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Abstract. Time optimal control of the wave equation is analyzed on the basis of a regularized
formulation which is considered as a bilevel optimization problem. For the lower level problems,
which are constrained optimal control problems for the wave equation, a detailed sensitivity analysis
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1. Introduction. This paper is devoted to the time optimal control problem

min / dt
0

subject to 7 > 0,

(P) Y — Ay = xwu in (0,7) x €,
y(0) = y1, y:(0) = y2, y(7) = 21, y+(7) = 22 in Q,
y=0onT,

()2 < v forae. t e (0,7).

Here, v > 0 is a fixed positive constant and 2 C R™, n > 1 is a fixed bounded domain
with a C? boundary I'. Further w C € is a measurable subset and y,u denotes the
extension-by-zero operator from w to €2. The initial and terminal states are fixed
and—unless otherwise specified—are assumed to satisfy

Y1 € Hy(Q), 21 € HY(), y2 € L*(), 22 € L*(Q).

In previous work [19] we used a regularization scheme to derive an optimality sys-

tem for (P) and in particular to investigate the maximum principle and the transver-

sality condition for (P). The present work aims at solving (P) on the basis of this
regularization scheme.

Let us briefly explain the route that we will follow. The regularized time optimal
control problem is considered as a bilevel optimization problem. The lower level con-
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sists of constrained optimal control problems for the wave equation, and the upper
level problems are minimization problems with respect to 7. Alternatively we can
consider our approach as a reduced approach, with the optimal time the only inde-
pendent optimization variable, and the control a dependent variable. The lower level
problems are parameterized optimization problems in the parameter 7. We establish
Bouligand differentiability of the solutions to these lower level problems. This allows
us to obtain second-order directional differentiability of the cost of the parameterized
optimization problems. Moreover we show that setting the first derivative of the cost
equal to zero corresponds to the transversality condition in the optimality system.
This structural result is not restricted to the case where the constrained equation is
the wave equation. The solution of the lower level problem requires efficient solution
techniques. For this purpose we analyze a semismooth Newton method. This neces-
sitates that we establish Newton differentiability of the projection onto the unit ball
in L2, a result which is of interest in its own right. Finally there is an outermost
iteration within which the regularization parameter is driven to zero.

The development of numerical techniques for time optimal control problems has
received much attention in the context of ordinary differential equations. They are
frequently categorized into direct and indirect methods. Indirect methods based on
multiple shooting techniques [2, 14] solve the two-point boundary value problem de-
scribing first-order necessary conditions. In [12] a semismooth Newton method was
recently proposed for solving the nonsmooth optimality systems. Direct methods, on
the other hand, consider time optimal problems as genuine nonlinear programming
problems. They are used in several variants, which frequently involve reparametriza-
tion of the controls as the unknowns. The new unknowns can be the switching times
as in [22] or the arc durations as in [13].

Time optimal control for the wave equation was frequently investigated in previous
work, mostly with the aim of deriving different forms of the maximum principle. We
refer, e.g., to Fattorini [4, 5], Gugat and Leugering [8], and Krabs [16, 17] and the
references given there. In this context it was also discussed that time optimal control
problems can be addressed alternatively by solving appropriately defined dual norm
optimal control problems, which are parameterized by the time 7; see, e.g., [6, 16]. If
for some parameter value 7 the norm optimal control satisfies ||@|| Lo (7;12(w)) = 7, then

(7,u) is a solution of (15) However, this equivalence is typically established only for
the special case w = §2. An example in [8] shows that the equivalence of time optimal
and norm optimal control problems cannot be expected in the general case. In [9]
the relationship between norm- and time optimal problems was utilized to develop a
method-of-moments-based algorithm to solve time optimal control problems for one-
dimensional vibrating systems. In a recent paper Wang and Zuazua [25] analyzed the
equivalence of time and norm optimal control problems for the heat equation for the
case w # §). The proof of equivalence uses two properties that are not available for
the wave equation: unconstrained null-controllability for arbitrarily small times and
the bang-bang property of time optimal controls. Hence addressing the time optimal
control problem for the wave equation in the general situation w # € by means of the
dual norm optimal control problem remains to be an independent challenge.

The paper is organized as follows. In section 2 we introduce the abstract form of
the wave equation and of problem (P) and recall selected results from [19]. Section 3
is devoted to the sensitivity analysis of a parametric family of optimization problems
parameterized in the variable 7. In section 4 we give the analysis of the semismooth
Newton method for the lower level problems. Section 5 contains a description of the
numerical algorithm and selected numerical experiments.
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Function spaces. Let us briefly recall definitions of function spaces and their scalar
products and norms, which will be used throughout the paper. We will frequently use
the standard spaces L2(Q), H () endowed with their usual scalar product

(u,v)2(0) = /Qu(a:)v(a:) dz, (u,0)m(0) = /QVu(:r) -Vo(x) dx.

Moreover, we will work with spaces of abstract functions C(I; X) and L2(I; X), where
X is a Hilbert space and I = (0,1). The scalar product in L?(I; X) and the norm in
C(I; X) is defined by

1
(u,v)m()c):/o (u(t), v(t))x dt, [lullorx) = maxeeqo, [lu®)] x-

2. Preliminaries.

2.1. Abstract formulation. Let us recall some facts concerning the wave equa-
tion

Yir — Ay = xou in (0,7) x Q,
(2.1) y(0) = y1, 1(0) =y2 inQ,
y=20 onI

with 7 > 0 fixed that will be relevant to our work. For the purpose of numerical
realization it is convenient to perform a transformation of (2.1) to the fixed time
interval

I:=(0,1).

Moreover, to express (2.1) in abstract form we introduce the operators

v=(20) ()
()= () 0= (30)

Then the wave equation (2.1) can be expressed as the first-order evolution equation

and vectors

y: =7(Ay +Bu) on (0,1],
22) y(0) = yo.

The components of the solution y of this equation fulfill (y1); = 7y2 and (y2); =
T7(Ay1 + xwu). For convenience of notation we introduce the function spaces

LQ(Q)v s =0,
Yo ={ H(Q) N HLQ), s=1,2,
H(Q)*, s=-—1

and the associated vector-valued spaces, which take account of the regularity of the
components of solutions y of (2.2):

YS =YVSxYsL
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By assumption we have yo € Y!. Utilizing this notation the operator A is a contin-
uous linear operator in the following sense:

AcL(Ys, Y5,
Moreover, the operator B has the property

Bc L(L*(w), Y").

Next we transform (P) to the interval I and express it in abstract form. For this
purpose we introduce the set of admissible controls

Und :={u € L>°(I; L*(w)) : u(t) €U a.e. on I}
with U given by
U={ue W) Juliw <t

Now (P) can be expressed as

min 7

subject to 7 > 0 and

(P) vt = 7(Ay + Bu) on (0, 1],
y(o) =Yo, }’(1) =z,
u € Uyqg.

For existence and uniqueness of weak solutions of system (2.2), we have the fol-
lowing well-known result; see, e.g., [3, 20].

THEOREM 2.1. Let yo € Y, u € L*(I; L*(w)) be given. Then the first-order
equation (2.2) admits a unique weak solution y that satisfies

y € (YY), yi € LX(I;Y°).
If, moreover, yo € Y2, uy € L*(I; L?(w)), then
y € C(I;Y?), yr € C(I;Y").

In either of these cases the solution y depends continuously on (u,yq) in the
indicated norms.

Together with the primal equation (2.2), the adjoint equation will play a central
role. It is defined as the evolution equation

(2.3) —p: =TAp onl.

Here A* is given as adjoint of A:

. (0 A
ae(02)

Hence, (2.3) is a wave equation in the second coordinate py with (p2); = —7 p1 and

(P2)i = 7° Apa.
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It will be convenient to introduce the notation
PSi=yslxys

which will be used for s = 0,1,2. The index s with Y® and P* denotes the regularity
of the wave function for the primal state y and the adjoint state p, respectively. We
may note that (Y*)* = P(1=9),

If the adjoint equation is completed with a terminal condition p(1) = p with
p € P then it is uniquely solvable with solution p € C(I;PY). Moreover, one
has regularity results analogous to those for the primal wave equation expressed in
Theorem 2.1.

To guarantee well-posedness of (P) we need to assume that the set of feasible
controls is nonempty. For this purpose we assume that

(H1) the wave equation (2.2) is null-controllable,

i.e., there exists some 79 > 0 and ¢ > 0 such that

(2.4) IP(W)[Bo < B PlI72 (1,220

for every solution to the adjoint equation (2.3) with 7 = 75. Based on the Hilbert
uniqueness method, cf. [21], it is well established that the exact controllability problem
for the wave equation can be reduced to the analysis of inequality (2.4), see, e.g., [26],
for a survey on techniques that were developed to analyze controllability for the wave
equation. In particular null-controllability of the wave equation with distributed (or
internal) controls holds if the geometric control condition is satisfied: every ray of ge-
ometric optics propagating in the domain € hits the subset w within time less than 7;
see [1]. The method of moments and fundamental solutions were used in [24] to estab-
lish controllability. In [10], on the basis of spectral techniques, sufficient conditions for
exact controllability are derived for the case of controls that are less regular than L2.

With (H1) holding it can be shown that there exists a feasible solution to (P) for
7 large enough [19, 23], and then existence to (P) readily follows.

THEOREM 2.2. Let yo, 2z € Y! be given. If there is 79 > 0 such that the wave-
equation is null-controllable, i.e., (2.4) holds, then the time optimal control problem
(P) admits a solution.

Proof. We refer to [19, Thm. 2.4]. O

In what follows, we will denote the uniquely determined minimal time by 7.

2.2. A family of regularized problems. To derive an optimality system for
(P), the following family of problems was considered in [19], which involves a regu-
larization of the control and a penalization of the terminal constraint: For e > 0 we
consider

. € 1
min J.(7,u) = 7 (14 S ullfagrze ) + 52130 — 230,
subject to 7 > 0 and
(F=) yt = TAy + 7Bu, on (0, 1],

y(O) =Yo,
u € Ugygq-
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Here and below the norm on Y° = L?(Q) x H~1(Q) is chosen to be
IvI3o = lv1llZ20) + (=) 2, v2) 120,

where w = (—A)~! vy is the solution of —Aw = vy in Q, w=0o0nT.

For any € > 0 problem (P.) admits a solution {(7¢,y.,u.)} independently of
(H1). In order to guarantee convergence of these solutions to a solution of (P), it is,
of course, required to assume (H1).

THEOREM 2.3. Assume that (H1) holds and let {(7e,y=,u:)}e>0 denote a family
of solutions of (P-). Then we have that

T. = 1% fore = 0"

and (ye,ue) is uniformly bounded in (C(I; YY) N HY(I;Y)) x L>=(T; L*(w)). More-
over, for each weakly star converging subsequence {(ye, ,us, )} with

Ye, ="y in (LYY NHY LYY,  ue, = @ in L®(I; L (w)),
the limit (7*,y,4) is a solution of the original time optimal control problem (P).

If @ is bang-bang, then the convergence (y., , ue,) — (¥, ) is strong in (C(1;Y')N
HYI;Y?%) x L3(I; L?(w)).

This result was proved in [19]. There (P.) was also used to investigate the first-
order optimality condition for (P), involving the maximum principle and the transver-
sality condition. In the present work we focus on the numerical realization of (P:).
It is based on the necessary optimality conditions for (P.) from [19], which we recall
next.

THEOREM 2.4. Let (7c,ye,u:) be a local solution of (P.). Then there exists
p: € C(I;P?) N CY(I;PY) such that the following optimality system holds:

Orye = T Ay + 7.Bu,, YE(O) =Yo,

) B 1 YE,l(l) — 2 2
— 0ips = T-A"pe, pa(l) B g <(_A)1(y€,2(1) a Z2)> -

(eue +B*pe,u — ue) 2(1;22(w)) > 0 for all u € Ugg,

(2.5)

1+ gHUsHi%J;p(w)) + (Aye + Bue, pe)r2(ryo), r2pr) = 0.
The optimal control u. has the additional reqularity
u. € C(I; L*(w)) and dyu. € L>(I; L*(w)).
If, moreover, yo € Y2, then
ye €C(LYH)NCHI; YY),

An interesting and not yet completely answered question is under which conditions
one can pass to the limit € \, 0 in the above optimality condition. Here, we have the
following result.

THEOREM 2.5. Let {(7¢,¥e, ue)}eso be solutions of (P.) and {pe}e=o such that
(2.5) is satisfied. Let (H1) be satisfied, such that the wave equation (2.2) is control-
lable for 7o < 7*. Let (y,u) be a weak-star accumulation point of {(ye,us)} as in
Theorem 2.3 such that i is bang-bang, i.e., ||[u(t)|| 12wy = a.e. on I.
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Then there is a nontrivial p € C(I;P') such that

ye =m"Ay + 7B, 3(0) =yo, y(1) =z,
(26) — 15t = 7—*4&»,137
(B*D, u — @) r2(1,02(w)) = 0 for all u € Uyq.

If the sequence {p<(1)} is bounded in P, then

(2.7) 1+ (Az + Ba(l), p)y:,po =0.

If the sequence {pc(1)} is unbounded in PO and B*p(1) # 0, then z # 0 and it holds
(2.8) (Az + Bii(1), Py, po = 0.

Proof. For the proof we refer to [19, Thm. 4.4 and Cor. 4.6]. O

The necessity of condition (2.6) was proved by Fattorini [5]. If w = €, this implies
the bang-bang property of , i.e., ||u(t)| 12() = 7 for all but finitely many ¢ € [0, 1].
It is still open whether this bang-bang property holds for the general case w # ().
Additionally, it is open if it is necessary for optimality that one of the equations
(2.7) or (2.8) holds. Hence, we will report on the boundedness of {p.(1)} or lack
thereof in the evaluation of the numerical results in section 5.2 in order to argue with
Theorem 2.5 that (2.7) or (2.8) holds.

3. Sensitivity analysis for a parametric optimization problem. Through-
out this section we fix ¢ > 0 and consider for any 7 > 0 the minimization problem
with respect to the variable u:

min 7 (14l + oIy () — 2l
(P7) subject to

y: = TAy + 7Bu on (0, 1],

y(0) = yo.

Clearly this problem admits a unique solution (y.,u,) € (C(I;Y') N CYI;Y?)) x
L?(I; L*(w)), and the necessary and sufficient optimality condition is given by

Oyr = TAy, +7Bu,, y-(0)=yo,

(eur + B Pr,u — ur) 2 (1;02(w)) > 0 for all u € Ugq.

Here we use the index 7 for the solution to (P7), since our attention focuses on the
dependence of the solution on this parameter. We will investigate differentiability
of 7 = (yr,ur,pr) as well as first- and second-order differentiability of the value
functional in (P7) with respect to 7. Further we shall show that the derivative of this
value function is given by the left-hand side of the transversality condition, which is
the last equation in (2.5). Some preliminaries will be required. Let us note that these
results apparently cannot be directly derived from well-known abstract sensitivity
results. This is due to the fact that these results require us to express the constraint in

an abstract setting, in which the partial differential equation in (P7) is transformed to
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an equality constraint of the form e(y, u) = 0. The natural domain for e is (L2(I; Y!)N
HY ;YY) {y : (y2): —TAy € L*(Q)}) x L?(I; L?(w)), which is a Banach space when
endowed with the natural norm. However, this space depends on the the parameter 7.
For this reason and due to the fact that the image space of the inequality constraints
is infinite dimensional, general results appear not to be readily applicable. In this
section we do not need to require (H1) to hold, but throughout we assume

(H2) yo € Y2
With (H2) holding the solution to (P7) satisfies the regularity
(3.2) yr € C(I; YY) nCHI; Y.

This can be verified with the same techniques that provide the regularity of y. in
Theorem 2.4.

PROPOSITION 3.1. Let (H2) hold. Then for every compact subset J C (0,00) the
set {(yr,ur,pr) : T € J} is bounded in (C(I;Y?)NCHI; YY) x Whoo(I; L2 (w)) %
(C(l:; P2)NCY(I; Pl)) and the mapping T — (Y-, ur, Pr) is globally Lipschitz contin-
wous from J to (C(I;Y')NWE(I; YY) x LA(I; L*(w)) x (C(I; PY) nWh2(1; PY)).

Proof. We first show the asserted uniform bound. Since the set {u, : 7 € J}
is bounded in L?(I; L?(w)) it follows that {y, : 7 € J} is bounded in C(I;Y') N
W2(I; Y% and {p, : 7 € J} is bounded in C(I;P?) N C*(I;P'). Using that u, =
—Py,,(Lpr2) it follows from Lemma 3.2 below that {u, : 7 € J} is bounded in
Wheo(I; L?(w)). This, together with yo € Y2, implies that {y, : 7 € J} is bounded
in C(L;Y*)NCHI; YY).

Let 7€ J and 7 € J and set

(57—7 6Y7 5”7 5})) = (? — T, Y7 — Yr, U — Ur, P7 — p‘r)7

where (y-,ur, pr) is the solution to (P7) and analogously for (y=, us, p7). Then we
have

9,6y = 7(Ady + Bsu) + 67(Ayr + Bur), 8y(0) =0,
) . 1 dyi(1) )
— 0:0p = TA*p + 6TA"pz, op(1) = = - ’
) .6p P pr, 0p(1) = - ((—A) 1y2(1)
(eur + B'Pr,u — ur)r2(r;12(w)) = 0,
((&_U?_’_ B*p?7u _ u?)L2(I;L2(w)) 2 0 fOr all u e Uad.

We note that the scalar form of the first equation in (3.3) is given by

5.0 O dy1 = T2(ASy1 + Xwou) + 7 6T(Ayr 1 + Xwltr) + 67 Ory=.2,
' 8y1(0) =0, 9;8y1(0) = drye,

and for the second component we have 70y, = 0:0y1 — 67 y72. Similarly for the
second equation in (3.3) we find

0:+0P2 = T2Adpy + TOTApF2 — 0T P71,

(3.5) oT

3p2(1) = (~A)8y2(1), 9i8pa(1) = ~Zoy1(1) = L (yen(1) - 21),

and for the first component we have 70p; = —0:0p2 — 07 p7,1.
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From Theorem 2.1, the first two equations in (3.3), and (3.4), (3.5) there exists a
constant K independent of 7 € J such that

56) { 10y llc(ryvynwrzryoy < Ki(|67] + l6ullL2(1;2(w)))s

H5P||c(f;P1)mW112(1;P0) < K (07| + [[6y (1) [[yo)-

Setting u = u7 and u = u, in the two inequalities of (3.3) we obtain, after rearranging
terms,

(3.7) elldullTarr2wy < —(B 0P, 0u) L2(1:2(w))-

Next we take the inner product in L?(I; L?(Q2)) of the first equation in (3.1) with dp
and of the second equation with dy. After integration by parts and subtraction of
the two resulting equations we obtain, using that dy(0) = 0,

(6Y(1)3 (Sp(l))LQ(Q) = T(B 5”7 ép) + 5T((AY? + BU?, 6p) - (A*p?v 6Y))7
where the inner products on the right-hand side are taken in L?(I; L%(€2)). The initial
condition for p(1) and (3.7) imply that

1 %
g|\5}’(1)||%{0 + 7el|0ul|F2 (1.2 () < 07 (I(AyF + Bug, 6p)| + [(A*p=, 6y)|).

Using (3.6) and the estimates established at the beginning of the proof, we obtain the
existence of a constant Ky independent of 7 € J, 7 € J such that

1
g”‘s}’(l)H%(O + 7'5H5UH22(1;L2(N)) < KoloT|( ||5u||L2(I;L2(w)) +1671),

which, in turn, implies the existence of a constant K3 independent of 7 € J,7 € J,
such that

1
gH‘s}’(l)”%{O +elldullTa(r 2y < Kalor[,

The conclusion now follows from (3.6). O
Let us now turn to a continuity result for the projection onto the set of admissible
controls. By construction of U,4, we have

(Pu,,(u)) (t) = Py(u(t)) for almost all (f.a.a.) t € (0,1),

where the projection onto U is defined as

Py(u) = min (1 L) .

" Jull 2wy

LEMMA 3.2. The projection Py,, is continuous mapping from C*(I; L?(w)) to
HY(I; L*(w)).

Proof. The proof can be found in the appendix; see section 7. d

This continuity result for the projection onto the set of admissible controls allows
one to conclude continuity of the mapping 7 — (y,, u,, pr) with respect to stronger
norms.

THEOREM 3.3. Let (H2) hold. Then the mapping 7 — (Y-, ur, Pr) 1S conltinuous
at 7 > 0 with values in (C([; Y?)NH(I; Y1) x HY(I; L?(w)) x (C(I; P2)NH (I; P?)).
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Proof. Due to the result of Proposition 3.1, we have the Lipschitz continuity
of 7+ p, with values in C(I;P!). This implies the Lipschitz continuity of 7
B*p, with values in C*(I; L?(w)). Hence, by Lemma 3.2 the mapping 7 — u, =
Py,,(—iB*p,) is continuous with values in H'(I; L*(w)). The result now follows
with the regularity result of Theorem 2.1. O

We will now prove directional differentiability of the mapping 7 — (y,, u,, Pr)
directly, using the projection representation u, = Py, d(—%B*pT), following the lines
of a similar result in [7]. Since (P7) is an inequality-constrained optimal control prob-
lem, we can expect directional differentiability of the mapping 7 — (y-, u,, p-). It
turns out that the concept of Bouligand differentiability is suitable for the subsequent
analysis.

First, we will show Bouligand differentiability of the projection onto U,y4. Recall
that a function f : X — Y between normed linear spaces X and Y is called Bouligand
differentiable if for every zy € X there exists ¢ > 0 and a positively homogeneous
function f’(zg;-) : X — Y such that

f(x) = fzo) + f'(x0;  — x0) + (205 2 — T0)

for all z € X, where ||r(zo; x—x0)||y /||z— 20|l x — 0 for ||x —xo||x — 0. In particular
this implies that f is directionally differentiable.

PROPOSITION 3.4. The projection Py onto U, where U is given by U = {u €
L*(w) ¢ ul| 12wy < 7}, is Bouligand differentiable from L?(w) to L?(w). That is, for
all ¢, h € L*(w) we have

| Po(q+h) = Pulq) — Pi(g; 1) 2wy = o([|hll 22 (w))

uniformly on bounded subsets of L?(w), where the Bouligand derivative is given by

h if lall 2wy <,
( ) , ( ) or HqHLz(w) =7 (qa h) <0,
3.8 Pi(g;h) = h (a:h) 12 .

v <4L2(w) - ICIEP q if lall 2wy > s

or gl 2wy =, (g,h) >0.

Proof. The proof can be found in the appendix, section 7. O

We note that P/;(g; h) is not linear in h. Hence Py is not Gateaux differentiable.
Due to the dependence on the direction the Bouligand derivative is not well suited
for numerical realizations. For this purpose we shall use the Newton derivative in
section 4.

It can also be noted that the directional derivative P}, is itself a projection onto
a convex set:

P (q;h) = Pr, (g (h)
with

L*(w) if [|qll 22wy <,
(3.9) Tu(q) == ¢ {h € L*(Q) : (h,q) <0} if [lqllr2w) =,
{heL?(Q): (h,q) =0} ifllgllL2w) >~

PROPOSITION 3.5. The projection Py,, is Bouligand differentiable from C(I; L*(w))
to L*(I; L?(w)) with directional derivative

(Pl (q:h)(t) = Ph(q(t); h(t)) for allt € 1.
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Proof. The proof can be found in the appendix, section 7. O

THEOREM 3.6. Let (H2) hold. Then the mapping T+ (yr,u,, Pr) is Bouligand-
differentiable from RY to C(I;Y') x L?(I; L*(w)) x C(I; PY). The directional deriva-
tive in direction 5T is given as the unique solution (y,u,p) € C(I; Y1) x L*(I; L*(w)) x
C(I;PY) of the system

0y = T(Ay + Bu) + 67(Ay, + Bu,), y(0) =0,

B P AT 4 Gr | yi(1)
(3.10) O0cp = TAD + 6TAPp-, P(1) = - <(—A)—1y2(1))’

a S TUad(*%B*p-r)’
(E’Il + B*p,v — u)L2(1;L2(w)) >0 forallve TUad(féB*pT),

where Ty, (_1g«p,) is given by

1
Ty, .(~1B*p,) = {u € LA(I; L*(w)) s u(t) € Ty <——B*p7(t)) a.e. on I}
< €

with Ty defined in (3.9).
Proof. Let us define for abbreviation T := 1Ty,  (_1g«p_ -

Let 7 > 0, 67 € (—1,1) with 7 + 67 > 0 be given. At first, let us prove the
existence and uniqueness of solutions of the sensitivity system (3.10). This system is
the first-order necessary optimality condition of the optimization problem

. € 1 .
mmT§||U||2L2(1;L2(w)) + 2—8HY(1)||%(1 + 0T(A"Pr, ¥) L2(1;PY), L2(1;Y0)
subject to u € T" and
oy = 7(Ay + Bu) + 67(Ay, + Bu,), y(0) =0.

Since this problem is strictly convex with respect to u, it admits a unique solution.
This proves that there exists a unique solution (y,u, p) of the system (3.10).
Let us define

(‘SYa ou, (Sp) = (Y‘r+57’ —YryUr+sr — Ury Pror — pT)-

Then (dy, 0u, dp) solves the system
010y = 17(Ady + Bou) + 07(Ayr46r + Burysr), dy(0) =0,

. . 1 oy1(1
— 0¢0p = TA*0p + 0TA"pr15-, Op(1) = - <(—A)y11(5})72(1)> ’

(3.11)
1 * 1 *
ou = PUad <__B pr+6r) - PUad <__B p‘r) .
€ €
By the result of Proposition 3.5, we have
ou = Py,, _EB Prisr | — Pu,, _EB pr | =Pr _EB op | +r
with [[7l|r2(1;02w)) = o(0Pllc(rpoy) as |0Plle(zpoy — 0. With Proposition 3.1 we

have |7 z2(7;2(w)) = o(|67]). Let us write this representation of du as the variational
inequality

e(du—r)+B*op,v — (du —7))r2(1.12(w)) >0 forallveT.
(I;L2(w))
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Setting v := @ in this inequality and v := du — r in the fourth relation of (3.10) and
adding the resulting inequalities gives

ellit—=0u+rl72 (1,120 < (B*(D—0P), du—10)L2(1;12(w)) — (B (0 —0P), 7)L2(1:22(w))
which implies

Sl — Sull? < 2

2||U UHLQ(I;L?(U.;)) = 5||7’|\L2(1;L2(w))

— (B*(P—0p), 7)r2(1;02(w))
+ (B*(P — 0p), 0u — U)r2(1;12(w))-

Proceeding as in the proof of Proposition 3.1 to estimate the last term we find

€. 1, .
(3.12) T§||U — oullFarr2(w)) + EHY(l) —dy(D)[30

<712 (1.2 () — TB* (D — 0P, 1) L2102 (w))
+ 5’7’<A6y + B&U, p — 5P>L2(1;Y0),L2(I;P1)
+ 07(A"Op, ¥ — 8Y)L2(1;p0),L2(1;Y )

We shall return to this estimate below. Now we introduce w = dy — y and note that
Ow = 7(Aw + B(0u — 4)) + 67(Ady + B ou), dw(0) = 0.

As in the proof of Proposition 3.1, see (3.4), we next write this equation in its coor-
dinates:

0w = T2(AW1 + Xw(ou — 1)) + 7IT(A(dy1) + Xwou) + 07 01 (Y )2,
Wl(O) = 0, 8tW1(0) = 0,

and
TWo = Oyw1 — 07(dy)2.
By Theorem 2.1, there is a constant K > 0 independent of §7 such that

IWillem ) + 19ewWille 2 @)
< K (16w — il L2 (r;22(w))
+OT(1(0¥)1l L2 (112 ) + 1032l 2 (1:22()) + [10ull L2122 (w)))) -
This further implies that
Iwallorm)) < K (10w =l 21,12 (w))
+ 6710y 2 (1;v2) + 10Y [l (ryry + 10l L2122 ()
and hence
oy — 5’||C(f;Y1) = HWHC(I’;YI)
< K (16w — @l 2 (r;02 ()
+ 6710y [ L2 (1:v2) + 10V L vy + 10wl L2 (1,02(w)))) -
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Applying the continuity result of Theorem 3.3 to the right-hand side results in
(3.13) 16y = ¥llcryy < Klldu =il 2(1;,02w)) + o(|67])
for 7 — 0. In an analogous manner we estimate

(3.14)
0P — Pllcrpr) < K(e M6y — Ylleyoy + 0710l L2(1:p2) + [|6Pl a1 (1,P1)))
< K||5u — u”L?(l;L?(w)) + 0(|57‘|)
with K > 0 independent of §7. We continue to estimate the critical expression on the

right-hand side of (3.12) by using (3.13), (3.14), and the Lipschitz continuity result
of Proposition 3.1:

(3.15) |(Ady + Bdu, p — 6p)12(1,v0),L2(1;p1) + (A"0D, ¥ — 8y) L2(1,p0), L2(1; YY)
< 10yl 2royry + 16ull L2(r;22(0)) 6P = Pl 271y
+ 16pllL2(z:p1) 1Y — ¥l 227w
< K[67] [|6u — | L2(r:L2(w)) + 0(|07[%).

By (3.12), (3.14), (3.15), we get the estimate
[ — 5U||2L2(1;L2(w)) < K|5T|2 10w =l L2122 (w)) + 0(|5T|2)

with K independent of §7 but dependent on e. This proves ||@ — dul|r2(r;r2(w)) =
o(|07]) as 07 — 0. Hence ||ury5r — ur — || £2(1;02(0)) = 0(|07]) holds, and by (3.13)
and (3.14) we obtain analogous estimates for the state and adjoint variables. This
ends the proof. O

COROLLARY 3.7. For any 7 € (0,00) and d7 the Bouligand derivative U satisfies

(316) (EUT + B*pT’ a)LQ(I;Lz(w)) =0.

Proof. Setting u = w,44s- in the first inequality of (3.3), dividing by o > 0, and
taking o — 07, we find (eu,; + B*pr, %) 12(1;02(w)) > 0. From the second inequality
with u, replaced by ur and u = ur 4, it follows that (eur +B*pr, %) r2(1;12(w)) < 0.
Combined this implies (3.16). O

Let V denote the value functional associated to (P7), i.e.,

5 1
(3.17) V(r) =7 (14 Sllurlaraey ) + 5297 (0) = 2le.

and set L?(Q) = L?(Q) x L?(€2). The following result establishes smoothness of V and
the relationship of %V(T) to the transversality condition.

THEOREM 3.8. Let (H1) hold. Then the mapping T — V(T) is continuously
differentiable on (0,00) and

d

g
gv(T) =1+ §HUT||2L2(1;L2(W)) + (Ay; + Bur, Pr)2(1,12(0))-

Moreover, it admits a second-order directional derivative given by

d\’ : .
(%) V(1)o7 = (Ay: + Bur, P)r2(1;y0),L2(1;p1) + (AY, Pr)r2(1,¥0),L2(1;PY).-
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Proof. Let 7 € (0,00) and let (y, 4, p) Bouligand derivative at 7 in direction d7.
To save notation it will be convenient to set

€ .
b=or (1 + EHUTH%?(I;L?(w))) + Ta(uT,U)L2(I;L2(w)).

We compute

dilTv(r)gsT =07tb+ %(yf(l) —2z,y(1))yo

=b+ (p-(1),y(1))L2(0)

1
—bt / %<pf<t>,y(t>>mm + (Pr(0), 7(0)) 2y

1 1
=b— T/ (A™p-(1), ¥y ()20 + / (p- (1), TAY(t) + TBu(t) + 07 Ay, (1)
0 0

+ d7Bu., (t))L2(Q)

1
9
=0T (1 + 5”“7”%2(1;9(@) +/0 (p-(t), Ay (t) + BUT(t))L2(Q))

+7(eur + B*Pr, @) L2(1:L2(w))-
By (3.16) we have (cu, + B*pr, ) (1;22(0)) = 0 and hence

d €
—V(r)=1+ §HUTH%2(1;L2(W)) + (Pry Ayr + Bur) L2102 (w))-

dt
This provides the expression for £V(r). Continuity of 7 — 4V(r) follows from
Proposition 3.1 using the fact that (pr,Ay. + Bu;)r2r12w)) = (Pr,Ay: +
BUT>L2(I;P1),L2(I;Y0) implies the first claim.
Using it, we obtain for the second-order directional derivative

2
(i) V(1) 0T = (eur + B*p,r, u)
dr

+ (Ay + Bu, ) 12 (r;v0),22(1;p1) + (AY, P) L2(1;Y0),L2(1;P1) -

Using once again (3.16) implies the claim. 0

Remark 3.9. The expression for %V coincides with the left-hand side of the
transversality condition. Note that due to the extra regularity requirement that yo €
Y? we have that Ay € L?(I;L?(f2)), so that we can avoid the duality pairing that
we used in the transversality condition in (2.5).

We conclude this section with an asymptotic estimate of V() as 7 — oo.

THEOREM 3.10. Let us assume that (H1) is satisfied, which is the null-controll-
ability of the wave equation in time 79 > 0. Then there exist constants €9 > 0 and
¢ > 0 independent of T such that for all T > 19 and € € (0,20) we have

V() =7l <ce(r—m)"
d

—V(r) — 1‘ <c(r-— 70)71/2.
dr
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Proof. Let o > 0 and a positive integer N be given. From [19, Prop. 2.3] it follows
that if

(3.18) N > 2¢(ro)o ™" max(||yolly+, [|z]v+)

holds there exists controls uy, and uyz with the property |unollze(r;22(w)),
llun all Lo (r;02(w)) < 0/2 that drive the wave equation from yo to 0 and from 0 to
z in time N7y, respectively. Now let 7 > 7y be given, and define the positive integer
N such that 7 € [N7o, (N + 1)79). Set o := 2¢(70) max(||yo|v, ||z]|y:)N~!; hence
(3.18) holds. Then by linearity of the wave equation the controls uy o and uy , can
be used to construct a control u,, that drives the system from 0 to z in time 7.
Moreover, it holds that

[tros So=CN'<C(r—m)""

with a constant C' independent of 7. Then for 7 sufficiently large, u, ¢ , is admissible
for (P7) and hence

€ 1 € _
T§||Ur||2L2(1;L2(w)) + 2—£||YT(1) — 2|30 < T§HUT,0-,Z||2L2(I;L2(UJ)) <ce(r—m)"

This proves the first claim.
This estimate further implies that

1
(3.19) lp-(Wller = =lly-(1) —zllyo < e (r - 7o) 2,

where c is used as a generic constant, independent of 7.

Testing the adjoint equations —p’ ; = TAp;2 and —p;2 = 7p,,1 by p 5 and
_Plr,p respectively, subtracting the resulting equations, and integrating on (¢,1),
t € (0,1), yields the energy equation

IPra()lIE2() + IVPr2(D)Z2 ) = [Pra(WlZz) + IVPr2(D)lli2(q)
for all ¢t € (0,1) and 7 > 0. Together with (3.19) this proves

lprllee(rpry < ¢ (17— 7o) 2.

Analogously one obtains the estimate

ly-llzeecyry < e (llyollyr + llurllL2rL2w)))

with ¢ > 0 independent of 7, which shows that Ay, is bounded in L*(I;Y?) uni-
formly with respect to 7. This implies that

sup (Ay, (t) + Bu, (1), pr(t))yop1 <c (1 — 1) V2
tel

which together with Theorem 3.8 and (3.19) proves the second claim. O

4. Semismooth Newton algorithm for the regularized optimality sys-
tem associated to (PJ). The algorithm for solving (P.), which will be described
in the following section, relies on an efficient numerical method to solve (P7). For
this purpose we use a semismooth Newton method. In this section we verify its local

superlinear convergence.
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In view of (3.1) a control u is a solution to (P7) if and only if

1
(4.1) Fu=u+ Py, (—EB*pT) —0,

where p, = p(u) is defined through the primal and adjoint equations in (3.1). Here
F is considered as an operator from L?(I;L%*(w)) to itself. We shall verify below
that Py, : C(I; L*(w)) — L?(I; L?(w)) is Newton differentiable [11] with Newton
derivative denoted by DFy,,. Since u — y, — B*p; is a continuous linear mapping
from L*(I; L*(w)) — C(I; L*(w)), it follows that u — Fu is Newton differentiable.
To carry out the Newton iteration, given ug, we compute ugi1 = ug + du by solving

(4.2) DF(ug) du = —F (ug),

where DF(u) denotes the Newton derivative of F, which is made precise below; see
(4.5).

To analyze this algorithm we first address Newton differentiability of radial pro-
jections in L?(w) and L?(I; L?(w)). Differently from the Bouligand derivative, which
was considered in Proposition 3.4, the Newton derivative is a bounded linear operator.

PROPOSITION 4.1. The projection Py : L?*(w) — L*(w), which is given by

Py(q) = gqmin(l, m), is Newton differentiable with Newton derivative given
by

h if lall 2wy <7,
(4.3) DFy(q)h = vh 74(q, P) 12 (w)

e Hquz(w) if llall Lz > -

Proof. The proof can be found in the appendix, section 7. O

For our purpose the projection operates pointwise in time on elements ¢ € C(I;
L?(w)). We denote it by the same symbol.

PROPOSITION 4.2. The projection Py,, : C(I; L*(w)) — L*(I; L*(w)) given by
Py,,(q)(t) = q(t) min (1, M) is Newton differentiable with Newton derivative
given by (DPy)q(t) as in (4.3).

Proof. The proof can be found in the appendix, section 7. O

Let us reconsider (4.2) and set px, = p (ug), the solution to the first two equations
in (3.1) with u, replaced by uy. Let us further note that the Fréchet derivative of
u — p (u) at ug in direction J,,, denoted by p’ = p’(ux) 0., satisfies

oy = TAy +7Bdu, y'(0)=0,
(4.4) , . ; 1 yi(1)

—op’ =TA'P, p'(l) =- ((_A)—ly/ (1)) .
We further set

I={tel: HB*pk(t)”Lz(w) <eytand A={tel: ||B*pk(t)||L2(w) > eyt

Then (4.2) can equivalently be expressed as

B* B*
(45) du+t XA <*/_| Pk (| Pk

1
,B*p’) + —xzB*p’
|B*px|| IB*pr \ [IB*px|l 2w)) €

1
=—u,— Py, (gB*Pk> ;
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where the norms are taken in L?(w). Setting ug.1 = uy + du the Newton update
satisfies

1 *
(4.6) wpy1+ EXIB Ph+1

XA X B*px B*pi .
+ *7 B pk+1 - * < * 7B (pk“l‘l - pk)) = 0
[B*px|| < IB*pxll \[[B*pxll L2(w)

In order to prove solvability of this equation, we observe that it is the necessary and

sufficient optimality condition of a linear-quadratic optimal control problem.
ProrposiTioN 4.3. The Newton update ugi1 is the unique solution to

(4.7)

1 *
- T IB*pi () 22w 1
min J(y.u) =3 / max(f”,e @)l di + 5y (1) = 23

subject to
yve =T7Ay + 7Bu on (0,1], y(0) = yo,

(u(t), B*pr(t)) 2(w) = =B Pr(t)l| 12(w) for a.e. t € A.

Proof. Existence of a unique solution to (4.7) follows from the linear-quadratic
structure of the problem. To derive the necessary and sufficient optimality system for
(4.7) we consider the Lagrangian associated to (4.7), which is given by

L(y,u,p, i) = J(y,u) + (p, —y: + TAy + 7Bu)

T (1O, (), B PO 2y + VB POl L2w) ) o e

It follows that the adjoint equation for (4.7) is given by

— * _ 1 y (1) -z
-Op=7A'p, p(1)= - <(_A)_11(y2(1)1_ 22)> ;

and that
T max (%,8) u+7TB*p+ xauB*pr =0 ae. on (0,1).
Consequently
(4.8) u—+ éB*p =0a.e. onZ,
and
(4.9) Mu +B*p+ %uB*pk =0 a.e. on A.

The latter equation implies that a.e. on A

||B*Pk|\L2(w)
Y
By the last equality in (4.7)

* * * 1 *
(u, B*pr)12(w) + (B*P, B Pr) L2 (w) + ;MHB Prl|72(0) = 0.

* * * 1 *
=B Prlliz) + (B'P B Pr)r2(w) + —#IB PrllZz) = 0
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and hence
-

”B*pk”Qp(w)( P, Pk)L2(w) a.e. on A

p=7-

By (4.9) we find a.e. on A

Y * * (B*po*pk)L2(w)
wtr—" ([ B'p+Bpy |1 —0
”B*pk”L?(w) ( ( ||B*pk||2L2(w)

or equivalently

Y . Bps . . B"ps
(4.10) ut > —— BI)———T—————<BIT_B]%v_TT____>
B*Pll L2 (w) IB*Prl L2 (w) IB*Prllz2(w) / 2

a.e. on A. Combined, (4.8) and (4.10) imply that (4.6) is satisfied with (ugt1, Pr+1) =

(u,p). O

Uniform boundedness of the inverses of the generalized derivatives of F' is ad-
dressed next.

PROPOSITION 4.4. For every u € L*(I; L*(w))

IDF(u) " N eerrzwy) < Clu),

where C(u) > 0 is bounded on bounded subsets of L*(I; L*(w)).

Proof. Let u,b € L?*(I;L?(w)) be given. By Proposition 4.3, there exists a
uniquely determined h € L?(I; L?(w)) with DF(u)h = b. Let p = p(u) denote the
solution to the adjoint equation as in (PJ) with u, replaced by u and let p’ = p/(h)
denote the linearization of u — p(u) at u in direction h € L*(I; L?(w)), i.e., p’ satisfies
(4.4) with 6u = h

We set

A={t el [BP®l2w >ev), T={tel: [Bp®)rw <},

and we define
B*p

S w—
IB*P|l£2(w)

XA-

We have the orthogonal decomposition

h=xzh+xa (h— (h,q)r2(w) q) + xa(h, Q) 12(w)
=hzr+hr+hy

of h into inactive, tangential, and normal components. Likewise, we split b = bz +by+

br and B*p’(h) = (B*p’(h))z+ (B*p’(h))r+ (B*p’(h))n. The equation DF(u)h =b
implies, see (4.6), that these components satisfy the system

1
hz +=(B*p'(h))z = bz,

c
1 (B*p/(h))r = br,

he + T
IB*Pl|L2(w)

hy =Dbn.
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Hence, we have ||An||L2(7;2(w)) = IIbN]l22(1;22(w))- Moreover, by testing the first two
equations with &, integrating on I, and adding them, we obtain

||B*pHL2 w "
ellhzlZaripaw) + /A f"nwniw + (B*P' (1), B)p2(1:02(w))

pHLQ(w)(

. [B*
= (B*p'(h), hn)r2(r;02(w)) + (b, hr) + /A S br, hr) 12 (w))-

Since |B*p(t)| r2(w) > €y on A and hy = by, we can estimate using Young’s inequal-
ity

€ .
(4.11) S llhz + hrl|Terrew)) + (B P (h), h)r2(1;12w)
< (B*P'(h), hn) L2 (1502 (w)

1 1.
+ 5 max (Ea ;HB p|L°°(I:,L2(w))> 167 + O (17 27,120

We find
T(B*p'(h), h)r2(1.02(w)) = (P'(h), 0y’ — TAY') = (p'(R)(1), ¥'(1))

(4.12) 1
Y WIe = £llp" W,

where y’ is the solution of the first equation in (4.4) with du replaced by h. By the
properties of the wave equation, we obtain

(4.13) IB*p’ (W)l Lo (1;2(w)) < 1P llczpoy < ellpllcrpry < cllp’(1)]lpr
with a constant ¢ > 0 independent of u, 7. Using (4.12) and (4.13) in (4.11), we obtain

ellhz + hrll3eriro gy + €l (D)3
2

o

< —lonl1Z 2102 ()

o |

1 *
+ max (67 ;HB p|L°°(I;L2(w))) Hbl + bN||%2(I;L2(w))7

which implies the claim. O

We are now prepared to verify local convergence of the semismooth Newton iter-
ation (4.2).

THEOREM 4.5. Assume that ||ug — ur||12(1;02(w)) @5 sufficiently small.

Then the semismooth Newton iteration (4.2) converges superlinearly to u, in L*(I;
L?(w)).

Proof. The mapping F is continuous and by Proposition 4.2 is also Newton
differentiable at every u € L*(I; L*(w)). By Proposition 4.4 the inverses of DF(u)
are uniformly bounded. The conclusion therefore follows from well-known results on
semismooth Newton methods; cf. [11, p. 238]. O

5. A semismooth Newton algorithm. In this section, we propose a nested

Newton-type algorithm for solving (P). Furthermore, we will report on numerical
results.
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5.1. Description of the algorithm. The principal idea of our algorithm is to
exploit the hierarchy of optimization problems presented in this article: the original
problem (15), the penalized problems (P;) for ¢ N\, 0, and the parametric problems
(P7) for fixed e > 0, 7 > 0.

In the algorithm, the problem (]5) is solved by means of solving a sequence of
problems of type (P:) for £ — 0. Thus in the outer loop of Algorithm 1 below the
regularization parameter € is driven to 0. Within each step ¢ of this loop, the problem
(P:) has to be solved with a positive penalization parameter ¢; > 0. The solution
of (P.) with respect to (7,y,u,p) is carried out as is a Newton algorithm for the

minimization of the functional V, defined in (3.17) by

5 1
V(r) =7 (14 Sllurlaraey ) + 5197 (0) = 2le.

subject to the constraint 7 > 0. In the definition of V, the pair (y.,u,) is the unique
solution of the parametric optimization problem (P7). The first and second derivatives
of V are computed on the basis of Theorems 3.6 and 3.8. In order to evaluate V
problem (P7) has to be solved for fixed € and 7. Here we use the semismooth Newton
method, which was analyzed in section 4. The overall solution procedure is depicted
in Algorithm 1. The detailed algorithm to solve the subproblems (P;) is described in
Algorithm 2.

ALGORITHM 1. Solution algorithm: solve (P).

Initial guess: €g, 79.

Parameter: 6 € (0,1).

Initialization: ¢ = 0, r¢ := 4oc.

repeat {Solve (P) - e-loop}
Solve (P:) by Algorithm (2), solution (7, ,,¥e, 1> Ue,y1s Peiyy)-
Compute 711 := [|ye,,, — 2 vo.
Set Ei+1 = 61'/2.
Set ¢ =174 1.

until r; < ryg

As stopping criterion for the solution of the regularized problem (P:,) by Algo-
rithm 2, we chose

(5.1)

d
T — max <0,7‘k - —V(Tk)) ‘ < &,
dr

which is motivated by the necessary optimality condition of projected gradient type

T. — max (0,7'5 - iV(Ts)) =0
dr

for (P.). That is, the precision in which the (P:) is solved is directly coupled to
the regularization parameter. This prevents the overall algorithm from spending too
much time to solve problems with relatively large regularization parameters.

To apply a nonsmooth Newton’s method for the minimization of V), the second-
order directional derivative of V is computed by solving the sensitivity system (3.10).
We observed that the computational effort to solve (3.10) is comparable to the effort
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ALGORITHM 2. Solution algorithm: solve (P.) with given &; > 0.

Parameter: 6 € (0,1).
Initialization: k := 0.
Initial guess: 7, = 7.
loop {Solve (P:) - m-loop}
Solve (P7) with 7 := 7, solution (y,,, tr,, Pry,)-
Compute si := “LV(7y).
if |7, — max(0, 7, — sx)| < &; then {Projected gradient test}
return (74,¥r, Urp, Pr)
end if
Solve sensitivity system (3.10), compute hy, := j—;V(Tk).

Compute dj = max (—max(l, hk)ilsk, _Tk)'

Set 0 := 2.
repeat {Line-search in 7}

Set 0 :=0/2, T}, := 1, — od.

Solve (PT) with 7 := 7y, solution (yz,,us,, P7,)-
until V(7)) — V(7%) > 6‘U|S;€|2
Set (Tk+17 Yrrir u7k+1ap‘rk+1) = (%ka Y, UFys pf'k)'
Set k:=k+ 1.

end loop

of computing one semismooth Newton step for (P7). Once the solution of (3.10) is

available, the second-order directional derivative of V' is obtained from

2
d ) .
(E) V(’T)(ST = <Ay + Bu, p>L2(I;Y0),L2(I;P1) + <.Ay7 p>L2(I;Y0),L2(l;P1)'
With the values V(7)) and (-£)?V(7;) computed, an Armijo-type line-search with
feasible directions is used to determine the next iterate 7j41.

For the innermost semismooth Newton iteration, which solves the parametric op-
timization problem (P), an Armijo-type line-search is used. The iteration is stopped
as soon as the residual at the current iterate ul, satisfies

,10_6);
see (4.1) for the definition of F.

Let us now briefly sketch the arguments to show convergence of Algorithm 1.
The convergence of solutions (7, -, u.) for € — 0 to solutions of (P) was analyzed in
our previous work [19]. The use of the inexact stopping criterion (5.1) is justified by
the numerical observation that (-£)?V(7,) > 0 near solutions of (P.). Algorithm 2
to solve (P:) is itself a globalized Newton method, which is known to be globally
convergent. The convergence of the semismooth Newton method to solve (P7) was
proven in Theorem 4.5.

Turning to the discretization scheme, the state, adjoint, and control variables were
discretized by finite elements. The amplitude components y; and po are discretized
by P1l-elements, while PO-elements are used for the velocity unknowns ys and p; and
for the controls.

For time discretization, we used a cg(1)dG(0)-scheme as described in [18], which
corresponds to a Crank—Nicolson time-stepping procedure.

iV(Tk_l)

j —2
IF (ul,) || L2(r:12 () < max <10 e
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5.2. Numerical experiments. Let us report on the outcome of our computa-
tional experiments. We modified the cost functional of the penalized problem (P.)
to

€ 1
Je(rw) =7 (L4 Sl + 5= Iv (D) — 2l
2 2ey
with
gy =0.1-¢.

That is, the violation of the terminal constraint is penalized with larger weight.

We chose 2 = (0,1)? for our computations. The control bound was set to v = 3.
The target state was z; = zo = 0 and the initial state was given as y1(z1,22) =
$1{E2(1 — xl)(l — xg).

The spatial domain was discretized using a uniform triangulation, and the time
interval was split into equidistant subintervals. We will report on the results for
the following hierarchy of discretizations: (N, M) = (50,10), (200,20), (800,40),
and (3200,80), where N is the numbers of triangles and M the numbers of time
intervals. The resulting mesh size h is h = 2/ VN, the resulting length of the temporal
subintervals At = 1/M.

The parameters for the algorithm as described in the previous section were chosen
as

g0=0.1, 71=19 6=10"3.

The algorithm was stopped as soon as the terminal residual satisfies ||y.(1) — z|lyo <
1073, which corresponds to the choice ry = 1073,

In the examples which follow, we also pay special attention to the behavior of the
boundedness of {||psn(1)|p1} and {||pe,n(1)|po} with respect to . By Theorem 2.5,
we have that if {||p:(1)||p:} is bounded, then (2.6) and

(5.2) 1+ (Az + Bii(1), p(1))y1 po = 0

are satisfied for some adjoint state p. In the case that {||p.(1)|po} is unbounded,
there is p # 0 satisfying (2.6) and

(5.3) (Az + Bii(1), p(1))y1po = 0.

It is still an open question to further analyze under which assumptions on the data of
the control problem (15) we can expect the transversality condition to be in qualified
(5.2) or unqualified form (5.3). For the details we refer to [19].

Let us briefly comment on our experience with solving problem (P:) directly
for (7,y,u,p) by the semismooth Newton method. This requires applying the semi-
smooth Newton method to iteratively solve the optimality system (2.5). It turned out
that the bilevel optimization analyzed here was clearly more robust for the problems
that we tested. For this reason we gave preference to it in the present work.

Example 1. Here the initial velocity was yo = 0. That is, the control objective
was to steer the system from a given deflection into zero. The control domain was
chosen to be w := €.

The most delicate issue is the behavior of the algorithm with respect to the
asymptotic behavior ¢ — 0T. So let us report on it first.
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Fic. 1. Ezample 1. 7c versus € for different discretizations; |1e — 7*| versus € for finest
discretization.

TABLE 1
Ezxzample 1. Convergence history.

€ Te [7e — 7% lly=(1) — z[lyo
1.0000 - 101 3.68-1071 1.52-102 2.49 - 102
5.0000 - 102 3.77-1071 7.03-1073 1.03-102
2.5000 - 10—2 3.80-10"! 3.56-103 4481073
1.2500 - 102 3.82-1071 1.82-1073 2.12-1073
6.2500 - 10—3 3.83.1071 6.67-10"% 1.02-1073
3.1250- 103 3.84-1071 5.10-10~%

In Figure 1 we show the convergence of 7. for different discretizations. Moreover,
we depict the evolution of |7, — 7*| for the finest discretization, where we use as value
for 7* the optimal time for the smallest ¢;, i.e., 7% = Te, .- In Table 1 we report on
the convergence of 7. and ||y.(1) — z||yo for the finest discretization. We observe the
convergence rate

|7e — 7| = O(e).
As argued in [19, Corollary 3.3] this implies that

ly=(1) = zllyo = O(e),

which can be seen in Table 1 as well. Moreover, since by (2.5) we have ||ps(1)|p: =
Llly=(1) — z|yo this convergence rate implies that {p.(1)} is bounded in P'. To
address the effect of discretization we plotted in Figure 2 the evolution of ||p,5 (1)1
for the solutions of the discrete problems for the four different discretizations, and
we observed that the Pl-norms of p (1) are bounded uniformly with respect to
¢ and with respect to the discretization. This suggests that the continuous norms
{llps(1)]|p:} are bounded as well. Hence, we expect that the limits (7*,y,@,p) of
solutions (7¢,ye, ue, Pe) for € — 0 satisfy the transversality condition in the qualified
form (5.2).

Table 2 depicts the behavior of the number of iterations of the middle and the
innermost loops of Algorithm 1, i.e., the 7 and the semismooth Newton loops, as a
function of a decreasing sequence of ¢; values. Except for the solution for the initial e-
value, the number of 7 iterations increases as ¢; decreases. The number of semismooth
Newton iterations necessary for each fixed value of € and 7 remains almost constant
for the example shown here.
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FiG. 2. Ezample 1. ||pc(1)||p1 versus e for different discretizations.

TABLE 2
Ezxzample 1. Iteration numbers.

£ T-iterations ssn-iterations
1.0000 - 10—t 9 31
5.0000 - 10~2 1 10
2.5000 - 10—2 2 17
1.2500 - 10~2 25 241
6.2500 - 10—3 20 266
3.1250 - 103 30 470
TABLE 3

Ezxample 2. Convergence history.

E Te |7e — 77| lly=(1) — z[lyo
1.0000 - 101 4.00-1071 3.15-1072 2.87-1072
5.0000 - 10—2 4181071 1.45-102 1.21-102
2.5000 - 10—2 4.24-.1071 7.81-1073 5.68 103
1.2500 - 10—2 4.28 -1071 3.72-1073 2.71-1073
6.2500 - 10—3 4.31-1071 1.34.103 1.33-1073
3.1250- 103 4.32-1071 7.00-10—4

Ezample 2. In our second example we chose the initial velocity to be yo(z1, z2) =
22 + y3. All other data are the same as in the previous example. The convergence
history can be found in Table 3. We observed the same convergence rates as in
the previous example, i.e., ||y:(1) — z|yo = O(e). Moreover, {p.(1)} is bounded
in P!, which indicates that the qualified transversality condition (5.2) holds for the
continuous original problem.

Ezxample 3. Here again the initial velocity was y2 = 0, however, the control
domain w was chosen to be a proper subset of Q: w = Q\ [0,0.5]%.

The convergence rates are worse than in Examples 1 and 2. In fact, in the
computations we observe that |[7. — 7*| = O(y/¢); see Table 4 and Figure 3, which
coincide with the theoretical findings [19, Cor. 3.3]. The numerical optimal time was
found to be 7" ~ 0.62.

Moreover, the norms {||pe,n(1)|p: }e>0 are not bounded uniformly with respect
to the discretization, see Figure 4, and {||p-(1),|/po }e>0 is not bounded either. This
suggests that for the original system the transversality condition holds in the unqual-
ified form (Bu(1),p(1))¢poy-po = 0, cf. (5.3) with z = 0, which was also observed
numerically.

Further we observed a mesh-dependent convergence of the algorithm. For finer
discretizations, smaller values of the parameter ¢ were needed to reach the prescribed
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TABLE 4
Ezxzample 3. Convergence history.

5 Te |7e — 7% ly=(1) — Z||Y0

1.0000 - 10~ 1 3.98-10"1 2.25-1071 3.97 102
5.0000 - 102 4.45-1071 1.77 1071t 2.41 1072
2.5000 - 10—2 4.86-10"1 1.37-101 1.50 - 102
1.2500 - 102 5.21-10"1 1.02 101t 9.25.1073
6.2500 - 10—3 5.47-1071 7.64-1072 5.81-1073
3.1250- 103 5.67-10"1 5.58 - 1072 3.74-1073
1.5625 - 103 5.84-1071 3.95-10"2 2.52-1073
7.8125- 104 5.98- 101 2.50- 102 1.73-1073
3.9063 - 104 6.12-1071 1.15-102 1.21-103
1.9531- 104 6.23-10"1 9.02-10~%

o 10° 7?7\1"’:‘

v
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g - P
x x 8 v
0.55 x ? } Y”
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Fic. 3. Ezample 3. 72
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Fic. 4. Ezample 3. ||ps(1)||p1 and

llpe(Dllp1
IPe(Dllpo

versus € for different discretizations.

accuracy for the terminal residual; see Figure 3. Consequently, the algorithm needs
more iterations on finer discretizations.

Finally we observe that for this control domain, controllability is guaranteed for
times T' > /2, as the geometrical condition of [1] is satisfied for this configuration:
Each ray of geometric optics starting in 2 will hit the control domain w within time

t=+/2.

6. Concluding remarks. Clearly many interesting questions can be addressed
as extensions of the present research. Here we used an L?(w)-norm constraint on
the controls spatially. Pointwise controls are equally important and require, in part,
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different treatment. Boundary control problems, as well, are a natural problem to be
addressed. Various aspects of discretization would also be of interest.

7. Appendix: Proofs. Here we present the proofs of those results which are
not provided in sections 3 and 4. Let us recall the definitions of the projections onto
Uad and U:

(Py.,(u) (t) := Py(u(t)) f.a.a. t € (0,1),

where the projection onto U is defined as

Py (u) = min <1 L) .

’ HUHLz(w)

In what follows, we will briefly recall the statements of the lemmas and propositions
as presented earlier in sections 3 and 4.

LEMMA (Lemma 3.2). The projection Py,, is continuous mapping from C*([;
L?(w)) to HY(I; L?(w)).

Proof of Lemma 3.2. The proof follows the ideas of a related result in [15] on the
continuity of the operator y — max(y,0) in H(Q). Let a sequence g, be given with
¢n — q in CY(I; L?(w)). We have for the time derivative

Orq(t) if lg() 2wy < s
O Pu(q(t) = 5 la®)2a ., 00— (a(t).00a(t)) 12y a(0)
ot :
I|Q(t)HL2(W)

if |g(t) 22wy >

for almost every t € I. Here we use that (q(¢t), 9;q(t)) = 0 for a.e. t € I such that
lla(t)llz2(w) = v; cf., e.g., [15, Lem. A.4].

It follows that 0; Py (qn(t)) — 0:Pu(g(t)) converges pointwise for all ¢ € I such
that |lq(t)||L2() # 7. The pointwise a.e. convergence of 0; Py (qn(t)) to 0;Py(q(t))
for t € I with [|q(t)||L2(.) = 7 follows from the fact that (q(t), d:q(t)) = 0 holds for
almost all such ¢ € I.

In addition we have the pointwise bound [|0;Pu(gn ()| 12wy < 10l (r.L2(w))-
Hence by Lebesgue dominated convergence theorem, 0; Py (q) — 9¢Py(q) strongly in
L2(I; L*(w)). 0

PROPOSITION (Proposition 3.4). The projection Py onto U is Bouligand differ-
entiable from L?(w) to L?*(w) with Bouligand derivative given by (3.8).

Proof of Proposition 3.4. Let ¢,h € L*(w) be given. If ||¢||z2() # 7, then the
claim follows immediately. In the case ||q||z2(.) = 7 and (¢, k) > 0 it holds ||g+h]| > ~,
and the claim is a consequence of the Fréchet differentiability of ¢ — Pym for

q # 0. Moreover, the convergence order o(||h[|12(.)) is uniform with respect to ¢ in
bounded subsets of L?(w).

It remains to consider the case [|q|/z2) = 7 and (¢,h) < 0. If in addition
[lg + R|| <~ holds, then the first-order remainder term is zero. This leaves to discuss
the case ||q 4 h| 2wy > 7. Here we find

v < g+ hllZo) =7 +2(g.h) + 2720,

which implies the inequality 0 < —2(gq, h) < HhH%z(w). The first-order remainder term
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is now given as

Py(q+h) — Pu(q) — Pi(g; h)

e dth
lg + Rl L2 (w)
gl
=(q+h <7_1>
( : g+ hllrze)
(g +h) s s )
- 7 = (0 +2(q. h) + ||hll72
T O T Ay U~ 0+ 200 + k)
Y(q+h)

= —2(g,h) — |22, ) 5
T a6 Ay (2@ — Ihl)

“2;22. Due to the inequality 0 < —2(¢,h) < Hh”%z(w), the
L?-norm of the right-hand side of this expression is of the order o(||h]|r2(.)) for h — 0
in L?(w), uniformly with respect to ¢ in bounded subsets of L?(w). O
PROPOSITION (Proposition 3.5). The projection Py,, is Bouligand differentiable
from C(I; L*(w)) to L2(I; L?(w)).
Proof of Proposition 3.5. Let ¢ € C(I; L?(w)) and a sequence hy, € C(I; L*(w)) be
given with hy, — 0 in C(I; L?(w)). Let us define the sequence of first-order remainders

where we use a — b =

r := Pu,,(q¢+ h) — Pu,,(q) — P, (q; he).

We have to show |ril[2(rr2w)) = ollhkllcrrzwy) as lhklledr2w)) — 0. Due
to the result of Proposition 3.4, we have [|r(t)||12w) = o([|he(t)| L2(w)) as k& — oo.
Moreover, due to the Lipschitz continuity of projections it holds that |7y (¢) r2(w) <
2([he ()]l L2 (w)-

By the Lebesgue dominated convergence theorem, we have that the sequence
qr. defined by q(t) = Hhk(t)HZzl(w)Hm(t)HLz(w) converges to zero in L?(I) for all
p € [1,00). The claim follows with the inequality

1/2
I7kllz2(z2w)) < hellerezw)) </1 1Ak 2 o 1 (D)1 T2 dt) .0

PROPOSITION (Proposition 4.1). The projection Py : L?(w) — L?(w) is Newton
differentiable with Newton derivative given by (4.3).
Proof of Proposition 4.1. We need to argue that

, 1
lim —||Py(¢+h)— Py(q) — DPy(g+h)h|| =0
Ihl[—o [|R|

for any ¢ € L?(w); see, e.g., [11, p. 261]. Throughout the proof | - || stands for |- || £2(w)-
Let us first consider the mapping G : L?(w) — R given by

G(q) = min <1, ﬁ) .

(1) DG(a)(h) — {0 ) i o]l < 7,

all® (Qa h)L2 if ”q” >
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is a Newton derivative for G' at any q € L?(w). Since G is Fréchet differentiable for
every u with ||¢|| # ~ it suffices to consider the case ||q|| = . Let {h,} be an arbitrary
sequence in L?(w) converging to 0. It has subsequences hl and h? with ||g+hL|| <~
and ||g + hZ|| > ~. For the first we have

lim G(g+ht) -G DG(q + h})h!
H)OW”I( ) — G(q) — DG( ) hay

(7.2) .
= lim —(1—1-0)=0.

For the second one we find

7
R 1 1 ,
= lim T 1t q, hn
I T2 (||q+h%|| Tal + e )
1 2 2 2
(g, P2+ ———(q+ k2, h )
TP\ )+ e 2

1 1
~ lim W2l — (= — ><q,hi>+—<hi,hi>):o
|h2|( TS TR

Here we used that for ¢ # 0

1 1 1
—— — — 4 —=(q, h) = o (|[1]]*).
g+l ol llql®

In the proof of the following proposition we shall use the fact that o in (7.4) is uniform
with respect to ¢ in sets of the form {q: p < ||¢|| < R}, where 0 < p < R.

With (7.3) Newton differentiability of G holds. Newton differentiability of Py is
now an easy consequence. In fact, we have

(7.4)

(7.5) Py(q+h)—Py(q) —DPy(qg+h)h
= min _ T ) min b
=Gy min (1, ) —amin (4 )

(w1 ) - (1 7))

. Y
—hmin (1, ——— | —¢DG(¢g+h)h
(1 ) -opota+n

=q(G(g+h)—G(qg) = DG(qg+h)h)=o(|h]}). D

Remark 7.1. Note that in (7.1) we assigned the value 0 to DG(q) for ¢ at the
critical value |g|]| = . This corresponds to the equality sign in (4.3) which appears
in the first rather than the second line.

Similarly to considerations above, one can prove that the mapping

~ 0 i gl <.
DG(q)(h) =
(@(h) {_%@, M it el 29

is a Newton derivative of G too. Here, the proof has to be modified in the case ||¢|| = v
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only for a subsequence h? with ||g + h3|| = v. Then one has
0= llg+nll* = llall* = IR + 2(a, b30),

which implies (¢, h3) = —3||h3||>. Then (7.2) has to be replaced by

1
lim et | Gg + ) — Glg) — DG(q + Iiy) |

A TR n
1 1 1
= lim —— (1— 1+ —(qg+h, h3)— h3,h3) =
wwmm( ol ) M7mew( )=

PROPOSITION (Proposition 4.2). The projection Py, : C(I; L?(w)) — L*(I;
L?(w)) is Newton differentiable with Newton derivative given by (DPy)q(t) as in
(4.3).

Proof of Proposition 4.2. Let ¢ € C(I; L?(w)). Further let {h,} be a sequence in
C(I; L?(w)) with h, — 0 in C(I; L?(w)). Let

Ki={t:|lg®)| <~} Ka={t: [lg@®)| =}, and K5 = {t: [lq(t)[| >~}

We need to estimate

i ([ IR0+ 1a(0) = Polalt) - DPo(a(0) + hn(0)0a (0]t
0 1

< o ((f w00)' (] 00)" ([ 00)')

where z(t) denotes the integrand of the integral on the left-hand side. By Lebesgue’s
bounded convergence theorem

lim [ z(t)dt = / lim [|q(t) + hn(t) — q(t) — ha(8)||2dt = 0
Ki K

n—oo 1 n—roo

and hence limy, o0 1 (fx, 2(£)dt) = 0. Similarly by (7.4)

"ch L2(w))

1 2
n=o0 ||hn|lo(r;:L2(w)) < s ®)

1
1 2
— lm o / o(||hn(t)|4)dt> _o.
n=o0 ||hnllc(1;02(w)) ( Ks

To obtain the estimate on Ky we express h,, as hy(t) = hl(t) + h2(t), where

@ O Rl S [0 a(0) + ha@)] <,
“@‘{0ﬁmm+Mﬁﬂ>% ’“”‘{mwﬁmw+mﬁM>m
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By (7.5) we find using a splitting similar to (7.3)

(00

([ (a0 + hate) = Gtatt) = DGt + ) (0) a0 P )

NG

-

2

2
7(AKQWHWHW—GMW—DQ%@+M@WﬁDﬁ)
2 1 1 1 5 2 \?2

=7 (/K2 (||q(t) T2 el + Hq(t)H:;(q(t)a h’n(t))) dt)
2 1 B 1 , 2
=/, (s ~ e ) @0 o)

2 1 2 4 %
1 </K T+ rzope 1Ol ‘”)

< ([ 2 o(hi(t))?dtf

i 2 4 2 ) 2 9 0\ 2 3
+¢(Aﬂmmnwmnﬂmwnmmw4mmmdo

N|=

1

1 2

S2 (o) = otimleq),
T \JK,

and consequently limn_,mm( ng z(t)dt)? = 0. This concludes the

proof. a
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