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Abstract. Spectral divide and conquer algorithms solve the eigenvalue problem for all the eigen-
values and eigenvectors by recursively computing an invariant subspace for a subset of the spectrum
and using it to decouple the problem into two smaller subproblems. A number of such algorithms
have been developed over the last 40 years, often motivated by parallel computing and, most recently,
with the aim of achieving minimal communication costs. However, none of the existing algorithms
has been proved to be backward stable, and they all have a significantly higher arithmetic cost than
the standard algorithms currently used. We present new spectral divide and conquer algorithms
for the symmetric eigenvalue problem and the singular value decomposition that are backward sta-
ble, achieve lower bounds on communication costs recently derived by Ballard, Demmel, Holtz, and
Schwartz, and have operation counts within a small constant factor of those for the standard algo-
rithms. The new algorithms are built on the polar decomposition and exploit the recently developed
QR-based dynamically weighted Halley algorithm of Nakatsukasa, Bai, and Gygi, which computes
the polar decomposition using a cubically convergent iteration based on the building blocks of QR
factorization and matrix multiplication. The algorithms have great potential for efficient, numerically
stable computations in situations where the cost of communication dominates the cost of arithmetic.

Key words. symmetric eigenvalue problem, singular value decomposition, SVD, polar decompo-
sition, QR factorization, spectral divide and conquer, dynamically weighted Halley iteration, subspace
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1. Introduction. A recurring theme over the last 40 years or so has been the use
of spectral projectors to solve an eigenproblem by recursively splitting the spectrum
via divide and conquer. An early use of this idea is by Beavers and Denman [13],
[21, sect. 7], who use the matrix sign function to split the spectra of shifted matrices
about the imaginary axis. Lin and Zmijewski [38] develop a more numerically stable
algorithm that employs orthogonal bases for the projectors and they implement it on
a parallel computer. Similar ideas were developed independently by Auslander and
Tsao [3] and, for generalized eigenvalue problems, by Bulgakov and Godunov [15],
[23] and Malyshev [39], [40], [41] (see also [24]).

An important step in the practical development of spectral divide and conquer
algorithms was the toolbox of Bai and Demmel [5], [6], which provides the build-
ing blocks for constructing algorithms via the Newton iteration for the matrix sign
function. A parallel implementation based on these ideas is described in [8].
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A1326 YUJI NAKATSUKASA AND NICHOLAS J. HIGHAM

Bai, Demmel, and Gu [9] build on the work of Bulgakov, Godunov, and Maly-
shev to develop an inverse-free spectral divide and conquer algorithm based solely
on rank-revealing QR factorization and matrix multiplication, applying to the gen-
eralized eigenvalue problem. Huss-Lederman et al. [35] develop a hybrid Newton
and inverse-free iteration approach for the generalized eigenvalue problem, targeting
parallel computers.

All the above contributions are aimed at general, nonsymmetric matrices. Spec-
tral divide and conquer algorithms for symmetric matrices have been developed in
the PRISM project [14], [36], and by Zhang, Zha, and Ying [50], [51].

Very recently, Demmel, Dumitriu, and Holtz [18] have shown how to exploit ran-
domization to allow standard QR factorization to be used throughout the algorithm of
Bai, Demmel, and Gu [9], while Ballard, Demmel, and Dumitriu [10] have developed
this approach into algorithms that achieve, asymptotically, lower bounds on the costs
of communication. The spectral divide and conquer algorithm of Bai and Demmel [7],
which is based on the matrix sign function computed by the (scaled) Newton itera-
tion, can also be implemented so as to attain communication lower bounds. With the
exception of [51], the above papers develop and test algorithms for a single splitting
step rather than for the recursive solution process that yields the eigensystem.

Unfortunately, except for the scaled Newton approach, these spectral divide and
conquer algorithms generally require significantly more arithmetic than the standard
algorithms based on reduction to condensed (tridiagonal or bidiagonal) form, and the
scaled Newton approach has poorer stability than standard algorithms in our experi-
ments. In addition, none of them has been proven to be backward stable in floating
point arithmetic. For example, the authors in [10], [18] use probabilistic arguments
combined with randomization to argue that the backward error is acceptably small
with high probability, and suggest rerunning the process with a randomized starting
matrix when the backward error is large. The analyses in [50], [51] assume exact
arithmetic.

In this work we develop new spectral divide and conquer algorithms for the sym-
metric eigendecomposition and the singular value decomposition (SVD) that have a
number of novel features. They

• are based on the polar decomposition, so they can exploit fast, backward
stable algorithms for computing the polar decomposition;
• require just the building blocks of matrix multiplication and QR factorization
(without pivoting);
• do not suffer from a high floating point operation count, slow convergence
caused by eigenvalues near a splitting point, or numerical instability—one or
more of which have affected all previous spectral divide and conquer algo-
rithms;
• are backward stable under two mild conditions, both of which are easy to
verify and almost always satisfied in practice;
• asymptotically minimize communication while at the same time have arith-
metic costs within a small factor of those for the standard methods used in
LAPACK (≈ 3 for the eigenproblem and ≈ 2 for the SVD).

The main tool underlying our algorithms is the QDWH (QR-based dynami-
cally weighted Halley) algorithm of Nakatsukasa, Bai, and Gygi [45], which is a QR
factorization-based algorithm for computing the polar decomposition. For the sym-
metric eigenproblem, the key fact is that the positive and negative invariant subspaces
of a symmetric matrix can be efficiently computed via the orthogonal polar factor.
This observation leads to our spectral divide and conquer algorithm QDWH-eig. For
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SPECTRAL DIVIDE AND CONQUER ALGORITHMS A1327

an n×n matrix A, the dominant cost of QDWH-eig is in performing six or fewer QR
factorizations of 2n × n matrices. QDWH-eig is much more efficient than the other
spectral divide and conquer algorithms proposed in the literature and is the first to
have proven backward stability.

Our SVD algorithm, QDWH-SVD, computes the polar decomposition A = UpH ∈
Cm×n using the QDWH algorithm and then uses QDWH-eig to compute the eigen-
decomposition H = V ΣV ∗. The SVD of A is then A = (UpV )ΣV ∗ = UΣV ∗. The
essential cost for computing the SVD is in performing QR factorizations of no more
than six (m+ n)× n matrices and six 2n× n matrices.

We prove the backward stability of QDWH-eig and QDWH-SVD under two con-
ditions:

1. The polar decompositions computed by QDWH are backward stable.
2. The column space of a computed orthogonal projection matrix is obtained in

a backward stable manner.
In [46] we prove that the first condition is satisfied when the QR factorizations are
computed with column pivoting and row pivoting or sorting. In practice, even without
pivoting QDWH almost always computes the polar decomposition in a backward
stable manner, as demonstrated by the experiments in [45], [46]. The second condition
holds in exact arithmetic for a subspace obtained by a single step of subspace iteration,
and in practice it holds most of the time. Hence both conditions are usually satisfied in
practice, and can be inexpensively verified if necessary. Note that backward stability
of our algorithms implies that the eigen(singular) values are computed accurately in
the absolute (but not necessarily relative) sense, as the eigenvalues of a symmetric
matrix and singular values of any matrix are all well conditioned.

As proof of concept, we perform numerical experiments with our algorithms on a
shared-memory machine with four processors, employing (via MATLAB function qr)
the conventional LAPACK QR factorization algorithm that does not minimize com-
munication. Even under such conditions, our algorithms are not too much slower than
the conventional algorithms, and are sometimes faster than the traditional eigenvalue
and SVD algorithms based on the QR algorithm. On massively parallel comput-
ing architectures we expect that the communication-optimality of our algorithms will
improve the performance significantly. Furthermore, while both our algorithms and
most conventional algorithms are proven to be backward stable and to yield numeri-
cally orthogonal computed eigen(singular)-vectors, experiments demonstrate that our
algorithms usually give considerably smaller backward errors and vectors closer to
orthogonality. Moreover, our algorithms tend to compute the eigenvalues and sin-
gular values more accurately, and determine the rank more reliably when applied to
rank-deficient matrices.

The rest of the paper is organized as follows. In section 2 we summarize the
QR factorization-based polar decomposition algorithm QDWH [45]. In section 3 we
develop QDWH-eig, establish its backward stability, and compare it with other algo-
rithms for symmetric eigenproblems. Section 4 describes our SVD algorithm, QDWH-
SVD. Section 5 addresses practical implementation issues and techniques to enhance
the performance of the algorithms. Numerical experiments are described in section 6
and conclusions are presented in section 7.

We summarize our notation. The singular values of an m× n rectangular matrix
A with m ≥ n are σ1(A) ≥ · · · ≥ σn(A) and we write σmax(A) = σ1(A) and σmin(A) =
σn(A). ‖A‖2 = σmax(A) denotes the spectral norm and ‖A‖F = (

∑
i,j |aij |2)1/2 is the

Frobenius norm. For a Hermitian matrix A, λi(A) denotes the ith largest eigenvalue
and eig(A) is the set of all eigenvalues. κ2(A) = σmax(A)/σmin(A) is the condition
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A1328 YUJI NAKATSUKASA AND NICHOLAS J. HIGHAM

number of A. A subscript p is used to avoid confusion between the unitary polar
factor Up and the matrix of left singular vectors U . Hence A = UpH = UΣV ∗.

We are aiming for backward error bounds that are a modest multiple of the unit
roundoff, u, but in our analysis we are not interested in the constants. Following [46],
we denote by ε a matrix or scalar such that ‖ε‖ ≤ f(n)u for some modest function f
depending only on n (such as a low-degree polynomial) and some fixed norm. Hence
we will write 2ε = ε, nε = ε, and so on.

We develop algorithms for real matrices A ∈ Rm×n, but note without further
comment that they extend straightforwardly to the complex case.

2. QDWH for the polar decomposition. We begin by reviewing the QDWH
algorithm for computing the polar decomposition [45], which is the foundation of the
algorithms in the next two sections.

Any rectangular matrix A ∈ Rm×n (m ≥ n) has a polar decomposition

(2.1) A = UpH,

where Up has orthonormal columns and H is symmetric positive semidefinite [31,
Thm. 8.1]. The decomposition (2.1) is unique if A has full column rank. QDWH
computes the polar factor Up as the limit of the sequence Xk defined by

(2.2) Xk+1 = Xk(akI + bkX
∗
kXk)(I + ckX

∗
kXk)

−1, X0 = A/α.

Here, α > 0 is an estimate of ‖A‖2 such that α � ‖A‖2. Setting ak = 3, bk =
1, ck = 3 gives the Halley iteration, which is the cubically convergent member of
the family of principal Padé iterations [31, sect. 8.5]. In QDWH the parameters
ak, bk, ck are dynamically chosen to speed up the convergence. They are computed
by ak = h(�k), bk = (ak − 1)2/4, ck = ak + bk − 1, where h(�) =

√
1 + γ + 1

2

(
8 −

4γ + 8(2 − �2)/(�2
√
1 + γ)

)1/2
, γ =

(
4(1 − �2)/�4

)1/3
. Here, �k is a lower bound

for the smallest singular value of Xk, which is computed from the recurrence �k =
�k−1(ak−1 + bk−1�

2
k−1)/(1 + ck−1�

2
k−1) for k ≥ 1. Note that all the parameters are

available for free (without any matrix computations) for all k ≥ 0 once we have
estimates α � ‖A‖2 and �0 � σmin(X0), obtained for example via a condition number
estimator.

With such parameters the iteration (2.2) is cubically convergent and needs at most
six iterations for convergence to Up with the tolerance u = 2−53 ≈ 1.1 × 10−16 (the
unit roundoff for IEEE double precision arithmetic) for any matrix A with κ2(A) ≤
u−1 [45].

Iteration (2.2) has a mathematically equivalent QR-based implementation, which
is the practical QDWH iteration:

X0 = A/α,(2.3a) [√
ckXk

I

]
=

[
Q1

Q2

]
R, Xk+1 =

bk
ck

Xk +
1√
ck

(
ak − bk

ck

)
Q1Q

∗
2, k ≥ 0.(2.3b)

Note that the main costs of a QDWH iteration (2.3) are one QR factorization of an
(m + n) × n matrix and a matrix multiplication, both of which can be done in a
communication-optimal manner [12], [19].

Once the computed polar factor Ûp is obtained, we compute the symmetric polar

factor Ĥ by [31, sect. 8.8]

(2.4) Ĥ =
1

2
(Û∗

pA+ (Û∗
pA)

∗).
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SPECTRAL DIVIDE AND CONQUER ALGORITHMS A1329

Further details of the QWDH algorithm are given in [45].
We will say that the polar decomposition is computed in a backward stable manner

if the computed polar factors Ûp, Ĥ satisfy

(2.5) A = ÛpĤ + ε‖A‖2, Û∗
p Ûp = I + ε.

Note that the definitions of backward stability in [31, sect. 8.8], [46] require addition-

ally that Ĥ is close to a symmetric positive semidefinite matrix. Here we drop this
requirement because we do not need it to establish backward stability of QDWH-eig
and QDWH-SVD.

3. QDWH-eig: Symmetric eigendecomposition. We begin by developing
our spectral divide and conquer algorithm for the symmetric eigenvalue problem,
which is based on spectral splitting achieved via the polar decomposition.

3.1. Invariant subspaces via polar decomposition. Let A ∈ Rn×n be sym-
metric. We describe how to compute an invariant subspace of A corresponding to
the positive (or negative) eigenvalues using the polar decomposition. Assume that A
is nonsingular; the singular case is discussed in section 5.4. The first step is to note
the connection between the polar decomposition of a symmetric A and its eigende-
composition. Let A = UpH be the polar decomposition and let A = V ΛV ∗, with
Λ = diag(Λ+, Λ−), be an eigendecomposition, where the diagonal matrices Λ+ and
Λ− contain the positive and negative eigenvalues, respectively. If there are k positive
eigenvalues then

A = V diag(Λ+, Λ−)V ∗

= V diag(Ik,−In−k)V
∗ · V diag(Λ+, |Λ−|)V ∗

≡ UpH.(3.1)

An alternative way to understand (3.1) is to note that the polar decomposition A =
UpH and the matrix sign decomposition [29] A = (A(A2)−1/2) · (A2)1/2 are equivalent
when A is symmetric. We find the polar decomposition interpretation more fruitful as
we can then apply QDWH and can also derive an SVD algorithm in a unified fashion
(see section 3.6).

Suppose we have computed Up in (3.1) using the QDWH algorithm, and partition
V = [V1, V2] conformably with Λ. Note that

Up + I = [V1 V2]

[
Ik 0
0 −In−k

]
[V1 V2]

∗ + I = [V1 V2]

[
2Ik 0
0 0

]
[V1 V2]

∗ = 2V1V
∗
1 ,

so the symmetric matrix C = 1
2 (Up + I) = V1V

∗
1 is an orthogonal projector onto

span(V1), which is the invariant subspace corresponding to the positive eigenvalues.
Hence we can compute span(V1) by computing an orthogonal basis for the column
space of C. One way of doing this is to perform a single QR factorization with
pivoting, as originally suggested in [38]. However, pivoting is expensive with regard
to communication.

Instead, we use subspace iteration [47, Chap. 14] with r = 	‖C‖2F 
 vectors (in
exact arithmetic r is the precise rank of C, since the eigenvalues of C are either 0
or 1). Subspace iteration converges with the convergence factor |λr+1|/|λk| for the
kth eigenvalue, so λr = 1 and λr+1 = 0 mean a single iteration of subspace iteration
yields the desired subspace span(V1). In practice, due to rounding errors more than
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A1330 YUJI NAKATSUKASA AND NICHOLAS J. HIGHAM

one iteration is sometimes needed for subspace iteration with the computed Ĉ to
converge. If subspace iteration computes the invariant subspaces successfully then
the computed matrices satisfy

(3.2) ĈV̂1 = V̂1 + ε and ĈV̂2 = ε.

Recall that ε denotes a matrix (or scalar) of order u whose values differ in different
appearances. We provide more details of a practical implementation of subspace
iteration in section 5.1.

We now have a matrix V̂ = [V̂1 V̂2] such that V̂ ∗AV̂ =
[
A1 E∗
E A2

]
. The submatrix E

is the backward error of the spectral division, and it is acceptable if ‖E‖F /‖A‖F = ε.

3.2. Algorithm. The entire eigendecomposition can be computed recursively by
applying the spectral division of the previous subsection on the submatrices V ∗

1 AV1

and V ∗
2 AV2. Algorithm 1 outlines the resulting divide and conquer algorithm (more

details will be given in section 5).

Algorithm 1. QDWH-eig: compute an eigendecomposition A = V DV ∗ of a sym-
metric matrix A ∈ Rn×n.
1 Choose σ, an estimate of the median of eig(A).
2 Compute the orthogonal polar factor Up of A− σI by the QDWH algorithm.
3 Use subspace iteration to compute an orthogonal V = [V1 V2] (V1 ∈ Rn×k) such

that 1
2 (Up + I) = V1V

∗
1 .

4 Compute A1 = V ∗
1 AV1 ∈ Rk×k and A2 = V ∗

2 AV2 ∈ R(n−k)×(n−k).
5 Repeat steps 1–4 with A← A1 and A← A2 until A is diagonalized.

The first two steps shift A with the aim of making A1 and A2 of the same di-
mensions, in order to provide for an even division for the recursions; clearly, shifting
by the median of the spectrum is the optimal choice. In step 2 we take advantage of
the symmetry of the Xk and the triangularity of Q2 when computing Q1Q

∗
2 in (2.3b)

to reduce the cost. To smooth the exposition we defer the discussion of practical
implementation issues such as the choice of shifts σ to section 5.

3.3. Backward stability proof. Our goal in this section is to prove that
QDWH-eig is backward stable, which means that V̂ , the computed product of all
the V matrices in the recursion, satisfies

(3.3) V̂ ∗V̂ = I + ε,

and V̂ ∗AV̂ has off-diagonal elements of order ε‖A‖2. The condition (3.3) is ensured

because V̂ is a product of Q factors from Householder QR factorization, each of
which is orthogonal to working accuracy [30, p. 360]. That V̂ ∗AV̂ is close to diagonal
is shown in the proof of the next result.

Theorem 3.1. Suppose that (2.5) (with A← A−σI) and (3.2) are both satisfied
throughout the execution of QDWH-eig. Then QDWH-eig is backward stable.

Proof. It suffices to prove that a single invocation of steps 1–4 of Algorithm 1
computes an invariant subspace of A in a backward stable manner, that is, that
E = V̂ ∗

2 AV̂1 satisfies ‖E‖2 = ε‖A‖2. From the condition (3.2) on subspace iteration

and Ĉ = 1
2 (Ûp + I) we have

1

2
(Ûp + I)[V̂1 V̂2] = [V̂1 0] + ε.
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SPECTRAL DIVIDE AND CONQUER ALGORITHMS A1331

Right-multiplying by 2V̂ ∗ and using (3.3) gives

Ûp = 2[V̂1 0][V̂1 V̂2]
∗ − I + ε = [V̂1 − V̂2][V̂1 V̂2]

∗ + ε

= V̂ diag(Ik,−In−k)V̂
∗ + ε.(3.4)

From (2.5) and (3.4) we have

A =
(
V̂ diag(Ik,−In−k)V̂

∗ + ε
)
Ĥ + ε‖A‖2 = V̂ diag(Ik,−In−k)V̂

∗Ĥ + ε‖A‖2,(3.5)

where we used ‖Ĥ‖2 ≈ ‖A‖2, which follows from (2.5). Hence, using (3.3) again, we
obtain

V̂ ∗AV̂ = diag(Ik,−In−k)V̂
∗ĤV̂ + ε‖A‖2.

It therefore remains to prove that the off-diagonal blocks X21 and X12 of V̂ ∗ĤV̂ =[
X11 X12

X21 X22

]
can be expressed as ε‖A‖2. We obtain, using (3.5),

0 = A−A∗

=
(
V̂ diag(Ik,−In−k)V̂

∗Ĥ + ε‖A‖2
)− (

V̂ diag(Ik,−In−k)V̂
∗Ĥ + ε‖A‖2

)∗
= V̂ diag(Ik,−In−k)V̂

∗Ĥ − ĤV̂ diag(Ik,−In−k)V̂
∗ + ε‖A‖2,(3.6)

since Ĥ∗ = Ĥ by (2.4). Hence, multiplying (3.6) by diag(Ik,−In−k)V̂
∗ on the left

and V̂ on the right we get

ε‖A‖2 = V̂ ∗ĤV̂ − diag(Ik,−In−k)V̂
∗ĤV̂ diag(Ik,−In−k)

=

[
0 2X12

2X21 0

]
.

Therefore ‖X21‖2 = ε‖A‖2 and ‖X12‖2 = ε‖A‖2, as required.
The conclusion is that if the polar decomposition algorithm QDWH is backward

stable and subspace iteration is successful at every stage of the recursion then QDWH-
eig is also backward stable. In [46] we showed that QDWH is backward stable when
the QR factorizations are computed with column pivoting and either row pivoting or
row sorting and in practice it is stable even without pivoting. As will be discussed in
section 5.1, our implementation of subspace iteration succeeds with high probability,
and has never failed in our experiments. The upshot is that QDWH-eig is backward
stable in practice even without the use of pivoting in the QR factorizations.

3.4. Computing partial eigenpairs. In some applications it is not the whole
eigensystem that is required but rather a significant part of it, such as some of the
smallest eigenpairs or the eigenpairs corresponding to eigenvalues smaller than a pre-
scribed value τ [4]. In such cases QDWH-eig can easily be adapted to compute only
the required part. For example, in the latter case we can first choose σ to be slightly
larger than τ and work solely with A2, as A2 then contains the entire eigenspace of
interest.

3.5. Communication and arithmetic costs. For linear algebra algorithms of
O(n3) complexity (hence excluding Strassen-like algorithms [20], [48]), including ma-
trix multiplication, LU, Cholesky, and QR factorization (without pivoting), asymp-
totic lower bounds on the communication cost are derived in [12] that can all be
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A1332 YUJI NAKATSUKASA AND NICHOLAS J. HIGHAM

expressed as (#arithmetic operations/
√
M) in the “big-Oh” sense, where M is the

size of the fast memory (sequential case) or local memory (parallel case). Algorithms
that attain this lower bound are said to minimize communication in the asymptotic
sense. Considerable progress has been made in devising linear algebra algorithms that
minimize communication, and for the above basic matrix operations implementations
are known that asymptotically attain the lower bounds [10], [11], [12], [19].

Since QDWH-eig uses just the computational kernels of QR factorization and
matrix multiplication, it asymptotically minimizes communication.

For the arithmetic cost, with advantage taken of the symmetry of Xk and the zero
structure in the QR factorization (2.3) we find that QDWH-eig requires about 27n3

flops (assuming that each splitting point produces two subproblems of approximately
the same size). Details are given in Appendix A.1.

3.6. Comparison with other methods. We now compare QDWH-eig with
existing methods. The algorithms of Bai, Demmel, and Gu [9] and Demmel, Dumitriu,
and Holtz [18] all have the same basic structure of first mapping the eigenvalues to
0 or ∞ by an implicit repeated squaring of the eigenvalues [9, sect. 4] and then
computing an invariant subspace from the resulting matrix. We take for comparison
the improved versions by Ballard, Demmel, and Dumitriu [10], which we refer to as
IRS (implicit repeated squaring). We will denote the algorithms in [50], [51] by ZZY.
In addition to these spectral divide and conquer algorithms, we also compare with
standard algorithms based on tridiagonal reduction.

3.6.1. Numerical stability. To the best of our knowledge Theorem 3.1 is the
first backward stability proof for a spectral divide and conquer algorithm for sym-
metric eigenproblems that makes no assumption on the splitting point, which is σ
in QDWH-eig. This contrasts with the backward stability analysis for the IRS al-
gorithm in [9, sect. 7], which proves that the backward error is bounded by a factor
proportional to ε‖A‖F/d2, where d is the smallest distance between an eigenvalue
of A and the splitting points, which are ±1 in IRS. Hence the backward error can
potentially be large when d is small (indeed we observed instability with IRS in our
experiments—see section 6) and, as discussed in [9], IRS’s convergence is slow when
d is small. Hence, in difficult cases for IRS in which there is an eigenvalue close to a
splitting point, IRS is potentially unstable and slow to converge.

QDWH-eig has neither problem, even when A has an eigenvalue close to the split-
ting point σ, or equivalently when QDWH has to compute the polar decomposition
of a nearly singular matrix A − σI. This is because QDWH converges within six
iterations for any κ2(A) ≤ u−1, and the backward stability of QDWH is independent
of κ2(A) [46].

Another algorithm that minimizes communication is the spectral divide and con-
quer algorithm proposed by Bai and Demmel [7] that uses the matrix sign function
computed by the scaled Newton iteration. Scaling is recommended for both speed and
stability, and since the sign function is identical to the unitary polar factor for sym-
metric matrices we can use the scaled Newton iteration for the polar decomposition
[16], [28], [31, p. 205]. The resulting algorithm, which we call SN-eig, requires explicit
matrix inversion as the major computational kernel and can be implemented in a
communication-minimizing manner by using a communication-avoiding LU factoriza-
tion [26], [37]. By the same argument as Theorem 3.1, the backward stability of SN-eig
rests on that of the polar decomposition computed by the scaled Newton iteration,
and it is shown in [46, sect. 6.1] that the computed polar decomposition is backward
stable provided that the matrix inverses are computed in a mixed forward-backward
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stable manner. Unfortunately the standard inversion method based on LU factoriza-
tion with partial pivoting does not guarantee this property (a bidiagonalization-based
inversion does, but this is much too expensive and does not minimize communication).
Indeed our numerical experiments (see section 6.1) suggest that the backward error
of SN-eig is not as small as QDWH-eig.

For the spectral divide and conquer algorithms proposed in [50], [51], backward
error analysis is not provided.

As is well known, standard algorithms for the symmetric eigenvalue problem are
based on orthogonal transformation and hence are backward stable. However, our
experiments demonstrate that QDWH-eig tends to give smaller backward errors.

3.6.2. Cost. Table 3.1 compares QDWH-eig, SN-eig, IRS, ZZY, and the stan-
dard algorithm that performs tridiagonalization followed by the symmetric tridiagonal
QR algorithm [25] for computing the complete eigenvalue decomposition (eigenvalues
and eigenvectors) of an n×n symmetric matrix. It summarizes whether the algorithm
minimizes communication, the existence of a backward stability proof, the theoretical
maximum iteration count (for computing the polar decomposition (or disk function
in IRS [9])) needed for one recursion of spectral divide and conquer (not the iteration
count of subspace iteration, which is always less than three), the typical arithmetic
cost in flops, the maximum matrix dimension involved in the computations, and the
memory requirement. For ZZY the flop count and maximum iteration are those of
algorithm QUAD in [51]; the other algorithms in [50], [51] behave similarly.

The maximum number of iterations shows the case in which there is an eigenvalue
within distance u of the splitting points, which is − log2 u = 53 iterations for IRS and
ZZY. In general, IRS and ZZY require increasingly more iterations for ill conditioned
problems. The arithmetic costs of QDWH-eig, SN-eig, IRS, and ZZY are obtained
under the assumption that at each recursion stage the eigenvalues are at least 10−5

from the splitting points. Then QDWH-eig needs five iterations, SN-eig needs seven
iterations, and IRS and ZZY need 22 iterations, and for each iteration these methods
need 5n3 or (3+ 1

3 )n
3 flops (see the appendix), n3 flops (taking advantage of symmetry

in matrix inversions), (13 + 1
3 )n

3 flops, and 7n3 flops, respectively. This assumption
is justified because (as in QDWH-eig) we can use a condition number estimator to
obtain a lower bound for the smallest singular value, so we can change the shift σ if
κ2(A−σI) 105. In the “numerically worst case” κ2(A−σI) ≈ u−1, the arithmetic
costs of QDWH-eig, SN-eig, IRS, and ZZY become 33n3, 29n3, 720n3, and 370n3,
respectively.

Table 3.1 illustrates a general picture that IRS and ZZY always need significantly
more arithmetic than QDWH-eig, which is reflected in our numerical experiments in
section 6. The large difference between the cost of QDWH-eig and IRS is due to the
difference in the required number of iterations and the fact that QDWH-eig employs
the “thin” QR factorization whereas IRS requires the full QR factorization.

The spectral divide and conquer algorithms QDWH-eig, SN-eig, IRS, and ZZY
can all be implemented in a communication-minimizing manner (for ZZY we need to
replace QR with pivoting by subspace iteration or the randomized algorithm suggested
in [10]). We note that by requiring a smaller number of iterations than IRS and
ZZY, QDWH-eig will have a lower communication cost than them, although in the
asymptotic argument this effect is absorbed as a constant.

To summarize, the cost of QDWH-eig is smaller than that of IRS and ZZY by
a large constant factor, in both arithmetic and communication. Note, however, that
IRS is applicable in more general settings, namely the generalized eigenproblem and
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Table 3.1

Comparison of algorithms for symmetric eigendecomposition.

QDWH-eig SN-eig IRS [10] ZZY [50], [51] Standard

Minimizes communication?
√ √ √ √ ×

Backward stability proof?
√

(
√
) conditional none

√
Max. # iterations 6 9 53 53
Arithmetic cost 27n3 (15 + 2

9
)n3 ≈ 300n3 ≈ 160n3 9n3

Matrix dimension 2n× n n× n 2n× na 2n× n n× n
Memory 4n2 4n2 6n2 6n2 3n2

aThe IRS algorithm requires 2n × 2n orthogonal QR factors Q, but only the last n columns of
Q are explicitly required.

the nonsymmetric eigenproblem. The costs of QDWH-eig and SN-eig are comparable,
but we shall see through numerical experiments that the practical stability of SN-eig
is not as good as QDWH-eig.

Compared with the standard tridiagonalization-based algorithm, QDWH-eig can
be implemented in a communication-minimizing manner, whereas it is not known how
to perform tridiagonalization with minimal communication; an implementation that
minimizes the bandwidth cost is given in [12, sect. 6], but it does not minimize the
latency cost. The arithmetic cost of QDWH-eig is higher than the standard algorithm
by a factor at most 3.

4. QDWH-SVD. Higham and Papadimitriou [32], [33] propose a framework
for computing the SVD via the polar decomposition and the eigendecomposition: the
polar decomposition A = UpH and the symmetric eigendecomposition H = V ΣV ∗

are computed and the SVD is obtained from A = (UpV )ΣV ∗. With parallel com-
puting in mind, they suggest using a method based on Padé iteration for the polar
decomposition and any standard method for the symmetric eigendecomposition.

Our SVD algorithm QDWH-SVD, summarized in Algorithm 2, follows this path
but replaces both steps with QDWH-based algorithms: it computes the polar decom-
position by the QDWH algorithm and the symmetric eigendecomposition by QDWH-
eig. Without loss of generality we assumem ≥ n because when m < n we can compute
the SVD A∗ = UΣV ∗, in terms of which the SVD of A is just V ΣU∗.

Algorithm 2. QDWH-SVD: compute the SVD A = UΣV ∗ of A ∈ Rm×n with
m ≥ n.

1 Compute the polar decomposition A = UpH via QDWH.
2 Compute the symmetric eigendecomposition H = V ΣV ∗ via QDWH-eig.
3 Form U = UpV .

It is well known that in the standard SVD methods of bidiagonalization followed
by the QR algorithm or dqds the flop count is minimized by performing an initial
QR factorization when m  n and then computing the SVD of the R factor [2,
sect. 2.4.6], and the threshold is around m ≈ 2n [17]. We find (see Appendix A.2)
that to minimize the flop count of QDWH-SVD we should compute an initial QR
factorization when m > 1.15n.

4.1. Backward stability. Higham and Papadimitriou [32] show that the SVD
computed via their framework is backward stable provided that both the polar de-
composition and the eigendecomposition are computed in a backward stable manner.
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Table 4.1

Comparison of algorithms for the SVD.

QDWH-SVD SN-SVD IRS for SVD [10] Standard

Minimize communication?
√ √ √ ×

Backward stability proof
√

(
√
) conditional

√
Max. # iterations 6 9 53

Arithmetic cost (m = n) 35n3–52n3 21n3–35n3 ≈ 2400n3 22n3

Matrix dimension (m + n)× n n× n 2(m + n)× (m+ n) n× n
Memory (m = n) 5n2 5n2 24n2 4n2

Combining this result with Theorem 3.1 we obtain a backward stability result for
QWDH-SVD.

Theorem 4.1. Suppose that in QDWH-SVD the polar decomposition computed
by QDWH in step 1 satisfies (2.5) and that the conditions of Theorem 3.1 are satisfied

for step 2. Then QDWH-SVD is backward stable, that is, ‖A − ÛΣ̂V̂ ∗‖F = ε‖A‖F ,
‖Û∗Û − I‖F = ε, and ‖V̂ ∗V̂ − I‖F = ε.

Combining the theorem with the analysis in [46] we conclude that QDWH-SVD
is backward stable if column pivoting and either row pivoting or row sorting are
used when computing the QR factorizations, and in practice is backward stable even
without the use of pivoting.

4.2. Communication and arithmetic costs. QDWH-SVD minimizes com-
munication costs in the asymptotic sense because, just like QDWH-eig, it uses only
QR factorizations (with pivoting not needed in practice) and matrix multiplications.

The arithmetic cost is essentially the sum of the costs of QDWH and QDWH-eig
and for n×n A ranges from 35n3 flops to 52n3 flops depending on κ2(A). Thus the cost
of computing the SVD of a general square matrix is less than twice that of computing
an eigendecomposition of a symmetric matrix of the same size by QDWH-eig.

4.3. Comparison with other methods. As described in [10], IRS for the sym-
metric eigenproblem can be used to compute the SVD by computing the eigendecom-
position of

[
0 A∗
A 0

]
(we simply call this algorithm IRS). This algorithm still minimizes

communication in the asymptotic sense. However, since this way of computing the
SVD costs about eight times as much as an eigendecomposition, the QDWH-SVD
approach of first computing the polar decomposition is generally much more efficient.

Table 4.1 compares four algorithms for computing the whole SVD (singular val-
ues and singular vectors): QDWH-SVD, SN-SVD (obtained by computing the polar
decomposition in QDWH-SVD by the scaled Newton iteration instead of QDWH, and
hence applicable only to square nonsingular matrices), IRS, and the standard algo-
rithm that performs bidiagonalization followed by bidiagonal QR. QDWH-SVD and
SN-SVD require more than 50 times fewer flops than the communication-minimizing
algorithm IRS (the costs per iteration are 5n3 or (3 + 1

3 )n
3, 2n3 or n3, and 107n3,

respectively). The difference between the QDWH-based approach and IRS is even
more pronounced than for the eigendecomposition, because for the SVD, IRS iter-
ates with an (m + n) × (m + n) matrix, which soon becomes dense as the iteration
proceeds. QDWH-SVD has an arithmetic cost at most a factor 2.4 larger than the
bidiagonalization method, and no communication minimizing implementation of the
latter is available.

5. Practical considerations. We now consider detailed implementation issues
for QDWH-eig and QDWH-SVD.
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5.1. Implementing subspace iteration. Algorithm 3 gives pseudocode for
subspace iteration for computing the column space of C = 1

2 (Up + I).

Algorithm 3. Subspace iteration: given symmetric A,C = 1
2 (Up + I) ∈ Rn×n,

where C = V1V
∗
1 is the orthogonal projection onto an invariant subspace of A and

k = ‖C‖2F , compute V1 ∈ Rn×k, V2 ∈ Rn×(n−k) such that [V1 V2] is orthogonal.

1 Choose initial matrix X ∈ Rn×k.
2 Compute QR factorization X = [V1 V2]

[
R
0

]
.

3 Form E = V ∗
2 AV1.

4 If ‖E‖F/‖A‖F = ε, quit, end
5 X := CV1, go to step 2.

Since a good initial matrix X is one whose columns lie nearly in the column
space of C, a practical and efficient choice is the set of k + k̃ columns of C of largest
norms, where k = 	‖C‖2F 
 and k̃ is a small constant used as a safeguard; in our

experiments we used k̃ = 3. This choice generally works well and saves one matrix
multiplication compared with generating a random X and forming CX before taking
the QR factorization; in fact we have CX = X with our choice of X because C is an
orthogonal projection.

A reliable approach is to run subspace iteration until (3.2) is satisfied, which
guarantees ‖E‖F = ε‖A‖F (see Theorem 3.1). However, verifying (3.2) requires an
extra matrix multiplication and, as noted in section 3.1, typically subspace iteration
converges in just one step, so we find it more efficient to immediately form E in
[V1 V2]

∗A[V1 V2] =
[
A1 E∗
E A2

]
and check the actual backward error, which we deem

acceptable if ‖E‖F ≤ 10u‖A‖F .
In finite precision arithmetic the eigenvalues are not exactly 0 or 1, so subspace

iteration may not yield ‖E‖F = ε‖A‖F in just one iteration. In all our experiments
two subspace iterations were enough to either successfully yield an invariant subspace
to working accuracy, occasionally achieving smaller ‖E‖F than with one iteration,
or reach stagnation, in which case further subspace iteration does not further reduce
‖E‖F . The latter case, although exceptionally rare, can happen in two unlikely events:

(i) The initial matrix X is nearly orthogonal to a subspace of C.
(ii) C has eigenvalues far from both 0 and 1.

Case (i) can be remedied by rerunning subspace iteration using a different initial
matrix X , an effective choice of which is a randomized matrix X = CW1, where W1 is
the first k columns of a random Haar distributed orthogonal matrixW = [W1 W2]. As
shown in [18, sect. 5], with high probability the QR factorization CW = [X CW2] =
[V1 V2]R is rank-revealing, in which case V1 represents the column space of both C

and X . Hence by computing the QR factorization of X we can obtain [V̂1 V̂2] such
that (3.2) is satisfied. Therefore subspace iteration terminates successfully with high
probability.

Case (ii) indicates that the Ûp computed by QDWH failed to be unitary to working
accuracy. This can happen if the smallest singular value of X0 is severely overesti-
mated, that is, �0  σmin(X0) (corresponding to failure of a condition estimator—see
section 5.8). If (ii) happens, then we can either run QDWH again to compute the

unitary polar factor of Ûp (which is identical to, but cheaper to compute than, that

of A − σI, as the singular values of Ûp are much closer to 1) or choose a different σ
and rerun steps 1–4 of QDWH-eig. We have never had to resort to these remedies in
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our experiments.

5.2. Choice of splitting point σ in QDWH-eig. The ideal splitting point
σ is the median of eig(A), so that one recursion of QDWH-eig results in matrices A1

and A2 both of order ≈ n/2. To estimate the median in our experiments we used the
median of diag(A). Since this quantity lies in [λn(A), λ1(A)] it produces matrices A1

and A2 both with dimension at least one. The authors of IRS [10] suggest choosing σ
to be around the center of an interval containing the eigenvalues (obtained, e.g., via
Gershgorin’s theorem). We prefer the median of diag(A) because when A is close to
diagonal form it ensures dim(A1) ≈ dim(A2). Another strategy of complexity O(n2)
is to compute the eigenvalues of the tridiagonal part of A and then take their median.
All these choices work reasonably well, but it is possible to contrive examples in which
the size of A1 or A2 is much smaller than n/2. It is an open question to develop a
better splitting strategy.

We note that, as mentioned in [10, sect. 3.4], spectral divide and conquer type
algorithms such as QDWH-eig for symmetric eigendecompositions deal effectively with
multiple (or clusters of) eigenvalues. This is because if a diagonal block Aj has all its
eigenvalues lying in [λ0 − ε, λ0 + ε], then Aj must be nearly diagonal: Aj = λ0I + ε.
Upon detecting such a submatrix Aj , in QDWH-eig we stop the spectral divide and
conquer recursion on Aj and return the value of the (nearly) multiple eigenvalue λ0

and its multiplicity, along with Vj = I, the (numerical) matrix of eigenvectors of Aj .

5.3. When to terminate the recursion. In a practical implementation of
QDWH-eig we can stop the recursion (step 5) once the diagonal blocks are small
enough so that any standard eigensolver can be invoked to finish the diagonalization
efficiently. However, for large (n ≥ 2000) matrices A the typical runtime spent during
this final stage of QDWH-eig is negligibly small, and we found no noticeable difference
in speed if we carry on the recursion in step 5 of QDWH-eig to the scalar level. Our
experiments in section 6 ran the recursion until the end.

5.4. When σ is equal to an eigenvalue. Even when σ is equal to an eigenvalue
of A in QDWH-eig, the QDWH iteration for computing the polar decomposition of
A−σI does not break down (unlike the scaled Newton iteration used in SN-eig, which
requires the matrix to be nonsingular) but rather computes the partial isometry Up

in the canonical polar decomposition of A [31, p. 194]. In terms of the QDWH-eig
execution this causes little problem, because in this case the matrix 1

2 (Up + I) has
eigenvalues 1, 0, or 0.5. Subspace iteration has no difficulty finding an invariant
subspace V1 corresponding to the eigenvalues 1 and 0.5. V1 is then an invariant
subspace corresponding to the nonnegative (including zero) eigenvalues of A− σI.

In practice, this situation rarely arises, because rounding errors usually cause the
zero singular values to be perturbed to a small positive value, and QDWH eventually
maps them to 1, in which case the singularity of A−σI is treated unexceptionally by
QDWH.

5.5. QDWH-SVD for rank-deficient matrices. When A has rank r < n,
QDWH with the choice (u�)�0 ≤ σr(X0) computes A = UpH where Up is a partial
isometry, which does not have orthonormal columns. However, H is still the unique
Hermitian polar factor of A, and it has the same number of zero singular values as
A. If the computed eigendecomposition is H = [V1 V2] diag(Σr, 0n−r)[V1 V2]

∗ then
we obtain A = (UpV1)ΣrV

∗
1 , where UpV1 can be shown to have orthonormal columns,

and this is hence the “economy” SVD. If a full SVD with U ∈ Rm×n, V ∈ Rn×n is

D
ow

nl
oa

de
d 

08
/0

9/
13

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1338 YUJI NAKATSUKASA AND NICHOLAS J. HIGHAM

desired we can compute a full QR factorization Up[V1 V2] = QR, where Q ∈ Rm×n

and rii ≥ 0 for all i, and then set U := Q, V := [V1 V2].
In practice we may not know in advance that the matrix is rank-deficient or have a

good estimate of the smallest positive singular value σr(X0). In such cases we can run
QDWH-SVD as usual by estimating �0 ≈ σmin(X0); the condition number estimator
gives κ2(A) ≈ u−1 so we let �0 ≈ u. This corresponds to mapping the zero singular
values (perturbed to O(u) by rounding errors) to 1. This approach is slower than the
one above that uses u� �0 ≤ σr(X0) because QDWH requires more iterations.

When A is (nearly) rank-deficient, the computed singular values σ̂i from QDWH-
SVD are not guaranteed to be nonnegative. However, since the algorithm is backward
stable the σ̂i are the singular values of A + ΔA with ‖ΔA‖2 = ε‖A‖2. Hence any
negative σ̂i are necessarily of order ε‖A‖2 and can safely be set to zero or replaced by
their absolute values, as suggested in [32].

5.6. Faster QDWH iterations. The QDWH iteration (2.3) is mathematically
equivalent to (2.2), which after some rewriting can be implemented according to

Zk = I + ckX
∗
kXk, Wk = chol(Zk),(5.1a)

Xk+1 =
bk
ck

Xk +

(
ak − bk

ck

)
(XkW

−1
k )W−∗

k ,(5.1b)

where chol(Zk) denotes the Cholesky factor of Zk. Note that (5.1) involves m × n
matrices, in contrast to (2.3), which contains an (m+ n)× n matrix. The arithmetic
cost of (5.1) is mn2 flops for forming the symmetric positive definite matrix Zk, n

3/3
flops for computing its Cholesky factorization, and 2mn2 flops for two multiple right-
hand side triangular substitutions. Therefore this implementation requires 3mn2 +
n3/3 flops, which is cheaper than evaluating (2.3) by Householder QR factorization

and exploiting the structure of
[√

ckXk

I

]
, which needs 5mn2 flops (see Appendix A.1).

Furthermore, the Cholesky decomposition and triangular substitution both have a
known arithmetic and communication-minimizing implementation [11], [12]. Thus
(5.1) is expected to be faster than (2.3).

The numerical stability of (5.1), however, is compromised if Zk is ill conditioned,
as standard error analysis shows that Xk+1 has errors of order κ2(Z)ε [30]. The
implementation (2.3) is also subject to errors, arising from a QR factorization of the

matrix
[√

ckXk

I

]
, but this matrix has 2-norm condition number equal to the square

root of that of Zk, and in any case numerical stability of the polar decomposition
computed by (2.3) is independent of κ2(Zk), as shown in [46].

To investigate (5.1) further, we note that κ2(Z) ≤ 1 + ck‖Xk‖22 and ‖Xk‖2 ≤ 1
(provided that α ≥ ‖A‖2), and moreover bk/ck and ak − bk/ck are both of order 1 for
all k [46]. Hence Xk+1 is computed from (5.1) with forward error bounded by ckε.
Fortunately, ck converges to 3 and the convergence is fast enough so that ck ≤ 100 for
k ≥ 2 for any practical choice �0 > 10−16. In our experiments we switch from (2.3)
to (5.1) once ck is smaller than 100, which improves the speed and also in practice
slightly improves the stability. In particular, if �0 > 10−5 then we have ck ≤ 100 for
k ≥ 1 (for a given k, ck is a decreasing function of �0), so we need just one iteration
of (2.3).

We note that we can, alternatively, directly evaluate (2.2). The resulting algo-
rithm DWH is, unfortunately, numerically unstable, as observed in [45].

5.7. Newton–Schulz postprocessing for improved orthogonality. In prac-
tice the computed orthogonal factors Û and V̂ are not exactly orthogonal. As men-
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tioned in [46, sect. 6.3], an effective way to reduce the distance to orthogonality is to

run one step of the Newton–Schulz iteration, so that we compute Û ← 1
2 Û(3I− Û∗Û),

V̂ ← 1
2 V̂ (3I − V̂ ∗V̂ ). Experiments suggest that this postprocessing tends to improve

the distance to orthogonality considerably (by about a factor 4 for large dimensions)
and also slightly improves the backward errors of the eigendecomposition or SVD.

5.8. Estimating α and �. When running the QDWH iterations (2.3), we obtain
the estimates α � ‖A‖2 and � � σmin(X0) using the MATLAB assignments

(5.2) α = normest(A), �0 = 0.9/condest(X0),

where the factor 0.9 attempts to make it more likely that �0 ≤ σmin(X0). The MAT-
LAB function normest estimates the 2-norm of its matrix argument using the power
method, while condest estimates the 1-norm condition number using the algorithm
of [34], producing a lower bound.

The QDWH iteration maps all the singular values of X0 in [�0, 1] to 1. If there
exists a singular value σi(X0) with σi(X0) < �0, one can show that QDWH maps it
within k ≤ 6 iterations to a value σi(Xk) ∈ [σi(X0)/�0, 1], which is generally much
closer to 1 than σi(X0). Then p (a few) additional QDWH iterations, now equivalent
to Halley’s iteration, are sufficient to yield |σi(Xk+p)−1| ≤ u, as can be seen from the
convergence xp → 1 of the scalar iteration xp+1 = xp(3+ x2

p)/(1+ 3x2
p), x0 = σi(Xk).

A similar comment applies to the estimation of α. Hence wrong estimates of α and �0
can cause QDWH to require one or two additional iterations (more if �0  σmin(X0)
or α � ‖A‖2), but not instability or misconvergence, so rough estimates that are
accurate to a factor of (say) 5 are completely acceptable.

Note that we can use �0 = ‖X0‖1/(n1/2condest(X0)) if we wish to guarantee
�0 � σmin(X0). To see this, note that

condest(X0) ≈ ‖X0‖1‖X−1
0 ‖1 ≥ ‖X0‖1n−1/2‖X−1

0 ‖2 = ‖X0‖1n−1/2σ−1
n ,

which implies σn � ‖X0‖1/(n1/2condest(X0)). We can also safely use α = ‖A‖F to
guarantee α ≥ ‖A‖2. We used the estimates (5.2) because they have proved reliable
in practice.

Algorithms SN-eig and SN-SVD are obtained simply by replacing QDWH with
the scaled Newton iteration with the scaling of [16], with extremal singular values
estimated as just described.

6. Numerical experiments. We now present some numerical experiments.
Their purpose is threefold.

• To compare the new algorithms with existing spectral divide and conquer
algorithms.
• To compare the numerical stability of the new algorithms with that of existing
algorithms for the symmetric eigendecomposition and the SVD.
• To check that when programmed in MATLAB on a multicore machine our
algorithms run with speed within a small constant factor of that of the best
current algorithms, as our analysis suggests should be the case.

We do not attempt to test a communication-minimizing implementation of the algo-
rithms on a highly parallel machine; this will be the subject of future work.

All the experiments were carried out in MATLAB version R2012a on a machine
with an Intel Core i7 3.40GHz processor with four cores, eight threads, and 16GB
RAM, using IEEE double precision arithmetic. In implementing QDWH-eig we used
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the multithreaded built-in MATLAB functions: the QR factorizations are computed
using qr, which calls LAPACK routines DGEQRF and DORGQR (which do not min-
imize communication), and for the Cholesky factorization we used MATLAB function
chol, which calls DPBTRF. Similarly, for SN-eig we used MATLAB function inv for
computing explicit matrix inverses.

6.1. Symmetric eigendecomposition.

6.1.1. Spectral divide and conquer algorithms. We first compare spectral
divide and conquer type algorithms for computing an invariant subspace correspond-
ing to the positive/negative eigenvalues of a symmetric matrix.

The algorithms we compare are QDWH-eig (with no pivoting in the QR factor-
izations), SN-eig, IRS [10], and ZZY (the algorithm QUAD in [51]—the behavior of
other algorithms proposed in [50], [51] was similar). We also test QDWH-eig with QR
factorizations computed with row sorting and column pivoting, denoted “QDWH-
eig(p).”

We compare how the methods behave for problems of varying difficulties. Our
experiments were carried out as follows. With n = 100 we generated n×n symmetric
matrices A = V ΛV ∗ ∈ Rn×n, where we used the MATLAB function
gallery(’qmult’,...) to obtain a random Haar distributed orthogonal matrix V ,
after seeding the random number generator via rng(10). Λ is a diagonal matrix whose
diagonal entries form a geometric series 1, r, r2, . . . , with ratio r = −κ−1/(n−1), where
κ = κ2(A) is the prescribed condition number. The smallest eigenvalue of A is κ−1.

Here we consider computing an invariant subspace corresponding to the positive
eigenvalues of A. To do this, we can apply QDWH-eig and SN-eig to A with shift
σ = 0. IRS and ZZY compute invariant subspaces corresponding to eigenvalues inside
and outside the interval (−1, 1), so we apply them to the shifted matrix A− I, whose
invariant subspace corresponding to the eigenvalues in (−1, 1) matches the desired
one. Spectral divide and conquer algorithms generally face difficulty when the matrix
has an eigenvalue close to the splitting points (0 for QDWH and SN, and ±1 for
IRS and ZZY), so in our setting κ2(A) is an appropriate measure of the problem’s
difficulty. By focusing on a single invariant subspace calculation (instead of the whole
eigendecomposition) we can directly study the effect of varying the difficulty of the
splitting problem.

We generated 100 matrices for each of κ = 102, 108, 1015, and report the maxi-
mum and minimum values of the iteration counts (for mapping the eigenvalues nu-
merically to ±1 or (0,∞)), shown as “iter” in Table 6.1, along with the backward

error ‖E‖F /‖A‖F where [V̂1 V̂2]
∗A[V̂1 V̂2] =

[
A1 E∗
E A2

]
, shown as “berr,” where V̂1 is

the computed n × k matrix with orthonormal columns. We obtained k = 50 = n
2

in all cases and verified that all the eigenvalues of V̂ ∗
1 AV̂1 are larger than −u (“nu-

merically nonnegative”), indicating that the computed V̂1 indeed approximates the

positive eigenspace. Also, the orthogonality measure ‖V̂ ∗
1 V̂1 − Ik‖F /√n was of order

u for all the methods.
We see from Table 6.1 that QDWH-eig converged within six iterations in every

case, whereas ZZY and IRS needed many more iterations, especially in the difficult
cases where κ2(A) is large. Furthermore, QDWH-eig performed in a backward stable
way throughout (recall that Theorem 3.1 combined with [46] proves backward stability
of QDWH-eig when pivoting is employed). SN-eig required about 50% more iterations
than QDWH-eig and gave slightly larger backward errors. IRS lost backward stability
when κ2(A) was large, which reflects the backward error bound given in [9]. ZZY
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Table 6.1

Results for computing an invariant subspace.

κ2(A) 102 108 1015

min max min max min max
QDWH-eig(p) 4 5 5 6 6 6
QDWH-eig 4 5 5 6 6 6

iter SN-eig 7 8 8 9 9 10
ZZY 12 12 32 32 55 55
IRS 11 11 31 31 53 54

QDWH-eig(p) 4.4e-16 5.2e-16 4.4e-16 5.3e-16 4.7e-16 6.3e-16
QDWH-eig 4.3e-16 5.1e-16 4.5e-16 5.3e-16 4.9e-16 6.2e-16

berr SN-eig 1.4e-15 2.0e-15 1.3e-15 1.8e-15 1.2e-15 2.1e-15
ZZY 1.3e-15 1.6e-15 1.8e-15 2.4e-15 2.2e-15 3.1e-15
IRS 2.0e-15 1.8e-12 4.1e-13 8.3e-11 1.2e-9 6.5e-6

performed in a backward stable manner, but no error analysis is available for it.
The experiment demonstrates that QDWH-eig is clearly superior to IRS and ZZY

for computing an invariant subspace, and hence for the whole eigendecomposition via
a spectral divide and conquer process. Pivoting does not seem to be necessary in
practice for QDWH-eig, so below we focus on QDWH-eig without pivoting (and SN-
eig).

6.1.2. Comparison with conventional algorithms for the full symmetric
eigendecomposition. We now compare QDWH-eig with several algorithms used in
practice for computing the full eigendecomposition of a symmetric matrix, all of which
begin by reducing the matrix to tridiagonal form.

• The divide and conquer algorithm [27] (not to be confused with the spec-
tral divide and conquer algorithms that include QDWH-eig, IRS, and ZZY),
denoted “D-C” (LAPACK routine DSPEVD, called via the NAG MATLAB
Toolbox (Mark 23) function f08fc.m [44]).
• The built-in MATLAB function eig.
• The QR algorithm [47, Chap. 8], denoted “QR” (LAPACK routine DSYEV,
called via f08fa.m).
• The solver based on multiple relatively robust representations [22], denoted
“MR3” (LAPACK routine DSYEVR, called via f08fd.m).

As we shall see (and as is known to experts [43]), the performance of these algorithms
can differ significantly.

We generated symmetric matrices using the same A = V ΛV ∗ prescription as in
section 6.1.1 but with the eigenvalues uniformly distributed in [0, 1].

Table 6.2 shows the backward error ‖V̂ Λ̂V̂ ∗ − A‖F /‖A‖F , where Λ̂ and V̂ are
the matrices of computed eigenvalues and eigenvectors, respectively. “QDWH-eig”
includes Newton–Schulz postprocessing, while “QDWH-eig, no NS” is QDWH-eig
without the Newton–Schulz postprocessing. The backward stability is acceptable for
all the methods with the exception of SN-eig. It is worth noting, however, that the
backward errors of QDWH-eig are smaller than those of the other methods, by more
than a factor 3 for large n.

Table 6.3 shows the normalized measure of orthogonality of the computed V̂
(we note that ‖XTX − I‖F is within a factor 2 of the distance to orthogonality
min{ ‖X − Q‖F : QTQ = I } if ‖X‖2 ≈ 1 [31, Lem. 8.17]). While all the methods

yielded values ‖V̂ ∗V̂ − I‖F/√n that are moderate multiples of u, we see that those of
QDWH-eig are much smaller than those for the other algorithms. The Newton–Schulz
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Table 6.2

Backward error ‖A− V̂ Λ̂V̂ ∗‖F /‖A‖F .

n 2000 4000 6000 8000 10000

QDWH-eig 2.1e-15 2.4e-15 2.6e-15 2.9e-15 3.0e-15
QDWH-eig, no NS 3.6e-15 4.3e-15 4.8e-15 5.2e-15 5.5e-15

SN-eig 1.3e-13 4.1e-13 8.2e-13 1.3e-12 2.0e-12
D-C 5.2e-15 7.1e-15 8.7e-15 9.8e-15 1.1e-14
eig 1.3e-14 1.9e-14 2.3e-14 2.6e-14 2.9e-14
QR 1.5e-14 2.8e-14 4.0e-14 2.9e-14 5.4e-14
MR3 4.2e-15 5.7e-15 7.1e-15 8.0e-15 9.0e-15

Table 6.3

Orthogonality of V̂ : ‖V̂ ∗V̂ − I‖F /
√
n.

n 2000 4000 6000 8000 10000

QDWH-eig 7.7e-16 8.0e-16 8.2e-16 8.4e-16 8.5e-16
QDWH-eig, no NS 2.4e-15 2.8e-15 3.0e-15 3.3e-15 3.4e-15

SN-eig 2.5e-15 2.9e-15 3.2e-15 3.4e-15 3.6e-15
D-C 4.5e-15 6.3e-15 7.6e-15 8.6e-15 9.8e-15
eig 1.1e-14 1.5e-14 1.9e-14 2.1e-14 2.4e-14
QR 1.1e-14 2.3e-14 3.6e-14 2.1e-14 5.1e-14
MR3 2.6e-15 3.4e-15 4.2e-15 4.7e-15 5.3e-15

postprocessing usually improves the orthogonality considerably and also slightly re-
duces the backward error.

This behavior was not peculiar to this class of matrices, and was observed in all
our experiments. These results suggest that QDWH-eig might have better stability
than the other algorithms, which merits further investigation.

On our machine with four cores, D-C (and eig, which had similar speed) was the
fastest algorithm in all cases, on average being faster than QR, QDWH-eig, SN-eig,
and MR3 by factors about 2, 3.5, 5, and 6, respectively.

6.2. SVD algorithms. We now compare algorithms for computing the SVD.
We generate matrices by using the MATLAB function gallery(’randsvd’,...) to
form A = UΣV ∗, where U and V are random Haar distributed orthogonal matrices
and Σ is a diagonal matrix of singular values that form an arithmetic sequence.

6.2.1. Nonsingular case. We compare1 QDWH-SVD, SN-SVD, D-C (LAPACK
routine DGESDD, called via the NAG MATLAB Toolbox function f08kd.m), the
MATLAB svd function, and the QR algorithm (LAPACK routine DGESVD, called
via f08ke.m).

Varying matrix sizes. We set κ2(A) = 1.5 and varied the matrix size n. Tables 6.4
and 6.5 show the backward errors and orthogonality measures.

The backward errors of all the algorithms, except arguably SN-SVD, were accept-
ably small, and for large n that of QDWH-SVD was smaller than the rest by a factor
3 or more. The orthogonality of the computed Û and V̂ was also always acceptable,
with QDWH-SVD again yielding the smallest values of the orthogonality measure.

As for the symmetric eigendecomposition, D-C (whose speed resembles that of
svd) was the fastest, being faster than QDWH-SVD, SN-SVD, and QR by factors
about 2, 3, and 3.5 respectively. The reason SN-SVD was slower than QDWH-SVD

1MR3 for the bidiagonal SVD [49] was not available in LAPACK at the time of writing, but its
performance is expected to resemble that for the symmetric eigenproblem.
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Table 6.4

Backward error ‖A− ÛΣ̂V̂ ∗‖/‖A‖F ; κ2(A) = 1.5.

n 2000 4000 6000 8000 10000

QDWH-SVD 2.1e-15 2.4e-15 2.5e-15 2.7e-15 2.8e-15
SN-SVD 6.4e-14 1.4e-13 2.4e-13 3.6e-13 5.2e-13
D-C 5.7e-15 7.6e-15 9.3e-15 1.0e-14 1.2e-14
svd 5.9e-15 7.7e-15 9.3e-15 1.1e-14 1.2e-14
QR 1.5e-14 2.2e-14 2.6e-14 3.1e-14 3.4e-14

Table 6.5

Orthogonality of computed Û , V̂ : max
(‖Û∗Û − I‖F /

√
n, ‖V̂ ∗V̂ − I‖F /

√
n
)
; κ2(A) = 1.5.

n 2000 4000 6000 8000 10000

QDWH-SVD 7.7e-16 8.0e-16 8.2e-16 8.4e-16 8.5e-16
SN-SVD 3.9e-14 7.2e-14 1.1e-13 1.4e-13 1.7e-13
D-C 5.4e-15 7.0e-15 8.5e-15 9.7e-15 1.1e-14
svd 5.3e-15 7.1e-15 8.7e-15 1.0e-14 1.1e-14
QR 1.2e-14 1.8e-14 2.1e-14 2.5e-14 2.8e-14

despite the lower arithmetic cost in Table 4.1 appears to be that the MATLAB func-
tion inv does not take full advantage of the symmetry of the matrix.

Varying condition numbers. Here we fixed the matrix size n = 10000 and varied
the condition number κ2(A). Tables 6.6 and 6.7 show the results. The same remarks as
above apply, with QDWH-SVD giving the smallest backward errors and orthogonality
measure.

We note that QDWH-SVD had speed comparable with QR, which is still a widely
used algorithm (QDWH-SVD was up to two times faster for κ2(A) ≈ 1, of similar
speed for κ2(A) ≈ 105, and up to two times slower for κ2(A) ≈ u−1).

6.2.2. Rectangular rank-deficient matrices. An important usage of the SVD
is to determine the rank of a matrix. Here we compare algorithms for computing the
SVD of a rank-deficient matrix. We let Σ =

[ Σ0
0m×n

]
where Σ0 = diag(σi) so that

(1 =)σ1, . . . , σr forms an arithmetic sequence and σr+1 = · · · = σn = 0. We take
m = 550, n = 500, σ1/σr = 10, and r = 450, so that A = UΣV ∗ has rank 450 and 50
zero singular values.

We used ten such matrices with random Haar distributed orthogonalU and V . We
ran QDWH-SVD with α = 1 and �0 = 1/10, and postprocessed by performing a full

QR factorization to obtain an orthogonal Û as discussed in section 5.5 (the alternative
approach of setting �0 = u is slower but gave nearly identical results). Table 6.8 shows
the minimum and maximum values of σ̂r+1, which measures how accurately the zero
singular values were computed, since σr+1 = · · · = σn = 0. It also shows the absolute
error of the computed singular values maxi |σi − σ̂i| for r + 1 ≤ i ≤ n (the “zero”
singular values, which satisfy σi = O(u)) and all i (we “obtained” the exact values
σi using the MATLAB Symbolic Math Toolbox variable precision arithmetic function
vpa with 32 digit precision), and the backward error. The orthogonality measure
behaved as in the previous experiments.

The computed σ̂r+1 was notably smaller with QDWH-SVD than with other al-
gorithms (note that SN-SVD is not applicable here as the matrix is not square), and
in general the O(u) singular values were computed more accurately by QDWH-SVD.
The errors in the other singular values were also smaller, although the difference is
less apparent. This behavior is not peculiar to the choice of parameters n, r, and
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Table 6.6

Backward error ‖A− ÛΣ̂V̂ ∗‖F /‖A‖F ; n = 10000.

κ2(A) 1.1 1.5 10 105 1010 1015

QDWH-SVD 2.8e-15 2.9e-15 3.1e-15 3.3e-15 3.2e-15 3.4e-15
SN-SVD 2.6e-13 5.2e-13 1.7e-12 2.0e-12 2.0e-12 2.0e-12

D-C 1.2e-14 1.2e-14 1.1e-14 1.1e-14 1.1e-14 1.0e-14
svd 1.2e-14 1.2e-14 1.1e-14 1.1e-14 1.1e-14 1.1e-14
QR 3.3e-14 3.4e-14 3.2e-14 2.9e-14 2.9e-14 2.9e-14

Table 6.7

Orthogonality of computed Û , V̂ : max
(‖Û∗Û − I‖F /

√
n, ‖V̂ ∗V̂ − I‖F /

√
n
)
; n = 10000.

κ2(A) 1.1 1.5 10 105 1010 1015

QDWH-SVD 8.5e-16 8.5e-16 8.5e-16 8.5e-16 8.5e-16 8.5e-16
SN-SVD 1.7e-13 1.7e-13 1.7e-13 1.7e-13 1.7e-13 1.7e-13

D-C 1.1e-14 1.1e-14 1.1e-14 1.1e-14 1.1e-14 1.1e-14
svd 1.1e-14 1.1e-14 1.1e-14 1.1e-14 1.1e-14 1.1e-14
QR 2.8e-14 2.8e-14 2.3e-14 2.0e-14 2.0e-14 2.0e-14

Table 6.8

Largest “zero” singular value σ̂r+1, two measures of error of computed singular values, and
backward errors for matrices A ∈ R550×500 of rank r = 450.

σ̂r+1 max
r+1≤i≤n

|σi − σ̂i| max
1≤i≤n

|σi − σ̂i| Backward error

min max min max min max min max
QDWH-SVD 9.5e-17 1.2e-16 6.1e-17 7.8e-17 2.0e-16 2.5e-16 2.1e-15 2.1e-15

D-C 8.1e-16 9.6e-16 6.6e-16 6.7e-16 6.6e-16 6.7e-16 3.1e-15 3.2e-15
svd 6.4e-16 6.9e-16 6.4e-16 7.8e-16 6.4e-16 7.8e-16 3.2e-15 3.3e-15
QR 8.4e-16 8.5e-16 4.6e-16 5.2e-16 4.6e-16 5.2e-16 7.4e-15 7.7e-15

σ1/σr; other values gave similar results. The experiment suggests that QDWH-SVD
is perhaps more capable of computing small (or all) singular values accurately and is
hence a more reliable means of determining the rank of a matrix.

6.3. Summary of numerical experiments. The results of our experiments
can be summarized as follows.

• The QDWH-based framework is generally superior to known spectral divide
and conquer algorithms in terms of both speed and stability.
• QDWH-eig and QDWH-SVD both have excellent stability properties: the
backward errors and the orthogonality measures of the computed eigenvec-
tors and singular vectors are generally considerably smaller than those of
the alternative algorithms. Over our complete set of experiments, including
those not shown here, they also tend to compute the eigen/singular values
more accurately.
• QDWH-SVD is well suited for the task of rank determination.
• On our shared-memory machine with four cores, D-C (divide and conquer) is
faster than our algorithms, both for the eigendecomposition (by about a factor
3.5) and the SVD (a factor 2). For well-conditioned matrices QDWH-SVD is
faster than the QR algorithm. We note that our implementations of QDWH-
eig and QDWH-SVD use the built-in MATLAB functions qr and chol, so in
particular the computation is not optimized of the QR factorization

[√
cX
I

]
=[Q1

Q2

]
R, the full-triangular matrix product Q1Q

∗
2 in (2.3b), or the symmetric

D
ow

nl
oa

de
d 

08
/0

9/
13

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SPECTRAL DIVIDE AND CONQUER ALGORITHMS A1345

matrix Z = I + cX∗X in (5.1a). An implementation that exploits such a
structure should yield better performance.
We repeat that our experiments are all in MATLAB on a multicore platform,
and the performance evaluation with a parallel implementation requires fur-
ther study.

7. Conclusions and discussion. We have developed new spectral divide and
conquer algorithms for the symmetric eigendecomposition and the SVD that are back-
ward stable and much more efficient (by a factor at least 10) than previously known
algorithms of this type.

The rate of convergence of our QDWH-based methods is cubic and to our knowl-
edge they are one of the first practical matrix iterations with this property. We note
that the symmetric tridiagonal QR algorithm also converges cubically [47, Chap. 8] in
the generic case, but the convergence is in terms of a scalar (the bottom off-diagonal
element), as opposed to the whole matrix as in QDWH-based methods.

While our experiments suggest that our algorithms are not yet competitive in
speed with divide and conquer on the four-core machine used for the tests, our algo-
rithms have improved experimental accuracy. Moreover, our codes are pure M-files
and contain some inefficiencies (see section 6.3) and we used the MATLAB function
qr for computing the QR factorization, which does not minimize communication. Re-
cent studies in implementing communication-optimal QR factorization [19] suggest
that a communication-avoiding implementation of QR can run significantly faster
than standard QR. Our algorithms are QR-based and so can take direct advantage
of such progress.

A large part of the runtime of divide and conquer is consumed in the reduction
stage. This reduction is a bottleneck in parallel computing, as it is not known how to
do it in a way that minimizes communication. In particular, an implementation that
minimizes bandwidth cost is presented in [10], but it does not minimize latency. Hence
we expect that on massively parallel computing architectures in which communication
cost dominates arithmetic cost our QDWH-based algorithms may be preferred. This
will be investigated in future work.

Finally, we note that since QDWH-based algorithms use only basic matrix op-
erations (matrix multiplication, QR factorization, and Cholesky factorization), our
algorithms make it easier to do high-precision computations in MATLAB than con-
ventional algorithms for symmetric eigendecompositions and the SVD. Indeed, using
the Advanpix Multiprecision Computing Toolbox for MATLAB [1] we can easily run
QDWH-eig and QDWH-SVD with arbitrary precision to obtain results to correspond-
ingly high accuracy (this is not currently possible using the variable precision vpa
arithmetic of the MATLAB Symbolic Math Toolbox, since the chol and qr functions
do not support vpa arithmetic).

Appendix A. Flop counts.

A.1. Flop counts of QDWH for computing the polar decomposition.
As discussed in [31, Prob. 8.26] and [45], the flop count of one QDWH iteration (2.3),
when all the matrices are treated as dense, is 6mn2 + 8n3/3. However, some of the
matrices in (2.3) have sparsity structure. Specifically, because of the trailing identity
block in the QR factorization, Q2 = R−1 is upper triangular, and the Householder
reflectors involved in the QR factorization always have m + 1 nonzero elements. By
taking these into account we obtain a reduced flop count of QDWH as follows.
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Table A.1

QDWH iteration counts for varying κ2(A).

κ2(A) 1.1 1.5 10 103 105 1010 1016

# of (2.3) 0 0 0 1 1 2 2

# of (5.1) 2 3 4 3 4 3 4

First the Householder reflectors are applied to form
∏n−1

k=1 HkA = R. Since ap-
plying a Householder reflector with m + 1 nonzero elements to k vectors involves
4(m+ 1)k flops, forming R requires

∑n−1
k=1 4(n− k)(m + 1) = 2mn2 flops (we ignore

the O(m2) terms).

Next the Householder reflectors are accumulated to form
[Q1

Q2

]
=

∏n−1
k=1 Hn−k

[
In
0

]
.

We can see that computing in the order Hn−1(Hn−2(· · · (H1

[
In
0

]
) requires the fewest

flops:
∑n−1

k=1 4mk = 2mn2. Finally, forming Q1Q
∗
2 needs mn2 flops, as Q2 is upper

triangular. Thus the total arithmetic cost is 5mn2 flops.

If A is symmetric (as in QDWH-eig) Xk is also symmetric for all k ≥ 0, so we
can save 1

2n
3 flops in (2.3) by using the fact that Q1Q

∗
2 is also symmetric. The same

applies to the Cholesky-based implementation (5.1).

As discussed in section 5.6, for an efficient implementation of QDWH it is prefer-
able to switch to the Cholesky-based iteration (5.1) once we have ck ≤ 100, which
indicates κ2(Z) � 100. The number of the QR-based iterations (2.3) needed until
ck ≤ 100 depends on �0 � κ2(A)

−1, and hence so does the overall cost for com-
puting Up. Table A.1 shows for varying κ2(A) (assuming �0 = 1/κ2(A)) the flop
counts along with the number of iterations of (5.1) and (2.3). The middle row is
obtained by computing the first k for which ck ≤ 100, and the last row is the first k
for which |�k − 1| ≤ 10−16 minus the middle row. The overall flop count is given by
5mn2×(middle row) plus (3mn2 + n3/3)×(last row).

We note that efficient techniques for computing a QR factorization (or a null
space) of a matrix of the form

[
A
B

]
are given in [42], and similar techniques may be

effective for further reducing the flop count of QDWH.

A.2. Flop counts for QDWH-eig and QDWH-SVD. We assume that dur-
ing the run of QDWH-eig, σ is always taken so that A1 and A2 are both approximately
of dimension n

2 . Since one spectral division results in two submatrices of size ≈ n/2
and the arithmetic cost scales cubically with the matrix size, the overall arithmetic
cost is approximately

∑∞
i=0(2 · 2−3)iβ = 4

3β flops, where β is the number of flops
needed for one run of spectral divide and conquer for an n × n matrix. We next
evaluate a typical value of β.

For computing the polar decomposition A−σI = UpH , for practical dense matri-
ces of size sufficiently smaller than 105, an arbitrary splitting point σ on the interval
[−‖A‖2, ‖A‖2] yields (κ2(A − σI))−1 �) �0 > 10−5 with high probability (if the es-
timate �0 is too small we can choose a different σ), so by Table A.1 we find that
computing Up typically needs (5− 1

2 )n
3 + 4 · (3 + 1

3 − 1
2 )n

3 flops or fewer, where the
− 1

2n
3 terms are the savings that we get by exploiting symmetry.

Then subspace iteration follows, which in most cases needs just one iteration.
This involves computing the full QR factorization X ≈ [V̂1 V̂2] [R0 ] and forming the

symmetric matrix [V̂1 V̂2]
∗A[V̂1 V̂2]. We need

∑n/2
k=1 4(n − k)(n − k) = 7

6n
3 flops to

obtain the n
2 Householder reflectors, and another 3

2n
3 + 3

4n
3 = 9

4n
3 flops for applying

them to A on both sides [25, p. 213]. The final step of one recursion of QDWH-eig
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is to perform updates V̂1 := V̂1V̂21 and V̂2 := V̂2V̂22, where V̂21 and V̂22 are splitting
subspaces of A1 and A2. Each of these needs 1

2n
3 flops. Hence the total flop count of

one recursion of QDWH-eig is

β =
((

5− 1

2

)
+ 4 ·

(
3 +

1

3
− 1

2

)
+

7

6
+

9

4
+ 1

)
n3

=
(
20 +

1

4

)
n3,(A.1)

so the total arithmetic cost of QDWH-eig is 4
3β = 27n3. If we perform the Newton–

Schulz postprocessing, an additional 3n3 flops is needed.
For SN-eig, the cost for the polar decomposition is n3 per iteration if symmetry is

taken advantage of in the inversions [31, p. 336], so in the typical case κ2(A−σI) ≤ 105

in which seven iterations is needed, the overall cost is 4
3 (7+

7
6 +

9
4 +1)n3 = (15+ 2

9 )n
3.

For QDWH-SVD, the additional arithmetic cost is in computing an m× n polar
decomposition A = UpH . The flop count for computing Up can be determined from
Table A.1 as 5mn2×(middle row) plus (3mn2 + n3/3)×(last row), and computing H
by (2.4) requires 2mn2 flops. We conclude that the total flop count for QDWH-SVD
ranges from 8mn2 + (27 + 2/3)n3 (for κ2(A) ≈ 1) to 24mn2 + (28 + 1/3)n3 (for
κ2(A) 1). When m = n, these range roughly between 35n3 and 52n3 flops.

For SN-SVD applied to a square matrix, the polar decomposition needs 2n3 flops
per iteration for inversion of a nonsymmetric matrix, so in total the cost ranges from
(4 + 2 + 15 + 2

9 )n
3 = (21 + 2

9 )n
3 to (18 + 2 + 15 + 2

9 )n
3 = (35 + 2

9 )n
3.

Recall that when m > n we can perform an initial QR factorization A = QR
and then work on the n × n matrix R. Since this can be done for an extra 4mn2 −
4
3n

3 flops [25, p. 232], to minimize the arithmetic cost this process is recommended
whenever 24mn2 + (28 + 1/3)n3 > 4mn2 − 4

3n
3 + (52 + 1

3 )n
3, which is m > 1.13n.

Finally, when only the eigen/singular values are required, the accumulation of
the orthogonal factors is not necessary, and this leads to a reduced arithmetic cost
for QDWH-eig and for QDWH-SVD. However, in this case it is more likely that
the standard algorithms based on reduction to simpler forms will outperform them,
requiring just 4

3n
3 flops for computing eigenvalues and 4mn2 − 4

3n
3 flops for the

singular values.
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