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Abstract. The aim of electrical impedance tomography is to reconstruct the admittivity dis-
tribution inside a physical body from boundary measurements of current and voltage. Due to the
severe ill-posedness of the underlying inverse problem, the functionality of impedance tomography
relies heavily on accurate modelling of the measurement geometry. In particular, almost all recon-
struction algorithms require the precise shape of the imaged body as an input. In this work, the
need for prior geometric information is relaxed by introducing a Newton-type output least squares
algorithm that reconstructs the admittivity distribution and the object shape simultaneously. The
method is built in the framework of the complete electrode model and it is based on the Fréchet
derivative of the corresponding current-to-voltage map with respect to the object boundary shape.
The functionality of the technique is demonstrated via numerical experiments with simulated mea-
surement data.

Key words. electrical impedance tomography, shape derivative, model inaccuracies, output
least squares, complete electrode model, unknown boundary shape

AMS subject classifications. 65N21, 35R30, 35J25

1. Introduction. Electrical impedance tomography (EIT) is a noninvasive imag-
ing technique which has applications, e.g., in medical imaging, process tomography,
and nondestructive testing of materials [3, 5, 31]. The objective of EIT is to recon-
struct the admittivity distribution inside a physical body Ω from boundary measure-
ments of current and voltage. The most accurate model for EIT is the complete elec-
trode model (CEM), which takes into account electrode shapes and contact impedances
at electrode-object interfaces [6].

A real-life measurement setting of EIT typically contains more unknowns than the
mere admittivity distribution: The exact electrode locations, the contact impedances
and the shape of the imaged object are not necessarily known accurately. (As an exam-
ple, consider a medical application where the body shape and the contact impedances
vary from patient to patient.) These kinds of inaccuracies comprise a considerable
difficulty for establishing EIT as a practical imaging modality since it is well known
that even slight mismodelling can quite easily ruin the reconstruction of the admit-
tivity [2, 4, 21]. The problems resulting from the aforementioned model uncertainties
have partly been resolved in earlier works: Two alternative ways to handle unknown
contact impedances have been introduced in [24, 33], and fine-tuning the information
on electrode positions has been considered in [8]. A brief review of the approaches to
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tackling the problem with an unknown object boundary shape is given in the following;
for a more extensive discussion, see [26].

Undoubtedly the most common way to treat problems resulting from an inaccu-
rately known boundary shape is the use of difference imaging, where the alteration in
the admittivity distribution is reconstructed on the basis of the difference between EIT
measurements corresponding to two time instants (or frequencies) [1]. The method
is based on the idea that the modeling errors are partly removed when difference
data are used — given that the boundary shape remains unchanged between the two
measurements. However, the difference imaging approach is highly approximative,
because it relies on a linearization of the highly nonlinear forward model of EIT.
Moreover, even if difference data are available, the boundary shape may also have
changed between the measurements. This is the case, e.g., when imaging a human
chest during a breathing cycle. A successful approach to coping with an unknown
object boundary in absolute EIT imaging was suggested by Kolehmainen, Lassas and
Ola [19, 20]. Their method is based on allowing slightly anisotropic conductivities and
on the use of sophisticated mathematical instruments such as quasiconformal maps
and Teichmüller spaces. In [25] the so-called approximation error approach [18] was
adapted to the compensation for errors resulting from an inaccurately known bound-
ary shape in the framework of EIT. The approximation error method is based on
the Bayesian inversion paradigm; the governing idea is to represent the error due to
inaccurate modeling of the target as an auxiliary noise process. The (second order)
statistics of the modeling error are approximated via simulations based on prior prob-
ability models for the admittivity and the boundary shape. The application of EIT to
imaging of human thorax was considered in [25], where the approximated statistics of
the modeling error were computed based on an atlas of anatomical CT chest images.
In [26], the method was further developed to allow the reconstruction of the boundary
shape. See also [29, 30], where an optimization based technique was applied to the
estimation of partially unknown boundary shape in process tomography applications.

This work introduces an iterative Newton-type output least squares algorithm
that tolerates uncertainties in the geometry of the imaged object. To be more precise,
our aim is to include the estimation of the shape of the object boundary as a part
of the reconstruction method. The required Fréchet derivative of the measurement
map of the CEM with respect to the exterior boundary shape is obtained with the
help of domain derivative techniques stemming from [22, 12, 13, 16]; see also [10] for a
general theory of shape differentiation. However, unlike in [22, 12, 13, 16], the elliptic
boundary value problem defining the derivative falls outside the standard H1(Ω)-
based variational theory due to Dirac delta type boundary conditions on the edges of
the electrodes. This difficulty is tackled following the guidelines in [8], where Fréchet
derivatives with respect to electrode shapes were considered, resulting in a well-posed
‘derivative problem’ that is uniquely solvable in H1−ε(Ω), ε > 0.

Our approach is made computationally more tractable by introducing a dual
method for sampling the H1−ε-regular shape derivative; in particular, it turns out that
the reconstruction algorithm can be implemented without having to solve any forward
problems with distributional boundary conditions. This observation is concretized by
the numerical examples clearly demonstrating that the electrode measurements of
EIT carry information on both the admittivity distribution and the object boundary
shape. The numerical studies are based on simulated measurement data and carried
out in three-dimensions, with the corresponding parameter choices founded on the
Bayesian paradigm [18].
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This text is organized as follows. Section 2 recalls the CEM and its fundamental
properties. The main Fréchet differentiability result is formulated in Section 3 and its
proof is given in Section 4. Section 5 introduces the reconstruction algorithm, which is
then tested numerically in Section 6. Finally, Section 7 lists the concluding remarks.

2. Complete electrode model. Let Ω ⊂ Rn, n = 2 or 3, be a bounded domain
and assume that its boundary ∂Ω is an orientable C∞-manifold. We denote by σ : Ω→
Cn×n the electrical admittivity distribution of Ω and assume that it satisfies the
following, physically reasonable conditions [3]:

σ = σT, Re (σξ · ξ) ≥ C1|ξ|2, |σξ · ξ| ≤ C2|ξ|2 (2.1)

for some constants C1, C2 > 0 and for all ξ ∈ Cn almost everywhere in Ω.
Assume that the boundary ∂Ω is partially covered with M ∈ N \ {1} well-

separated, open, bounded and connected electrodes {Em}Mm=1, i.e.,

Em ⊂ ∂Ω, m = 1, . . . ,M, and Ej ∩ Ek = ∅, j 6= k. (2.2)

The electrodes are modelled as ideal conductors. The union of the electrodes is de-
noted by E = ∪mEm, and the frequency domain representations of the time-harmonic
electrode current and potential patterns by the vectors I = [Im]Mm=1 and U = [Um]Mm=1

of CM , respectively, where Im, Um ∈ C correspond to the measurements on the mth
electrode. Take note that the current vector I, actually, belongs to the subspace

CM� :=

{
[c1, . . . , cM ] ∈ CM

∣∣∣ M∑
m=1

cm = 0

}
(2.3)

due to to the current conservation law. The contact impedances (cf. [6]) that charac-
terize the thin and highly resistive layers at the electrode-object interfaces are mod-
elled by z ∈ CM that is assumed to satisfy

Re zj > 0, j = 1, . . . ,M. (2.4)

According to the CEM [6, 28], the pair (u, U) ∈ H1(Ω) := (H1(Ω) ⊕ CM )/C,
composed of the electromagnetic potential within Ω and those on the electrodes, is
the unique solution of the elliptic boundary value problem

∇ · σ∇u = 0 in Ω,

ν · σ∇u = 0 on ∂Ω \ E,

u+ zmν · σ∇u = Um on Em, m = 1, . . . ,M,∫
Em

ν · σ∇u dS = Im, m = 1, . . . ,M,

(2.5)

for a given net electrode current pattern I ∈ CM� and with ν = ν(x) denoting the
exterior unit normal of ∂Ω. The definition of H1(Ω) as a quotient space emphasizes
the freedom in the choice of the ground level of potential; in other words, one can
never measure absolute potentials, only potential differences.

The weak formulation of the CEM forward problem (2.5) is to find (u, U) ∈ H1(Ω)
that satisfies [28]

B{(u, U), (v, V )} =

M∑
m=1

ImV m for all (v, V ) ∈ H1(Ω), (2.6)
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where the sesquilinear form B : H1(Ω)×H1(Ω)→ C is defined by

B{(u, U), (v, V )} =

∫
Ω

σ∇u · ∇v dx+

M∑
m=1

1

zm

∫
Em

(Um − u)(V m − v) dS. (2.7)

The form B is concordant with the natural quotient topology of H1(Ω) (cf. [15, Corol-
lary 2.6]), i.e., for all (u, U), (v, V ) ∈ H1(Ω)

|B{(u, U), (v, V )}| ≤ C1‖(u, U)‖H1(Ω)‖(v, V )‖H1(Ω),

ReB{(v, V ), (v, V )} ≥ C2‖(v, V )‖2H1(Ω),

where

‖(v, V )‖H1(Ω):= inf
c∈C

{
‖v − c‖2H1(Ω)+

M∑
m=1

|Vm − c|2
}1/2

.

The unique solvability of (2.5) follows by combining the above estimates and the
obvious boundedness of the antilinear functional on the right-hand side of (2.6) with
the Lax–Milgram lemma [15, 28]. This procedure also provides the estimate

‖(U, u)‖H1(Ω) ≤ C|I|, (2.8)

where the constant of continuity C = C(Ω, σ, z) can be chosen independently of the
electrodes if it is assumed that

min
1≤m≤M

|Em| ≥ c (2.9)

for some constant c > 0 (cf., e.g., [11, (2.4)]). In the rest of this work, we make the
assumption (2.9) on the considered electrode configurations implicitly.

An ideal measurement corresponding to the CEM provides the electrode voltages
U ∈ CM/C for some applied current pattern I ∈ CM� . For a given measurement
setting {Ω, E, σ, z}, we thus define the measurement operator R : CM� → CM/C by

R : I 7→ U. (2.10)

Obviously, R is linear and bounded (cf. (2.5) and (2.8)), with a constant of continuity
that can be chosen independently of the electrode configuration under the assump-
tion (2.9).

To conclude this section, we note that for smooth σ the interior potential has
more regularity, namely

ν · σ∇u|E ∈ H1(E), ν · σ∇u|∂Ω ∈ H1/2−ε
� (∂Ω), u ∈ H2−ε(Ω)/C

for all ε > 0, as reasoned in [8, Remark 1]. When appropriate, we emphasize the last
statement by writing (u, U) ∈ H2−ε(Ω) := (H2−ε(Ω)⊕ CM )/C.

3. Shape derivative. In this section, we introduce the derivative of the CEM
measurement map with respect to perturbations of the object boundary ∂Ω. We begin
by specifying how exactly the boundary is perturbed.

For h ∈ C1(∂Ω,Rn) we define

F [h](x) = x+ h(x), x ∈ ∂Ω,
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and use the abbreviation ∂Ωh for the perturbed boundary, that is,

∂Ωh = F [h](∂Ω) = {y ∈ Rn | y = F [h](x) for some x ∈ ∂Ω} .

The open, origin-centered ball of radius d > 0 in the topology of C1(∂Ω,Rn) is denoted
by Bd, i.e.,

Bd =
{
h ∈ C1(∂Ω,Rn)

∣∣ ‖h‖C1(∂Ω,Rn)< d
}
.

Following [10], we introduce a special family of diffeomorphisms of Rn to itself:

F1
0 =

{
F : Rn → Rn

∣∣ F − id ∈ C1
0 (Rn,Rn) and F−1 ∈ C1(Rn,Rn)

}
,

where C1
0 (Rn,Rn) denotes the space of continuously differentiable vector fields that

together with their partial derivatives vanish at infinity. In particular, when equipped
with the natural norm, C1

0 (Rn,Rn) is a Banach space (cf. [10, p. 68]). The following
proposition lists some fundamental properties of F [h] = id + h for h ∈ Bd with small
enough d > 0.

Proposition 3.1. There exists d = d(Ω) > 0 such that the following hold:
(a) For every h ∈ Bd, ∂Ωh is the boundary of a bounded C1-domain Ωh, and the

mapping F [h] is a C1-diffeomorphism from ∂Ω onto ∂Ωh;
(b) There exists an extension operator E : Bd → C1

0 (Rn,Rn) such that

E [h]|∂Ω = h, ‖E [h]‖C1(Rn,Rn)≤ C(Ω)‖h‖C1(∂Ω,Rn)

and the extended mapping

F [E [h]] = id + E [h]

belongs to F1
0 for all h ∈ Bd.

Proof. The first part of the claim follows from an application of the implicit
function theorem in local coordinates on ∂Ω. The second part can be deduced, e.g.,
by first forcing h to zero in a tubular neighborhood of ∂Ω and then using similar
arguments as on page 78 of [10].

If there is no danger of a confusion, we abuse the notation by denoting the ex-
tensions E [h] and F [E [h]] by the original symbols h and F [h], respectively. Moreover,
we assume implicitly that d > 0 is as introduced in Proposition 3.1.

Obviously, the measurement operator of the CEM may be considered as a map
from Bd × CM� to CM/C, i.e.,

R : (h, I) 7→ U [h], (3.1)

where (u[h], U [h]) ∈ H1(Ωh) is the unique solution of (2.5) when Ω is replaced by
Ωh and the electrodes Em by Ehm := F [h](Em) ⊂ ∂Ωh, m = 1, . . . ,M . To make
this definition unambiguous and to simplify the analysis that follows, we assume that
σ ∈ C∞(Rn,Cn×n) with the bounds (2.1) satisfied everywhere in Rn, i.e., that the
admittivity distribution is defined in everywhere in Rn — or at least in some proper
neighborhood of Ω. As a further simplification, we also assume that (in the three-
dimensional case) the electrode boundaries ∂Em, m = 1, . . . ,M , are smooth curves.

We denote by hτ and hν the tangential (vector) and normal (scalar) components
of h ∈ Bd, respectively, that is, we have the (unique) decomposition h = hτ + hνν.
One might expect that it is enough to consider perturbations that belong to the
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normal bundle of the boundary, i.e., ones that have vanishing tangential components.
However, this turns out to be a false intuition, because tangential vector fields typically
affect the measurement map in the ‘first order’ by moving the electrodes (cf. [8]) —
even though they only define ‘second order’ perturbations of the object boundary ∂Ω
itself.

Theorem 3.2. Under the above assumptions, the operator R : Bd×CM� → CM/C
is Fréchet differentiable at the origin with respect to the first variable, i.e., there exists
a bounded bilinear operator R′ : C1(∂Ω,Rn)× CM� → CM/C such that

lim
h→0

1

‖h‖C1(∂Ω,Rn)
‖R[h]−R[0]−R′h‖L(CM

� ,CM/C) = 0

in C1(∂Ω,Rn).
In the following, we will prove Theorem 3.2 in three dimensions, i.e. for n = 3,

which is the more challenging case. The two-dimensional counterpart can be obtained
by following a similar line of reasoning.

The derivative R′ of Theorem 3.2 can, in fact, be given explicitly. To this end,
let H ∈ C∞(∂Ω) be the mean curvature function defined so that it is positive if the
surface turns away from the exterior unit normal, and consider the bounded surface
divergence operator (cf., e.g., [7])

Div : [Hs(∂Ω)]nτ → Hs−1(∂Ω), s ∈ R, (3.2)

with the weak definition

〈Div v, ϕ〉∂Ω = −〈v,Gradϕ〉∂Ω, ϕ ∈ C∞(∂Ω),

where Grad denotes the surface gradient (cf., e.g., [10]). We also introduce a family
of distributions {δm}Mm=1 ⊂ H−1/2−ε(∂Ω), ε > 0, defined through

〈δm, v〉∂Ω =

∫
∂Em

v ds, v ∈ H1/2+ε(∂Ω),

for m = 1, . . . ,M . Notice that any v ∈ H1/2+ε(∂Ω), ε > 0, has a well defined
restriction v|∂E ∈ Hε(∂E) due to the trace theorem, and thus the definition of the
family {δm}Mm=1 is unambiguous. Moreover, we denote the characteristic function of
Em ⊂ ∂Ω by χm, m = 1, . . . ,M , and the unit exterior normal of ∂E in the tangent
bundle of ∂Ω by ν∂E .

With these tools in hand, let us consider the boundary value problem

∇ · σ∇u′ = 0 in Ω,

ν · σ∇u′ −
M∑
m=1

1

zm
(U ′ − u′)χm = f1 +

m∑
m=1

1

zm
(f2χm + f3δm) on ∂Ω,∫

Em

(U ′m − u′) dS = −
∫
Em

f2 dS −
∫
∂Em

f3 ds, m = 1, . . . ,M.

(3.3)
Here, the inputs f1 ∈ H−1/2−ε(∂Ω), f2 ∈ H1/2−ε(E) and f3 ∈ H1−ε(∂E) are defined
with the help of (u, U) ∈ H2−ε(Ω), i.e., the unperturbed solution of (2.5):

f1 = Div(hν(σ∇u|∂Ω)τ ),

f2|Em
= hν

(
(n− 1)H(Um − u)− ∂u

∂ν

)∣∣∣
Em

,

f3|∂Em = (h · ν∂E)(Um − u)|∂Em .
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Notice that the claimed regularity of f1, f2 and f3 follows from (3.2) and (consecutive)
applications of the trace theorem. It turns out that problem (3.3) is uniquely solvable
in H1−ε(Ω), and that the corresponding solution defines the Fréchet derivative of
Theorem 3.2.

Theorem 3.3. Under the assumptions of Theorem 3.2, the boundary value
problem (3.3) has a unique solution (u′[h], U ′[h]) ∈ H1−ε(Ω), ε > 0, for any
h ∈ C1(∂Ω,Rn). Moreover, the Fréchet derivative of Theorem 3.2, i.e., R′ :
C1(∂Ω,Rn)× CM� → CM/C, is given by

R′ : (h, I) 7→ U ′[h].

At first sight it may seem that Theorem 3.3 is not very practical as it defines the
Fréchet derivative of R with the help of a boundary value problem that falls outside
the H1-based variational theory. Fortunately, there also exists a dual approach for
sampling the shape derivative.

Corollary 3.4. Let (ũ, Ũ) ∈ H2−ε(Ω), ε > 0, be the solution of (2.5) for some
electrode current pattern Ĩ ∈ CM� . Then, for any (h, I) ∈ C1(∂Ω,Rn) × CM� it holds
that

M∑
m=1

(R′(h, I))mĨm =−
∫
∂Ω

hν(σ∇u)τ · (∇ũ)τ dS (3.4)

−
M∑
m=1

1

zm

∫
Em

hν

(
(n− 1)(Um − u)H − ∂u

∂ν

)
(Ũm − ũ) dS

−
M∑
m=1

1

zm

∫
∂Em

(h · ν∂E)(Um − u)(Ũm − ũ) ds,

where (u, U) ∈ H2−ε(Ω) is the solution of (2.5).

4. Proof of the main result. Before moving on to prove Theorems 3.2 and
3.3 and Corollary 3.4, we give a brief summary of the variational technique on which
the proof is based. A more complete reasoning in a slightly different framework can
be found in [8, Section 5.1].

Let F = F [h] = id + h ∈ F1
0 , with h ∈ Bd, be as in the previous section. We

introduce a pullback operator F ∗ : H1(Ωh) → H1(Ω) defined by F ∗v = v ◦ F |Ω; it
is easy to see that F ∗ is a linear isomorphism. A simple change of variables applied
to the variational equation defining (u[h], U [h]) ∈ H1(Ωh), cf. (3.1), shows that the
difference of the pullback pair (F ∗u[h], U [h]) ∈ H1(Ω) and the unperturbed solution
(u, U) = (u[0], U [0]) ∈ H1(Ω) satisfies (cf., e.g., [16])

B{(F ∗u[h]− u, U [h]− U), (v, V )}

=

∫
Ω

(σ − σ∗[h])∇(F ∗u[h]) · ∇v dx

+

M∑
m=1

1

zm

∫
Em

(Um[h]− F ∗u[h])(V m − v)(1− |JacF |) dS (4.1)

for all (v, V ) ∈ H1(Ω). Here, the pullback admittivity σ∗[h] is defined as

σ∗[h] = |JF | J−1
F (F ∗σ)(J−1

F )T,
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JF is the Jacobian matrix of F , |JF | is the absolute value of its determinant, and JacF
is the surface Jacobian determinant of the restriction F |∂Ω : ∂Ω → ∂Ωh. Moreover,
it follows from the perturbation analysis in [12, 13] that modulo O(‖h‖2C1(Rn,Rn)) it
holds that

σ − σ∗[h] = σJT
h + Jhσ − (h · ∇+∇ · h)σ, (4.2)

1− |JacF | = −(n− 1)Hhν −Div hτ , (4.3)

where h · ∇σ is defined as the matrix (h · ∇σij)ni,j=1. In consequence, in order to
estimate the difference (F ∗u[h] − u, U [h] − U), it seems reasonable to consider the
bounded sesquilinear functional Λ : C1(Rn,Rn) × H1(Ω) → C defined by (cf. [8,
(19)])

Λ[h](v, V ) =

∫
Ω

(
σJT

h + Jhσ − (h · ∇+∇ · h)σ
)
∇u · ∇v dx

−
M∑
m=1

1

zm

∫
Em

(Um − u)(V m − v)((n− 1)Hhν + Div hτ ) dS,

and the corresponding h-parametrized variational problem

B{(w[h],W [h]), (v, V )} = Λ[h](v, V ) for all (v, V ) ∈ H1(Ω), (4.4)

which has a unique solution in H1(Ω) due to the Lax–Milgram lemma. The following
proposition is a straightforward variation of [8, Proposition 5.4].

Proposition 4.1. Let (u, U) ∈ H1(Ω) and (u[h], U [h]) ∈ H1(Ωh) be as defined in
Section 3 and (w[h],W [h]) ∈ H1(Ω) the unique solution of (4.4). Then, the estimate

‖(F ∗u[h]− u, U [h]− U)− (w[h],W [h])‖H1(Ω)≤ C|I|‖h‖2C1(∂Ω,Rn)

holds with a constant C > 0 that can be chosen independently of I ∈ CM� and h ∈ Bd.
Although the map h 7→ W [h] is a first order approximation of h 7→ (R[h] −

R[0])I = U [h] − U [0] around the origin, it does not provide a satisfactory definition
for the Fréchet derivative h 7→ R′[h]. Indeed, although h 7→W [h] is clearly linear with
respect to the extension h = E [h] ∈ C1

0 (Rn,Rn), it is not self-evident that the same
also holds for the original perturbation h ∈ C1(∂Ω,Rn) as required by Theorem 3.2.
Moreover, from the computational view point, the extension of h to the whole of Rn
is a nuisance that one wants to avoid.

To get rid of this problem, we proceed as in [8] and modify the first component of
(w[h],W [h]) in an appropriate way. This procedure involves including a directional
derivative of the interior potential component of the unperturbed solution (u, U) ∈
H2−ε(Ω) as an argument of the sesquilinear form B : H1(Ω)×H1(Ω)→ C. Since the
derivatives of u are merely in H1−ε(Ω) such analysis cannot be carried out without any
modifications. For this reason, we introduce a sequence of smooth approximations for
u ∈ H2−ε(Ω)/C, and subsequently also for (w[h],W [h]) ∈ H1(Ω). As in [8, Subsection
5.4], we may pick a sequence (u(j), U (j)) ∈ (C∞(Ω)⊕CM )/C, j = 1, 2, . . . , such that

∇ · σ∇u(j) = 0 in Ω and lim
j→∞

(u(j), U (j)) = (u, U) in H2−ε(Ω). (4.5)

Moreover, we define (w(j)[h],W (j)[h]) ∈ H1(Ω) to be the unique element of H1(Ω)
that solves the variational problem

B{(w(j)[h],W (j)[h]), (v, V )} = Λj [h](v, V ) for all (v, V ) ∈ H1(Ω), (4.6)
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where the antilinear functional Λj [h] : H1(Ω) → C is defined via replacing (u, U) by
(u(j), U (j)) in the definition of Λ[h]. Through a slight variation of the argument in
the proof of [8, Lemma 5.7], one easily obtains that

lim
j→∞

(w(j)[h],W (j)[h]) = (w[h],W [h]) in H1(Ω). (4.7)

We proceed by defining the ‘augmented interior derivatives’ by

w̃[h] = w[h]− h · ∇u, w̃(j)[h] = w(j)[h]− h · ∇u(j), j = 1, 2, . . . . (4.8)

Due to (4.5) and (4.7), it follows that

lim
j→∞

(w̃(j)[h],W (j)[h]) = (w̃[h],W [h]) in H1−ε(Ω) (4.9)

for any ε > 0 (cf. [23]). In the following, we will show that (w̃[h],W [h]) ∈ H1−ε(Ω) is
the unique solution of (3.3) for h ∈ Bd. In particular, the pair (w̃[h],W [h]) turns out
to be independent of the extension of h ∈ C1(∂Ω,Rn) to the whole of Rn.

Proof of Theorems 3.2 and 3.3. In the first part of the proof, we show that the
derivative problem (3.3) is uniquely solvable, with the corresponding solution being
the above constructed pair (w̃[h],W [h]) ∈ H1−ε(Ω) if h ∈ Bd. First of all, we note
that the uniqueness of the solution can be proved in exactly the same way as in the
first part of the proof of [8, Theorem 6.1], which means that we can focus solely on
the existence. In case that ν · h ≡ 0 and h ∈ Bd, the fact that (w̃[h],W [h]) is a
solution to (3.3) follows from the second and third parts of the proof of [8, Theorem
6.1]. Due to the linearity of the right-hand side of (3.3) with respect to h, the unique
solvability of (3.3) thus follows if we are able to show that (w̃[h],W [h]) is a solution
also if h = hνν ∈ Bd. (For a general h /∈ Bd the unique solution of (3.3) can then
be obtained by rescaling the corresponding solution for h/c ∈ Bd with large enough
c > 0.)

(1) Assume that h = hνν ∈ Bd and let us consider what kinds of variational
equations (w̃(j)[h],W (j)[h]) ∈ H1(Ω) satisfies. For now, let ϕ ∈ C∞(Ω) and V ∈ CM
be arbitrary. Recalling first (4.8) and the definition of (w(j)[h],W (j)[h]) ∈ H1(Ω),
and then using standard vector calculus, the first part of (4.5) and the divergence
theorem, we obtain (cf., e.g., [16])

B
{

(w̃(j)[h],W (j)[h]), (ϕ, V )
}

=

∫
∂Ω

hνν ·
(
σ∇u(j) ∂ϕ

∂ν
− (σ∇u(j) · ∇ϕ)ν

)
dS

+

M∑
m=1

1

zm

∫
Em

hν
∂u(j)

∂ν
(V m − ϕ) dS (4.10)

−
M∑
m=1

n− 1

zm

∫
Em

hνH(U (j)
m − u(j))(V m − ϕ) dS.

By dividing ∇u(j) and ∇ϕ into tangential and normal components on ∂Ω, the first
integrand further simplifies as

hνν ·
(
σ∇u(j) ∂ϕ

∂ν
− (σ∇u(j) · ∇ϕ)ν

)
= −hν(σ∇u(j))τ · (∇ϕ)τ .
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Due to (4.5) and the regularity of the unperturbed solution (u, U) ∈ H2−ε(Ω), we
may take the limit j →∞ in (4.10), yielding

lim
j→∞

B
{

(w̃(j)[h],W (j)[h]), (ϕ, V )
}

=−
∫
∂Ω

hν(σ∇u)τ · (∇ϕ)τ dS

+

M∑
m=1

1

zm

∫
Em

hν
∂u

∂ν
(V m − ϕ) dS (4.11)

−
M∑
m=1

n− 1

zm

∫
Em

hνH(Um − u)(V m − ϕ) dS.

To prove the first equality of (3.3), let V = 0 and ϕ ∈ C∞0 (Ω) be arbitrary.
According to the definition of the sesquilinear form B, the identity (4.10) and the
definition of distributional differentiation (cf., e.g., [9]), it holds that〈

∇ · σ∇w̃(j)[h], ϕ
〉

Ω
= 0. (4.12)

As the elliptic differential operator ∇ · σ∇ : H1−ε(Ω)/C → H−1−ε(Ω) is continuous
for any ε ∈ R such that ε − 1/2 /∈ Z [23, Chapter 1, Proposition 12.1], we may pass
the limit inside the brackets of (4.12). Consequently, ∇ · σ∇w̃[h] = 0 is satisfied in
the sense of distributions in Ω.

Assume next that ϕ ∈ C∞(Ω) and let still V = 0. The (generalized) Green’s
formula (cf. [9, p. 382, Corollary 1]) and (4.12) indicate

B
{

(w̃(j)[h],W (j)[h]), (ϕ, 0)
}

=
〈
ν · σ∇w̃(j)[h], ϕ

〉
∂Ω

+

M∑
m=1

1

zm

∫
Em

(w̃(j)[h]−W (j)
m [h])ϕdS.

Moreover, according to [23, Chapter 2, Theorem 7.3], the Neumann trace map v 7→
ν · σ∇v|∂Ω is well-defined and bounded from the closed subspace{

v ∈ H1−ε(Ω)/C
∣∣ ∇ · σ∇v = 0

}
⊂ H1−ε(Ω)/C

to H−1/2−ε(∂Ω). Thus, (4.9) and the trace theorem give

lim
j→∞

B
{

(w̃(j)[h],W (j)[h]), (ϕ, 0)
}

=
〈
ν · σ∇w̃[h], ϕ

〉
∂Ω

+

M∑
m=1

1

zm

∫
Em

(w̃[h]−Wm[h])ϕdS.

On the other hand, by (4.11) it also holds that

lim
j→∞

B
{

(w̃(j)[h],W (j)[h]), (ϕ, 0)
}

=−
∫
∂Ω

hν(σ∇u)τ · (∇ϕ)τ dS

−
M∑
m=1

1

zm

∫
Em

hν
∂u

∂ν
ϕ dS

+

M∑
m=1

n− 1

zm

∫
Em

hνH(Um − u)ϕdS.
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As (∇ϕ)τ = Gradϕ on ∂Ω (cf., e.g., [7]) and C∞(Ω)|∂Ω is dense in Hs(∂Ω) for
any s ∈ R, this proves that (w̃[h],W [h]) satisfies the second equation of (3.3), since
h · ν∂E = 0 by assumption.

To prove the remaining, third condition of (3.3), let V be the mth coordinate
vector and choose ϕ ≡ 0. Using the definition of B, (4.9) and (4.10), we conclude
that ∫

Em

(Wm[h]− w̃[h])dS = −
∫
Em

hν

(
(n− 1)H(Um − u)− ∂u

∂ν

)
dS. (4.13)

Since m was chosen arbitrarily, it follows that (w̃[h],W [h]) ∈ H1−ε(Ω) is a solution
to (3.3) for h ∈ Bd.

(2) Let us then prove that the mapping

R′ : (h, I) 7→ U ′[h], C1(∂Ω,Rn)× CM� → CM/C,

really defines the Fréchet derivative of Theorem 3.2 as claimed in Theorem 3.3. First
of all, it is easy to see that R′ is bilinear since the right-hand side of (3.3) depends
bilinearly on h ∈ C1(∂D,Rn) and (u, U), and the unperturbed solution (u, U) itself
depends linearly on the applied current pattern. Moreover, due to Proposition 4.1
and since U ′[h] = W [h] for h ∈ Bd by the first part of the proof, we may estimate as
follows:

‖U [h]− U − U ′[h]‖CM/C ≤ C|I|‖h‖2C1(∂Ω,Rn), h ∈ Bd,

which completes the proof as C > 0 can be chosen independently of I ∈ CM� and
h ∈ Bd. �

We complete this section by providing a proof for Corollary 3.4.
Proof of Corollary 3.4. As in the previous proof, it is enough to consider small

h in the normal bundle of ∂Ω, i.e., h = hνν ∈ Bd, by the virtue of the linearity
of the claimed sampling formula with respect to h and the fact that for tangential
perturbations the assertion follows through the same line of reasoning as [8, Corollary
4.2].

Let Ĩ ∈ CM� and (ũ, Ũ) ∈ H1(Ω) be as in Corollary 3.4 and consider h = hνν ∈ Bd.
Due to Theorem 3.3, the fact that (u′[h], U ′[h] = (w̃[h],W [h]), the limit (4.9) and the
variational formulation (2.6) corresponding to the current pattern Ĩ, it holds that

M∑
m=1

Ĩm(R′(h, I))m = lim
j→∞

M∑
m=1

ĨmW
(j)
m [h] = lim

j→∞
B
{

(w̃(j)[h],W (j)[h]), ( ũ, Ũ)
}
.

On the other hand, following the same line of reasoning as in (4.11) — and approxi-
mating ũ by a sequence of smooth functions {ϕj} — we obtain that

lim
j→∞

B
{

(w̃(j)[h],W (j)[h]), ( ũ, Ũ)
}

=−
∫
∂Ω

hν(σ∇u)τ · (∇ũ)τdS

+

M∑
m=1

1

zm

∫
Em

hν
∂u

∂ν
(Ũm − ũ) dS

−
M∑
m=1

n− 1

zm

∫
Em

hνH(Um − u)(Ũm − ũ) dS,

which is the normal bundle version of (3.4) and thus completes the proof. �
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5. Algorithmic implementation. In this section, we introduce our numeri-
cal algorithm for the simultaneous reconstruction of the admittivity distribution and
the object boundary. It is assumed that the object of interest Ω ⊂ R3 is a cylin-
der D × (0, h0), where D ⊂ R2 is a simply connected and bounded cross-section
shape, and h0 > 0 the known height of the body. The electrodes are of the form
Em = γm× (0, h0), with each γm being a connected part of ∂D with a known length,
i.e., the electrodes are rectangular, homogeneous in the vertical direction and assumed
to be of a known width and the same height as the object itself. In particular, if the
admittivity distribution were also homogeneous in the vertical direction — as it is
in our numerical experiments —, the measurement setting could be modelled by a
two-dimensional forward problem. Be that as it may, we carry out all numerical com-
putations in three dimensions in order to demonstrate the feasibility of our method
in a realistic framework. Moreover, we only consider real-valued and isotropic elec-
trical admittivities, i.e., σ : Ω→ R+. Note that the above assumptions on the target
are made only for the sake of simplicity; the generalization of the algorithm to more
general three-dimensional settings is conceptually straightforward.

In the following three sections we outline the ideas behind our reconstruction
method, but do not discuss all details about, e.g., the form of the smoothness prior
for the admittivity; see, e.g., [17, 18] for more information.

5.1. Parametrization of the unknowns. In many practical situations the
examined body has a star-shaped cross-section. In consequence, we search for the
unknown boundary ∂D as a C∞-curve parametrized by

γα(φ) =

[
α0 +

N∑
j=1

(αj cos jφ+ αj+N sin jφ)

] [
cosφ
sinφ

]
, α0, . . . , α2N ∈ R, (5.1)

where φ is the polar angle and the coefficients α = [α0, . . . , α2N ]T ∈ R2N+1 are as-
sumed to be such that the curve does not intersect itself. Let Dα denote the bounded
set of R2 with ∂Dα = γα([0, 2π]) and furthermore define Ωα = Dα × (0, h0). As
it is assumed that the width of the (rectangular) electrodes is known, we may thus
parametrize them by their initial polar angles θm, m = 1, . . . ,M , in the counterclock-
wise direction. The vector containing these angles is denoted by θ = [θ1, . . . , θM ]T.
We assume that the electrodes are numbered in the natural order, that is, the terminal
angle of an electrode precedes the initial angle of the following one.

Approximate forward solutions to (2.5) in Ωα are computed by a finite element
method (FEM). The FEM solver used in this work is an adaptation of the implemen-
tation in [32]. In the FE scheme, we discretize the computational domain Ωα into
tetrahedrons and approximate the distributions of admittivity and potential in piece-
wise linear and quadratic bases, respectively. In our reconstruction algorithm, the
geometric parameters α and θ change iteratively and consequently Ωα and its FEM
mesh also change at each step. In order to fix the admittivity discretization indepen-
dently of such deformations, we pick a sufficiently large cylinder Σ = B× (0, h0), with
a discoidal base B inside which we let the cross-section Dα evolve. Given this back-
ground cylinder, we look for admittivities of the form

∑
k σkϕk, where {σk} ⊂ (0,∞)

and {ϕk} is the piecewise linear basis related to a fixed tetrahedral mesh of Σ. The
admittivity values are transformed between the fixed ‘reconstruction mesh’ of Σ and
the varying ones in Ωα via linear interpolation.

5.2. Bayesian framework. Although our reconstruction algorithm, which will
be introduced in Section 5.3, cannot be considered purely Bayesian, its underlying
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motivation is statistical, and thus the basic ideas behind Bayesian inversion are out-
lined in the following. In the Bayesian approach, all quantities are considered as
random variables with some assumed prior probability distributions. Combining the
information from the prior with the measurement data, one gets the updated posterior
distribution for the parameters of interest [18].

Let {I(j)}M−1
j=1 be a basis of RM� . The voltages measured at the electrodes on the

boundary of Ωα are modelled as

V (j) = U (j)(σ, α, θ) + η(j) ∈ RM , j = 1, . . . ,M − 1. (5.2)

Here, (u(j)(σ, α, θ), U (j)(σ, α, θ)) ∈ H1(Ωα) ⊕ RM� is the solution of (2.5) in the do-
main Ωα with a real-valued admittivity σ, when the net electrode current pattern
I(j) is injected through the M electrodes parametrized by their initial polar angles
θ ∈ RM . Notice that we have fixed the ground level of potential by requiring that
U (j)(σ, α, θ) has vanishing mean. The components of the noise vector η(j) ∈ RM are
assumed to be independent realizations of zero mean Gaussian random variables. To
simplify the notation, we pile the electrode currents, potentials and noise vectors into
arrays of length M2 −M , i.e., employ the shorthand notations

I = [(I(1))T, . . . , (I(M−1))T]T,

V = [(V (1))T, . . . , (V (M−1))T]T

η = [(η(1))T, . . . , (η(M−1))T]T

U(σ, α, θ; I) = [U (1)(σ, α, θ)T, . . . , U (M−1)(σ, α, θ)T]T.

(5.3)

This allows us to write the noisy measurement model as

V = U(σ, α, θ; I) + η ∈ RM
2−M . (5.4)

The discretized admittivity is given a homogeneous Gaussian smoothness prior
with a covariance Γσ and a positive homogeneous mean σ?; for more details about
smoothness priors, see [18]. To include control over the geometric information, the
coefficients α are provided with a Gaussian prior with a mean α? ∈ R2N+1 and a
covariance matrix Γα = diag(a2

0, . . . , a
2
2N ), where

aj =

{
l−sa, l = 0, . . . , N

(l −N)−sa, l = N + 1, . . . , 2N.
(5.5)

By adjusting the parameters s, a > 0, one may tune the prior assumption on the
regularity of the object boundary. The electrode initial polar angles are also given
a Gaussian prior density with a mean θ? ∈ RM and a diagonal covariance matrix
Γθ = τ2I, where τ > 0 is the corresponding standard deviation. As a result, for a
measurement V of the form (5.2), a maximum a posteriori (MAP) estimate is obtained
as a minimizer of the Tikhonov-type functional

Φ(σ, α, θ) := (U(σ, α, θ; I)− V)TΓ−1
η (U(σ, α, θ; I)− V) + (σ − σ?)TΓ−1

σ (σ − σ?)

+ (α− α?)TΓ−1
α (α− α?) + τ−2|θ − θ?|2, (5.6)

where Γη is the diagonal noise covariance matrix; see [18].
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5.3. The (quasi-Bayesian) iterative algorithm. According to our experi-
ence, the EIT measurements modelled by the CEM are typically more sensitive to
the exterior boundary shape and electrode locations than to the internal admittivity
distribution. As a consequence, it seems to be computationally advantageous to first
fix a crude constant approximation for the admittivity distribution, then use a (de-
terministic) iterative scheme to come up with a relatively good model for the object
boundary and electrode positions, and finally use these preliminary estimates as the
prior expectations in the to-be-minimized MAP functional (5.6). It should be empha-
sized that such an initialization of the means makes our algorithm strictly speaking
non-Bayesian, since the choice of the priors should be independent of the data. Be
that as it may, according to our experience, such a preliminary step leads to faster
and more reliable convergence. (We do not claim, however, that this kind of two-step
implementation is the only feasible choice.)

To be more precise, we first choose the covariance matrices Γη, Γσ, Γα and Γθ
according to the assumed prior information on the variation of the corresponding
parameters, pick an initial guess (α(0), θ(0)) for the measurement geometry (corre-
sponding to some disk-shaped cross-section in all of our numerical studies), and fix σ?

to be the constant admittivity that minimizes the output least squares part of Φ, i.e.,

(U(σ, α, θ; I)− V)TΓ−1
η (U(σ, α, θ; I)− V)

when (α, θ) = (α(0), θ(0)). Subsequently, the following two-stage scheme is employed:

First stage of the algorithm: choosing the prior means. We apply a
Levenberg–Marquardt type method in order to choose the geometry parameters that
are used as the prior means (α?, θ?) when Φ of (5.6) is minimized simultaneously with
respect to all of its variables in the second stage of the algorithm:

1. Fix σ = σ? in (5.6), consider Φ as a function of only two variables α and θ,
and set (α?, θ?) = (α(0), θ(0)).

2. Calculate the Gauss–Newton minimization direction for Φ(α, θ) of (5.6) at
(α, θ) = (α?, θ?); see, e.g., [27].

3. Minimize Φ(α, θ) over the line passing through (α?, θ?) in the Gauss–Newton
direction by the Golden section line search. Redefine (α?, θ?) to be the ob-
tained minimizer.

4. If satisfactory convergence is achieved, terminate the iteration. Otherwise,
return to step 2.

This part of the reconstruction algorithm is stable and does not, in particular, seem
very sensitive with respect to the choice of the covariance matrices in (5.6).

Second stage of the algorithm: finding the MAP estimate. After the
prior means (σ?, α?, θ?) have been chosen in the earlier parts of the algorithm, the
final stage consists of minimizing Φ of (5.6) by the Gauss–Newton algorithm:

1. Set k = 1 and (σ(k), α(k), θ(k)) = (σ?, α?, θ?).
2. Calculate the Gauss–Newton direction for Φ(σ, α, θ) of (5.6) at (σ, α, θ) =

(σ(k), α(k), θ(k)).
3. Minimize Φ over the line passing through (σ(k), α(k), θ(k)) in the

Gauss–Newton direction by the Golden section line search and define
(σ(k+1), α(k+1), θ(k+1)) to be the obtained minimizer.

4. Unless satisfactory convergence is achieved, increase k by one and return to
step 2.
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For the computation of the needed Gauss–Newton directions, one needs the Ja-
cobian of U(σ, α, θ; I) with respect to σ, α and θ. By the Jacobian with respect to
σ we mean the one with respect to the coefficients of the piecewise linear basis in
the ‘reconstruction cylinder’ Σ introduced in the last paragraph of Subsection 5.1.
(Notice that the coefficients of the basis functions supported outside Ωα do not play
a role in U(σ, α, θ; I), but they do affect the last term on the first line of (5.6).) For
the estimation of the derivatives with respect to σ and θ, we refer to [17] and [8], re-
spectively. By the dual relation (3.4), the Jacobian with respect to α can be sampled
via trivial linear algebra (a change of basis) after evaluating the expressions on the
right-hand side of (3.4) for each triplet

h(φ) = ψ(l)(φ)

[
cosφ
sinφ

]
, (u, U) = (u(i), U (i)), (ũ, Ũ) = (u(j), U (j))

over the indices l = 0, . . . , 2N and i, j = 1, . . . ,M − 1. Here, (u(j), U (j)) =
(u(j)(σ, α, θ), U (j)(σ, α, θ)) is the solution of (2.5) for I = I(j) and the setting
parametrized by (σ, α, θ), and ψl(φ) = cos lφ if l ≤ N and ψl(φ) = sin(l − N)φ
when l ≥ N + 1. We emphasize that one needs not solve any extra forward problems
for this procedure since at each iteration step all the pairs (u(j)(σ, α, θ), U (j)(σ, α, θ)),
j = 1, . . . ,M − 1, must be computed already for evaluating the functional Φ of (5.6).
By the assumption that the electrode width is known, for any given electrode the
terminal polar angle is a smooth function of the initial one and α. This functional
dependence can be written explicitly by employing the arc length formula for the
parametrization (5.1), and this information can then be included in the Jacobians
with the help of the Leibniz rule and the chain rule for the total derivative.

Remark 5.1. If one chooses to skip the first stage of the above introduced algo-
rithm and use the (simple) initial guess (α(0), θ(0)) as the prior mean for the geometric
parameters in the second stage, with suitable parameter choices the reconstructions for
the numerical experiments of the following section typically remain qualitatively the
same, but the convergence slows down considerably. What is more, in practice the
initial guess (α(0), θ(0)) for the measurement geometry is often more accurate than
the ones we employ in our numerical experiments, which further reduces the practical
relevance of the first stage of the algorithm.

6. Numerical experiments. Our main aim is not so much to compare the
functionality of our method with reconstruction techniques presented elsewhere, but
to make an ‘internal’ comparison between three cases:

(i) the measurement geometry, i.e. the object shape and the electrode locations,
is known;

(ii) the measurement geometry is known inaccurately but this is not taken into
account in the algorithm;

(iii) the unknown boundary shape is estimated simultaneously with the admittiv-
ity distribution.

We will demonstrate that (i) and (iii) give comparable results, while the quality of
reconstructions for (ii) is intolerably bad.

We present three numerical experiments, in each of which M = 16 identical elec-
trodes of known width are attached to the object of interest. We assume to know the
contact impedances and choose the values zm = 1, m = 1, . . . ,M . The first exper-
iment, though a bit impractical, acts as an initial probe to test the functionality of
the computed Fréchet derivatives: we apply (the first part of) our algorithm to the
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shape estimation of a target object with a known homogeneous admittivity distribu-
tion. In the second experiment we consider a simple shape (an ellipse) and a smooth
admittivity distribution. In the last experiment the object shape is moderately com-
plicated and the admittivity phantom consists of inclusions of constant admittivity
in a homogeneous background.

Let ς be the to-be-reconstructed admittivity and suppose the pair (β, ϑ) provides
a parametrization of the target measurement setting in the sense of Section 5.1. To be
quite precise, the latter statement is a bit ambiguous because none of the considered
target shapes ∂D can be given in the form (5.1) with a finite N , but for ease of
notation we have decided to allow here an ‘infinite’ shape parameter vector β. For
each experiment we simulate the exact data U(ς, β, ϑ; I) using the input current basis
I(j) = e1− ej ∈ RM� , j = 2, . . . ,M , where ej is the jth Euclidean basis vector. Notice
that there is no danger of an inverse crime because a new finite element mesh for the
approximate domain Ωα is generated at each iteration of the reconstruction algorithm,
and these meshes differ considerably from the mesh of the target object Ω = Ωβ used
for the data simulation.

The actual noisy measurement realization V is formed via (5.4), with (σ, α, θ) =

(ς, β, ϑ), by picking a particular noise component η
(j)
m , m = 1, . . . ,M , j = 1, . . . ,M−1,

from a zero mean Gaussian distribution with the variance

0.012|U (j)
m (ς, β, ϑ)|2 + 0.0012 max

1≤k,l≤M
|U (j)
k (ς, β, ϑ)− U (j)

l (ς, β, ϑ)|2. (6.1)

Here, the relation between U(ς, β, ϑ; I) and U
(j)
m (ς, β, ϑ) is as in (5.3). Sections 6.2

and 6.3, where the cases (i–iii) are compared, work with fixed realizations of the noise
vector η in order to allow a fair comparison.

For further justification of the noise model (6.1), see [16], but anyway notice that
(6.1) corresponds to more than one percent of relative noise in the absolute data, which
is a substantial amount for an EIT problem. In each numerical experiment we assume
to know the covariance of the measurement noise, i.e., we use the diagonal covariance
matrix defined by the noise model (6.1) as Γη in (5.6). We do not elaborate on the
choice of Γσ in (5.6) in further detail; it is built based on the proper (informative)
smoothness prior proposed in [18], reflecting the a priori assumption on the spatial
variations of the admittivity.

6.1. Known homogeneous target admittivity. Figure 6.1 shows the results
obtained when the first stage of our algorithm is applied to reconstructing the bound-
ary shape and electrode locations for an object with a known homogeneous admittivity
distribution ς ≡ 1. While this situation has minor practical relevance, it serves as a
test of the computational techniques for obtaining the derivatives with respect to α
and θ. The cylindrical target object is Ω = D × (0, h0) with h0 = 1, and the curve
∂D is parametrized by

γ(φ) =

[
3.3

(2.22 cos2 φ+ 1.52 sin2 φ)1/2
+ 1.1e−(φ−π)6 + 0.88 cosφ sin(−2φ)

] [
cosφ
sinφ

]
.

The width of the M = 16 identical electrodes on ∂D × (0, h0) is 0.3 and their initial
polar angles are of the form ϑm = 2π(m − 1)/M + εm, m = 1, . . . ,M , where εm are
independent realizations of a normally distributed random variable with zero mean
and standard deviation 0.1.

Since the admittivity is known a priori, we do not estimate σ? as explained in the
beginning of Section 5.3, but fix it to be identically 1. The first stage of the algorithm
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(a) The iterates. (b) Reconstructed geometry.

Fig. 6.1: Retrieval of an unknown cross-section shape from noisy simulated data.
(a) The five iterates with the final one plotted with solid line. (b) Comparison between
the exact shape (red solid) and the retrieved one (blue dashed).

in Section 5.3 is then run with N = 15 and M = 16; in this case the final value of
(α?, θ?) describes the reconstructed measurement geometry. In the construction of
the prior covariance Γα we use (5.5) with the selection a = s = 1 and set Γθ = τ2I
with τ = 2π/M , but the algorithm does not seem to be very sensitive with respect to
these choices. Figure 6.1(a) shows the required five iteration steps, one of which is the
eventual reconstruction, obtained by choosing the initial guesses α(0) = [2.7, 0, . . . , 0]T

and θ
(0)
m = 2π(m − 1)/M , m = 1, . . . ,M − 1. The final iterate is drawn with solid

line and the others with dashed line. In Figure 6.1(b), the target curve γ (red solid)
is compared with the retrieved one (blue dashed).

The algorithm was run with several different target objects and in all cases the
results were qualitatively similar to what is illustrated in Figure 6.1, given that the
examined shapes were not too complicated: If there were fine structures on a scale
smaller than the electrode width, the results were poor. Further, the simpler the
geometry, the faster the convergence was. It was also observed that the number
of coefficients in (5.1) should not be too large, at most about N = 15. A high
number of coefficients results in unstable reconstructions and absurd shapes, with the
performance of the algorithm slowing down.

6.2. Smooth target admittivity. In the second experiment, we apply the
(whole) simultaneous reconstruction algorithm to data corresponding to a relatively
simple target shape and a smooth admittivity distribution illustrated in Figure 6.2(a).
The shape of the target object is Ω = D× (0, h0), h0 = 0.5, where D is an ellipse with
major and minor semi-axes 2 and 1.5, respectively. The admittivity is homogeneous
in the vertical direction, which allows us to only consider cross-sections in the visu-
alizations. The electrode positions are chosen in the same manner as in the previous
example, with the constant electrode width being such that two fifths of ∂D× (0, h0)
is covered by the electrodes.

In the reconstruction process we seek for a parameter triplet (σ, α, θ) ∈ RK×RN×
RM with N = 7 and M = 16. Here, K is the number of nodes in the (fine enough)
discretization of the background cylinder Σ = B × (0, h0), with B chosen to be an
origin-centered disk of radius 3. As the initial guesses, we use α(0) = [2, 0, . . . , 0]T and
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(a) Phantom. (b) Incorrect geometry.

(c) Correct geometry. (d) Simultaneous retrieval.

Fig. 6.2: Experiment with a simple target shape and a smooth admittivity; each
image represents a cross-section of the corresponding phantom/reconstruction that is
(almost) homogeneous in the vertical direction. (a) Phantom used in data simulation.
(b) Reconstruction corresponding to an incorrect fixed geometry. (c) Reconstruction
corresponding to the exact geometry. (d) Simultaneously reconstructed admittivity
and measurement geometry.

θ
(0)
m = 2π(m − 1)/M , m = 1, . . . ,M − 1. The prior covariances are constructed by

selecting a = 0.1, s = 1 for Γα of (5.5) and Γθ = τ2I with τ = 2π/M ; see the fourth
paragraph of Section 6 for an explanation about the choice of Γσ and Γη.

The reconstruction in Figure 6.2(b) was obtained by applying the second stage of
the algorithm in Section 5.3 with respect to σ to the setting where the last two terms
of (5.6) are deleted and (α, θ) is fixed to be the initial guess (α(0), θ(0)); this approach
corresponds to ignoring the incompleteness of the information on the measurement
configuration and assuming stubbornly that the cross-section of the target object
is a disk with uniformly distributed electrodes on its boundary. The reconstruction
corresponding to the precise knowledge of the geometry is depicted in Figure 6.2(c); it
was obtained in the same manner as the one in Figure 6.2(b), except this time around
the geometry parameters (α, θ) = (β, ϑ) were fixed at the values describing the target
configuration used in the simulation of the measurement data. Figure 6.2(d) visualizes
simultaneous retrieval of the admittivity distribution and the measurement geometry;
this reconstruction corresponds to application of the whole two-stage reconstruction
algorithm of Section 5.3, starting from the initial guess (α(0), θ(0)) defined above.
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From Figure 6.2(b), it is obvious that ignoring the incompleteness of the informa-
tion on the measurement configuration results in severe artefacts in the admittivity
reconstruction close to the object boundary. On the other hand, a comparison of Fig-
ure 6.2(d) with Figures 6.2(c) and 6.2(b) demonstrates that the simultaneous retrieval
of the admittivity distribution and the measurement setting provides a qualitatively
similar reconstruction as knowing the exact geometry to begin with, and a far better
one than altogether ignoring the inaccuracies in the geometric information.

6.3. Piecewise constant target admittivity. In our last experiment, we
consider the target object illustrated in Figure 6.3(a). It is characterized by Ω =
D × (0, h0), h0 = 0.5, with ∂D parametrized by

γ(φ) =

[
3

(1.52 cos2 φ+ 22 sin2 φ)1/2
+ 0.75e−(φ−π)6 + 0.6 cosφ sin(−2φ)

] [
cosφ
sinφ

]
.

The corresponding admittivity distribution, which is homogeneous in the vertical
direction, consists of a homogeneous unit background and two embedded inclusions

(a) Phantom. (b) Incorrect geometry.

(c) Correct geometry. (d) Simultaneous retrieval.

Fig. 6.3: Experiment with a complicated target shape and a piecewise constant
admittivity; each image represents a cross-section of the corresponding phan-
tom/reconstruction that is (almost) homogeneous in the vertical direction. (a) Phan-
tom used in data simulation; the admittivity of the inclusions is 10. (b) Reconstruction
corresponding to an incorrect fixed geometry. (c) Reconstruction corresponding to the
exact geometry. (d) Simultaneously reconstructed admittivity and measurement ge-
ometry.
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with the constant admittivity level 10. The target electrodes are of equal width, they
cover two fifths of ∂D and their locations are chosen as in the previous examples.

In this case we consider Φ of (5.6) as a function of (σ, α, θ) ∈ RK×RN×RM , with
N = 15, M = 16 and K being the number of nodes in the mesh for the background
cylinder Σ = B × (0, h0). Here, B is once again a disk of radius 3 centered at the
origin. We assume the same prior information as in the previous example: Γα is as
in (5.5) with a = 0.1, s = 1 and Γθ = τ2I with τ = 2π/M . The initial guesses for
the iterative reconstruction algorithm of Section 5.3 are α(0) = [1.5, 0, . . . , 0]T and

θ
(0)
m = 2π(m− 1)/M , m = 1, . . . ,M − 1.

The results are illustrated in Figure 6.3, with the subimages organized as in
Figure 6.2 of the previous section. The reconstruction shown in Figure 6.3(b) was
obtained by ignoring the incompleteness of the information on the geometry, i.e., ap-
plying the second stage of the reconstruction algorithm with respect to σ when the
second line of (5.6) is deleted and (α, θ) = (α(0), θ(0)) is fixed. Figure 6.3(c) corre-
sponds to the precise knowledge of the measurement setting, i.e., again ignoring the
second line of (5.6), but fixing (α, θ) = (β, ϑ) to be the parameter values describing
the target configuration. Finally, the reconstruction in Figure 6.3(d) visualizes simul-
taneous retrieval of the admittivity distribution and the measurement geometry by
the whole two-stage algorithm of Section 5.3.

The conclusions about the functionality of the different approaches are the same as
in the previous experiment: The simultaneous retrieval of the admittivity distribution
and the measurement geometry provides a reconstruction that is comparable to the
case that the object shape and electrode locations are known accurately. On the
other hand, ignoring the uncertainties in the measurement configuration gives a poor
outcome.

7. Concluding remarks. We have presented the Fréchet derivative of the mea-
surement map of practical EIT with respect to the (exterior) object boundary shape
as a part of the solution to a certain elliptic boundary value problem. Through
three-dimensional numerical studies based on simulated data, we have demonstrated
that utilizing such a geometric derivative, the estimation of the object shape and
the electrode locations can be incorporated into a Newton-type output least squares
reconstruction algorithm in the framework on the CEM of EIT.
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[8] J. Dardé, H. Hakula, N. Hyvönen, and S. Staboulis, Fine-tuning electrode information in

electrical impedance tomography, Inverse Probl. Imaging, accepted.
[9] R. Dautray and J-L. Lions, Mathematical Analysis and Numerical Methods for Science and

Technology, Vol. 2, Springer-Verlag, Berlin, 1988.



RECONSTRUCTION OF OUTER BOUNDARY SHAPE IN EIT 21

[10] M. C. Delfour and J-P. Zolésio, Shapes and Geometries. Analysis, Differential Calculus
and Optimization, SIAM, Philadelphia, 2001.

[11] M. Hanke, B. Harrach, and N. Hyvönen, Justification of point electrode models in electrical
impedance tomography, Math. Models Methods Appl. Sci., 21 (2011), pp. 1395-1413.
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