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Abstract

The scenario-based optimization approach (‘scenario approach’) provides an intuitive way of approx-
imating the solution to chance-constrained optimization programs, based on finding the optimal solution
under a finite number of sampled outcomes of the uncertainty (‘scenarios’). A key merit of this approach
is that it neither requires explicit knowledge of the uncertainty set, as in robust optimization, nor of its
probability distribution, as in stochastic optimization. The scenario approach is also computationally effi-
cient because it only requires the solution to a convex optimization program, even if the original chance-
constrained problem is non-convex. Recent research has obtained a rigorous foundation for the scenario
approach, by establishing a direct link between the number of scenarios and bounds on the constraint
violation probability. These bounds are tight in the general case of an uncertain optimization problem
with a single chance constraint.

This paper shows that the bounds can be improved in situations where the chance constraints have a
limited ‘support rank’, meaning that they leave a linear subspace unconstrained. Moreover, it shows that
also a combination of multiple chance constraints, each with individual probability level, is admissible.
As a consequence of these results, the number of scenarios can be reduced from that prescribed by the
existing theory for problems with the indicated structural property. This leads to an improvement in the
objective value and a reduction in the computational complexity of the scenario approach. The proposed
extensions have many practical applications, in particular high-dimensional problems such as multi-stage
uncertain decision problems or design problems of large-scale systems.

Key words: Uncertain Optimization, Chance Constraints, Randomized Methods, Convex Optimization,
Scenario Approach, Multi-Stage Decision Problems.

1 Introduction

Optimization is ubiquitous in modern problems found in engineering, logistics, and other sciences. A
common pattern is that a decision or design variable x ∈ R

d has to be selected from a subset of Rd, as
described by constraints fi : Rd → R, and its quality is measured against some objective or cost function
f0 : Rd → R:

min
x∈Rd

f0(x) , (1.1a)

s.t. fi(x) ≤ 0 ∀ i = 1, 2, . . . , N . (1.1b)
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1.1 Chance-Constrained Optimization

Unfortunately, in many practical applications the underlying problem data is uncertain. This uncertainty
shall be represented with an abstract variable δ ∈ ∆, where ∆ is an uncertainty set whose nature is not
specified. The uncertainty may affect the objective function f0 and/or the constraints fi. Thus for a par-
ticular decision x it becomes uncertain what objective value is achieved and/or whether the constraints
are indeed satisfied. The second situation represents a particular challenge, as good solutions are usually
located on the boundary of the feasible set.

This gives rise to a trade-off problem between the (uncertain) objective value and the robustness of
the chosen decision to a constraint violation. A large variety of approaches addressing this issue have been
proposed in the areas of robust and stochastic optimization [3–5,14,15,17,19,21], with the preferred method
of choice depending on the requirements of the application at hand.

In many practical applications, δ can be assumed to be of a stochastic nature. In this case, the formula-
tion of chance constraints, where the decision variable x has to be feasible with a least probability (1−ε) for
ε ∈ (0, 1), has proven to be an appropriate concept for handling the uncertainty in the constraints. However,
chance-constrained optimization problems are usually very difficult to solve. The scenario approach, as ex-
plained below, represents an attractive method for finding an ‘approximate solution’ to stochastic programs,
since it is both intuitive and computationally efficient.

1.2 The Scenario Approach

Recent contributions [8–12] have revealed the theoretical links between the scenario approach and the
solution to an optimization problem with a linear objective function and a single chance constraint (SCP):

min
x∈X

cTx , (1.2a)

s.t. Pr
[

f(x, δ) ≤ 0
]

≥ (1− ε) . (1.2b)

Here X ⊂ R
d is a compact and convex set, cT denotes the transpose of a vector c ∈ R

d, Pr[·] is the
probability measure on the uncertainty set ∆, f : Rd ×∆ → R is a convex function in its first argument
x ∈ R

d for Pr-almost every uncertainty δ ∈ ∆, and ε is some value in the open real interval (0, 1).
The chance constraint (1.2b) is interpreted as follows. For any given x ∈ R

d, the left-hand side repre-
sents the probability of the event that x indeed belongs to the feasible set. Written more properly,

Pr
[

f(x, δ) ≤ 0
]

:= Pr
{

δ ∈ ∆
∣

∣ f(x, δ) ≤ 0
}

, (1.3)

however the left-hand side notation is kept throughout for brevity. Note that x is considered to be a feasible

point of the chance constraint (1.2b) if this probability is at least (1− ε).

Remark 1.1 (Problem Formulation) The formulation of the SCP encompasses a vast range of problems,

namely any uncertain optimization problem that becomes convex if the value of δ were fixed. (a) Any

uncertain convex objective function f(·, δ) can be included by an epigraph reformulation, with the new

objective being a scalar and hence linear [7, Sec. 3.1.7]. (b) Joint chance constraints, where x must satisfy

multiple convex constraints simultaneously with probability (1 − ε), are covered since the intersection of

convex sets is convex. (c) Additional deterministic, convex constraints can be included by intersection with

the compact set X.

The characterization of the feasible set of a chance constraint requires exact knowledge of the probabil-
ity distribution of δ. Moreover, the feasible set is non-convex and difficult to express explicitly, except for
very special cases [5,14,19,21]. This makes the SCP, in full generality and especially in higher dimensions
d, an extremely difficult problem to solve.

The scenario approach can be used to find an approximate solution to the SCP, which is considered
to be any point in X that is feasible for the chance constraint with some given (very high) confidence
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(1 − θ) ∈ (0, 1). This problem is usually not as hard, if an approximate solution is chosen in a low-
violation region of the decision space (with high confidence). However, then the resulting objective value
may be poor, in which case the approximate solution shall be called ‘conservative’. Clearly, it is of major
interest to find approximate solutions that are the least conservative (i.e. with an objective value as low as
possible), and this is the goal of the scenario approach.

The basic idea of the scenario approach is to draw a specific number K ∈ N of samples (‘scenarios’)
from the uncertainty δ, and to take the optimal solution that is feasible under all of these scenarios (‘scenario

solution’) as an approximate solution. Computing the scenario solution involves a deterministic optimiza-
tion program (‘scenario program’), which is obtained by replacing the chance constraint (1.2b) with the K
sampled deterministic constraints.

By construction, the scenario program is a deterministic, convex optimization program that can be
solved efficiently by standard algorithms [7, 16, 18]. Moreover, the scenario approach is distribution-free
in the sense that it does not rely on a particular mathematical model for the distribution of δ, or even its
support set ∆. In fact, both may be unknown; the only requirements are stated in the following assumption.

Assumption 1.2 (Uncertainty) (a) The uncertainty δ is a random variable with (possibly unknown) prob-

ability measure Pr and support set ∆. (b) A sufficient number of independent random samples from δ can

be obtained.

Note that Assumption 1.2 is fairly general. It could even be argued that the scenario approach is at
the heart of any robust and stochastic optimization method, because either the uncertainty set ∆ or the
probability distribution of δ are usually constructed based on some (necessarily finite) experience of the
uncertainty.

Tight bounds for the proper choice of the sample size K are established by [9, 11], when linking it
directly to the probability with which the scenario solution violates the chance constraint (1.2b). Moreover,
[9, 12] show that the theory can be extended to the case where R ≤ K sampled constraints are discarded a

posteriori, that is after observing the outcomes of the K samples. While this increases the complexity of the
scenario approach (in terms of data requirement and computation), it can be used to improve the objective
value achieved by the scenario solution. In fact, the scenario solution can be shown to converge to the exact
solution of (1.2) when the number of discarded constraints are increased, given that some mild technical
assumptions hold, cf. [12, Sec. 4.4]

1.3 Novel Contributions

From a practical point of view, the strongest appeal of the scenario approach is the facility of its applica-
tion and the low computational complexity. It becomes particularly attractive for uncertain optimization
problems in higher dimensions, as these occur frequently in fields such as engineering or logistics. In these
cases, an uncertain constraint will often not involve all decision variables simultaneously, as allowed by the
general case of (1.2b). Instead, multiple uncertain constraints may be present, each of them involving only
a subset of the decision variables.

Example 1.3 (Multi-Stage Decision Problems) An important example are uncertain multi-stage decision

problems [5, Cha. 7], [14, Cha. 8] [19, Cha. 13] [21, Cha. 3], which occur in many fields such as production
planning, portfolio optimization, or control theory. The basic setting is that some decision (e.g. on pro-
duction quantities, buy/sell orders, or control inputs) has to be taken repeatedly at a finite number of time
steps. Each decision affects the state of the system (e.g. inventory level, portfolio, or state variable) at the
subsequent time step. Besides the decision, the state is also subject to uncertain influences (e.g. customer
demand, price fluctuations, or dynamic disturbances). If constraints on the state variables are present (e.g.
service levels, value at risk, or safety regions), this adds multiple uncertain constraints (one for the state of
each time step) to the overall decision problem. Further deterministic constraints may hold for the decision
variables, for example. The special structure of such a problem is that a constraint on the state at some
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time step involves only the decisions made prior to this time step, while the decisions afterwards are not
involved.

This paper extends the theory of the scenario approach for problems where a single (or multiple) chance
constraint(s) are present that involve only a subset of the decision variables. More precisely, the chance
constraint(s) may affect only a certain subspace of the decision space, whose dimension will be called
its ‘support rank’. Other constraints, either deterministic or uncertain, cover the directions that are left
unconstrained, so that the solution remains bounded.

The main result of this paper is that an uncertain constraint with a lower support rank can only supply a
lower number of support constraints [9–11], and therefore its associated sample size can be reduced. This
leads to a subtle shift from the idea of a ‘problem dimension’ in the existing theory to that of a ‘support

dimension’ of a particular chance constraint. Moreover, it requires an extension of the existing theory
to cope with multiple chance constraints in the uncertain optimization program. Finally, the approach of
constraint removal a posteriori is carried over almost analogously to this extended setting.

From a practical point of view, these extensions improve on the merits of the scenario approach for
problems that have a structure described above. In particular, the lower sample sizes reduce the computa-
tional complexity of the scenario approach and simultaneously improve the objective value of the scenario
solution. At the same time, the feasibility guarantees for the scenario solution remain as strong as before.
Hence the extensions of this paper, when applicable, offer only advantages over the existing results on the
scenario approach.

1.4 Organization of the Paper

Section 2 contains the problem statement. Section 3 introduces some background on its properties, and
states the rigorous definitions for the ‘support dimension’ and the ‘support rank’ of a chance constraint.
Section 4 contains the main results of this paper, which give the improved sample bounds in the presence
of a single (or multiple) chance constraint(s) of limited support rank. Section 5 extends this theory to
the sampling-and-discarding procedure, which can be used to improve the objective value of the scenario
solution, at the price of larger data requirements and an increased computational complexity. Section 6
presents a brief numerical example that demonstrates the application of the presented theory, as well as its
potential benefits when compared to existing results.

2 Problem Formulation

This section introduces the generalized problem formulation with multiple chance constraints, the corre-
sponding scenario program, and some basic terminology.

2.1 Stochastic Program with Multiple Chance Constraints

Consider the following extension of the SCP to an optimization problem with linear objective function and
multiple chance constraints (MCP):

min
x∈X

cTx , (2.1a)

s.t. Pr
[

fi(x, δ) ≤ 0
]

≥ (1− εi) ∀ i ∈ N
N
1 , (2.1b)

where i is the chance constraint index in N
N
1 := {1, 2, ..., N}. The remarks for the SCP in Section 1.2

apply analogously; in particular the following key assumption is made.

Assumption 2.1 (Convexity) The constraint functions fi : Rd × ∆ → R of all chance constraints i ∈
N

N
1 := {1, ..., N} are convex in their first argument x ∈ R

d for Pr-almost every δ ∈ ∆.

4



Other than Assumption 2.1, the dependence of the functions fi(x, δ) on the uncertainty δ is completely
generic.

The use of ‘min’ instead of ‘inf’ in (2.1a) is justified by the fact that the feasible set of a single chance
constraint is closed under fairly general assumptions [14, Thm. 2.1]. This implies that the feasible set of the
MCP is compact, due to the presence of X, and the infimum is indeed attained.

It remains a standing assumption that the σ-algebra of Pr-measurable sets in ∆ is large enough to
contain all sets whose probability is measured in this paper, like the ones in (2.1b), cf. [11, p. 4].

In order to avoid technical issues, which are of little relevance for most practical applications, the
following is assumed, cf. [11, Ass. 1].

Assumption 2.2 (Existence and Uniqueness) (a) Problem (2.1) admits at least one feasible point. By the

compactness of X, this implies that there exists at least one optimal point of (2.1). (b) If there are multiple

optimal points of (2.1), a unique one is selected by the help of a tie-break rule (e.g. the lexicographic order

on R
d).

In principle, an approximate solution to the MCP can be obtained by the classic scenario approach.
Namely, a SCP can be setup with the same objective function (1.2a) as the MCP, and a chance constraint
(1.2b) defined by

f(x, δ) := max
{

f1(x, δ), . . . , fN (x, δ)
}

and ε := min
{

ε1, ε2, ..., εN
}

. (2.2)

Note that f(x, δ) is convex in x for almost every δ, since the pointwise maximum of convex functions is
convex. Any feasible point of this SCP is also a feasible point of the MCP, and hence an approximate
solution to the SCP with confidence (1 − θ) is also an approximate solution to the MCP with confidence
(1 − θ).

However, this procedure introduces a considerable amount of conservatism, because it requires the
scenario solution to simultaneously satisfy all constraints i = 1, ..., N with the highest of all probabilities
(1 − εi). Clearly, this conservatism becomes more severe if the number of chance constraints N is large
and there is a great variation in the values of εi.

2.2 The Extended Scenario Approach

The extended scenario approach of this paper can be used to compute an approximate solution of the MCP,
which is a feasible point of every chance constraint i = 1, ..., N with a given confidence probability of
(1 − θi). The key difference from the classic scenario approach is that each chance constraint i ∈ N

N
1 is

sampled separately, and with an individual sample size Ki ∈ N.
Let the random samples pertaining to constraint i be denoted δ(i,κi), where κi ∈ {1, ...,Ki}, and for

brevity also as the collective multi-sample ω(i) := {δ(i,1), ..., δ(i,Ki)}. The collection of all samples is
combined in an overall multi-sample ω := {ω(1), ..., ω(N)}, with the total number of samples given by
K :=

∑N
i=1 Ki. All of these samples can be considered ‘identical copies’ of the random uncertainty δ, in

the sense that they are themselves random variables and satisfy the following key assumption.
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Assumption 2.3 (Independence and Identical Distribution) The sampling procedure is designed such

that the set of all random samples, together with the actual random uncertainty,

⋃

i∈NN

1

{

δ(i,1), ..., δ(i,Ki)
}

∪
{

δ
}

form a set of independent and identically distributed (i.i.d.) random variables.

The multi-sample ω is an element of ∆K , the K-th product of the uncertainty set ∆, and it is dis-
tributed according to PrK , the K-th product of the measure Pr. The scenario program for multiple chance
constraints (MSP[ω(1), ..., ω(N)]) is constructed as follows:

min
x∈X

cTx , (2.3a)

s.t. fi
(

x, δ(i,κi)
)

≤ 0 ∀ κi ∈ N
Ki

1 , ∀ i ∈ N
N
1 . (2.3b)

In problem (2.3), the objective function of the MCP is minimized, while forcing x to lie inside the con-
strained sets for all samples δ(i,κi) substituted into the corresponding constraint i ∈ N

N
1 . Clearly, the

solution to problem (2.3) is itself a random variable, as it depends on the random multi-sample ω. For this
reason, the scenario approach is a randomized method for finding an approximate solution to the MCP.

Of course, the MSP is actually solved for the observations of the random samples, leading to its deter-
ministic instance (MSP[ω̄(1), ..., ω̄(N)]):

min
x∈X

cTx , (2.4a)

s.t. fi
(

x, δ̄(i,κi)
)

≤ 0 ∀ κi ∈ N
Ki

1 , ∀ i ∈ N
N
1 . (2.4b)

Note that (2.4) arises from (2.3) by replacing the (random) samples δ(i,κi), ω(i), ω with their (deterministic)

outcomes δ̄(i,κi), ω̄(i), ω̄. Throughout the paper, these outcomes are indicated by a bar, to distinguish them
from the corresponding random variables. By Assumption (2.1), MSP constitutes a convex program that
can be solved efficiently by a suitable algorithm for convex optimization, cf. [7, 16, 18].

Note that (2.3) remains important for analyzing the (probabilistic) properties of the (random) scenario
solution. In fact, the subsequent theory is mainly concerned with showing that, with a very high confidence,
the scenario solution is a feasible point of the chance constraints (2.1b), provided that the sample sizes
K1, ...,KN are appropriately selected.

2.3 Randomized Solution and Violation Probability

In order to avoid unnecessary complications, the following technical assumption ensures that there always
exists a feasible solution to the MSP, cf. [11, p. 3].

Assumption 2.4 (Feasibility) (a) For any number of samples K1, ...,KN , the MSP admits a feasible so-

lution almost surely. (b) For the sake of notational simplicity, any Pr-null set for which (a) may not hold is

assumed to be removed from ∆.

Assumption 2.4 can be taken for granted in the majority of practical problems. When it does not hold in
a particular case, a generalization of the presented theory accounting for the infeasible case can be developed
along the lines of [9].

Hence the existence of a solution to MSP is ensured, and uniqueness holds by Assumption 2.1 and by
carry-over of the tie-break rule of Assumption 2.2(b), see [20, Thm. 10.1, 7.1]. Therefore the solution map

x̄⋆ : ∆K → X (2.5)

is well-defined, returning the unique optimal point x̄⋆(ω̄(1), ..., ω̄(N)) of the MSP for a given outcome of
the multi-samples {ω̄(1), ..., ω̄(N)} ∈ ∆K . The solution map can also be applied to the MSP, for which it
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is denoted by x⋆ : ∆K → X. Now x⋆(ω(1), ..., ω(N)) represents a random vector of unknown probability
distribution, which is also referred to as the scenario solution. In fact, its distribution is a complicated
function of the geometry and the parameters of the problem.

Note that there are two levels of randomness present in the analysis. The first is introduced by the
random samples in ω, which affect the choice of the scenario solution. The second is the actual random
uncertainty δ, which determines whether or not the scenario solution is feasible with respect to the chance
constraints (2.3b). For this reason, the scenario approach presented here is also called a double-level-of-

probability approach [8, Rem. 2.3].
To highlight the two probability levels more clearly, suppose first that the multi-sample ω̄ has already

been observed, so that the scenario solution x̄⋆(ω̄(1), ..., ω̄(N)) is fixed. Then for each chance constraint
i = 1, ..., N in (2.1b), the a posteriori violation probability V̄i(ω̄

(1), ..., ω̄(N)) is given by

V̄i

(

ω̄(1), ..., ω̄(N)
)

:= Pr
[

fi
(

x̄⋆(ω̄(1), ..., ω̄(N)), δ
)

> 0
]

. (2.6)

In particular, each V̄i has a deterministic, yet generally unknown, value in [0, 1]. If the multi-sample ω
has not yet been observed, the scenario solution x⋆(ω(1), ..., ω(N)) is a random vector and so the a priori

violation probability

Vi

(

ω(1), ..., ω(N)
)

:= Pr
[

fi
(

x⋆(ω(1), ..., ω(N)), δ
)

> 0
]

(2.7)

becomes itself a random variable on (∆K ,PrK), with support [0, 1]. Hence the goal is to choose appropriate
sample sizes K1, ...,KN which ensure that Vi(ω

(1), ..., ω(N)) ≤ εi for all i = 1, ..., N , with a sufficiently
high confidence (1 − θi). Before these results are derived however, some structural properties of scenario
programs and technical lemmas ought to be discussed.

3 Structural Properties of the Constraints

In this section, a structural property of a chance constraint is introduced which yields a reduction in the
number of samples below the levels given by the existing theory [9–11]. This property relates to the new
concept of the support dimension or, in a form that is more easily checked for many practical instances, the
support rank.

3.1 Support Constraints

The concept of a support constraint carries over from the SCP case, cf. [10, Def. 4]. An illustration is given
in Figure 3.1.

Definition 3.1 (Support Constraint) Consider the MSP for some outcome of the multi-sample ω̄. (a) For

some i ∈ N
N
1 and κi ∈ N

Ki

1 , constraint fi(x, δ̄
(i,κi)) ≤ 0 is a support constraint of (2.4) if its removal from

the problem entails a change in the optimal solution:

x̄⋆
(

ω̄(1), ..., ω̄(N)
)

6= x̄⋆
(

ω̄(1), ..., ω̄(i−1), ω̄(i) \ {δ̄(i,κi)}, ω̄(i+1), ..., ω̄(N)
)

.

In this case the sample δ̄(i,κi) is also said ‘to generate this support constraint.’ (b) For each i ∈ N
N
1 ,

the indices κi of all samples that generate a support constraint of the MSP are included in the set Sci.
Moreover, the tuples (i, κi) of all support constraints of the MSP are collected in the support (constraint)
set Sc. With some abuse of this notation, Sc =

⋃N
i=1 Sci.

Definition 3.1(a) can be stated equivalently in terms of the objective function: a sampled constraint is a
support constraint if and only if the optimal objective function value (or its preference by the tie-break rule)
is strictly larger than when the constraint were removed. To be more precise, Definition 3.1(b), Sc may also
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−c

(a) Two Support Constraints.

−c

(b) One Support Constraint.

−c

(c) One Support Constraint.

Figure 3.1: Illustration of Definition 3.1 in R
2. The arrow indicates the optimization direction, the bold

lines are the support constraints of the respective configuration.

account for the set X as an additional support constraint. This minor subtlety is tacitly understood in the
sequel.

In the stochastic setting of the MSP[ω(1), ..., ω(N)], whether or not a particular random sample δ(i,κi)

generates a support constraint becomes a random event, which can be associated with a certain probability.
Similarly, the support constraint set Sc, and its subsets Sc1, ..., ScN contributed by the various chance
constraints, are naturally random sets.

3.2 Support Dimension

The link between the sample sizes K1, ...,KN and the corresponding violation probability of the scenario
solution depends decisively on the ‘dimensions’ of the problem. The following lower bounds represent a
mild technical condition, cf. [9, Thm. 3.3] and [11, Def. 2.3].

Assumption 3.2 The sample sizes satisfy K1, ...,KN ≥ d.

In the existing literature, the dimension of the SCP has been characterized by Helly’s dimension, cf. [9,
Def. 3.1]. In this paper, there is a subtle shift from the problem dimension to the dimension of chance
constraint i in the MCP, embodied by its support dimension.

Definition 3.3 (Support Dimension) (a) Denote by | Sc | the (random) cardinality of the set Sc. Helly’s
dimension is the smallest integer ζ that satisfies

ess sup
ω∈∆K

| Sc | ≤ ζ .

(b) The support dimension of a chance constraint i ∈ N
N
1 in the MSP is the smallest integer ζi that satisfies

ess sup
ω∈∆K

| Sci | ≤ ζi .

From a basic argument using Helly’s Theorem, the number of support constraints | Sc | of any (feasible)
convex optimization problem in R

d is upper bounded by the dimension of the decision space d, cf. [10,
Thm. 2]. This result implies that finite integers ζ and ζ1, ..., ζN matching Definition 3.3 always exist, so
that the concepts of ‘Helly’s dimension’ and ‘support dimension’ are indeed well-defined. Moreover, the
result provides immediate upper bounds on the support dimension of each chance constraint i ∈ N

N
1 in

(2.3), namely ζi ≤ ζ ≤ d.
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It turns out that the support dimension ζi directly relates to the minimum sample size Ki that is required
for a given violation level εi and residual probability θi. The basic mechanism shall be illustrated by the
proposition below, for the simpler case of a single-level of probability problem, cf. [10, Thm. 1].

Proposition 3.4 (Probability Bound) Consider a particular constraint i ∈ N
N
1 in the MSP[ω(1), ..., ω(N)]

with some fixed sample size Ki, and let ζ̂i be an upper bound for its support dimension ζi. Then the

following holds:

PrK+1
[

fi
(

x⋆(ω(1), ..., ω(N)), δ
)

> 0
]

≤ ζ̂i
Ki+1 . (3.1)

Proof. ConsiderMSP′ := MSP[ω(1), ..., ω(i−1), ω(i)∪{δ}, ω(i+1), ..., ω(N)] and let Sc′i ⊂ {1, ...,Ki,Ki+
1} denote the set of support constraints generated by samples from ω(i)∪{δ}, where (Ki+1) ∈ Sc′i stands
for δ generating a support constraint. Note that the event where fi

(

x⋆(ω(1), ..., ω(N)), δ
)

> 0 can be equiv-
alently expressed as δ generating a support constraint of MSP′. Hence condition (3.1) can be reformulated
as

PrK+1
[

(Ki + 1) ∈ Sc′i
]

≤ ζ̂i
Ki+1 . (3.2)

To analyze the event (Ki + 1) ∈ Sc′i, observe that by Assumption 2.3 all samples in ω(i) ∪ {δ} are
i.i.d., whence all sampled instances of constraint i in (2.3b) along with ‘fi( · , δ) ≤ 0’ are probabilistically
identical. In particular, they are all equally likely to become a support constraint of MSP′. Hence if the
number of support constraints | Sc′i | were known, then

PrK+1
[

(Ki + 1) ∈ Sc′i
]

=
| Sc′

i
|

Ki+1 .

Even though | Sc′i | is a random variable, by Definition 3.3(b) | Sc′i | ≤ ζi almost surely, and by assumption
ζi ≤ ζ̂i. This immediately yields (3.1). �

3.3 The Support Rank

In many practical cases, the support dimension ζi of a chance constraint i ∈ N
N
1 in the MSP is not known

exactly. Then it has to be replaced by some upper bound. As argued above, the existing upper bound is
given by the dimension d of the decision space. However, this bound may not be tight in the case where the
constraints satisfy a certain structural property, namely when they have a limited support rank.

Intuitively speaking, the support rank is the dimension d of the decision space less the maximal dimen-
sion of an (almost surely) unconstrained subspace. The latter is understood as a linear subspace of Rd that
cannot be constrained by the sampled instances of constraint i, for almost every value of the multi-sample
ω(i).

Before the support rank is introduced in a rigorous manner, three examples of constraint classes with
bounded support rank are described, in order to equip the reader with the necessary intuition behind this
concept. They also show that very common constraint classes possess this property, and that in practical
problems it can often be spotted easily.

Example 3.5 For each of the following cases, a visual illustration can be found in Figure 3.2.
(a) Single Linear Constraint. Suppose some chance constraint i ∈ N

N
1 of (2.1b) takes the linear form

fi(x, δ) ≡ aTx− b(δ) , (3.3)

where a ∈ R
d, and b : ∆ → R is a scalar depending on the uncertainty in a generic way. Note that these

constraints in the MSP are unable to constrain any direction in the subspace orthogonal to the span of a,
span{a}⊥, regardless of the outcome of the multi-sample ω(i). Hence the support rank α of the chance
constraint (3.3) is equal to 1.

9



(b) Multiple Linear Constraints. As a generalization of case (a), suppose that some chance constraint
i ∈ N

N
1 of (2.1b) is given by

fi(x, δ) ≡ A(δ)x− b(δ) , (3.4)

where A : ∆ → R
r×d and b : ∆ → R

r represent a matrix and a vector that depend on the uncertainty
δ. Moreover, suppose that the uncertainty enters the matrix A(δ) in such a way that the dimension of the
linear span of its rows Aj,·(δ), for j = 1, ..., r, satisfies

dim span
{

Aj,·(δ)
∣

∣ j ∈ N
r
1, δ ∈ ∆} ≤ β < d .

Note that these constraints in the MSP are unable to constrain any direction in span
{

Aj,·(δ)
∣

∣ j ∈ N
r
1, δ ∈

∆}⊥, regardless of the outcome of the multi-sample ω(i). Hence the support rank of the chance constraint
(3.4) is equal to β.

(c) Quadratic Constraint. For a nonlinear example, consider the case where some chance constraint
i ∈ N

N
1 of (2.1b) is given by

fi(x, δ) ≡
(

x− xc(δ)
)T
Q
(

x− xc(δ)
)

− r(δ) , (3.5)

where Q ∈ R
d×d is positive semi-definite with rankQ = γ < d, and xc : ∆ → R

d, r : ∆ → R+ represent
a vector and scalar that depend on the uncertainty. Note that these constraints in the MSP are unable to
constrain any direction in the null space of the matrix Q, regardless of the outcome of the multi-sample
ω(i). Since this null space has dimension d − γ, the support rank of the chance constraint (3.5) is equal to
γ.

To introduce the support rank in a rigorous manner, pick a chance constraint i ∈ N
N
1 of the MCP. For

each point x ∈ X and each uncertainty δ ∈ ∆, denote the corresponding level set of fi : Rd ×∆ → R by

Fi(x, δ) :=
{

ξ ∈ R
d
∣

∣ fi(x+ ξ, δ) = fi(x, δ)
}

. (3.6)

(a) Single Linear Constraint. (b) Multiple Linear Constraints. (c) Quadratic Constraint.

Figure 3.2: Illustration of Example 3.5 in R
3. The arrows indicate the dimension of the unconstrained

subspace, equal to 3 minus the respective support rank α, β, or γ.

Let L be the collection of all linear subspaces in R
d. In order to be unconstrained, select only those

subspaces that are contained in almost all level sets Fi(x, δ):

Li :=
⋂

δ∈∆

⋂

x∈Rd

{

L ∈ L
∣

∣ L ⊂ Fi(x, δ)
}

. (3.7)

Introduce ‘�’ as the partial order on Li defined by set inclusion; i.e. for any two subspaces L,L′ ∈ Li,
L � L′ if and only if L ⊆ L′. Then the following concepts are well-defined, as shown in Proposition 3.7
below.
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Definition 3.6 (Unconstrained Subspace, Support Rank) (a) The unconstrained subspace Li of chance

constraint i ∈ N
N
1 is the unique maximal element in Li, in the sense that L � Li for all L ∈ Li. (b) The

support rank ρi ∈ N
d
0 of chance constraint i ∈ N

N
1 equals to d minus the dimension of Li,

ρi := d− dimLi .

It is a minor technicality in Definition 3.6 that any Pr-null set that adversely influences the dimension
of the unconstrained subspace can be removed from ∆; this is tacitly understood.

Observe that if Li contains only the trivial subspace, then the support rank is actually equal to Helly’s
dimension d. On the other hand, if Li contains more than the trivial subspace, then the support rank becomes
strictly less than d.

Proposition 3.7 (Well-Definedness of Unconstrained Subspace) The collectionLi contains a unique max-

imal element Li in the set-inclusion sense, i.e. Li contains all other elements of Li as subsets.

Proof. First, note that Li is always non-empty, because for every x ∈ X and every δ ∈ ∆ the level set
Fi(x, δ) includes the origin by its definition in (3.6). Therefore Li contains (at least) the trivial subspace
{0}.

Second, since every chain in Li has an upper bound (namely R
d), Zorn’s Lemma (or the Axiom of

Choice, cf. [6, p. 50]) implies that Li has at least one maximal element in the ‘�’-sense.
Third, in order to prove that the maximal element is unique, suppose that L(1)

i , L
(2)
i are two maximal

elements of Li. It will be shown that their direct sum L
(1)
i ⊕L

(2)
i ∈ Li, so that L(1)

i 6= L
(2)
i would contradict

their maximality. According to (3.7), it must be shown that L(1)
i ⊕ L

(2)
i ⊂ Fi(x, δ) for any fixed values

x ∈ X and δ ∈ ∆. To see this, pick

ξ ∈ L
(1)
i ⊕ L

(2)
i =⇒ ξ = ξ(1) + ξ(2) for ξ(1) ∈ L

(1)
i , ξ(2) ∈ L

(2)
i .

Then apply (3.6) twice to obtain

fi(x + ξ(1) + ξ(2), δ) = fi(x+ ξ(1), δ) = fi(x, δ) ,

because ξ(2) ∈ L
(2)
i and ξ(1) ∈ L

(1)
i . �

3.4 The Support Rank Lemma

The following lemma provides the link between the support rank of a chance constraint and its support
dimension.

Lemma 3.8 (Support Rank) Suppose that a chance constraint i ∈ N
N
1 has the support rank ρi ∈ N

d
1.

Then its support dimension in the MSP is bounded by ζi ≤ ρi.

Proof. Without loss of generality, the proof is given for the first chance constraint i = 1. Pick any
random multi-sample ω̄ ∈ ∆K (less any PrK-null set for which the support rank condition may not hold).

By the assumption, there exists a linear subspace L1 ⊂ R
d of dimension d− ρ1 for which

f1(x+ ξ) = f1(x) ∀ x ∈ X, ∀ ξ ∈ L1 .

The orthogonal complement of L1, L⊥
1 , is also a linear subspace of Rd with dimension ρ1, and every vector

in R
d can be uniquely written as the orthogonal sum of vectors in L1 and L⊥

1 , cf. [6, p. 135].
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For the sake of a contradiction, suppose that i = 1 contributes more than ρ1 support constraints to the
resulting MSP, i.e. | Sc1 | ≥ ρ1 + 1. For any κ1 ∈ Sc1, let

x̄⋆
κ1

:= x̄⋆
(

ω̄(1) \ {δ̄(1,κ1)}, ω̄(2), ..., ω̄(N)
)

be the solution obtained if this support constraint is omitted. By Definition 3.1, if a support constraint is
omitted from MSP, its solution moves away from x̄⋆

0, i.e. x̄⋆
0 6= x̄⋆

κ1
for all κ1 ∈ Sc1. Denote the collection

of all solutions by
X :=

{

x̄⋆
κ1

∣

∣ κ1 ∈ Sc1
}

∪ {x̄⋆
0} ,

so that |X | ≥ ρ1 + 2. Observe that each x̄⋆
κ1

is feasible with respect to all constraints of the MSP, except
for the one generated by δ(1,κ1), which is necessarily violated according to Definition 3.1.

Since R
d is the orthogonal direct sum of L1 and L⊥

1 , for each point in X there is a unique orthogonal
decomposition of

x̄⋆
κ1

= vκ1 + wκ1 , where vκ1 ∈ L1, wκ1 ∈ L⊥
1 ,

where κ1 ∈ Sc1 ∪{0}. Consider the set

W :=
{

wκ1

∣

∣ κ1 ∈ Sc1 ∪{0}
}

.

By the hypothesis, W contains at least ρ1+2 distinct points in the ρ1-dimensional subspace L⊥
1 . According

to Radon’s Theorem [23, p. 151], W can be split into two disjoint subsets, WA and WB , such that there
exists a point w̃ in the intersection of their convex hulls:

w̃ ∈ conv
{

WA

}

∩ conv
{

WB

}

. (3.8)

Split the indices in Sc1 ∪{0} correspondingly into IA and IB , and observe that every wA ∈ WA satisfies
the constraints in IB :

f1
(

wA, δ̄
(1,κ1)

)

≤ 0 ∀ κ1 ∈ IB =⇒ f1
(

w̃, δ̄(1,κ1)
)

≤ 0 ∀ κ1 ∈ IB .

The last implication follows because w̃ ∈ conv{WA} and f1( · , δ̄
(1,κ1)) is convex. Similarly, every point

wB ∈ WB satisfies the constraints in IA:

f1
(

wB , δ̄
(1,κ1)

)

≤ 0 ∀ κ1 ∈ IA =⇒ f1
(

w̃, δ̄(1,κ1)
)

≤ 0 ∀ κ1 ∈ IA .

Combining both statements thus yields

f1(w̃, δ̄
(1,κ1)) ≤ 0 ∀ κ1 ∈ Sc1 . (3.9)

According to (3.8), w̃ can be expressed as a convex combination of elements in WA or WB . Splitting
the points in X into XA and XB correspondingly and applying the same convex combination yields some

x̃ ∈ conv
{

XA

}

∩ conv
{

XB

}

, (3.10)

and thereby also some ṽ ∈ L1 with x̃ = ṽ + w̃.
To establish the contradiction two things remain to be verified: first that x̃ is feasible with respect to all

constraints, and second that it has a lower cost (or a better tie-break value) than x̄⋆
0. For the first, x̃ ∈ X

because all points of X lie in X and x̃ ∈ conv{X}. Moreover, thanks to (3.9),

f1
(

x̃, δ̄(1,κ1)
)

= f1
(

w̃, δ̄(1,κ1)
)

≤ 0 ∀ κ1 ∈ Sc1 .

For the second, pick the set from XA and XB that does not contain x̄⋆
0; without loss of generality, say this is

XA. By construction, all elements of XA have a strictly lower objective function value (or at least a better
tie-break value) than x̄⋆

0. By linearity this also holds for all points in conv{XA}, where x̃ lies according to
(3.10). �
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Remark 3.9 (Support Rank versus Support Dimension) While the support rank ρi is a property of chance

constraint i alone, the support dimension ζi may depend on the overall setup of the MSP. The support di-

mension ζi constitutes the relevant basis for selecting the sample size Ki. However, it may be difficult to

determine for practical problems, as it may depend on the interactions of multiple chance constraints (see

Example 3.10 below). The support rank ρi provides an easier-to-handle upper bound to ζi, which can be

used in place of ζi for selecting Ki.

Example 3.10 (Upper Bounding of Support Dimension) To illustrate the statements in Remark 3.9, con-
sider a small example of (2.1) in dimension d = 3. Let X = [−1, 1]3 be the unit cube, cT = [0 1 1] with
a lexicographic tie-break rule, and two chance constraints i = 1, 2. Both constraints affect only the first
and second coordinates x1 and x2, leaving the choice of x3 = −1 for the third coordinate. For i = 1, the
constraints are parallel hyperplanes constraining x1 from below, where the lower bound is given by the first
uncertainty δ1:

f1(x, δ) = −x1 + δ1 .

For i = 2, the constraints are V-shaped, with the vertex located at x1 = −δ2 and x2 = −1:

f2(x, δ) =
∣

∣x1 + δ2
∣

∣− x2 − 1 .

Both uncertainties δ := {δ1, δ2} are uniformly distributed on the interval [0, 1]. The setup is illustrated in
Figure 3.3.

In this case, the support dimensions are ζ1 = 1, ζ2 = 1 and the support ranks are ρ1 = 1, ρ2 = 2 for
the constraints i = 1, 2. Notice that for i = 2 the support rank is strictly greater that its support dimension,
due to the presence of constraint 1. Hence there is some conservatism in the upper bound, although both
bounds are better than the existing upper bound by the dimension of the decision space d = 3 [10, Thm. 2].

x1

x2
X

−c

b b

i = 1

b b

i = 2

Figure 3.3: Illustration of Example 3.10. The plot shows a projection on the x1, x2-plane for x3 = −1. The
unit box X is depicted by a dotted line. Two (possible) samples are shown for the linear constraint i = 1
(x1 ≥ δ1) and for the V-shaped constraint i = 2 (x2 ≥

∣

∣x1 + δ2
∣

∣− 1).

4 Feasibility of the Scenario Solution

In the first part of this section, it is shown that for a proper choice of the sample sizes K1, ...,KN the
scenario solution x⋆

(

ω(1), ..., ω(N)
)

is an approximate solution of the MCP (i.e. it is a feasible point of
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each chance constraint i = 1, ..., N in (2.1b) with a high confidence (1 − θi)). In the second part of this
section, an explicit formula for computing the sample sizes K1, ...,KN for given residual probabilities θi
is provided.

4.1 The Sampling Theorem

Denote by B(· ; ·, ·) the beta distribution function, cf. [1, p. 26.5.3, 26.5.7]:

B(ε;n,K) :=
n
∑

j=0

(

K

j

)

εj(1− ε)K−j . (4.1)

Theorem 4.1 (Sampling Theorem) Consider problem (2.3) under Assumptions 2.1, 2.2, 2.3, 2.4, 3.2.

Then

PrK
[

Vi(ω
(1), ..., ω(N)) > εi

]

≤ B(εi; ρi − 1,Ki) , (4.2)

for each chance constraint i ∈ N
N
1 , whose support rank is ρi.

Proof. The result is an extension of [11, Thm. 2.4] for the classic scenario approach, which is also used
as a basis for this proof.1

Without loss of generality, consider the first chance constraint i = 1; the result for the other chance
constraints i = 2, ..., N follows analogously. Consider the conditional probability

PrK
[

V1(ω
(1), ..., ω(N)) > ε1

∣

∣ ω(2), ..., ω(N)
]

, (4.3)

i.e. the probability of drawing ω(1) such that x⋆(ω(1), ..., ω(N)) has a probability of violating ‘f1( · , δ) ≤ 0’
that is higher than ε1, given fixed values for the other samples ω(2), ..., ω(N).

Clearly, the quantity in (4.3) generally depends on the multi-samples ω(2), ..., ω(N). However, for
PrK2+...+KN -almost every value of these multi-samples (4.3) can be bounded by

PrK
[

V1(ω
(1), ..., ω(N)) > ε1

∣

∣ ω(2), ..., ω(N)
]

≤ B(ε1; ρ1 − 1,K1) . (4.4)

Indeed, by Assumption 2.1, for PrK2+...+KN -almost every ω(2), ..., ω(N) the function f̃ : Rd → R defined
by

f̃(x) ≡ max
i∈NN

2

max
κi∈N

Ki

1

fi
(

x, δ(i,κi)
)

is convex, as it is the point-wise maximum of convex functions. Then all sampled constraints of i = 2, ..., N
can be expressed as the deterministic convex constraint ‘f̃(x) ≤ 0’, which can be considered as part of the
convex set X. Thus for PrK2+...+KN -almost every ω(2), ..., ω(N) the problem takes the form of a classic
SCP, to which the results of [11] apply. In particular, [11, Thm. 2.4] yields (4.4) for PrK2+...+KN -almost
every ω(2), ..., ω(N).

The difference from using the support rank ρ1 in place of the optimization dimension d in [11, Thm. 2.4]
is minor. The key fact is that ρ1 provides an upper bound for the number of support constraints contributed
by constraint 1, according to Lemma 3.8, and hence it can replace d in [11, Prop. 2.2] and all subsequent
results.

The final result is obtained by deconditioning the probability in (4.3):

PrK
[

V1(ω
(1), ..., ω(N)) > ε1

]

=

=

∫

ω(2),...ω(N)

PrK
[

V1(ω
(1), ..., ω(N)) > ε1

∣

∣ ω(2), ..., ω(N)
]

PrK2
[

dω(2)
]

...PrKN

[

dω(N)
]

≤

∫

ω(2),...ω(N)

Φ(ε1; ρ1 − 1,K1)Pr
K2

[

dω(2)
]

...PrKN

[

dω(N)
]

= Φ(ε1; ρ1 − 1,K1) ,

1The authors thank an anonymous reviewer for his/her helpful suggestions on simplifying the proof.
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based on [22, pp. 183,222], where the third line uses (4.4). �

4.2 Explicit Bounds on the Sample Sizes

Formula (4.2) in Theorem 4.1 ensures that with a confidence level of 1 − B(εi; ρi − 1,Ki), the violation
probability Vi(ω

(1), ..., ω(N)) ≤ εi. However, in practical applications a given confidence level (1 − θi) ∈
(0, 1) is often imposed, while an appropriate sample size Ki has to be identified.

The most accurate way of finding this sample size is by observing that B(εi; ρi − 1,Ki) is a monoton-
ically decreasing function in Ki and applying a numerical procedure (e.g. regula falsi) for computing the
smallest sample size that ensures B(εi; ρi−1,Ki) ≤ θi. The resulting Ki shall be referred to as the implicit

bound on the sample size.
For a qualitative analysis of the behavior of this implicit bound as εi and θi vary (and also for a good

initialization of the regula falsi procedure), it is useful to derive an explicit bound on the sample size Ki.
Since formula (4.2) cannot be readily inverted, the beta distribution function must first be controlled by
some upper bound, which is then inverted.

A straightforward approach is to use a Chernoff bound [13], as shown in [8, Rem. 2.3] and [9, Sec. 5].
This provides a simple explicit formula for Ki:

Ki ≥
2

εi

[

log
( 1

θi

)

+ ρi − 1

]

, (4.6)

where log(·) denotes the natural logarithm. As shown in [2, Cor. 1], this can be further improved to a better,
albeit more complicated bound for Ki:

Ki ≥
1

εi

[

log
( 1

θi

)

+

√

2(ρi − 1) log
( 1

θi

)

+ ρi − 1

]

. (4.7)

5 The Sampling-and-Discarding Approach

The sampling-and-discarding approach has previously been proposed for the classic scenario approach
[9, 12]; this section describes its extension to problems with multiple chance constraints.

The fundamental goal is to reduce the objective value of the scenario solution, while maintaining the
same confidence levels for feasibility with respect to the chance constraints (see Section 1.2). To this end,
the sample sizes Ki are deliberately increased above the bounds derived in Section 4, in exchange for
allowing a certain number of Ri sampled constraints to be discarded a posteriori, i.e. after the outcomes of
the samples have been observed.

In this section, first the possible procedures for discarding constraints are recalled. Second, the main
result on the sampling-and-discarding approach for the MCP is stated. It provides an implicit formula
for the selection of appropriate sample-and-discarding pairs (Ki, Ri), which may again vary for different
chance constraints i = 1, ..., N . Third, explicit bounds for the choice of pairs (Ki, Ri) are provided.

5.1 Constraint Discarding Procedure

For each chance constraint of the MCP, if Ri ≥ 0 sampled constraints are to be discarded a posteriori, the
discarding procedure is performed by a pre-defined (sample) removal algorithm.

Definition 5.1 (Removal Algorithm) For each chance constraint i = 1, ..., N , the (sample) removal al-
gorithm A

(Ki,Ri)
i : ∆K → ∆Ki−Ri is a deterministic function on the overall multi-sample ω ∈ ∆K . It

returns a subset of samples ω̃(i) ∈ ∆Ki−Ri , in which Ri out of the Ki samples in ω(i) ∈ ∆Ki have been

removed.
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Obviously, the algorithm should aim at improving the objective value from MSP[ω(1), ..., ω(N)] to
MSP[ω̃(1), ..., ω̃(N)] as much as possible. Various possible removal algorithms are described in [9, Sec. 5.1],
and further references are found in [12, Sec. 2]. Brief descriptions of the most important removal algorithms
are listed below.

Example 5.2 (a) Optimal Constraint Removal. The best improvement of the objective function value is
achieved by solving the reduced problem for all possible ways of removing Ri of the Ki samples. How-
ever, a major drawback of this removal algorithm is its combinatorial complexity. Therefore the algorithm
becomes computationally intractable for larger values of Ri, in particular when samples have to be removed
for multiple constraints.

(b) Greedy Constraint Removal. Starting by solving the MSP[ω(1), ..., ω(N)] for all Ki samples, the
Ri samples are removed in Ri sequentially steps. In each step, a single sample is removed by the optimal
constraint removal procedure. Between multiple constraints i, the removal algorithm can either proceed in
a fixed order or again greedy-based. For most practical problems this algorithm can be expected to work
almost as good as (a), while carrying a much lower computational burden.

(c) Marginal Constraint Removal. The Ri samples are removed in Ri sequential steps, where the
removed sample in each step is selected according to the highest Lagrange multiplier. Compared to the
greedy constraint removal, the decision is thus based on the highest marginal cost improvement [7, Cha. 5]),
instead of the highest total cost improvement. In the case of multiple constraints i, the removal algorithm
can either handle them all together, or proceed sequentially.

The existing theory for the SCP [9, Sec. 4.1.1] and [12, Ass. 2.2] assumes that all of the removed con-
straints are violated by the relaxed scenario solution.

Assumption 5.3 (Violation of Discarded Constraints) Every chance constraint i ∈ N
N
1 with Ri > 0

satisfies the following condition: for almost every ω ∈ ∆K , each of the constraints discarded by the

removal algorithm A
(Ki,Ri)
i (ω) is violated by the solution of the reduced problem, i.e.

fi
(

x⋆(ω̃(1), ..., ω̃(N)), δ(i,κi)
)

> 0 ∀ δ(i,κi) ∈
(

ω \ ω̃
)

. (5.1)

While Assumption 5.3 is sufficient for the MCP as well, it may turn out to be too restrictive for some
problem instances. In fact, due to the interplay of multiple chance constraints, it may not be possible to
find Ri constraints that are violated by the relaxed scenario solution (this situation may also occur for a
single chance constraint, in the presence of a deterministic constraint set X). In this case, the monotonicity

property, as introduced below, provides a possible alternative.

Definition 5.4 (Monotonicity Property) A chance constraint i ∈ N
N
1 is called monotonic if for all Ki ∈ N

and almost every ω(i) ∈ ∆Ki the following condition holds: Every point in the feasible set of sampled

instances of chance constraint i,

Xi(ω
(i)) :=

{

ξ ∈ R
d ∣
∣ fi(ξ, δ

(i,κi)) ≤ 0 ∀ κi ∈ N
Ki

1

}

, (5.2)

where R := R ∪ {±∞}, is violated by a new sampled constraint only if also the optimal point in Xi(ω
(i)),

x⋆
i (ω

(i)) := argmin
{

cTξ
∣

∣ ξ ∈ Xi(ω
(i))

}

(5.3)

is violated. In other words, for every ξ ∈ Xi(ω
(i)) and almost every δ ∈ ∆,

fi
(

ξ, δ
)

> 0 =⇒ fi
(

x⋆
i (ω

(i)), δ
)

> 0 . (5.4)

Assumption 5.5 (Monotonicity of Chance Constraints) Every chance constraint i ∈ N
N
1 enjoys the mono-

tonicity property.
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Definition (5.4) is easy to check for most practical problems, without involving any calculations. The
following example illustrates the intuition behind this concept.

Example 5.6 (Monotonic Chance Constraints) Consider an MSP in d = 2 dimensions, where X =
[−100, 100]2 ⊂ R

2 and c = [ 0 1 ]T, δ = [δ1 δ2 δ3] belongs to ∆ = {−1, 1} × [−1, 1] × [−1, 1], and
there are N = 2 chance constraints.

(a) Monotonic Chance Constraint. Let the first chance constraint i = 1 be of the linear form
[

δ
(1,κ1)
1 1

]

x− δ
(1,κ1)
2 ≤ 0 ∀ κ1 = 1, ...,K1 .

Observe that for any number K1 ∈ N and every possible sample values ω(1), an additional sample δ either
cuts off no point from X1(ω

(1)), or the the point x⋆
1(ω

(1)) becomes infeasible. This fact is illustrated in
Figure 5.1(a). Therefore chance constraint i = 1 enjoys the monotonicity property.

(b) Non-Monotonic Chance Constraint. Let the second chance constraint i = 2 be of the linear form
[

δ
(2,κ2)
2 1

]

x− δ
(2,κ2)
3 ≤ 0 ∀ κ2 = 1, ...,K2 ,

Observe that for any number K2 there exist sample values ω(2) that make it possible for a new sample δ to
cut off some previously feasible point from X2(ω

(2)), without rendering the point x⋆
2(ω

(2)) infeasible. A
possible configuration of this type is depicted in Figure 5.1(b). Therefore chance constraint i = 2 does not
enjoy the monotonicity property.

−c

(a) Monotonic Chance Constraint.

−c

(b) Non-Monotonic Chance Constraint.

Figure 5.1: Illustration of Example 5.6. Non-bold constraints are generated by the multi-sampleω(i) ∈ ∆Ki

of chance constraint i = 1, 2; bold constraints are generated by the uncertainty δ ∈ ∆. In (b) a feasible
point is made infeasible without affecting the optimum, which is not possible in the case of (a).

The usefulness of the monotonicity property is based on the following result, whose proof is an straight-
forward consequence of Definition 5.4 and therefore omitted.

Lemma 5.7 Let Ki ∈ N and Ri ≤ Ki. Suppose chance constraint i ∈ N
N
1 of MCP is monotonic and the

removal algorithm A
(Ki,Ri)
i is sequential. Then for almost every ω(i) ∈ ∆Ki the following holds:

(a) With probability one every point ξ in the set Xi(ω
(i)) has a violation probability less than or equal to

that of the cost-minimal point x⋆
i (ω

(i)):

Pr
[

fi(ξ, δ) > 0
]

≤ Pr
[

fi(x
⋆
i (ω

(i)), δ) > 0
]

∀ ξ ∈ Xi(ω
(i)) . (5.5)

(b) The final solution x⋆
i (ω̃

(i)), where ω̃(i) = A
(Ki,Ri)
i (ωi), violates all Ri removed constraints.
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5.2 The Discarding Theorem

For the sampling-and-discarding approach, the following result holds for the MCP.

Theorem 5.8 (Discarding Theorem) Consider the problem (2.1) under Assumptions 2.1, 2.2, 2.3, 2.4,

3.2, and either 5.3 or 5.5. Let A
(Ki,Ri)
i be sample removal algorithms for each of its chance constraints

i = 1, ..., N , some of which may be trivial (i.e. Ri = 0). Then it holds that

PrK
[

Vi(ω̃
(1), ..., ω̃(N)) > εi

]

≤

(

Ri + ρi − 1

Ri

)

B(εi;Ri + ρi − 1,Ki) , (5.6)

where ρi denotes the support rank of chance constraint i and B(·; ·, ·) the beta distribution (A.1).

Proof. Here the MCP case is reduced to the SCP case, for which a detailed proof is available in [12,
Sec. 5.1].

First, suppose that Assumption 5.3 holds. The proof in [12, Sec. 5.1] works analogously for an arbitrary
chance constraint i ∈ N

N
1 , given that an upper bound of the violation distribution is readily available from

Theorem 4.1.
Second, suppose that Assumption 5.5 holds. In this case the proof in [12, Sec. 5.1] can be applied

directly to the SCP which arises from the MCP if all chance constraints other than a particular i ∈ N
N
1

are omitted (and also X is omitted). In particular, (5.6) holds for the scenario solution of this SCP, using
Lemma 5.7(b). Given that the chance constraint is monotonic and by virtue of Lemma 5.7(a), (5.6) also
holds for any point in Xi(ω

(i)), in particular for the scenario solution of the MCP. �

The work of [12] already provides an excellent account of the merits of the sampling-and-discarding
approach, which does not require a restatement here. However, it should be emphasized that the scenario so-
lution converges to the true solution of the MCP as the number of discarded constraints increases, provided
that the constraints are removed by the optimal procedure of Example 5.2(a).

5.3 Explicit Bounds on the Sample-and-Discarding Pairs

Similar to Section 4, explicit bounds on the sample size Ki can also be derived for the sampling-and-
discarding approach, assuming the number of discarded constraints Ri to be fixed. The technical details,
using Chernoff bounds [13], are worked out in [9, Sec. 5]. The resulting explicit bound is indicated here for
the sake of completeness,

Ki ≥
2

εi
log

(

1

θi

)

+
4

εi

(

Ri + ρi − 1
)

, (5.7)

where log(·) denotes the natural logarithm.
Similarly, explicit bounds on the number of discarded constraints Ri can be obtained, assuming the

sample size Ki to be fixed:

Ri ≤ εiKi − ρi + 1−

√

2εiKi log
((εiKi)ρi−1

θi

)

. (5.8)

The technical details of this are found in [12, Sec. 4.3].

6 Example: Minimal Diameter Cuboid

The following academic example has been selected to highlight the strengths of the extensions to the sce-
nario approach presented in this paper.
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6.1 Problem Statement

Let δ be a random point in ∆ ⊂ R
n, whose distribution and support set are unknown, but sampled values

can be obtained. The objective in this example is to construct the Cartesian product C of closed intervals in
R

n (‘n-cuboid’) of minimaln-diameterW , which is large enough to contain the point δ in its i-th coordinate
with probability (1− εi). The setting is illustrated in Figure 6.1.

Let z ∈ R
n denote the center point of the cuboid and t ∈ R

n
+ the interval widths in each dimension, so

that
C =

{

ξ ∈ R
n
∣

∣ |ξi − zi| ≤ ti/2
}

. (6.1)

Then the corresponding stochastic program reads as follows:

min
z∈Rn,t∈Rn

+

‖t‖2 , (6.2a)

s.t. Pr
[

zi − ti/2 ≤ δi ≤ zi + ti/2
]

≥ (1 − εi) ∀ i ∈ N
n
1 . (6.2b)

Since the objective function is not linear, (6.2) has to be reformulated (see Remark 1.1(a)) as

min
z∈Rn,t∈Rn

+,T∈R

T , (6.3a)

s.t. ‖t‖2 ≤ T , (6.3b)

Pr
[

max
{

zi − ti/2− δi,−zi − ti/2 + δi
}

≤ 0
]

≥ (1− εi) ∀ i ∈ N
n
1 . (6.3c)

Note that (6.3) takes the form of a MCP, for a d = 2n+1 dimensional search space and N = n chance
constraints: the objective function (6.3a) is linear; constraint (6.3b) is deterministic and convex; and each
of the chance constraints in (6.3c) is convex in z, t for any fixed value of the uncertainty δ ∈ ∆.

Here each of the chance constraints i = 1, ..., n depends on exactly two decision variables zi and ti,
which is a special case of involving [z; t;T ] ∈ R

2n+1 (see Remark 1.1(c)). The convex and compact set
X is constructed from the positivity constraints on t, the deterministic and convex constraint (6.3b), and
some artificial bounds assumed on all variables. Existence of a feasible solution, and hence Assumption
2.2, holds automatically from the problem setup.

6.2 Solution via Scenario Approach

By inspection, each of the chance constraints i = 1, ..., n has support rank ρi = 2, because it only involves
the two variables zi and ti. For a fixed confidence level, e.g. θ = 10−6, the implicit sample sizes K1, ...,Kn

in (4.2) can be computed for given values of n and ε1, ..., εn ∈ (0, 1) by a bisection-based algorithm (see
Section 4.2). For simplicity, all ε1 = ... = εn are selected as equal, and since ρ1 = ... = ρN = 2, the
implicit sample sizes K1 = ... = Kn are also identical.

Given the outcomes of all multi-samples, the MSP is easily solved by the smallest n-cuboid that con-
tains all sampled points; see also Figure 6.1. In other words, here the MSP has an analytic solution.

Table 6.1(a) summarizes the implicit sample sizes required for guaranteeing various chance constraint
levels εi in various dimensions n (all with θ = 10−6). These sample sizes are also compared to those
from the classic scenario approach, based on a reformulation of (6.3) as an SCP according to the procedure
outlined in Section 2.1.

Observe from Table 6.1 that the SCP-based sample sizes are always larger than those using the exten-
sions of the MCP theory. This effect increases, in particular, as the dimension n of the optimization space
grows larger. The reason is that the support dimension of each chance constraint remains constant for all n,
whereas Helly’s dimension grows as it equals to n. The marginal growth of the sample size of the MCP,
despite the support rank ρi = 2 being constant, is the result of adjusting the confidence level θ to be (evenly)
distributed among the chance constraints, i.e. θi = θ/n for all i = 1, ..., n.
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Figure 6.1: Illustration of the numerical example for n = 2. The point δ ∈ ∆ appears at random in R
2,

according to some unknown distribution; the points drawn here are 166 i.i.d. samples of δ. The objective is
to construct the smallest product of two closed intervals (‘2-cuboid’), drawn here as the shaded rectangle,
such that the probability of failing to contain the realization of δ is smaller than ε1 and ε2 in dimension 1
and 2, respectively.

sample
size Ki

cuboid dimension n =
2 3 5 10 50 100 500

εi =

1% 1,734 1,777 1,831 1,903 2,072 2,144 2,311
5% 341 349 360 374 407 421 454

10% 166 170 176 182 199 205 221
25% 62 63 65 67 73 76 82

(a) MCP-based Scenario Approach.

sample
size Ki

cuboid dimension n =
2 3 5 10 50 100 500

εi =

1% 2,334 2,722 3,431 5,020 15,588 27,535 115,786
5% 459 536 677 992 3,095 5,477 23,093

10% 225 263 332 488 1,533 2,719 11,506
25% 84 99 125 186 595 1,063 4,550

(b) SCP-based Scenario Approach.

Table 6.1: Implicit sample sizes K1 = ... = Kn for the MCP-based and the SCP-based scenario approach,
assuming a confidence level of θ = 10−6, for varying problem dimension n and chance constraint levels
ε1 = ... = εn.

The larger sample size of the SCP-based approach, as compared to the MCP-based approach, implies
higher data requirements and higher computational efforts, but it also increases the conservatism of the
scenario solution. The latter effect is quantified in Table 6.2, showing the relative excess of the (average)
objective function values of the SCP-based solutions over those of the MCP-based solutions. Note that
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the objective values achieved by the SCP-based approach are always higher than those achieved by the
MCP-based approach, with the effect becoming increasingly significant as the dimension n of the decision
space grows larger.

relative
obj. value

cuboid dimension n =
2 3 5 10 50 100 500

εi =

1% 2.4% 3.4% 5.0% 7.5% 14.8% 18.4% 26.9%
5% 3.3% 4.6% 6.6% 9.8% 19.3% 23.8% 34.4%

10% 3.9% 5.4% 7.6% 11.5% 22.2% 27.4% 39.3%
25% 5.0% 7.2% 10.1% 15.1% 28.5% 34.7% 49.1%

Table 6.2: Objective function value of SCP-based scenario solution as a percentage increase over the MCP-
based scenario solution, based on the sample sizes in Table 6.1 and a multi-variate standard normal distri-
bution for δ. Each of the indicated values represents an average over one million simulation runs.
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A Probability Distributions

Several basic probability-related functions are used throughout this paper. The Binomial Distribution Func-

tion [1, p. 26.1.20]

Φ(x;K, ε) :=

x
∑

j=0

(

K

j

)

εj(1− ε)K−j (A.1)

expresses the probability of seeing at most x ∈ N
K
0 successes in K ∈ N independent Bernoulli trails, where

the probability of success is ε ∈ (0, 1) per trial. The (real) Beta Function [1, p. 6.2.1]

B(a, b) :=

∫ 1

0

ξa−1(1− ξ)b−1 d ε (A.2)

is defined for any parameters a, b ∈ R+, and ξ ∈ (0, 1); it also satisfies the identity [1, p. 6.2.2]

B(a, b) = B(b, a) =
Γ(a)Γ(b)

Γ(a+ b)
, (A.3)

where Γ : R+ → R+ denotes the (real) Gamma Function with Γ(n+1) = n! for any n ∈ N
∞
0 [1, p. 6.1.5].

The corresponding Incomplete Beta Function [1, p. 6.6.1] is then given by

B(ε; a, b) :=

∫ ε

0

ξa−1(1− ξ)b−1 d ξ =

∫ 1

1−ε

ξb−1(1 − ξ)a−1 d ξ , (A.4)

where the last equality follows by a simple substitution. An important identity is obtained from [1, pp. 3.1.1, 6.6.2, 26.5.7],

B(ε; a, b) = B(a, b)

a+b−1
∑

j=a

(

a+ b− 1

j

)

εj(1− ε)a+b−1−j , (A.5)

which can written more compactly by use of the binomial distribution (A.1), see for instance [9, p. 3437]:

B(ε; a, b) =
1

b

(

a+ b− 1

b

)−1

Φ(b− 1; a+ b− 1, 1− ε) . (A.6)
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