of its applications. In Section 3, we introduce a graph matching algorithm
and demonstrate that the energy norm of the `2 projection onto the coarse space is a key quantity
in deriving convergence and complexity estimates of the method. Additionally, we introduce an
approach computing an approximation of the energy norm of this projection operator. In Section
4, we present an analysis on the two-level method for the graph Laplacian operator. In Section 5,
we consider the convergence and complexity of the resulting AMLI method, and in Section 6 we
provide numerical results and address some practical issues of the method.

2. Problem formulation and notation

Consider an unweighted connected graph G = (V, E), where V denotes the set of vertices and
E denotes the set of edges of G. The variational problem considered here is as follows: Given an
f satisfying (f ,1) = 0, where 1 is a constant vector, find a u ∈ Rn, where n = |V| denotes the
cardinality of the set of vertices V, such that

(Au,v) = (f ,v), ∀v ∈ Rn,(2.1)

where

(Au,v) =
∑

k=(i,j)∈E

(ui − uj)(vi − vj), (f ,v) =
∑
i∈V

fivi , (f ,1) =
∑
i∈V

fi.(2.2)

Define the discrete gradient operator B : R|V| 7→ R|E| such that

(Bu)k = ui − uj , k = (i, j) ∈ E , i < j,

where ei and ej are standard Euclidean bases. The operator A is named graph Laplacian since

A = BTB.

The operator A is symmetric and positive semi-definite and its kernel is the space spanned by
the constant vector. These properties can also be verified by the matrix form of A defined in the
following way

(A)ij =


di i = j;

−1 i 6= j, (i, j) ∈ E ;

0 i 6= j, (i, j) /∈ E ;
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where di is the degree of the i-th vertex.
Efficient multilevel graph Laplacian solvers are important in numerous application areas, in-

cluding finite element and finite difference discretizations of elliptic partial differential equations
(PDE), data mining, clustering in images, and as a preconditioner for weighted graph Laplacians.
Moreover, the theory developed here for multilevel aggregation solvers applied to graph Laplacians
should provide insights on how to design a solver for more general weighted graph Laplacians, which
cover also anisotropic diffusion problems. Two generalizations of the graph Laplacian systems are
as follows.

• Weighted graph Laplacians: Assume that the graph is weighted and the k-th edge is
assigned a weight wk, then the corresponding bilinear form of A is

(Au,v) =
∑

k=(i,j)∈E

wk(ui − uj)(vi − vj).

Define D : R|E| 7→ R|E| as a diagonal matrix whose k-th diagonal entry is equal to wk, then
the matrix A can be decomposed as

A = BTDB.

Finite element and finite difference discretizations of elliptic PDEs with Neumann boundary
conditions results in such weighted graph Laplacians.
• Positive definite matrices: Assume that A is defined in terms of the bilinear form

(Au,v) =
∑

k=(i,j)∈E

(ui − uj)(vi − vj) +
∑
i∈V

uivi = (Asu,v) + (Atu,v).

By introducing a Lagrange multiplier y, the system Au = f can be rewritten as an aug-
mented linear system(

As +At −At1
−1TAt 1TAt1

)(
u

y

)
=

(
f

−1Tf

)
.

These graph Laplacians with lower order terms are similar to discretized PDE with Dirichlet
boundary conditions. A solution for this augmented linear system directly results to the
solution of Au = f .

The present paper focuses on designing a multilevel preconditioner that is constructed by apply-
ing recursively a space decomposition based on graph matching. The aim is to analyze the matching
AMLI solver for the graph Laplacian in detail as a first step in gaining an in-depth understanding
of a multilevel solver elliptic PDEs. The extension of the proposed algorithm to general graph
problems is also a subject of current research.

3. Space decomposition based on matching

In this section, an outline of the basic idea of matching is provided, a commutative diagram
which can be used to estimate the energy norm of the `2 projection onto the piece-wise constant
coarse vector space resulting from a matching in a graph is given, and some auxiliary results that
are needed later on in the convergence analysis are discussed.

3.1. Subspaces by graph partitioning and graph matching. A graph partitioning of G =
(V, E) is a set of subgraphs Gi = (Vi, Ej) such that

∪iVi = V, Vi ∩ Vj = ∅, i 6= j.

In this paper, all subgraphs are assumed to be non empty and connected. The simplest non trivial
example of such a graph partitioning is a matching, i.e, a collection (subset M) of edges in E such
that no two edges in M are incident.
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For a given graph partitioning, subspaces of V = R|V| are defined as

Vc = {v ∈ V | v = constant on each Vi }.
Note that each vertex in G corresponds to a connected subgraph S of G and every vertex of G belongs
to exactly one such component. The vectors from Vc are constants on these connected subgraphs.
Of importance is the `2 orthogonal projection on Vc, which is denoted by Q, and defined as follows:

(3.1) (Qv)i =
1

|Vk|
∑
j∈Vk

vj , ∀i ∈ Vk.

Given a graph partitioning, the coarse graph Gc = {Vc, Ec} is defined by assuming that all vertices
in a subgraph form an equivalence class, and that Vc and Ec are the quotient set of V and E under
this equivalence relation. That is, any vertex in Vc corresponds to a subgraph in the partitioning
of G, and the edge (i, j) exists in Ec if and only if the i-th and j-th subgraphs are connected in the
graph G. Figure 1 is an example of matching of a graph and the resulting coarse graph.

Figure 1. Matching M on a graph G (left) and the coarse graph Gc (right)

As mentioned above, the reason to focus on matching is that it simplifies the computation of
several key quantities used in the upcoming estimates derived for a perfect matching and it is
possible to show that a matching which is not perfect can be analyzed in a similar way.

3.2. Commutative diagram. Let B be the discrete gradient of a graph Laplacian A, as defined
in (2.1), and Q be defined as in (3.1). Assume that there exists an operator Πk such that the
following commutative diagram holds true:

R|V| B−−−−→ R|E|

Q

y yΠ

Vc −−−−→
B

R|E|

The proof of this assumption is provided later on. From the commutative relation BQ = ΠB it
follows that

(3.2) |Qv|2A = ‖BQv‖2 = ‖ΠBv‖2 ≤ ‖Π‖2|v|2A.
Thus, an estimate on the A-semi-norm of Q amounts to an estimate of the `2 norm of Π. In the
next subsection, an explicit form of Π is constructed and an estimate of its `2 norm is derived.

Remark 3.1. A more general approach for weighted graph Laplacians is to assume that the weight
matrix D 6= I, therefore the bound on the norm |Q|A becomes

|Qv|2A = (DBQv, BQv) = (DΠBv,ΠBv) ≤ ‖D1/2ΠkD
−1/2‖2|v|2A,

where D can have some negative weights, which results in a matrix D1/2ΠkD
−1/2 this is complex

valued. A detailed analysis in such a setting and the application of this idea to anisotropic diffusion
problems are discussed in [6].
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3.3. Construction of Π in case of piece-wise constant spaces. Here, we proceed with an
explicit construction and `2 norm estimate of the operator Π.

For any graph partitioning in which the subgraphs are connected, a given edge belongs to the set
of “internal edges”, whose vertices belong to the same subgraph, or to the set of “external edges”,
whose vertices belong to two distinct subgraphs. For example, let G1 and G2 denote the subgraphs
1 and 2 in Fig. 2, then k1 is an internal edge and k2 is an external edge.

Figure 2. Connected components and the construction of Πk

Since the vector Qv has the same value on the two endpoints of the edge k1, we have that
(BQv)k1 = 0. Accordingly, all entries in (Π)k1 , the k1-th row of Π, are set to zero:

(ΠBv)k1 = (Π)k1Bv = 0.

For the external edge k2, it follows that (Π)k2 satisfies

(3.3) (Π)k2(Bv) = (BQv)k2 =
1

|V1|
∑
i1∈V1

vi1 −
1

|V2|
∑
i2∈V2

vi2 ,

for every v. The following Lemma is useful in computing explicitly the entries of (Π)k2 .

Lemma 3.2. Let A : Rn 7→ Rn be a positive semidefinite operator and let {χi}ni=1 be a basis in Rn.
Assume that the null space of A is one dimensional, namely there exist a nonzero vector s such
that Ker(A) = span(s), and for every integer 1 ≤ i ≤ n we have (χi, s) = 1. We then have:

(i) For any i, the operator Ã : Rn 7→ Rn with Ãu = (Au+ (χi, u)χi) is invertible.
(ii) The following identity holds for all u ∈ Rn:

1

(s, s)
(u, s)− (u, χi) =

1

(s, s)
(Ã−1s,Au).

Proof. To establish (i) it suffices to show that Ãv = 0 implies v = 0. Assuming that Ãv = 0 for
some v ∈ Rn it follows that:

0 = (Ãv, v) = (Av, v) + (χi, v)2.

Note that both terms on the right side of the above identity are nonnegative and, hence, their sum
can be zero if and only if both terms are zero. Since A is positive semidefinite by assumption with
one dimensional null space, from (Av, v) = 0 we conclude that v = αs for some α ∈ R. For the
second term we have that 0 = (χi, v)2 = α2(χi, s)

2, and since (χi, s) 6= 0 for all i, it follows that
α = 0 and hence v = 0. This proves (i).
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Now, applying (i) the result (ii) follows:

1

(s, s)
(Ã−1s,Au) =

1

(s, s)
(Ã−1s,Au+ (χi, u)χi)−

1

(s, s)
(Ã−1s, (χi, u)χi)

=
1

(s, s)
(Ã−1s, Ãu)− 1

(s, s)
(χi, u)(s, Ã−1χi)

=
1

(s, s)
(s, u)− 1

(s, s)
(χi, u)(s, Ã−1χi)

=
1

(s, s)
(u, s)− (u, χi).

Here, the equality Ãs = As+ (χi, s)χi = χi was used, implying that Ã−1χi = s . �

Remark 3.3. A special case is given by taking s = 1 and χi = ei, which denote the standard
Euclidean bases. Then, it follows that

(3.4) ui = 〈u〉 − 1

n
((A+ eie

T
i )−11, Au)

in which 〈u〉 := 1
n

∑n
i=1 ui denotes the average value of u.

Next, denote by Bm the restriction of B to a subgraph Gm, and set Am := BT
mBm. Then, ul can

be expressed as the l-th component of u for u in (3.5).

(3.5) ul = 〈u〉m +
1

|Vm|
(Bm(Am + ele

T
l )−11m, BmImu),

where l = 1 . . . |Vm| are the local indices of the vertex set Vm, the operator 〈·〉m and the term 1m
are the averaging operator and the constant vector restricted on the subgraph Gm, and Im : R|V| 7→
R|Vm| maps the global edge indices to the local edge indices.

Applying this formula for G1 and G2, gives the row of the operator Π on the edge k2 that connects
G1 and G2 as follows

(3.6) (Π)k2 = CT1 IT1 + eTk2 − C
T
2 IT2 .

Here C1 is given by

C1 =
1

|V1|
B1(A1 + eie

T
i )−111

which then makes the summation in (3.6) valid. The vector C2 is defined in a similar way.
Assume that the global indices of the vertices in G1 and G2 are ordered consecutively as decreasing

integers starting at k2 − 1 and increasing integers starting at k2 + 1. Then, the k2-th row of Π can
be expressed as

(3.7) (Π)k2 =
[
0, . . . , 0, CT1 , 1, C

T
2 , 0, . . . , 0

]
where the number 1 is on the k2-th position in this row of Π. Note that from (3.5) it follows that
the property (3.3) holds for this construction of Π, since by definition of Q

(BQv)k2 = 〈v〉1 − 〈v〉2

= vi − vj +
1

|V1|
(B1(A1 + eie

T
i )−111, B1v1)− 1

|V2|
(B2(A2 + eje

T
j )−112, B2v2)

= (ek2 , Bv) + (C1, B1v) + (C2, B2v)

= (Π)k2Bv,

where k2 = (i, j), and i and j, both in local indices, are the incident vertices of k2.
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4. A two-level method

In this section, the `2-orthogonal projection given in (3.1) based on a matchingM is proven to be
stable assuming the maximum degree of the graph G is bounded. Then, a two-level preconditioner is
derived and the condition number of the system preconditioned by this two-level method is proven
to be uniformly bounded (under the same assumption).

4.1. Two-level stability. The construction of Π for a matching M proceeds as follows. First,
note that all rows of Π that correspond to an edge k = (i, j) ∈ M are identically zero. On the
other hand, if the edge k = (i, j) /∈M, then it is an external edge and, thus, by (3.7), the k-th row
of Π is

(Π)k =

[
0, . . . , 0,

1

2
(1,−1)

( 1 −1

−1 1

)
+

(
0

1

)T (
0

1

)−1(
1

1

)
,

1, −1

2
(1,−1)

( 1 −1

−1 1

)
+

(
1

0

)T (
1

0

)−1(
1

1

)
, 0, . . . , 0

]

=
[
0, . . . , 0,

1

2
, 1,−1

2
, 0, . . . , 0

]
.

Hence,

(4.1) (Π)kl =


1 k /∈M and l = k;

±1
2 k 6∈ M, l ∈M and l ∩ k 6= ∅;

0 elsewhere.

The alternative way of describing the entries in Π is by showing that,

(4.2) (Π)kl =


1 l /∈M and k = l;

±1
2 l ∈M, k 6∈ M and k ∩ l 6= ∅;

0 elsewhere.

Formula (4.1) implies that, the k-th row of Π can be a zero row if k ∈ M, or a row with 3
non-zero entries if k /∈M, which results to

‖Π‖∞ = max
k

∑
l

|Πkl| = 1 + | ± 1/2|+ | ± 1/2| = 2.

Formula (4.2) implies that, the l-th column of Π can have exactly 1 non-zero entry if l /∈M, or s
non-zeros entries whose values are ±1/2 if l ∈M. Here s is the number of edges satisfying k /∈M
and k ∩ l 6= ∅ for any given l ∈ M, thus is bounded by 2d− 2, where d is the maximum degree of
the graph, since an edges can have at most 2d− 2 neighboring edges. This leads to

‖Π‖1 = max
l

∑
k

|Πkl| = max
(
1, (2d− 2)| ± 1/2|

)
= max

(
1, d− 1

)
.

On a graph whose maximal degree is larger or equal to 2, the estimates on the infinity norm and
`1 norm of Π result to the following estimate on ρ(ΠΠT ):

ρ(ΠΠT ) = ‖Π‖22 ≤ ‖Π‖1‖Π‖∞ = 2d− 2.(4.3)

Remark 4.1. Applying Gerschgorin’s theorem directly to the matrix ΠΠT leads to a sharper esti-
mate: ρ(ΠΠT ) ≤ d.

Formula (4.3) implies directly the following lemma.
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Lemma 4.2. On any graph whose maximum degree is 2 (e.g. such graph is a path), the operator
Π defined in (4.1) satisfies Πk(Bv) = (BQv)k and the following estimate holds

|Q|2A ≤ ‖Π‖22 ≤ 2d− 2 = 2.

Numerical tests show that this is a sharp estimate on the semi-norm |Q|A and that leads to fast
convergent and reliable AMG methods.

4.2. A two-level preconditioner. Here, using an estimate of the stability of the matching projec-
tion (i.e, the norm |Q|A, where Q is defined via the matching) two-level convergence is established.
Assume that for a graph Laplacian A : Rn 7→ Rn a perfect matching is given and consider the
n× n/2 matrix P whose k-th column is given by

(4.4) (P )k = eik + ejk ,

where k = 1, ..., n/2 and (ik, jk) is the k-th edge in M. Further, define Q to be the `2 projection

from Rn to {Pv|v ∈ Rn/2}, i.e.,

Q = P (P TP )−1P T .

Similar to the definition of P , define Y as the n× n/2 matrix whose columns are given by

(4.5) (Y )k = eik − ejk ,

where k = 1, ..., n/2 and (ik, jk) is the k-th edge in M. Then, the matrix (Y, P ) is orthogonal and
the columns of Y and P form a hierarchical bases, which can be used to relate the two-level method
to a block factorization as follows.

Given A, P , and Y , define

Â = (Y, P )TA(Y, P ) =

(
Y TAY Y TAP

P TAY P TAP

)
.

A direct calculation then shows that

Â = L

(
Y TAY 0

0 S

)
LT ,

where

(4.6) S = P TAP − P TAY (Y TAY )−1Y TAP

is the Schur complement and

(4.7) L =

(
I 0

P TAY (Y TAY )−1 I

)
.

Next, define Gc as the unweighted coarse graph and denote by Ac the graph Laplacian of Gc. In
contrast to most of the existing AMG methods, here Ac 6= P TAP , except in special cases, e.g., for
1 dimensional problems. Let, σ be a positive constant such that

σ = sup
v:(v,1)=0

(APv, Pv)

(Acv,v)
.(4.8)

Then, the fact that all weights in the graph corresponding to P TAP are larger than or equal to
one implies (APv, Pv) ≥ (Acv,v), ∀v, and

(σAcv,v)

(APv, Pv)
∈ [1, σ], ∀v : (v,1) = 0.
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Consider the two-level preconditioner Ĝ which uses the coarse graph Laplacian Ac by

Ĝ = L

(
Y TAY 0

0 σAc

)
LT .

Let M be a preconditioner for Y TAY , and D be a preconditioner for the graph Laplacian Ac.

Then, a two-level preconditioner B̂ is defined by

B̂ = L̃

(
M(M +MT − Y TAY )−1MT 0

0 σD

)
L̃T ,(4.9)

where

L̃ =

(
I 0

P TAYM−1 I

)
.

As observed in [10] and [19], this gives a block matrix representation of the two-level method

I − (Y, P )Ĝ†(Y, P )TA = (I − Y (Y TAY )−1Y TA)(I − P (σAc)
†P TA)(I − Y (Y TAY )−1Y TA)

I − (Y, P )B̂†(Y, P )TA = (I − YM−TY TA)(I − P (σD)†P TA)(I − YM−1Y TA),

where the pseudo-inverse operator denoted by † is used since the graph Laplacian is semi-definite.

The convergence of the two-level method can now be estimated by comparing Â and the precondi-

tioner B̂.
The remainder of this section is dedicated to establishing a spectral equivalence between Â and

B̂ for the two-level matching algorithm. The proof uses the following Lemma.

Lemma 4.3. For any x ∈ IRn/2 the Schur complement S as given in (4.6) satisfies

(4.10) (Sx,x) = inf
w

(
A(Yw + Px), (Yw + Px)

)
.

Proof. Note that(
AY (Y TAY )−1Y TAPx, Px

)
=

(
AY (Y TAY )−1Y TAPx, Y (Y TAY )−1Y TAPx

)
= ‖Y (Y TAY )−1Y TAPx‖2A,

because here, Y (Y TAY )−1Y TAPx is the A orthogonal projection of Px onto the space spanned
by the columns of Y and, thus, minimizes the distance (in A norm) between Px and this space.
Hence,

(Sx,x) = ‖Px‖2A − ‖Y (Y TAY )−1Y TAPx‖2A
= inf

w

(
A(Yw + Px), (Yw + Px)

)
�

Let 1̂ be a vector satisfying (Y, P )1̂ = 1, then the following lemma now holds.

Lemma 4.4. Let cg = σ|Q|2A, where σ is defined as in (4.8). Then for any v, such that (v, 1̂) = 0,
we have

(Ĝv,v)

(Âv,v)
∈ [1, cg].(4.11)

Proof. By Lemma 4.3 we have

(APx, Px) ≥ inf
w

(
A(Yw + Px), (Yw + Px)

)
.
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Furthermore,

(APx, Px)

(Sx,x)
=

(APx, Px)

infw
(
A(Yw + Px), (Yw + Px)

)
= sup

w

(APx, Px)(
A(Yw + Px), (Yw + Px)

)
= sup

u=Yw+Px

(AQu, Qu)

(Au,u)
≤ sup

u

(AQu, Qu)

(Au,u)
= |Q|2A.

Note that the only difference between the preconditioners Ĝ and Â is that the former matrix uses
σAc, whereas the latter uses S to define the 2-2 block. The spectral equivalence constant between
the operators σAc and S is obtained as follows:

inf
u

σ(Acu,u)

(APu, Pu)
inf
v

(APv, Pv)

(Sv,v)
≤ σ(Acw,w)

(Sw,w)
≤ sup

u

σ(Acu,u)

(APu, Pu)
sup
v

(APv, Pv)

(Sv,v)
,

∀w : (w,1) = 0,

which implies

σ(Acw,w)

(Sw,w)
∈ [1, σ|Q|2A], ∀w : (w,1) = 0.

Hence, for any x and y(
x

y

)T (
Y TAY 0

0 σAc

)(
x

y

)
(
x

y

)T (
Y TAY 0

0 S

)(
x

y

) =
(AY x, Y x) + (APy, Py)

(AY x, Y x) + (Sy,y)
∈ [1, σ|Q|2A],

which is equivalent to (4.11) since L is nonsingular. �

Since the two-level method Ĝ requires exact solvers for Y TAY and the graph Laplacian Ac, the

convergence rate of a method that uses B̂ which is defined by replacing these exact solves with
approximate ones is of interest. Combining Lemma 4.4 and the two-level convergence estimate
(Theorem 4.2 in [10]), yields the following result.

Theorem 4.5. If the preconditioners M and D are spectrally equivalent to Y TAY and Ac such
that(

(MT +M − Y TAY )−1Mu,Mu
)

(AY u, Y u)
∈ [1, κs] and

(Dw,w)

(Acw,w)
∈ [1, η], ∀u,w : (w,1) = 0,

then

(4.12)
(B̂v,v)

(Âv,v)
∈ [1, (κs + ση − 1)|Q|2A], ∀v : (v, 1̂) = 0.

Note that this estimate reduces to (4.11) when M = Y TAY and D = Ac.

4.3. Convergence estimate for matching. We here show the sharpness of the estimation given
by Theorem 4.5 when the graph Laplacian corresponds to a structured grid, and the coarse space
is given by aligned matching.

Define an m-dimensional hypercubic grid as the graph Laplacian G = (V, E) such that the
following conditions are satisfied.
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(1) A vertex iv ∈ V corresponds to an vector v ∈ Rm, and (v, ej) ∈ [1, 2, . . . , sj ], j = 1, 2, . . . ,m.
Here ej is an Euclidean basis and s1, s2, . . . , sm are given positive integers that represent
the numbers of vertices along all dimensions.

(2) An edge k = (iu, iv) is in the edge set E if and only u− v = ej and j ∈ [1, 2, . . . ,m].

Then the energy norm |Q|A can be estimated for aligned matching on a hypercubic grid A.

Lemma 4.6. Let G be an m-dimensional hypercibic grid and k ∈ [1, 2, . . . ,m] is a fixed dimension.
Assume that sk is an even number. The matching along the k-th dimension is defined as

M = {l = (iv, iv+ek)|v ∈ V, and (v, ek) is an odd number }.
Let Q be the `2 projection onto the piecewise constant space resulting from the matching M. Then
Q satisfies |Q|A ≤ 2.

Proof. Define the set Ω be the collection of all edges along the k-th dimension, as

Ω = {l = (iu, iv)|v − u = ek}.
Also define Ω = E \Ω and the graph Laplacians AΩ and AΩ, derived from Ω and Ω respectively. �

The graphs in the set Ω are paths, whose maximum degree is 2, and M⊂ Ω is a also matching
on these paths. Therefore by Lemma 4.2 it is true that

(AΩQu, Qu) ≤ 2(AΩu,u).(4.13)

On the other hand, the matching is aligned on the set Ω, meaning that any two matched pairs are
connected through 0 or 2 edges in Ω, thus the edges in set Ω can then be subdivided into many
sets of edges of the same type, one of which is shown in Fig. 3. Notice that in this figure, the edge

Figure 3. Matching M on a subset of Ω

(i, k) and (j, l) are in Ω, while (i, j) and (k, l) are inM. Using the definition of Q, the energy norm
of Q is estimated on the the subset of Ω indicated by Fig. 3, by

2

(
ui + uj

2
− uk + ul

2

)2

=
1

2
((ui − uk) + (uj − ul))2

≤ (ui − uk)2 + (uj − ul)2.

Thus implies that

(AΩQu, Qu) ≤ (AΩu,u).(4.14)

Combining (4.13) and (4.14) results that (AQu, Qu) ≤ 2(Au,u), or |Q|A ≤ 2.

Remark 4.7. A similar estimate follows for aligned partitionings consisting of line segments of
size m. Namely, in this case it can be shown that |Q|2A ≤ m holds. This estimate in turn agrees with
properties of Chebyshev polynomials, suggesting the use of an AMLI method equipped with certain
Chebyshev polynomials. Comparing this result with the result from Theorem 4.6 suggests that using
a more shape regular partitioning rather than one consisting of lines is more appropriate since this
gives smaller values of the semi-norm |Q|A.

A bound on the constant κs follows by using that Y TAY is well conditioned and that its condition
number depends on the degree of the graph, but not on the size of the graph.
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Lemma 4.8. Let M be the perfect matching on a graph maximum whose degree is d, and let S be
defined as in (4.5), then we have

(AYw, Yw)

(w,w)
∈ [4, 2d], ∀w 6= 0.

Proof. The A-norm of the vector Yw is computed by definition:

(AYw, Yw) ≥
∑

k=(i,j)∈M

(
(Yw)i − (Yw)j

)2
=

∑
k=(i,j)∈M

(
(Yw)i + (Yw)i

)2
= 4wTw.

We also have

ρ(Y TAY ) ≤ ‖Y TAY ‖1 ≤ ‖Y T ‖1‖A‖∞‖Y ‖∞ = 2d. �

From the Lemma it follows that for any ε > 0 there exists a smoother M such that the bound
on the constant κs in Theorem 4.5 is

κs ≤ 1 + ε.

This result in turn implies that an efficient solver for Y TAY can be constructed by applying a few
Conjugate Gradient iterations with an overall cost that is linear with respect to the size of Y TAY .

The constant σ in (4.8) can be estimated by checking the weights of the graph for the graph
Laplacian P TAP . Taking any two distinct subgraphs (edges) in the matching, say the k-th and
l-th such that k 6= l, it follows that the corresponding entry (P TAP )kl is equal to the number of
exterior edges that connect to these subgraphs. For an aligned matching aligned a fixed dimension
of a hypercubic grid, these weights are bounded by 2. For any general graph A, the weights in
P TAP are bounded by 4, since there are at most 4 distinct edges that connect to any other 2
distinct edges. Then, letting Ac to denote the unweighted graph Laplacian on the graph defined
by P TAP , and noting that all off-diagonal entries of Ac are equal to −1, it follows that

σ =

{
2 for an aligned matching on a hypercubic grid of any dimension;

4 for a given matching on any graph.

Remark 4.9. These estimates can be generalized to other subgraph partitionings in a similar way.
As an example, consider again a graph for a hypercubic grid of any dimension. Then, for line
aggregates of size m (aligned with the grid) the following estimate holds

|Q|2A ≤ m, κs ≤ 1 + ε, η = 1, σ ≤ m.

Such estimates give insight into the design of a nearly optimal multilevel method. Moreover, the
bounds are sharp enough, namely, the corresponding multilevel method can be proven to have con-
vergence rate ≈ (1− 1/ log n) and O(n log n) complexity.

5. Algebraic multilevel iteration (AMLI) based on matching

In this section, a multilevel method that uses recursively the two-level matching methods from
Section 4.2 in combination with a polynomial stabilization, also known as Algebraic Multilevel
Iteration (AMLI) cycle is analyzed. Here, the focus is on proving a nearly optimal convergence
rate, that is, one which is nearly independent of the number of unknowns n, and at the same time
has low computational complexity.
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5.1. Multilevel hierarchy. Assume that AJ = A is an n × n graph Laplacian matrix where
n = 2J . For k = 1, . . . , J define the matching Mk and the prolongation operator Pk according to
(4.4), then compute the graph Laplacian Ak of the coarse graph Gk (Recall that, Ak−1 6= P Tk AkPk).
The index k starts at 1 because the analysis is simpler if the coarsest graph has more than 1 vertex.

Also, define Yk and Lk for Ak as in (4.5) and (4.7), and let the two-level preconditioner Ĝk on each
level k be given by

Ĝk = Lk

(
Y T
k AkYk 0

0 σAk−1

)
LTk , k = 2, . . . , J.

Then an AMLI preconditioner is defined recursively by

B−1
1 = A†1,

B̂−1
k = L−Tk

(
(Y T
k AkYk)

−1 0

0 σ−1B−1
k−1qk−1(Ak−1B

−1
k−1)

)
L−1
k , k = 2, . . . , J,

B−1
k = (Yk, Pk)

T B̂−1
k (Yk, Pk), k = 2, . . . , J,

where qk(t) is a polynomial on that determines a special coarse level correction on the k-th level.
In this case, where an AMLI W-cycle is used, qk(t) is a linear function for all k.

In the remainder of this section, sufficient conditions for guaranteeing the spectral equivalence
between the multilevel preconditioner BJ , as defined above, and the graph Laplacian A are derived.
We first prove two auxiliary results, which are needed in the analysis below.

Proposition 5.1. Let A : V 7→ V and G : V 7→ V be symmetric positive semidefinite operators on
a finite dimensional real Hilbert space V . Suppose that the following spectral equivalence holds:

(5.1) c0(Av,v) ≤ (Gv,v) ≤ c1(Av,v), c0 > 0, c1 > 0.

Then, we also have that

(5.2) c−1
1 (A†v,v) ≤ (G†v,v) ≤ c−1

0 (A†v,v).

Proof. Observe that the spectral equivalence given in (5.1) implies that A and G have the same
null-space (and also same range, because they are symmetric). Also, note that, if v is in this null
space, then (5.2) trivially holds. Thus, without loss of generality, we restrict our considerations
below to v from the range of G and A.

After change of variables w =
(
A†
)1/2

v from the upper bound in (5.1) we may conclude that

‖G1/2
(
A†
)1/2

w‖2

‖w‖2
≤ c1, and hence, ‖G1/2

(
A†
)1/2‖2 ≤ c1.

Since G1/2
(
A†
)1/2

=
((
A†
)1/2

G1/2
)T

, we obtain that ‖G1/2
(
A†
)1/2‖ = ‖

(
A†
)1/2

G1/2‖. Using this

identity, the estimate above, we have for all and all u and all w = [G†]1/2u:

c1 ≥ ‖
(
A†
)1/2

G1/2‖2 ≥
‖
(
A†
)1/2

G1/2w‖2

‖w‖2
, and hence, c1 ≥

‖
(
A†
)1/2

u‖2

‖
(
G†
)1/2

u‖2
.

The estimate given above clearly implies that c−1
1 (A†u,u) ≤ (G†u,u), and this is the lower bound

in (5.2). The upper bound in (5.2) follows by interchanging the roles of G and A and basically
repeating the same argument. �

The elementary results in the next proposition are used later in the proof of Lemma 5.5.

Proposition 5.2. Let θ ∈ [0, 1] and define q(t; θ) =
4

θ + 1
(1− t

θ + 1
) and q̃(t; θ) = tq(t; θ). Then,
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(i) max
t∈[θ,1]

q̃(t; θ) = 1;

(ii) min
t∈[θ,1]

q̃(t; θ) = q̃(θ; θ) = q̃(1; θ) ;

(iii)
dq̃(1; θ)

dθ
≥ 0 (monotonicity).

Proof. The proof of (i) and (ii) follow from the identity q̃(t; θ) = 1−
(
2t/(θ + 1)− 1

)2
. The proof

of (iii) is also straightforward and follows from the fact that θ ∈ [0, 1] and hence

dq̃(1; θ)

dθ
=

4

(θ + 1)2

(
2

θ + 1
− 1

)
≥ 0. �

Next we derive estimates for the growth of the terms in a sequence, recursively defined using
q̃(1; θ), which we use later to bound the convergence rate.

Proposition 5.3. Let, 1 ≤ c ≤ 4 be a given constant, and q(t; θ) =
4

θ + 1
(1− t

θ + 1
) and q̃(t; θ) =

tq(t; θ) (as in Proposition 5.2). Define,

(5.3) θ1 = 1; θk+1 =
1

c
q̃(1; θk), for k = 1, 2, . . .

Then, the following are true for k = 1, 2, . . .:

(i)
2√
c
− 1 ≤ θk+1 ≤ θk ≤ 1 ;

(ii) θk ≥ max

{
2√
c
− 1,

1

2k − 1 + log k

}
.

Proof. The first item (i) follows from algebraic manipulations and the estimates given in Proposi-
tion 5.2. To show that θk+1 ≤ θk, we assume that θk ≥ 2/

√
c− 1 (which is certainly true for k = 1.

To prove that θk+1 ≥ 2/
√
c − 1 we observer that from θk ≥ 2/

√
c − 1, the monotonicity property

in Proposition 5.2 item (iii), implies that

θk+1 =
1

c
q̃(1; θk) ≥

1

c
q̃

(
1;

2√
c
− 1

)
=

2√
c
− 1.

Using again that θk ≥ 2/
√
c− 1 gives aso that

θk+1 − θk =
θk

(θk + 1)2

(
4

c
− (θk + 1)2

)
≤ 0.

The proof of the second item (ii) is a bit more involved. We prove this item by deriving an upper
bound on ζk = 1

θk
. Observe that, from the recurrence relation for θk we have

ζk+1 =
c

4
(ζk + 2 +

1

ζk
), ζ1 = 1.(5.4)

We first show that the faster growing sequence above is for c = 4. Indeed, let

sk+1 = sk + 2 +
1

sk
, s1 = 1.

A standard induction argument shows that

ζk ≤ sk, and 2k − 1 ≤ sk, ∀k.
Expand sk by the recursive formula and we have

sk = s1 + 2(k − 1) +
k−1∑
i=1

1

si
≤ 1 + 2(k − 1) +

k−1∑
i=1

1

2i− 1
≤ 2k + ln k + 1,
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which provides an upper bound of ζk, and hence 1/(2k + ln k − 1) is a lower bound of θk. �

The following Lemma provides a spectral equivalence relation between Ĝ†k and B̂−1
k .

Lemma 5.4. If λ1 ≤ λ(B−1
k Ak) ≤ λ2 and tqk(t) > 0 for λ1 ≤ t ≤ λ2, then

min{1, min
λ1≤t≤λ2

tqk(t)} ≤
(B̂−1

k+1v,v)

(Ĝ†k+1v,v)
≤ max{1, max

λ1≤t≤λ2
tqk(t)},(5.5)

∀v : (v, 1̂) = 0, k = 1, . . . , J − 1.

Proof. For any vector v,(
qk(AkB

−1
k )v, B−1

k v
)

(A†kv,v)
=

(
qk(A

1
2
kB
−1
k A

1
2
k )(A

1
2
k )†v, A

1
2
kB
−1
k A

1
2
k (A

1
2
k )†v

)
(A†kv,v)

=

(
qk(Z)w, Zw

)
(w,w)

,

where w = (A
1
2
k )†v and Z = A

1
2
kB
−1
k A

1
2
k . Further, since Z has the same eigenvalues as B−1

k Ak, we
conclude that

min
λ1≤t≤λ2

tqk(t) ≤
(
qk(AkB

−1
k )v, B−1

k v
)

(A†kv,v)
≤ max

λ1≤t≤λ2
tqk(t).

This implies that for any x and y,(
x

y

)T (
(Y T
k+1Ak+1Yk+1)−1 0

0 σ−1B−1
k qk(AkB

−1
k )

)(
x

y

)
(
x

y

)T (
(Y T
k+1Ak+1Yk+1)−1 0

0 σ−1A−1
k

)(
x

y

)

=

(
(Y T
k+1Ak+1Yk+1)−1x,x

)
+ σ−1(B−1

k q(AkB
−1
k )y,y)(

(Y T
k+1Ak+1Yk+1)−1x,x

)
+ σ−1(A−1

k y,y)

∈
[

min{1, min
λ1≤t≤λ2

tq(t)},max{1, max
λ1≤t≤λ2

tq(t)}
]
,

and, hence, by using the definition of Ĝk and B̂−1
k , it follows that

�(5.6)
(B̂−1

k+1v,v)

(Ĝ†k+1v,v)
∈
[

min{1, min
λ1≤t≤λ2

tq(t)},max{1, max
λ1≤t≤λ2

tq(t)}
]
.

Combining the above lemma with Theorem (4.11) the spectral equivalence between B−1
k and A†k,

k = 1, . . . , J follows and is shown in the next Lemma.

Lemma 5.5. Assume that the two level preconditioner Gk satisfies

(5.7) (Âkv,v) ≤ (Ĝkv,v) ≤ cg(Âkv,v), ∀v and k = 2, . . . , J.

with constant cg, such that 1 ≤ cg ≤ 4. Define

(5.8) qk(t) = q(t, θk),

where θk are defined as

θ1 = 1; θk+1 =
1

cg
q̃(1; θk) =

t

cg
qk(1).
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Then, the following inequalities hold for all v : (v,1) = 0 and k = 1, . . . , J .

θk ≤
(B−1

k v,v)

(A†kv,v)
≤ 1,(5.9)

max

{
2√
c
− 1,

1

2k + ln k + 1

}
≤

(B−1
k v,v)

(A†kv,v)
.(5.10)

Proof. We give a proof of (5.9) by induction. Clearly, for k = 1, B−1
1 = A†1, and hence, (5.9) holds.

We assume that the inequalities (5.9) hold for k = l and we aim to prove them for k = l + 1. For
all v such that (v,1) = 0 we have

(B̂−1
l+1v,v)

(Â†l+1v,v)
=

(Ĝ†l+1v,v)

(Â†l+1v,v)

(B̂−1
l+1v,v)

(Ĝ†l+1v,v)

Then, from (5.7), Proposition 5.1 and Proposition 5.4 (applied in that order) it follows that

1

cg
≤

(Ĝ†l+1v,v)

(Â†l+1v,v)
≤ 1, and min{1, min

t∈[θk,1]
tqk(t)} ≤

(B̂−1
l+1v,v)

(Ĝ†l+1v,v)
≤ max{1, max

t∈[θk,1]
tqk(t)}.

Next, by Proposition 5.2 and Proposition 5.3 we find that

θl+1 =
1

cg
min{1, min

t∈[θk,1]
tql(t)} ≤

(B̂−1
l+1v,v)

(Â†l+1v,v)
≤ max{1, max

t∈[θk,1]
tql(t)} = 1.

Finally, from the definition of B−1
k and A−1

k in terms of B̂−1
k and Â†k, it immediately follows that

θk ≤
(B−1

k v,v)

(A†kv,v)
=

(
B̂−1
k (Y, P )v, (Y, P )v

)(
Â†k(Y, P )v, (Y, P )v

) ≤ 1, (v,1) = 0.(5.11)

The proof of (5.10) follows from item (ii) in Proposition 5.3. �

The spectrum estimate (5.9) suggests that, B−1
J can be used as a preconditioner of a Conjugate

Gradient method solving a linear system whose coefficient matrix is AJ . It also leads to the following
convergence estimate of a power method.

Theorem 5.6. Assume that there is a constant cg such that 1 ≤ cg ≤ 4 and (Âkv,v) ≤ (Ĝkv,v) ≤
cg(Âkv,v) for all v and k = 2, . . . , J . Then

ρ
(
(I −Π1)(I −B−1

J A)
)
≤ min

{
2
√
c− 2√
c

,
2k + ln k

2k + ln k + 1

}
< 1,

where Π1 is the `2 projection to the space of constant vectors.

Proof. The proof is a directly application of the results in Lemma (5.5). �

A generalization of this estimate is given by assuming that cg < m2 for an integer m, in which
case there exists an polynomial q(t) of order m − 1 such that a spectrally equivalent relation can
be shown as

m2 − cg
(m2 − 1)cg

≤
(B−1

k v,v)

(A†kv,v)
≤ 1, ∀v : (v,1) = 0 and k = 1, . . . , J,

which then implies that the power method preconditioned by the AMLI method using polynomial
q(t) on all levels has a bounded convergence rate, as

ρ
(
(I −Π1)(I −B−1

J A)
)
≤ m2(cg − 1)

cg(m2 − 1)
.
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For a matching on a hypercubic grid, as discussed above, the constant cg approaches 4 asymptot-
ically. Assume that the bound is given by cg = 4, then a uniform convergence rate can not be
proved by Theorem 5.6 since it requires that the two level spectrally equivalent constants on all
levels must be less or equal to a common bound cg which is strictly less than 4. This suggests us
to find the best possible AMLI polynomials for the condition cg = 4, and analyze how the AMLI
convergence rate relates to the number of levels.

Remark 5.7. An 1−1/ log n type convergence rate can also be proven for the AMLI methods where
the coarse partitioning consists of paths of m vertices where m > 2.

6. Numerical results

In the previous section, the convergence rate of two-level matching method was used to establish
the convergence of the matching-based AMLI method. Here, a numerical implementation that is
strictly a translation of this theoretical analysis is considered. Then, a simplified and more efficient
variant of the method is developed and tested.

To study the effectiveness of the algorithm and the sharpness of the theoretical estimates of
its performance derived in the previous section, the method is applied as a preconditioner to the
Conjugate Gradient iteration. In all tests, the stopping criteria for the PCG solver is set as a 10−10

reduction in the relative A norm of the error. The average convergence rate, ra, and the convergence
rates computed by the condition number estimates obtained from the Lanczos algorithm and the
AMLI polynomial, denoted by re and rk, respectively, are reported. To reduce the effects of
randomness in the numerical results, for each combination of testing parameters, the PCG method
is run for five right hand sides computed by random left hand sides, and the convergence estimate
that represents the worst case is reported.

6.1. An exact implementation of the AMLI method. As a first test of the matching AMLI
solver, it is applied to the graph Laplacian corresponding to 2- and 3-dimensional structured grids
on convex and non-convex domains. The coarsening is obtained by applying matching only in a
single direction on each level until the coarsest level is 1-dimensional, which is then solved using an
LU factorization. The AMLI polynomial qk(t) on the k-th level is determined by the theoretically
estimated condition number, given by the recursive formula (5.4). The system Y T

k AkYk is solved
exactly by an LU factorization on smaller grids or CG iteration down to 10−6 relative residual on
larger grids of the hierarchy.

Such AMLI method, which is designed to have all assumptions in Theorem 5.6 satisfied, is named
“ordinary AMLI method.” The results are reported in Table 6.1 and 6.2 and confirm that the actual
convergence rate of the method, ra, and the condition number estimate, re, match the theoretical
estimate, that is, they both grow in accordance with the estimate rk = (

√
k − 1)/(

√
k + 1), where

k grows logarithmically with respect to the grid size.

6.2. Modified AMLI solver for matching. Next, a more practical variant of the matching
AMLI preconditioner is developed. First, the exact Y T

k AkYk solvers are replaced by Richardson
iterations with weights computed using the `1 induced norm of these matrices, instead of the
common choice of their largest eigenvalues.

The lower order term lnJ = ln log2 n in (5.4) is also dropped, since it is smaller than the term 2J
in (5.4) and is bounded by 4 for n = 250. Another modification to the scheme is the choice of the
scaling σ in Lemma 4.4 away from 2. Numerical results suggest that σ = 2−1/(2 log2N), where N
is the number of vertices on the graph, is usually a better scaling than the estimated bound σ = 2
used in the analysis. We use this choice for the structured mesh problems and for the unstructured
problems the scaling is computed through a numerical method.
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(a) Square domain with n2

unknowns

n k rk re ra

128 13.9 0.58 0.56 0.54

256 16.0 0.60 0.59 0.55

512 18.0 0.62 0.58 0.57

1024 20.1 0.64 0.60 0.60

2048 22.1 0.65 0.61 0.61

(b) L-shaped domain with
(3/4)n2 unknowns

n k rk re ra

128 13.9 0.58 0.56 0.56

256 16.0 0.60 0.57 0.59

512 18.0 0.62 0.57 0.58

1024 20.1 0.64 0.59 0.59

2048 22.1 0.65 0.60 0.61

Table 6.1. Results of the AMLI preconditioned CG method applied to the
graph Laplacians defined on 2D grids.

(a) Cubic domain with n3

unknowns

n k rk re ra

16 16.0 0.60 0.55 0.55

32 20.1 0.64 0.59 0.59

64 24.2 0.66 0.62 0.62

128 28.2 0.68 0.64 0.64

(b) Fichera domain with
(7/8)n3 unknowns

n k rk re ra

16 16.0 0.60 0.55 0.54

32 20.1 0.64 0.59 0.59

64 24.2 0.66 0.62 0.62

128 28.2 0.68 0.64 0.64

Table 6.2. Results of the ordinary AMLI preconditioned CG method applied
to the graph Laplacians defined on 3D grids.

In table 6.3 and 6.4, the convergence rate estimates of this approach applied to the same struc-
tured problems are reported. Although some of the assumptions of the theory are violated by the
method, its performance is similar to that of the approach considered in the previous tests.

Remark 6.1. A more practical strategy is to use a numerical method, e.g., a Lanczos algorithm
with an AMLI preconditioner on the k-th level, to estimate the smallest eigenvalue of B−1

k Ak, which
is then used to determine the AMLI polynomial on the k + 1-th level. Numerical tests show that
such strategy results faster convergent AMLI methods than that defined through recursive formula
(5.4), at a cost of more complicated setup phase. This strategy usually provide a significant speed
up for 3- or higher dimensional structured problems.

6.3. On unstructured grids. Finally, tests of this AMLI preconditioned Conjugate gradient
method applied to the graph Laplacian defined on more general graphs, coming from unstructured
meshes resulting from triangulations of a 2-dimensional grid on a square domain, or a 3-dimensional
grid on a cubic domain, are considered. The unstructured grid is generated by perturbing grid points
of a structured grid by a random vector of length h/2, where h is the mesh size of the original struc-
tured grid, followed by a Delaunay triangulation. Then, a random matching is applied recursively
to generate a multilevel hierarchy with (log2N)/2 levels. The 3-dimensional unstructured grids are
generated in a similar way and the multilevel hierarchy is constructed accordingly by the random
matching algorithm.

The results of these tests are reported in Table 6.5 and 6.6. For the results on the left of
these tables, the Y T

k AkYk block of the two-level preconditioner is solved to high accuracy, which is
practical since this operator is proven well conditioned even for unstructured grids. The recursive
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(a) Square domain with n2

unknowns

n k rk re ra

128 13.0 0.57 0.59 0.54

256 15.0 0.59 0.62 0.58

512 17.0 0.61 0.64 0.59

1024 19.0 0.63 0.65 0.63

2048 21.0 0.64 0.65 0.65

(b) L-shaped domain with
(3/4)n2 unknowns

n k rk re ra

128 13.0 0.57 0.58 0.56

256 15.0 0.59 0.60 0.56

512 17.0 0.61 0.62 0.57

1024 19.0 0.63 0.64 0.62

2048 21.0 0.64 0.69 0.67

Table 6.3. Results of the modified AMLI preconditioned CG method applied
to the graph Laplacians defined on 2D grids.

(a) Cubic domain with n3

unknowns

n k rk re ra

16 15.0 0.59 0.50 0.42

32 19.0 0.63 0.54 0.49

64 23.0 0.65 0.57 0.52

128 27.0 0.68 0.59 0.56

(b) Fichera domain with
(7/8)n3 unknowns

n k rk re ra

16 15.0 0.59 0.49 0.49

32 19.0 0.63 0.54 0.50

64 23.0 0.65 0.57 0.56

128 27.0 0.68 0.57 0.60

Table 6.4. Results of the modified AMLI preconditioned CG method applied
to the graph Laplacians defined on 3D grids.

formula (5.8) is used to derive the polynomials used in the AMLI cycles, and the scaling constants
are computed using

σk = max
i 6=j

(P Tk AkPk)ij
(Ak+1)ij

,

which ensures that the upper bound in (5.9) is always 1, which in turn guarantees that the AMLI
method, as a preconditioner for the CG method, is always positive semi-definite. Because that the
AMLI polynomials, constructed according to (5.8), is negative when t > 1. Assume that the scaling
constant σk is smaller than the value suggested above, then there exists a v such that

(G†kv,v) > (A†kv,v),

which makes it possible that (B−1
k v,v) > (A†kv,v). Assume that happens, the matrixB−1

k q(AkB
−1
k )

becomes indefinite which in turn makes Bk+1 indefinite.
For the results on the right of Table 6.5 and 6.6, the solve of the Y T

k AkYk block is replaced by
one Richardson iteration, and the AMLI polynomials are constructed based on (5.8) without the
lower order term ln k. The asymptotic convergence rates are again close to the expected convergence
rates obtained from the AMLI polynomials Further, the actual convergence rates are usually better,
especially for the method that uses more accurate solves for the Y T

k AkYk blocks, as opposed to the
one that uses a single Richardson iteration.
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(a) Ordinary AMLI

n k rk re ra

128 16.0 0.60 0.70 0.58

256 18.0 0.62 0.72 0.54

512 20.1 0.64 0.74 0.63

1024 22.1 0.65 0.75 0.65

2048 24.2 0.66 0.76 0.67

(b) Modified AMLI

n k rk re ra

128 15.0 0.59 0.70 0.70

256 17.0 0.61 0.71 0.70

512 19.0 0.63 0.72 0.72

1024 21.0 0.64 0.73 0.73

2048 23.0 0.65 0.75 0.75

Table 6.5. Results of the CG method preconditioned by variants of the matching
AMLI methods applied to the graph Laplacian defined on 2D unstructured grids of
size n2.

(a) Ordinary AMLI

n k rk re ra

16 18.0 0.62 0.65 0.48

32 22.1 0.65 0.67 0.55

64 26.2 0.67 0.70 0.62

128 30.3 0.69 0.74 0.60

(b) Modified AMLI

n k rk re ra

16 17.0 0.61 0.59 0.55

32 21.0 0.64 0.63 0.58

64 25.0 0.67 0.65 0.62

128 29.0 0.69 0.67 0.65

Table 6.6. Results of the CG method preconditioned by variants of the matching
AMLI methods applied to the graph Laplacian defined on 3D unstructured grids of
size n3.

7. Conclusions

An algebraic formula for estimating the convergence rate of an aggregation-based two level
method is derived, and it is shown that the formula can be used to obtain sharp estimates of
the convergence rates in the special case where matching is used. With the use of geometric
information, a sharp bound of the two-level method is derived. The nearly optimal convergence
and complexity of the multilevel method that uses AMLI cycles is also established. The reported
numerical tests illustrate the sharpness of the theoretical estimates. Moreover all the theoretical
results can be generalized to aggregates of general size and, hence, can be used to study an approach
which combines aggressive aggregation with AMLI cycles, which should result in a fast and memory
efficient solver for graph Laplacians. Development and analysis of such a scheme and one that uses
more general smoothers are subject of on-going research.
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