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COMMUNICATIONS-INSPIRED PROJECTION DESIGN WITH

APPLICATION TO COMPRESSIVE SENSING
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Abstract.

We consider the recovery of an underlying signal x ∈ Cm based on projection measurements of
the form y = Mx + w, where y ∈ Cℓ and w is measurement noise; we are interested in the case
ℓ ≪ m. It is assumed that the signal model p(x) is known, and w ∼ CN (w; 0,Σw), for known Σw.
The objective is to design a projection matrix M ∈ Cℓ×m to maximize key information-theoretic
quantities with operational significance, including the mutual information between the signal and
the projections I(x;y) or the Rényi entropy of the projections hα (y) (Shannon entropy is a special
case). By capitalizing on explicit characterizations of the gradients of the information measures with
respect to the projections matrix, where we also partially extend the well-known results of Palomar
and Verdú from the mutual information to the Rényi entropy domain, we unveil the key operations
carried out by the optimal projections designs: mode exposure and mode alignment. Experiments
are considered for the case of compressive sensing (CS) applied to imagery. In this context, we
provide a demonstration of the performance improvement possible through the application of the
novel projection designs in relation to conventional ones, as well as justification for a fast online
projections design method with which state-of-the-art adaptive CS signal recovery is achieved.

Key words. Low Resolution Imaging, Compressed Sensing, MIMO Communication, Precoder
Design, Mode Alignment, Mutual Information
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1. Introduction. Compressive sensing (CS) [9, 13] has recently emerged as an
important area of research in image sensing and processing. Compressive sensing
has been particularly successful in multidimensional imaging applications, including
magnetic resonance [29], spectral imaging [17, 45] and video [44, 22]. Conventional
sensing systems typically first acquire data in an uncompressed form (e.g., individual
pixels in an image) and then perform compression subsequently, for storage or com-
munication. In contrast, CS involves acquisition of the data in an already compressed
form, reducing the quantity of data that need be measured in the first place. In CS
the underlying signal to be measured is projected onto a set of vectors [7, 13], and
one must perform an inverse problem to recover the underlying signal of interest.

There are two hallmarks of the original CS theory. First, the projection vectors
were usually constituted uniformly at random. Second, the underlying signal model
used to regularize the inverse problem was based on the assumption that the under-
lying signal could be sparsely represented in terms of an orthonormal basis or frame.
However, even in some of the early CS studies, it was recognized that improved per-
formance could be achieved with projection vectors designed to the underlying signal
of interest [24, 1, 2], rather than using random projections. Further, it has recently
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been recognized that a signal model based upon sparsity is often overly primitive,
and model-based CS [3], wherein improved signal models are employed, may yield
improved CS performance (high-quality signal recovery with fewer projection mea-
surements). Signal models that have been considered include the Gaussian mixture
model (GMM) [11], union-of-subspace models [15], and manifold models [4].

In this paper our goal is to design CS projection matrices (“measurement kernels”)
matched to a general statistical signal model. Specifically, if the underlying signal
to be measured is x ∈ Cm, it is assumed that we have access to a general signal
model, represented statistically by density function p(x). Our objective is to design
the projection matrix to maximize the mutual information between the underlying
signal and the observed compressive measurements or to maximize the Rényi of the
compressive measurements.

The key to the approach considered in this paper is the realization that the
projection-design problem for CS systems (subject to a power constraint) exhibits par-
allels with the precoder design problem for multiple-input–multiple-output (MIMO)
communications systems: in the communications problem a source is being matched
to a channel whereas in CS a channel, or equivalently the noise covariance, is being
matched to the source. This link has also been recognized recently by Schnitter [43],
who has provided projections designs for sources modelled by multivariate Gaussian
distributions, as well as by Carson et al. [10], who have also provided designs for gen-
eral multivariate source distributions. With the precoder design problem exhibiting
a long tradition in the information theory and communications field, this link also
provides the means to translate, with appropriate modifications, much of the design
know-how and experience from the communications domain to CS.

The traditional problem of precoder design for MIMO Gaussian channels has been
drawing on various performance metrics relevant for data communications. Common
precoder design approaches aim to maximize the system signal-to-noise ratio (SNR)
and the system signal-to-interference-plus-noise ratio (SINR) [33, 41] or minimize
the system error probability [5], [18]. Another emerging precoder design approach
imbued with operational significance is based on the maximization of the mutual
information between the input and the output of the system [28, 34, 27, 36, 49]. This
novel design principle has been shown to yield considerable rate gains in a variety of
communications scenarios, due to the fact that, in addition to adapting to the channel
characteristics, the designs also adapt to important features necessary to achieve high-
rate reliable communications (the designs conform to the exact characteristics rather
than only to the second-order statistics of the signaling scheme, as in traditional
approaches (see [33], [41])). The basis of the emergence of the mutual information
based designs have been fundamental connections between information theory and
estimation theory, which have unveiled the interplay between mutual information and
the minimum mean-squared error (MMSE) in scalar Gaussian channels [19] or mutual
information and the MMSE matrix in vector Gaussian channels [32]. These results
offer a means to bypass the absence of closed-form mutual information expressions
for MIMO Gaussian channels driven by arbitrary (non-Gaussian) signaling schemes.

The operational significance of mutual information, which acts as the rationale
for its use as the basis of a plethora of designs, is well known not only in data com-
munications – it represents the highest reliable information transmission rate in a
single-user channel driven by a specific signalling scheme – but also in other domains.
For example, in classification problems mutual information relates (through bounds)
to the Bayesian error probability of the classifier [21]; and, in regression problems
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mutual information relates (through bounds) to the reconstruction error [38].
We consider design of the measurement kernel based upon maximizing the mutual-

information between the underlying signal x and the compressive measurement y. We
also consider design based upon maximizing the Rényi entropy of y, where the latter
represents a generalization with operational relevance [16]. The projection design will
be implemented in practice using gradient descent, and we demonstrate that for a
GMM signal model the gradient of Rényi entropy with respect to the design matrix
may be expressed analytically, for a special parameter setting. Further, we recover
the gradient of Shannon entropy as a special case of the Rényi result.

The article considers both theoretical results, which disclose key operations ef-
fected by the projection designs, as well as experimental results that demonstrate the
merit of the approach as applied to a practical CS imaging problem. One key opera-
tion relates to the notion of mode alignment in mutual information based designs: the
modes of the source, which depending on the source statistical model are given by the
eigenvectors of the source covariance matrix or the eigenvectors of the source MMSE
matrix, have to align with the modes (eigenvectors) of the noise covariance matrix as
a means to improve performance. This role can also be conceptually appreciated by
viewing the measurement kernel as a sieve that aligns relevant statistical features of
the source to the statistical features of the noise, in order to disclose relevant informa-
tion for reconstruction. The relevance of mode alignment, which is typically absent
in communications problems1, has also been recently unveiled in radar applications
[46].2 Overbridging the theoretical and practical results is also the formal justification
of a low-complexity high-performance online projections strategy, the partial direction
sensing method (PSD) [14], which brings together the main operational features of
the optimal measurement kernel designs, including mode alignment.

The detailed contributions of the article include:
• Recognition that recent advances in communications, which relate to the
design of precoders for MIMO communications channels, carry over to CS,
leading to a communications-inspired kernel design framework for CS appli-
cations.
• Proposal of mutual information based offline – where a set of projections is
optimized simultaneously – and online – where the individual projections are
optimized sequentially – kernel designs. The article unveils key operations
carried out by the optimal kernel designs for multivariate Gaussian sources
and general multivariate sources, including the operations of source and noise
modes exposure, mode weighting and mode alignment. Particular emphasis
is given to the role of mode alignment as a means to improve further the
reconstruction performance in compressive sensing applications.
• Proposal of Rényi entropy based kernel designs. The article also underlines
some relations between the mutual information (or Shannon entropy) and the
Rényi entropy based kernel constructions.
• Formal rationale for the PDS strategy [14], which is based on the operational
insight unveiled by the theoretical characterizations of the optimal kernel

1This operation is absent in precoder designs for MIMO Gaussian channels driven by Gaussian
inputs, due to the fact that the signal covariance is often taken to be white, but is present in
precoder designs for MIMO Gaussian channels driven by non-Gaussian inputs. The role of a certain
permutation operation in the precoder design is hinted at by Lamarca in [27].

2Note that Schniter [43] does not recognize the role of mode alignment due to the statistical
assumptions about the source and noise covariances: this operation is not present when the source
covariance is the identity matrix or when the noise covariance is also the identity matrix.
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designs.
• Partial generalizations of the I-MMSE identity from the mutual information
(or Shannon entropy) to the Rényi entropy domain.
• A range of experimental results that illustrate the benefit of the novel mea-
surement kernel designs in relation to the conventional random ones.

The remainder of the article is organized as follows. In Section 2 we briefly sum-
marize the notation used throughout. Section 3 reviews the modeling and design
approach, introducing key system assumptions. Section 4 introduces the optimal ker-
nel design based on the Shannon-based mutual information metric – this builds upon
work on the communications field on precoder design for MIMO channels driven by
Gaussian inputs and arbitrary inputs. Section 5 introduces the optimal kernel design
based on the Rényi entropy metric, taking advantage of the closed-form expressions
available for a GMM source. Section 6 provides the body of evidence that demon-
strates the performance improvement possible through the application of the projec-
tions designs put forth in previous sections. We consider examples based on offline
kernel design, based upon the prior signal model, as well as online kernel design based
upon sequential update of the posterior, all within the context of a GMM signal rep-
resentation, which yields analytic CS inversion. Section 7 draws the main conclusions.
The Appendices contain proofs and supporting mathematical derivations.

2. Notation and Definitions. In the following text scalar quantities are de-
noted by italics, vectors are denoted by boldface lower case letters and matrices are
denoted by boldface upper case letters. The projection of scalar x onto the non-
negative orthant is denoted (x)+ , max(0, x). The superscript (·)⋆ is used to denote
an optimal solution and the superscripts (·)T , (·)∗ and (·)† denote transpose, conju-
gate and conjugate transpose operators, respectively. The element in the i-th row and
j-th column of the matrix X is denoted by [X]i,j . The trace of a matrix is denoted
tr(·). The diagonal matrix with diagonal elements given by either vector x or the
diagonal elements of matrix X is denoted by Diag(x) or Diag(X), respectively.

We refer frequently to the following special matrices and sets: the n× n identity
matrix is denoted In, the n×n flipped identity matrix with ones on the anti-diagonal
is denoted Jn, the m × n matrix of all zeros is denoted 0m×n; the sub-scripts may
be dropped where no confusion may arise. The set of all n × n unitary matrices is
denoted Sn and the set of m× n complex matrices is denoted Cm×n.

The notation x ∼ CN (x;µ,Σ) denotes a random variable x which is circularly
symmetric complex Gaussian distributed with mean µ and covariance matrix Σ.

3. Modelling and Design Approach. In CS, we aim to reconstruct the signal
of interest x ∈ Cm based on a small number of noisy projections:

y = M x+w, y ∈ C
ℓ (3.1)

with ℓ ≤ m and where M ∈ Cℓ×m is the kernel (or projection) matrix and w repre-
sents zero-mean circularly symmetric complex Gaussian noise with positive definite
covariance matrix Σw, i.e., w ∼ CN (w;0,Σw). The action of the kernel can be un-
derstood in terms of two separate projections and a power allocation (or stretching)
operation, which are associated with the matrices in its singular value decomposition
(SVD) given by:

M = UM ΛM V
†
M (3.2)
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where ΛM =
[
Diag

(√
λM1

, . . . ,
√
λMℓ

)
0ℓ×(m−ℓ)

]
∈ Rℓ×m, UM ∈ Sℓ, VM ∈ Sm,

and λM 1 ≥ λM 2 ≥ . . . ≥ λMℓ
≥ 0 correspond to the (non-negative) eigenvalues of

M M†.
Both the signal and the noise covariance matrices are positive (semi-)definite and

can also be represented in terms of their eigenvalue decomposition (projections and
power allocation). In particular, the signal covariance matrix is given by:

Σx = Ux Λx U†
x (3.3)

where Ux ∈ Sm, Λx = Diag (λx1
, . . . , λxm

) and λx1
≥ λx2

≥ . . . ≥ λxm
≥ 0 are the

(non-negative) eigenvalues of Σx. Similarly, the noise covariance matrix is given by:

Σw = Uw Λw U†
w (3.4)

where Uw ∈ Sℓ, Λw = Diag (λw1
, . . . , λwℓ

) and 0 ≤ λw1 ≤ λw2 ≤ . . . ≤ λwℓ corre-
spond to the (non-negative) eigenvalues of Σw.

Our design approach, which relies not only on a statistical model for the noise
but also on the signal, draws on specific quantitative metrics in order to conceive and
compare various possible kernel designs. A natural metric, which relates to the best
achievable reconstruction error, is the (non-linear) MMSE given by:

MMSE = E

{
tr
[
(x− E {x|y}) (x− E {x|y})†

]}
(3.5)

that involves the use of conditional mean estimation to recover the signal of inter-
est from the noisy projections, i.e., x̂(y) = E {x|y} [25]. We, however, capitalize
on information-theoretic metrics, most notably the mutual information and Rényi
entropy based on the fact that mutual information and Rényi entropy - in view of
recent developments in information theory and communications - appear to be more
amenable to mathematical analysis than the non-linear MMSE. In addition, it is also
possible to bound the MMSE via the mutual information as follows [38]:

MMSE ≥
1

2πe
exp 2 [Hx (x)− I (x;y)] . (3.6)

where Hx (x) denotes the differential entropy of x and I (x;y) denotes the mutual
information between x and y.

The crux of our design approach, which we also partially extend from the mutual
information to the Rényi entropy metric, is a fundamental result that links the gra-
dient with respect to some parameters of the mutual information between the input
and the output of a linear vector Gaussian channel model and the MMSE matrix as-
sociated with the model: known as the I-MMSE relationship. This result, which was
originally put forth for the linear scalar Gaussian model by Guo, Shamai and Verdú
[19] and later for linear vector Gaussian channels by Palomar and Verdú in [32], can
be directly applied to the model in (3.1) so that:

∇M I (x;y) = Σ−1
w M E (3.7)

where the MMSE matrix is3:

E = E

{
(x− E {x|y}) (x− E {x|y})†

}
(3.8)

= UE ΛE U
†
E (3.9)

3Note that the MMSE matrix E is a function of the kernel M
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where UE ∈ Sm, ΛE = Diag (λE1
, . . . , λEm

) and λE1 ≥ λE2 ≥ . . . ≥ λEm ≥ 0 are the
(non-negative) eigenvalues of the MMSE matrix.

Our design approach also draws on a specific kernel design constraint. It is im-
portant to recall that in CS applications the kernel design is typically set to obey
unit-norm row constrains or, instead, orthonormal constraints [30]. In contrast, in
communications applications the kernel (or precoder) design obeys a power (trace)
constraint, which states that on average the rows have unit-norm. A paper that does
consider this power constraint for CS is the work by Schnitter [43], however, this is
unusual in the CS field. We adopt this more general constraint, which, in addition
to leading to solutions with higher mutual information or Rényi entropy, enables the
formulation of the design framework which the unit-norm rows constraint does not.
The exception to this is the special case of adaptive online design in Section 6.2, where
each row of the kernel is designed sequentially such that the two constraints coincide.

4. Mutual Information based Kernel Design. In this section we consider
the characterization of the kernel that maximises the mutual information of the model
in (3.1), subject to a power constraint, for multivariate Gaussian sources and general
multivariate sources. The optimal kernel design for multivariate Gaussian sources also
provides a rationale for other kernel designs in subsequent sections, most notably, the
PDS method (we extend the work of [14]). The design problem can be posed abstractly
as follows:

maximize
M

I (x;M x+w)

subject to
1

ℓ
tr
(
MM†

)
≤ 1

(4.1)

It is important to remark that this optimization problem is non-convex in general.
The use of the fundamental result in (3.7), in addition to enabling the full or partial
characterization of the solution, also leads to efficient computational procedures. We
restate next the characterizations of the optimal kernel designs for Gaussian sources
(Theorem 4.1) and general sources (Theorem 4.2), which also appear in slightly dif-
ferent forms in [36] [35] [27], in a manner that emphasizes the operational significance
for CS applications.

4.1. Multivariate Gaussian Input Source. The characterization of the op-
timal kernel design for a multivariate complex-valued Gaussian source leverages the
well-known closed-form mutual information expression given by:

I (x;y) = log det
(
Im +M†Σ−1

w M Σx

)
. (4.2)

This simple closed-form expression allows the use of simple matrix identities, rather
than the gradient result in (3.7), to obtain the solution to (4.1). The case when
Σx = I is well-known from communications theory and was recently applied in the
design of measurement kernels by Schniter [43]. However, the case for general source
covariance matrices has not been studied in the communications domain. We unveil
that this leads to the novel operation of mode alignment4.

Theorem 4.1. The kernel matrix that solves the optimization problem in (4.1)
for a multivariate complex-valued Gaussian source with covariance matrix Σx is given

4This result was also recently shown in radar [46].
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Fig. 4.1. Diagrammatic view of the actions of the optimal kernel design.

by5:

M⋆ = Uw Λ⋆
M U†

x (4.3)

where Λ⋆
M =

[
Diag

(√
λ⋆
M1

, . . . ,
√
λ⋆
Mℓ

)
0ℓ×(m−ℓ)

]
, λ⋆

Mi
=
(

1
η −

λwi

λxi

)+
with the

noise covariance eigenvalues λwi arranged in ascending order and the source covari-
ance eigenvalues λxi arranged in descending order and η ensures the average unit-
norm row constraint, i.e., 1

ℓ tr
(
MM†

)
= 1.

Proof. See Appendix C.

Theorem 4.1 uncovers the operations of the optimal kernel design. In particular, it
is possible to recognize a novel mode alignment operation which involves two aspects:
i) exposing the modes of the noise and source covariance; and ii) ordering (or aligning)
the modes.

First, the left-singular vectors of the kernel are chosen to align with the eigen-
vectors of the noise covariance matrix and the right-singular vectors of the kernel are
chosen to align with the eigenvectors of the signal covariance matrix (Fig. 4.1(a)).
This is referred to as exposing the modes.

The ordering (or alignment) of the exposed modes is very particular, the largest
source eigenvalue is matched to the smallest noise eigenvalue, the second largest source
eigenvalue is matched to the second smallest noise eigenvalue, and so on (Fig. 4.1(b)).

Finally, the kernel “weights” the matched modes according to a “waterfilling”
interpretation [12] (Fig. 4.1(c)). Intuitively, this emphasizes the less noisy “channels”
and reduces the influence of the noisier ones as a means to maximize further mutual
information.

As an example, Fig. 4.2 depicts the mutual information associated with two
possible alignments for the signal and noise eigenvalues in a scenario where both

5Note that the superscript ⋆ denotes an optimal solution.



8 W. R. Carson, M. Chen, M.R.D. Rodrigues, R. Calderbank and L. Carin

−20 −15 −10 −5 0 5 10 15 20
0

2

4

6

8

10

12

14

SNR (dB)

M
ut

ua
l I

nf
or

m
at

io
n 

(b
its

)

 

 

V
M

 = I
2
, U

M
 = I

2

V
M

 = I
2
, U

M
 = U

w
 = J

2
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optimal power allocation.

covariance matrices are diagonal, Λx = Diag (1, 0.25) and Λw = Diag (1, 0.25). It
is evident that the ordering of the modes has a significant impact on the mutual
information at low and medium SNR – the highest mutual information corresponds
to the kernel design that aligns the strongest source eigenvalue with the weakest noise
eigenvalue, UM = Uw = J2 and VM = I2.

4.2. General Multivariate Input Source. While the application of commu-
nications theory results for Gaussian distributions are known to varying degrees out-
side the field of communications theory, the results for general sources have not been
fully leveraged outside of communications. The characterization of the optimal kernel
design for a general multivariate complex-valued source, in view of the absence of
closed-form mutual information expressions, now leverages the fundamental result in
(3.7).

Theorem 4.2. The kernel matrix that solves the optimization problem in (4.1)
for a general multivariate complex-valued source with covariance matrix Σx is given
by:

M⋆ = Uw Λ⋆
M V

⋆†
M (4.4)

where V⋆
M = U⋆

E Π⋆ 6, the matrix Π⋆ is the optimal permutation matrix, Λ⋆
M =[

Diag
(√

λ⋆
M1

, . . . ,
√
λ⋆
Mℓ

)
0
]
, and λ⋆

Mi
are given by the generalized mercury water-

filling solution, i.e.,

λ⋆
Mi

=

{
0, η λwi

> mmsei

(
U⋆

E Π⋆,Λ⋆
Q|λ⋆

Mi
=0

)

mmse−1
i (η λwi

) , otherwise
(4.5)

where η ensures the average unit-norm row constraint, i.e., 1
ℓ tr(M⋆M⋆†) = 1, Λ⋆

Q =

Λ⋆
MΛ

⋆†
M, Λ⋆

Q|λ⋆
Mi

=0 = Diag
(
λ⋆
M1

, . . . , λ⋆
Mi−1

, 0, λ⋆
Mi+1

, . . . , λ⋆
Mℓ

)
and mmsei

(
U⋆

E Π⋆,Λ⋆
Q

)

6Note that the MMSE matrix E is a function of the kernel M.
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denotes the i-th diagonal entry of the MMSE matrix associated with the estimate of
x′ = Π⋆†U

⋆†
E x from

y′ = Λ−1/2
w Λ⋆

M x′ + n, (4.6)

where n is zero-mean circularly symmetric complex Gaussian noise with identity co-
variance, n ∼ CN (n;0, I). Note that mmse−1

i is the inverse of mmsei with respect to
λMi for fixed λMj

, ∀j 6= i.

Proof. See Appendix D.

Remark 1. In the high noise/low signal power regime, a first-order expansion of
the mutual information is given [32]:

I (x;y) =
1

2
tr
(
Σ−1

w M Σx M†
)
+ o(||Σx||) (4.7)

which implies the result observed by Shannon that at low signal-to-noise ratios proper
complex discrete inputs offer a negligible loss in performance terms with regards to the
capacity achieved by Gaussian inputs; hence the results for the Gaussian in Theorem
4.1 also apply in general for proper complex sources in the high noise/low power
regime.

Theorem 4.2 suggests that the mode alignment is no longer between the eigen-
vectors of the source covariance and the eigenvectors of the noise covariance, but
between the eigenvectors of the MMSE matrix and the eigenvectors of the noise co-
variance. The diagonalization of the MMSE matrix was first noted for communica-
tions by Lamarca [27] for identity source covariances, and the same holds true for CS
for general source covariances. The singular values of the kernel are described by the
mercury waterfilling algorithm [28] [36] which differs from waterfilling by adjusting for
the non-Gaussian nature of the inputs, however, the procedure is remarkably similar.

It is important to emphasize that Theorem 4.1 characterizes fully the optimal
kernel design but - in view of the non-convexity of the problem - Theorem 4.2 char-
acterizes partially, via a fixed point equation, the optimal kernel since U⋆

E is still a
function of M. The characterization is useful because it leads to i) stopping criteria
for gradient descent algorithms via (3.7); and ii) alternative optimization algorithms.
Note that if we implement gradient descent with (3.7) we may get trapped in local
maxima since it is known that the mutual information is not always a concave func-
tion of M [34]. However, mutual information is known to be concave in the squared
singular values of M, for UM = Uw and fixed VM. An alternative gradient de-
scent algorithm that leads to the global maximum by avoiding local maxima switches
between optimizing the singular values and the right-singular vectors of the kernel
[49].

5. Design with Rényi Entropy. We consider the characterization of the kernel
that maximizes the output Rényi entropy of the model in (3.1), subject to a power con-
straint, for multivariate Gaussian sources and multivariate Gaussian mixture sources.
The design problem can then be posed as follows:

maximize
M

hα (M x+w)

subject to
1

ℓ
tr
(
MM†

)
≤ 1

(5.1)
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where

hα(y) =
1

1− α
log

∫
pα(y)dy. (5.2)

Note that Rényi entropy represents a generalization of Shannon entropy given by:

hs(y) = −

∫
p(y) log p(y)dy (5.3)

which is the special case when α = 1.

5.1. Multivariate Gaussian Input Source. For multivariate Gaussian sources,
both Shannon entropy and Rényi entropy can be expressed analytically for all values
of α > 0. In particular, the two are shown to be related in the following theorem7:

Theorem 5.1.
For a multivariate Gaussian input source where x ∼ CN (x;µ,Σx), the Rényi

entropy of order α > 0 and the Shannon entropy associated with the output of the
model in (3.1) are related as:

hα(y) = hs(y) − ℓ

(
1−

logα

α− 1

)
, (5.4)

where hs(y) = log
[
(2πe)ℓ det

(
Σw +MΣxM

†
)]

.

Proof. See Appendix E.

Theorem 5.1 leads immediately to a generalization of the I-MMSE identity in
(3.7) for Gaussian sources:

Theorem 5.2. For Gaussian sources, the (complex) gradient with respect to the
kernel of the output Rényi entropy of order α > 0 associated with the model in (3.1)
obeys the relationship:

∇M hα(y) = Σ−1
w M E. (5.5)

Theorem 5.2 unveils that the relationship between mutual information and the
MMSE matrix in (3.7) also holds for all values of α > 0 for the output Rényi entropy
associated with the model in (3.1) for Gaussian sources. Theorem 5.2 also implies that
the kernel design that maximizes the Rényi entropy subject to a power constraint also
obeys the characterization in Theorem 4.1.

5.2. Multivariate Gaussian Mixture Model Input Source. For Gaussian
Mixture Models (GMM) the signal x ∈ Cm is represented by:

p(x) =

N∑

i=1

p(i) CN (x;µi,Σi), (5.6)

where p(i) is the probability of occurrence of mixture component i, µi and Σi cor-
respond to the mean and covariance matrix of the i-th circularly symmetric complex

7For quadratic Rényi entropy this result was also in Appendix A of [42].
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Gaussian distribution. Neither the Shannon entropy, mutual information nor the
MMSE matrix are known to have closed-form expressions for GMMs. Rényi entropy
and its gradient, however, admit closed-form expressions in some instances, which lend
themselves more easily to optimization via gradient descent algorithms. For example,
the quadratic Rényi entropy of the noisy projection y in (3.1) is given by:

h2(y) = − log
N∑

i=1

N∑

j=1

p(i) p(j) CN
(
0;µi,j ,Σi,j

)
(5.7)

where:

µi,j = M
(
µi − µj

)
(5.8)

Σi,j = M (Σi +Σj)M
† + 2Σw (5.9)

The complex gradient with respect to M of the quadratic Rényi entropy of the
noisy projection y in (3.1) for the GMM is given by:

∇M h2(y) =

−
N∑

i,j=1

p(i) p(j) CN
(
0;µi,j ,Σi,j

)
∇M log CN

(
0;µi,j ,Σi,j

)

N∑

i=1

N∑

j=1

p(i) p(j) CN
(
0;µi,j ,Σi,j

)
(5.10)

where:

∇M log CN i,j =−Σ−1
i,j M (Σi +Σj)

+Σ−1
i,j M

(
µi − µj

) (
µi − µj

)†

×
{
M†Σ−1

i,j M (Σi +Σj)− I
}
. (5.11)

where × denotes a matrix multiplication. The proof is given in Appendix F.
It is interesting to note that the now celebrated I-MMSE relationship in the

information theory literature also applies for Rényi entropy of order α > 0 associated
with Gaussian source models. However, this relationship does not seem to carry over
for the Rényi entropy of more general source models. In fact, it can only be shown
that for a general source, which obeys some additional smoothness conditions, the
gradient can be expressed as follows (The proof is a modification of the result in [32]):

∇M hα(y) = αΣ−1
w

∫
p̂(y) (y −Mxy)x

†
ydy (5.12)

where the probability distribution p̂(y) = pα(y)∫
pα(y)dy

and xy is the conditional mean

estimator.
It is not difficult to appreciate that the right-hand side of (5.12) is in general

different from the right-hand side of (5.5) (or the right-hand side of the I-MMSE
relationship in (3.7)) by studying the Taylor expansion of ∇M h2(y). For the high-
noise power scenario, the first term in the expressions coincide but higher order terms
do not [39].
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6. Application to Compressive Sensing.

6.1. Problem setup. We consider CS in the context of imaging. While the
theory is applicable to complex data, the following examples focus on real images.
Specifically, consider measurement of the image X ∈ RNx×Ny , for large Nx and Ny.
As indicated in Figure 6.1, the image is partitioned into nx×ny contiguous “patches,”
with the pixels in the jth patch denoted by vector xj ∈ Rℓ, with ℓ = nxny. In the
examples considered here nx = ny = 8 (consistent, for example, with the patch sizes
used in the JPEG standard).

It is desirable to partition the images into such patches because one may readily
learn a signal model for the {xj}, while it is difficult to learn an accurate signal model
directly on the entire image X. Specifically, following [11, 14], we assume that each
xj is drawn from a GMM of the form (5.6), here for real normal distributions.

To learn the prior signal model p(x) for the patches, we first consider a large
ensemble of natural images, from which patches xj ∈ Rℓ are selected at random. Us-
ing these training data, a (real) GMM of the form in (5.6) is constituted as a signal
model. To learn this GMM, we have employed nonparametric Bayesian methods as
in [11], as well as expectation-maximization (EM) methods [14], and both methods
yield very similar results. The following results are based on a N = 20 component
GMM, trained on 100,000 patches, extracted at random from 500 natural images
in the Berkeley Segmentation Dataset (http://www.eecs.berkeley.edu/Research/
Projects/CS/vision/grouping/resources.html). These training images are dis-
tinct from those considered in the testing phase, for CS inversion.

While patches are selected at random from training images to constitute the
prior p(x), when performing CS the goal is to recover the entire underlying image
X. Therefore, for CS inversion we wish to recover each of the {xj} in Figure 6.1. In
general, a separate projection matrix Mj is applied to patch j from image X. For the
case of offline design of the projection matrix, Mj is the same for all patches j (since
it is non-adaptive). For online design a distinct Mj is adaptively designed for each
testing patch j. The measured data associated with patch j is expressed as

yj = Mjxj +wj , j = 1, . . . , J (6.1)

In the examples that follow, the images under test are 256× 256, and therefore this
procedure was employed on J = 1024 non-overlapping patches of size 8× 8. Each of
the xj are recovered independently from the respective measured yj , thereby allowing
for massive parallelization.

For simplicity, we henceforth drop the subscript j, and the discussion that follows
applies to each of the J patches in Figure 6.1. We assume the noise w ∼ N (0,Σw),
with known covariance matrix Σw. In the following examples we consider low-noise,
i.i.d. measurements, and therefore Σw = 10−6Iℓ. The likelihood function for the
underlying signal x is N (y;Mx,Σw), and the prior p(x) is the aforementioned GMM,

p(x) =
∑N

i=1 wiN (x;µi,Σi). Under this likelihood function for x, and with the GMM
prior, the posterior p(x|y) is also a GMM:

p(x|y) =
∑N

i=1
w̃iN (x; µ̃i, Σ̃i) (6.2)

with

Σ̃
−1

i = MTΣ−1
w M+Σ−1

i , µ̃i = Σ̃i(M
TΣ−1

w y +Σ−1
i µi) (6.3)

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
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Ny 

Nx 

Fig. 6.1. Spatial grid used for CS measurement image Nx ×Ny image, decomposing the image
into a contiguous grid of “patches,” each patch composed of nx×ny pixels, nx ≪ Nx and ny ≪ Ny.
Letting xi ∈ Rnxny represent the pixels associated with the ith patch, separate projection matrices
Mi are designed for each xi.

w̃i = wiN (y;Mµi,MΣiM
T +Σw)/p(y) (6.4)

p(y) =
∑N

i=1
wiN (y;Mµi,MΣiM

T +Σw) (6.5)

When presenting results, the estimated signal x̂ is the mean based on p(x|y), i.e.,

x̂ =
∑N

i=1 w̃iµ̃i.

6.2. Offline and online design. We consider online and offline design of the
projection matrix M, based upon gradient descent: M ← M + γ∇MI(x;y), with
re-normalization to satisfy the power constraint; here we perform a gradient of the
mutual information, and the same type of gradient descent is performed in the context
of Rényi entropy, for which we therefore employ the results of Section IV. When
employing the gradient of Rényi entropy, we employ (3.7). The design of M based
upon a gradient of mutual information is denoted PV, for Palomar and Verú.

For offline PV design, p(x) corresponds to the learned prior GMM, and the entire
M is inferred at once. For online PV design, after measuring the first k components
of y, denoted y1:k, we update the posterior p(x|y1:k) via (6.2), and row k + 1 of M
is constituted based upon this posterior signal model; after each measurement, the
posterior is updated, followed by design of the next row of M, used to define the next
measurement. In these computations, the MMSE matrix in (3.8) is computed via
Monte Carlo integration, based on draws from p(x) (in the offline case) or p(x|y1:k)
(in the online case). Online design of the patch-dependent projection matrix M may
be performed in parallel.
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For Rényi-based design we consider the case α = 2; this is convenient, as within
the context of the GMM representation employed here the gradient with respect to
M is analytic, via (5.10).

The online PV design is relatively expensive, as one must repeatedly perform
Monte Carlo integration to update the MMSE matrix E, and one must also perform
gradient descent. For online Rényi-based design we employ (5.10); while this analytic
expression precludes the need to numerically compute E, the large number of sums
makes online Rényi and online PV design comparably expensive.

The relative expense of Rényi and PV online design motivates a simplified online
design. In [14] the authors proposed the PDS method, in which a GMM was used for
p(x). In [14], the components of the first k < ℓ rows ofM are drawn i.i.d. from a zero-
mean normal distribution. Using this k-row sensing matrix, an initial measurement
y1:k ∈ R

k is performed. Based upon y1:k, the most probable mixture component from
the prior p(x) is selected. At this point a single-Gaussian signal model is constituted.
The remaining ℓ−k rows ofM are then defined by the principal ℓ−k eigenvectors of the
covariance matrix from this Gaussian. While [14] did not have access to our Theorem
1, the design so constituted is consistent with it. Specifically, Theorem 1 applies to
the case of a single-Gaussian signal model. Under the aforementioned assumptions for
Σw (diagonal covariance matrix, with small diagonal variance), Theorem 1 implies
that the optimal projection matrix corresponds to the principal eigenvectors of the
covariance matrix. However, the assumption of k initial random projections employed
in [14], before selecting a single Gaussian component, seems undesirable. Further, in
[14] the single Gaussian was selected from the prior p(x) rather from the updated
posterior p(x|y1:k).

We extend the PDS technique to an online setting as follows. We first initialize
p(x) with the GMM prior signal model (learned using offline training data). We then
sequentially constitute one row of M at a time, from k = 1, . . . , ℓ; after each row is
so constituted, a single new projection measurement is performed with that new row.
Again let y1:k represent the vector of data constituted in this manner via the first k
rows of M. Based upon these data we update the signal model p(x|y1:k). To design
row k+1 ofM, let i′ = argmaxiw̃i, where the {w̃i} are the GMMmixture weights from

p(x|y1:k). Then the (k + 1)th row of M is defined by the leading eigenvector of Σ̃i′ .
The online PDS approximates the posterior GMM at each step with the dominant
Gaussian from the posterior GMM p(x|y1:k), and then via Theorem 1 the next row of
M is defined by the leading eigenvector of the associated covariance matrix. Since no
Monte Carlo simulation and gradient descent are needed in the above process, online
PDS method is very fast. The eigenvectors are orthonormal, and therefore the power
constraint is satisfied automatically at every step. Note that the posterior p(x|y1:k)
continuously updates with increasing data, and therefore it is not particularly sensitive
to the prior p(x); the original PDS in [14] was based upon the prior p(x) only, which
may necessitate more care in selection of the training data. Since the posterior can
be updated easily via (6.2), it appears highly preferable to use this approach rather
than fixing the signal model.

6.3. Experimental Results. In Figures 6.2-6.4 results are shown for three
widely examined test images: ‘barbara’, ‘house’ and ‘pepper,’ respectively. Two
classes of results are considered based upon random projection design. The “ran-
dom GMM” results employ the patch-based CS construction in Figure 6.1, and the
learned GMM-based prior p(x). The form of these results are the same as employed
for the designed Mj , except here each Mj is constituted with matrix elements drawn
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Fig. 6.2. PSNR for the reconstructed ‘barbara’ image.
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Fig. 6.3. PSNR for the reconstructed ‘house’ image.

i.i.d. from N (0, 1), followed by normalization. We also considered CS design in which
the projections are performed directly on the entire image X, rather than at the
patch level, as in Figure 6.1. If one performs CS inversion based on traditional CS
algorithms, which employ ℓ1 and related regularization [8], the quality of the inver-
sion is markedly worse than that using the proposed approach, with learned signal
models p(x); we therefore do not show these results here, because they don’t fit on
the same scale of results presented. This is not surprising, as the patch-dependent
learned signal model p(x) is much richer, and tailored to the data than simple sparsity
constraints, which motivate ℓ1 regularization. To provide a fairer comparison, when
performing inversion for the case in which the projections are performed directly on
the entire image X, we consider an underlying wavelet basis and perform inversion
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Fig. 6.4. PSNR for the reconstructed ‘pepper’ image.

based on the sophisticated hidden Markov tree (HMT) wavelet model for images [20].
This signal model p(x) could in principle also be used within the theory to design a
projection matrix applicable to the entire image. However, the significant advantage
of the GMM construction is that the posterior of the underlying signal may be consti-
tuted analytically, while for the HMT expensive computational methods are needed
[20]. Therefore, we only show HMT inversion results when the projection matrix is
constituted at random, thereby providing a comparison of inversion quality of the
GMM (patch based) and the HMT (entire image), based upon random projections.

We consider offline design of the patch-based projection matrix M based upon the
Rényi measure of entropy, as well as based upon mutual information (via the PV the-
ory). For online Rényi and PV design, we do not make a simplifying single-Gaussian
assumption when designing each row of M. By contrast the online PDS method uses
the most probable Gaussian from the posterior to design the next projection at each
step (this is therefore an approximation). The PDS method is very fast, while online
PV is expensive, and therefore is shown principally for comparison (may not be done
in practice, where online design must be fast).

First comparing the results based on random projections, the results based upon
the (learned) patched-based GMM and based on the entire-image-based HMT are
comparable in reconstruction quality. Sometimes the GMM results are slightly better,
and other times the HMT results are better. However, there is no comparison with
respect to computation speed. The HMT results are expensive, being based upon a
Gibbs sampler [20]. By contrast the GMM results are very fast, with the inversion
analytic. The additional big advantage of the GMM representation is that it allows
convenient design of patch-dependent projection matrices, which we consider next.

Each of the designed projection methods yield significant improvement relative
to random, and after approximately 6 projections per patch we note that the on-
line results are significantly better than offline design. For the first approximately 5
measurements per patch, the offline and online results are comparable; we attribute
this to an inadequate number of measurements to obtain an accurate signal model,
and therefore little gain manifested by adaptivity. However, after approximately 6
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measurements per patch it appears that the posterior signal model becomes accurate,
yielding advantages of adaptivity. Concerning online design, inversion quality based
on the simple and fast online PDS performs quite competitively relative to the on-
line Rényi and PV design (which do not make a simplification to a single Gaussian),
despite the fact that it assumes that the patch is drawn from a single Gaussian.

To understand the quality of the simple PDS-based design, consider Figure 6.5,
wherein we plot the probabilities {w̃i}i=1,N , for the posterior p(x|y1:k), as the number
of measurements k increases from 1 to ℓ. Note that after approximately six measure-
ments the model has inferred that the underlying signal x was drawn from a single
multivariate Gaussian. Note that the GMM is characteristic of an ensemble of draws,
like those characteristic of the multiple patches in Figure 6.1. However, any single
patch is drawn from a single one of the mixture components; it is however unknown a
priori which component. Based upon experiments of this type, typically 6 projections
are sufficient to infer which single mixture component a given patch corresponds to.
At this point the results in Theorem 1 apply directly, which under the assumption for
Σw dictates that the optimal measurement corresponds to projecting onto the dom-
inant eigenvector of the covariance matrix of the single mixture component (single
Gaussian); this is precisely what PDS does.
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Fig. 6.5. Evolution of the mixture weight in the posterior GMM for a typical testing patch in
‘barbara’.

7. Conclusions. We observe that the design principle of maximizing mutual
information or Rényi entropy leads to deterministic kernel matrices for which MMSE
performance is superior to that of random kernel matrices. In particular, we are able
to provide design principles for the optimal kernel matrix for a general multivariate
source that maximizes the mutual information or Rényi entropy (for which Shannon
entropy is a special case). We showed that the optimal kernel exposes the modes of
the noise and the modes of the (optimal) MMSE matrix, then performs an alignment
operation whose purpose it to optimally match the modes of the noise to the modes
of the MMSE matrix (or, in the multivariate Gaussian source scenario, the modes of
the source covariance). Finally, it carries out a generalized mercury-waterfilling power
allocation operation.
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The theoretical framework has been demonstrated with application to compressive
sensing (CS) as applied to imagery. Using a GMM signal model, it was demonstrated
that designed measurement kernels can yield markedly improved CS signal recovery
relative to random design. The GMM representation has the advantage of yielding
closed-form CS inversion, which is particularly attractive for fast signal inversion and
for online kernel design. We have enhanced an online kernel design framework first
proposed in [14], and have also provided a theoretical foundation for why it works so
effectively in practice.
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[19] D. Guo, S Shamai, and S. Verdú, Mutual information and minimum mean-square error in
Gaussian channels, IEEE Trans. Inform. Theory, (2005), pp. 1261–1282.

[20] L. He and L. Carin, Exploiting structure in wavelet-based bayesian compressive sensing, IEEE
Trans. Signal Process., 57 (2009), pp. 3488 –3497.

[21] M. Hellman and J. Raviv, Probability of error, equivocation, and the Chernoff bound,IEEE
Trans. Inform. Theory, 16 (1970), pp. 368–372.

[22] Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Nayar, Video from a single coded
exposure photograph using a learned over-complete dictionary, in IEEE International Con-
ference on Computer Vision (ICCV), Nov 2011.

[23] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 2005.



Communications-Inspired Projection Design 19

[24] S. Ji, Y. Xue, and L. Carin, Bayesian compressive sensing, IEEE Trans. Signal Process., 56
(2008), pp. 2346–2356.

[25] S. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, 2001.
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[34] M. Payaró and D. Pérez Palomar, Hessian and concavity of mutual information, entropy,
and entropy power in linear vector Gaussian channels, IEEE Trans. Inform. Theory, Aug.
2009, pp. 3613–3628.

[35] , On optimal precoding in linear vector Gaussian channels with arbitrary input distribu-
tion, in IEEE ISIT ’09, July 2009, pp. 1085–1089.
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Appendix A. Complex Derivatives and Gradients.

Throughout the paper we adopt the definition of the formal partial complex
derivative of a real-valued scalar function f with respect to a complex-valued variable
x given by [32] [49]:

∂f

∂x∗
,

1

2

[
∂f

∂Re(x)
+ j

∂f

∂Im(x)

]
(A.1)

The definition of the complex gradient of a real-valued function f with respect to
a complex-valued matrix X is given by:

∇Xf ,
∂f

∂X∗
(A.2)

where [∇Xf ]ij =
∂f/∂[X∗]ij.

Appendix B. Helpful Lemmas.

In the proofs of the Theorems stated in this paper we will find the following
lemmas helpful

Lemma B.1 (Sylvester’s Determinant Theorem). We have a “cyclic” property of
determinants for two matrices A ∈ Cn×m and B ∈ Cm×n:

det (In +AB) = det (Im +BA) . (B.1)

In the following four lemmas we denote two Hermitian matrices by ΣA,ΣB ∈
Cm×m which have eigenvalues λ1 ≥ · · · ≥ λm and µ1 ≥ · · · ≥ µm, respectively.
The eigenvalue decomposition of these two matrices are ΣA = UA ΛA U

†
A and

ΣB = UB ΛB U
†
B, where UA,UB ∈ Sm×m, ΛA = Diag (λ1, · · · , λm) and ΛA =

Diag (µ1, · · · , µm).

Lemma B.2 (Theorem 1.3.12 in [23]). The matrices ΣA and ΣB commute if
and only if they are simultaneously diagonalizable, i.e., both UΣAU† and UΣBU

†

are diagonal matrices for some unitary matrix U.

Lemma B.3 (Richter [40]).

m∑

i=1

λi µm+1−i ≤ tr (ΣAΣB) ≤
m∑

i=1

λi µi. (B.2)

Remark 2. Sufficient conditions for achieving the upper and lower bounds are
UA = UB and UA = UB Jm, respectively. The sufficient condition to achieve the
lower bound was given by Köse and Wesel in Theorem 2 in [26] and Theobald [47] also
gave necessary and sufficient conditions for achieving the upper bound, which allow
for the multiplicity of eigenvalues.

Lemma B.4 (Lemma 3 in Witzenhausen [48]).

det (Im +ΣAΣB) ≤
m∏

i=1

(1 + λi µi) . (B.3)
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Remark 3. A sufficient condition for achieving the upper bound is UA = UB.
Witzenhausen gave further sufficient conditions which allow for the multiplicity of
eigenvalues, stating that if equality holds then ΣA and ΣB commute and the diago-
nalizing matrix is such that the eigenvalues are aligned in the same order.

Lemma B.5. Let P ∈ Cm×n denote a rectangular matrix, ΣH ∈ Cn×n denote a
positive semi-definite matrix, and P†ΣHP ∈ Cm×m be a diagonal matrix with diagonal
elements in decreasing order (possibly with some zero diagonal elements). Then, there
is a matrix of the form P = VH [ Λ, 0 ] that satisfies:

P
†
ΣHP = αP†ΣHP (B.4)

tr(P P
†
) = tr(PP†) (B.5)

where α ≥ 1, VH is a unitary matrix with columns equal to the eigenvectors of matrix
ΣH corresponding to the min(n,m) largest eigenvalues in decreasing order and Λ is
square diagonal matrix of size min(n,m).

Proof. This is a modification of Lemma 3.16 in [31].

Lemma B.6. For the complex gradient defined in (A.2) and general matrices
A ∈ Cm×m, B ∈ Cn×n and X ∈ Cm×n, we have:

∇Xtr(A X B X†) = A X B (B.6)

Proof. Using properties of differentials (32) and (33) from [37] we have:

∂tr(A X B X†) = tr[A ∂(X) B X†] + tr[A X B ∂(X†)]. (B.7)

Together with the results for complex derivatives (219), (220), (221) and (222)
from [37] we have:

∂

∂Re(X)
tr(A X B X†) = A⊺ X∗ B⊺ +A X B (B.8)

i
∂

∂Im(X)
tr(A X B X†) = −A⊺ X∗ B⊺ +A X B (B.9)

and the result follows.

Remark 4. This is the counterpart for complex-valued matrices to result (108)
in [37] for real-valued matrices; note that the term A⊺ X B⊺ is absent in the complex
case.

Lemma B.7. For the complex gradient defined in (A.2) and general matrices
A ∈ Cm×m, B ∈ Cn×n, C ∈ Cn×n and X ∈ Cm×n, we have:

∇Xtr
[
(A+X B X†)−1 (X C X†)

]

= (A+XBX†)−1 X C
[
I−X† (A+XBX†)−1 XB

]
(B.10)
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Proof. Using properties of differentials (32), (33) and (36) in [37] and the abbre-
viation Y = A+X B X†, we have:

∂tr
[
Y−1 (X C X†)

]
= tr

{
Y−1 ∂(X C X†)

}

+ tr
{
−Y−1∂(A+X B X†)Y−1 (X C X†)

}

Applying Lemma B.6 the result follows.

Remark 5. This is the counterpart for complex-valued matrices to result (116)
in [37] for real-valued matrices; note that we do not require the assumption that B

and C are Hermitian (symmetric) and there is no factor of 2.

Appendix C. Proof of Theorem 4.1.

Proof. We first provided an alternative derivation of this proof in [10]. The
current proof is derived directly from the proof for an identical theorem for radar
in [46]. We restate the mutual information between the input and output of the
compressive sensing model in (3.1) for a multivariate Gaussian source as follows:

I (x;y) = log det
(
Im +M†Σ−1

w M Σx

)
. (4.2)

Note that for a unitary matrix U, the kernel P = MU has the same power as M,
i.e., tr(PP†) = tr(MM†), but it may have different mutual information. In particular,
a choice of U that maximizes the mutual information for a given M is U = Ux. This
can be seen from Lemma B.4 and Remark B.4. From Lemma B.5 we know that
there exists a matrix P = Uw [ Λ, 0 ], which satisfies tr(P P

†
) = tr(PP†) and

P
†
ΣHP = α P†Σ−1

w P where α ≥ 1. Since the function det(I+αA) is monotonically
increasing in α for a positive semi-definite matrix A, the optimal kernel matrix must
have the form of M⋆ = U⋆

MΛ⋆
MV

⋆†
M = Uw [ Λ, 0 ]U†

x.

Finally, we determine the optimal singular values by optimizing the mutual infor-
mation with respect to the eigenvalues rather than the singular values, since 1) they
map one-to-one (up to a factor of exp jθ, which does not affect the mutual informa-
tion) and 2) this new optimization problem is convex, so the Karush-Kuhn-Tucker
(KKT) optimality conditions [6] define the unique global optimum. This is given by:

λ⋆
Mi

=

{
0, 1

η −
λwi

λxi

≤ 0,

1
η −

λwi

λxi

, 1
η −

λwi

λxi

> 0
(C.1)

where η is such that the average unit norm row constraint is satisfied, i.e., 1
ℓ

∑
λ⋆
Mi

=
1, where the eigenvalues of Σx are arranged in descending order and the eigenvalues
of Σw are arranged in ascending order , i.e., λx1 ≥ · · · ≥ λxm ≥ 0 and 0 ≤ λw1 ≤
· · · ≤ λwℓ

.

Appendix D. Proof of Theorem 4.2.

Proof. The proof draws on the work by Payaró and Palomar [35], which described
the generalized mercury waterfilling aspect of the solution, but not the mode align-
ment aspect, and the work by Lamarca [27], which described the mode alignment
aspect but did not focus on the generalized mercury waterfilling interpretation. The
current proof highlights both the mode alignment and mercury waterfilling aspects of
the solution.
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The solution to the optimization problem in (4.1) satisfies the KKT optimality
conditions:

∇
M

{
−I (x;y)− η ·

[
ℓ− tr

(
MM†

) ]} ∣∣∣∣
M=M⋆

= 0 (D.1)

η ·

[
ℓ− tr

(
M⋆M⋆†

) ]
= 0 (D.2)

with η ≥ 0. Using the relationship between the gradient of the mutual information
and the MMSE matrix in (3.7), the optimal kernel satisfies:

η ·M⋆M⋆† = Σ−1
w

(
M⋆ E⋆ M⋆†

)
. (D.3)

We note that (D.3) is diagonalized by U⋆
M, by definition, from which it can be seen

that the matrices Σ−1
w and M⋆E⋆M⋆† commute. From this observation, together

with the fact that (D.3) is Hermitian and Lemma B.2, we deduce that:

U⋆
M = UwΠ⋆

UΛU (D.4)

where ΛU is a diagonal matrix with unit modulus diagonal elements and Π⋆
U is a

permutation matrix. Furthermore, U
⋆†
MM⋆E⋆M⋆†U⋆

M is a diagonal matrix, from
which we can infer:

V⋆
M = U⋆

EΠ
⋆
VΛV (D.5)

where ΛV is a diagonal matrix with unit modulus diagonal elements and Π⋆
V is a

permutation matrix. Both mutual information and the MMSE matrix are independent
of ΛU and ΛV, allowing us to write without loss of generality the optimal unitary
matrices as follows:

U⋆
M = Uw (D.6)

V⋆
M = U⋆

E Π⋆ (D.7)

where Π⋆ is some optimal permutation matrix.
By setting U⋆

M = Uw we can now obtain an equivalent8 channel model:

y′ = Λ−1/2
w ΛM V

†
M x+ n (D.8)

where y′ = Λ
−1/2
w U†

w y and n = Λ
−1/2
w U†

w w is zero-mean circularly symmetric
complex Gaussian noise with identity covariance, n ∼ CN (n;0, I).

It was shown in [49] that for a fixed value of VM the mutual information I(x;y′)
is concave with respect to the squared singular values of ΛM, i.e., the following opti-
mization problem has a unique global optimum given by the KKT conditions, where
ΛQ = ΛM Λ

†
M:

maximize
λM1

,λM2
,...,λMℓ

I (x;y′)

subject to

ℓ∑

i=1

λMi
≤ ℓ

λMi
≥ 0

(D.9)

8The equivalence is in the sense that the mutual information between the input and the output
of both models is equal, i.e., I (x;y) = I (x;y′).
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The Lagrangian for this optimization problem is:

L(ΛQ) = I(x;y′) + η

(
ℓ−

ℓ∑

i=1

λMi

)
+

ℓ∑

i=1

ηiλMi
(D.10)

and the Karush-Kuhn-Tucker conditions state that:

∂

∂ΛQ

L(ΛQ)

∣∣∣∣
ΛQ=Λ⋆

Q

= 0 (D.11)

η ·

(
ℓ−

ℓ∑

i=1

λ⋆
Mi

)
= 0 (D.12)

ηi · λ
⋆
Mi

= 0, i = 1, . . . , ℓ (D.13)

By using the result from [49] that states that:

∂

∂ΛQ

I (x;y′) = Diag
(
Ex′ Λ−1

w

)
(D.14)

where E′ = V
†
M E VM is the MMSE matrix associated with the estimation of x′ =

V
†
M x from y′, it is possible to rewrite (D.11) as follows:

ηλwi
−mmsei

(
VM,Λ⋆

Q

)
= ηiλwi

, i = 1, . . . , ℓ. (D.15)

where mmsei (VM,ΛQ) denotes the i-th diagonal entry of Ex′ for that particular ΛQ.
From the KKT conditions, we know that if λ⋆

Mi
> 0 then ηi = 0 and that η > 0.

For a given value of η, the value of λ⋆
Mi

can be calculated from the relationship

η λwi
= mmsei

(
VM,Λ⋆

Q

)
for fixed λMj

, ∀j 6= i. The function mmsei is non-negative
and monotonically decreasing in λMi

∈ [0,∞] for fixed λMj
, ∀j 6= i, and its maximum

value is given when λMi
= 0. Therefore if η λwi

> mmsei

(
VM,Λ⋆

Q|λ⋆
Mi

=0

)
where

Λ⋆
Q|λ⋆

Mi
=0 = Diag

(
λ⋆
M1

, . . . , λ⋆
Mi−1

, 0, λ⋆
Mi+1

, . . . , λ⋆
Mℓ

)
, then λ⋆

Mi
= 0 and ηi 6= 0.

This result is true for all values ofVM, therefore it is also true whenVM = U⋆
E Π⋆

and the result follows.

Appendix E. Proof of Theorem 5.1.

Proof. Note that:

p(y) =CN
(
y;M x,Σw +M Σx M†

)
(E.1)

and so:

pα(y) =
CN

(
y;M x, 1

α (Σw +M Σx M†)
)

αk (2π)k(α−1) det (Σw +M Σx M†)
α−1

(E.2)

By substituting this into the expression for Rényi entropy it follows that:

hα(y) = log
[
(2π)

k
det(Σw +M Σx M†)

]
+

k logα

(α− 1)
. (E.3)

The result now follows using the definition of Shannon entropy for Gaussian
sources.

Appendix F. Proofs for Gradient of Rényi entropy.
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Proof. Let us first show that we can express the following relevant gradient
analytically:

∇M log CN
(
0;µi,j ,Σi,j

)
=

−∇M

(
k log 2π

)
−∇M {log detΣi,j} (F.1)

−∇M

{
µ

⊺

i,jΣ
−1
i,j µi,j

}
, (F.2)

where µi,j = M
(
µi − µj

)
and Σi,j = M (Σi +Σj)M

† + 2Σw.
The first term is zero, the second term is the mutual information for a complex

Gaussian distribution and can be evaluated using (3.7), relating the mutual informa-
tion and MMSE matrix:

∇M log detΣi,j = (2Σw)
−1M Ei,j (F.3)

where the Ei,j =
[
(Σi +Σj)

−1
+M†(2Σw)

−1M
]−1

is the MMSE matrix if the in-

put signal x was Gaussian distributed with covariance (Σi +Σj) and distorted by
Gaussian noise with covariance 2Σw. It can also be expressed:

∇M log detΣi,j = Σ−1
i,j M (Σi +Σj) (F.4)

where we can use Woodbury’s Inversion Lemma to convert between the two. The
third and final term, using Lemma B.7 and chain rule (94) in [32], can be expressed:

∇M

{
µ

⊺

i,jΣ
−1
i,j µi,j

}
= Σ−1

i,j M
(
µi − µj

) (
µi − µj

)†

×
{
I−M†Σ−1

i,j M (Σi +Σj)
}
. (F.5)


