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Abstract. This paper investigates the stochastic fluctuations of the number

of copies of a given protein in a cell. This problem has already been addressed
in the past and closed-form expressions of the mean and variance have been

obtained for a simplified stochastic model of the gene expression. These results

have been obtained under the assumption that the duration of all the protein
production steps are exponentially distributed. In such a case, a Markovian

approach (via Fokker-Planck equations) is used to derive analytic formulas of

the mean and the variance of the number of proteins at equilibrium. This
assumption is however not totally satisfactory from a modeling point of view

since the distribution of the duration of some steps is more likely to be Gauss-

ian, if not almost deterministic. In such a setting, Markovian methods can no
longer be used. A finer characterization of the fluctuations of the number of

proteins is therefore of primary interest to understand the general economy of
the cell. In this paper, we propose a new approach, based on marked Poisson

point processes, which allows to remove the exponential assumption. This is

applied in the framework of the classical three stages models of the litera-
ture: transcription, translation and degradation. The interest of the method

is shown by recovering the classical results under the assumptions that all

the durations are exponentially distributed but also by deriving new analytic
formulas when some of the distributions are not anymore exponential. Our

results show in particular that the exponential assumption may, surprisingly,

underestimate significantly the variance of the number of proteins when some
steps are in fact not exponentially distributed. This counter-intuitive result

stresses the importance of the statistical assumptions in the protein produc-

tion process. Finally, our approach can also be used to consider more detailed
models of the gene expression.
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1. Introduction

The aim of the present work is to revisit and generalize the current mathematical
results concerning the properties of intrinsic noise in gene expression. The stochastic
characterisation of the gene expression in the protein production process has been
theoretically studied by means of stochastic models in the late 70s by Berg [1] and
Rigney [7, 8] and reviewed recently by Paulsson [5]. For a long period of time, it
has not been possible to compare the theoretical results to real data, because of the
lack of appropriate laboratory techniques. In the last two decades, the introduction
of reliable expression reporter techniques and the use of fluorescent reporters, as
the GFP (Green Fluorescent Protein), has allowed observations in live cells and
the experimental quantification of the protein production at single cell level. See
Taniguchi et al. [12] for the experimental characterization of a large number of
messengers and proteins of E. coli.

The good qualitative agreement observed between experiments and the predic-
tions of these earlier stochastic models have stimulated further investigations to
take into account the statistical characteristics of the phenomena involved in the
protein production process. In this domain, the variance of the number of the
cellular components in the cell is a key indicator of the efficiency of a production
strategy, since it gives a measure of the fluctuation of resources of the cell consumed
by the production process. Clearly enough, this characteristic is directly affected
by model design and statistical assumptions.

As in the previous works, see Paulsson [5] and Swain [11], it is especially im-
portant to derive explicit analytical formulas for the variance to assess the impact
of the key parameters and, consequently, to get a biological interpretation of the
obtained results.

As it will be seen, the introduction of more realistic statistical assumptions leads
to several technical difficulties, the main one being that the classic PDE approach
(Fokker-Planck equations) used in the literature can no longer be used. In the
present paper, using an approach based on marked Poisson point processes, we relax
some statistical assumptions of the earlier stochastic models and obtain general
results for a large class of stochastic models. In the biological context, we are
then able to derive closed form expressions of the mean and variance of the main
characteristics of the production process.

1.1. Biological Context and Model Motivations. We first provide few biolog-
ical insights about the protein production in living organisms. The gene expression
is the process by which the genetic information is synthesised into a functional
product, the proteins. The production of proteins is the most important cellular
activity, both for the functional role and the high associated cost in terms of re-
sources (in prokaryotic cells it can reach up to 85% of the cellular resources). In
particular, in a E. Coli bacterium there are about 3.6× 106 proteins of approxi-
mately 2000 different types with a large variability in concentration, depending on
their types: from a few dozen up to 105.

The information flow from DNA genes to proteins is a fundamental process,
common to all living organisms and is composed of two main elementary pro-
cesses: transcription and translation. During the transcription process, the RNA
polymerase binds to an active gene relative to a specific protein and makes a com-
plementary copy of a specific DNA sequence, a messenger RNA (mRNA). Each



STOCHASTIC GENE EXPRESSION IN CELLS 3

mRNA, which is a long chain of nucleotides, is a chemical “blueprint” for a partic-
ular protein. The translation of the messenger into a polypeptide chain is achieved
by a large complex molecule: the ribosome with the help of some accessory factors
like the elongation factor to cite a few. During translation, the ribosome binds to
the messenger and builds the polypeptide chain using mRNA as a template. More
in detail, to each mRNA codon, a triplet of nucleotides, corresponds a specific amino
acid, which is the fundamental component of proteins. The polypeptide chain of
amino acids, folds spontaneously or with the help of chaperons, into its functional
three-dimensional structure.

The gene expression is a highly stochastic process and results from the realiza-
tion of a very large number of elementary stochastic processes of different nature.
The thermal excitation affects many processes, since it implies for example the
free diffusion in the cytoplasm in which particles behave basically as if they were
plunged into a viscous fluid. In first approximation, three fundamental mechanisms
are combined in the protein production. The first is the pairing of two cellular com-
ponents freely diffusing through the cytoplasm and is a direct consequence of the
diffusion. The second mechanism is the “spontaneous” rupture of the binding and
the release of the two components as the result of thermal excitation. The last
main stochastic process involved is an active one, since it requires/uses energy, and
corresponds to the processing capability of both polymerase and ribosome. The
active processes associated to polymerases and ribosomes are highly sophisticated
steps, including for example dedicated proof reading mechanisms. In order to pro-
ceed to transcription initiation, gene expression needs a successful binding of the
polymerase to a specific DNA motif. After the initiation step, the messenger chain
is built through a series of specific stochastic processes, in which the polymerase
recruits one of the four nucleotides in accordance to the DNA template. A similar
description is associated to the translation step. In particular the protein elonga-
tion results in an iterative energy-consuming procedure in which each codon of the
messenger chain is coupled with a particular tRNA, which adds a new amino-acid
to the growing protein chain by means of ribosome.

In summary, most of the elementary processes can be schematically seen as the
encounter of two components in a viscous fluid. However, the classic approach to
gene expression modeling is to group those elementary processes into critic steps
as initiation, elongation and degradation, which are common to both transcription
and translation.

1.2. Mathematical Model. The corresponding mathematical model is now de-
scribed. For all the reasons given so far, the total number of copies of a given
protein in the cell is a random variable P . The cell can thus be thought as a sys-
tem that produces a given protein with average concentration E[P ], where E[X]
denotes the expected value of a random variable X. The protein concentration,
which can vary of several orders of magnitude depending on the protein type, is in
direct connection with the various parameters through a quite simple formula, as
will be shown in the sequel. The main objective of the paper is to derive an explicit
representation of the variance of the number of proteins in terms of the various
parameters of the protein production process.

Gene activation. The gene activation involves complex processes among which
the main ones are the association/dissociation of a repressor.
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Usually the whole process is described as a telegraph process for which a tran-
sition from inactive state 0 to active state 1 occurs at rate λ+

1 and, similarly from
state 1 to state 0 at rate λ−1 . Here the fundamental assumption is that the distribu-
tion of these steps is exponential. In a prokaryotic cell, there may be several copies
of a specific gene and this fact has been included in few models in the past years,
see Paulsson [5]. Nevertheless, since we are interested in the variance of the number
of proteins, we will assume in the following sections that there is only one copy of
the gene. The analogous result for the case with multiple copies is straightforward
to obtain since, by independence, the variance of protein number is proportional to
the number of copies of the gene.

Transcription. A RNA polymerase binds on an active gene in an exponential time
with rate λ2. This effective rate measures the frequency of transcription initiation
and takes into account several physical parameters, including, for example, the
affinity between the specific gene and the polymerase. The distribution F2 on R+

of the lifetime σ2 of a mRNA is assumed to be general.

Translation. Similarly, the binding of a ribosome on an mRNA occurs in an expo-
nentially distributed time with rate λ3, which measures the frequency of translation
initiation and includes also the affinity between messenger and ribosome. The dis-
tribution F3 of the lifetime σ3 of the protein is also general. The decay of the
protein concentration occurs for two main reasons: by proteolysis, i.e. the protein
degradation into amino acids, or by cellular dilution, due to the cellular volume
increase of the bacterium during the exponential growth phase.

This paper is focused in the process of the production of a given protein. For
this reason, the interaction with the production process of other proteins is not
considered.

1.3. Literature: the three-stage model. This is the fundamental model used
to describe gene expression in the literature. We can already find these key steps in
the first systematic and accurate studies of stochastic models for gene expression, as
Rigney [8, 7] and Berg [1]. In recent years the three-stages model has been used as
the fundamental structure in most well-known works of Shahrezaei and Swain [10],
Paulsson [5] and Peccoud and Ycart [6].

The promoter of the gene, corresponding to the specific protein of interest, can
be in one of two possible states: active or inactive. In these studies transcription,
translation and the degradation of proteins and messengers are modeled as first-
order chemical reactions, i.e. they are supposed to be exponentially distributed (or
geometrically distributed in case of a discrete time setting). See Paulsson [5] for
an extensive survey on the subject. With the above notations, this amounts to say
that σ2 and σ3 are exponentially distributed.

The assumption of exponentially distributed durations of the various phases of
the three-stage model leads naturally to a Markovian modeling. The overall dy-
namic of gene activation can be described, see Paulsson [5], by the random variable
Y (t) ∈ {0, 1}, where Y (t) = 1 indicates that the gene is active at time t, while
Y (t) = 0 if it is inactive. Recall that we consider, without loss of generality, only
the one gene case. If we denote by N2(t) the number of mRNAs and by N3(t) the
number of proteins, then it turns out that (X(t)) = (Y (t), N2(t), N3(t)) is a Markov
process with values in {0, 1} × N2. This representation is common to most of the
models of the literature. Some of them have, in fact, a lower dimensional state
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space because of assumptions on the number of mRNAs for example. As a conse-
quence, the general theory of Markov processes gives a system of linear differential
equations of order 1, the Fokker-Planck equations, for the functions p(t, (y, n2, n3)),
the probability that X(t) is in state (y, n2, n3) at time t. The system of equations
has the general form

(1)
d

dt
p(t, (y, n2, n3)) = λ1(y)p(t, (1− y, n2, n3)) + λ2p(t, (y, n2 − 1, n3))1{y=1}

+ α(n2)p(t, (y, n2, n3 − 1)) + β(n3)p(t, (y, n2, n3)).

The solution of the system has a unique stable point (π(y, n2, n3), (y, n2, n3) ∈
{0, 1} × N2), the invariant distribution of the Markov process, whose explicit ex-
pression is not known to the best of our knowledge. Nevertheless, since the coef-
ficients α(n) and β(n) are linear with respect to n, the moments of the invariant
distribution satisfy a recurrence equation. This equation is not completely simple,
but gives an explicit expression for the first two moments and, in particular, for
the variance, which is the key quantity to investigate these stochastic models. This
is the main theoretical result used in many papers in literature, see Rigney [8]. It
should be kept in mind that this approach is possible only under the assumption
that all the duration of the main steps (like the production time of an mRNA or of
a protein) are exponentially distributed. This assumptions is now discussed.

1.4. Statistical issues: the exponential assumption. We refer to exponen-
tial assumption when the time to produce a particular cellular component and its
lifetime, i.e. σ2 and σ3, are assumed to be exponentially distributed.

The exponential assumption is natural in the following simple situation: if a
large number of trials are necessary to achieve some goal (like the binding of some
elements on a the DNA of an mRNA) and each trial requires some duration D and
succeeds with probability α. If Gα is the total number of attempts to succeed, i.e.
P(Gα ≥ n) = (1− α)n, then

lim
α→0

P(αGα ≥ x) ∼ e−x,

in other words, if α is small then αGα ∼ E1, where E1 is an exponential random
variable with mean 1. Consequently, the total duration of time necessary to realize
the objective is, due to the averaging of the law of large numbers (Gα is large),

Gα∑
i=1

Di ∼ GαE(D) ∼ E(D)

α
E1

and is therefore exponentially distributed with mean E(D)/α.
As it is seen, this scheme may describe correctly the duration of time to establish

a binding of a polymerase or, of a ribosome. This scheme may properly describe
the time required for a successful binding of RNA polymerase to the gene and of
ribosome to mRNA.

It should be noted that this assumption may not be true if one considers the
elongation time of an mRNA or a protein chain. In particular during the polypep-
tide elongation, each tRNA, transporting a specific amino acid, should bind to the
ribosome. If the distribution of the duration of this step is indeed exponential,
nevertheless the fact that elongation steps requires an average number of 100-300
steps, one for each amino acid, then the resulting distribution of the duration of
the whole process is not anymore exponential. In first approximation, because of
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the large number of elongation steps, a deterministic elongation time with a small
Gaussian perturbation should be considered. One of the main contributions of this
paper is to show, via convenient mathematical tools, that the assumption on the
distributions of σ2 and σ3 has an important impact on the qualitative properties of
the protein production process.

1.5. A Marked Point Process Description of Protein Production. If the
distributions of σ2 and σ3 are not exponential, a Markovian description of the
system is no longer possible, since the residual lifetimes of all the components have
to be included in the state variable. In this case, to get a possible analogue of the
PDE (1), an infinite dimensional state space would be required. For this reason,
there is little hope to use, as it has been done up to now in the literature, the
equivalent of Fokker-Planck equations to get explicit results like the first moments
at equilibrium.

Our approach consists in representing the state of the system as a functional
of several marked point process. See the appendix for the general definitions and
results concerning these processes. If it may be difficult to have a PDE formulation
to the problem, we can have a quite detailed description of the distribution of the
number of proteins without solving recurrence equations by using an alternative
method, which use some nice properties of the point processes. See Robert [9].
The method is presented in the next section. An extension, see Fromion et al. [2],
which uses the mathematical approach developped in this paper, considers a finer
and more complete description of the gene expression. In particular it includes the
dilution process during the exponential growth phase.

1.6. Outline of the Paper. Section 2 introduces the marked Poisson point pro-
cesses used in the mathematical modeling of the production of proteins. In this
model the lifetime of an mRNA or of a protein has a general distribution instead
of the exponential assumption used in the models in the literature. Appendix A
recalls briefly the main results concerning this class of point processes. Section 3
gives the main results concerning the equilibrium distribution of the number of
mRNAs at equilibrium, the main tool in this analysis is the representation in terms
of marked Poisson point processes and a coupling argument. Section 4 is devoted
to the derivation of an explicit formula for the variance of the number of proteins.
Several examples of distributions are discussed.

2. Stochastic Model

In this section, the various stochastic processes are introduced. In the appen-
dix we recall the main results and notations concerning the marked Poisson point
processes (MPPP) which are used in this paper.

Gene activation. It is assumed that there is one active gene, which is activated
at rate λ+

1 and inactivated at rate λ−1 . Recall that the assumption that nmax the
maximum number of active genes is 1 does not restrict the generality of our results
since the quantities analyzed in this paper (expected values and variances) are pro-
portional to nmax. Let (En) and (Fn) be i.i.d. exponential random variables with
respective rates λ−1 and λ+

1 . The process of activation of the gene at equilibrium
can be represented as a stationary process (Y (t), t ∈ R) with values in {0, 1}. Note
that (Y (t)) is defined on the whole real line, i.e. that the activation/deactivation
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process has started at t = −∞. As it will be seen, this is a convenient represen-
tation to describe properly the equilibrium of the protein production process. The
increasing sequence of the instants of activation of the gene is denoted by (tn) with
the convention that t0 ≤ 0 < t1. In particular

{tn, n ∈ Z} = {s ∈ R : Y (s−) = 0 and Y (s) = 1}

and tn+1 − tn = En + Fn. Because of our assumption (tn) is a stationary renewal
point process.

λ−1λ+
1 σ2 σ3

λ2 λ3

Figure 1. Three stage model. The gene activation/deactivation
occur at rate λ1 and µ1 respectively. Transcription and transla-
tion occur at rates λ2 and λ3 respectively. The degradation times
of mRNAs and proteins have probability distributions F2(dt) and
F3(dt) respectively.

Production of mRNAs. When the gene is active, it produces mRNAs at rate
λ2 and F2(dy) is the distribution of the lifetime of a mRNA. Let Nλ2

= (sn, σ2,n)

be a MPPP on R2
+ with intensity measure λ2 dx⊗ F2(dy).

If the gene is, for s ≤ t, then the formula

Nλ2
([s, t]× R) =

∑
n∈Z

1{s≤sn≤t} =

∫
1{s≤u≤t}Nλ2

(du,dv)

represents the total number of mRNAs created between time s and time t and∑
n∈Z

1{s≤sn≤t≤sn+σ2,n} =

∫
1{s≤u≤t≤u+v}Nλ2(du,dv)

is the number of mRNAs still alive at time t. More in general, if we include the
gene dynamics into the formula, we find that the number of messengers created in
the time interval [s, t] and still alive at time t is∑

n∈Z
1{s≤sn≤t≤sn+σ2,n,Y (sn)=1} =

∫
1{s≤u≤t≤u+v,Y (u)=1}Nλ2(du,dv).
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Production of Proteins. A given mRNA produces proteins at rate λ3 and F3(dy)
is the distribution of the duration of the lifetime of a protein.

For u ∈ R, denote byN u
λ3

a MPPP with intensity λ3 dx⊗F3(dy). In the following
it is the process of creation of proteins associated to an mRNAs created at time u.
In particular, if mRNA lifetime is v then

N u
λ3

([u, u+ v]× R+) =

∫
[u,u+v]×R+

N u
λ3

(dx, dy)

is the total number of proteins created by such an mRNA during its lifetime.

Remarks.
Here the mRNA is available for translation once a small portion of the growing
mRNA chain has been assembled. This assumption is coherent with the prokaryotic
dynamics, but should be adapted for the eukaryotic case. In fact in this case we
have to wait the completed messenger to be exported to the cytoplasm. If we
assume this time to be deterministic, then the previously defined integral should
be shifted of a constant value and we should easily get the corresponding analytic
results.

The whole process of production of mRNAs and proteins can thus be described
by the sequence

A =
(
sn, tn,N sn

λ3

)
.

Recall that N 0
λ3

: (Ω,F ,P)→Mp(R×R+), whereMp(R×R+) is the set of point

processes on R×R+. If we denote with Q the distribution of N 0
λ3

onMp(R×R+),
the process A can be seen as a marked Poisson point process on R+×Mp(R×R+)
with intensity measure F3(dx)×Q. This observation will not be used in the following
to keep the setting as simple as possible but the proof of Proposition 2 below could
be shortened by using it together with Proposition 4.

The notations with some definitions for the stochastic models used in this paper
are now summarized.

Notations. — Gene activation.
The activation rate is [resp. inactivation rate] is λ+

1 [resp. λ−1 ] and

δ+ =
λ+

1

Λ
and Λ = λ+

1 + λ−1 .

— mRNA production.
The rate of production of mRNAs by an active gene is λ2, F2(dx) is the
distribution of an mRNA lifetime, σ2 denotes a random variable with dis-
tribution F2 and

ρ2
def.
= λ2E(σ2) = λ2

∫
R+

xF2(dx).

— Protein production.
The rate of production of proteins by an mRNA is λ3, the lifetime distribu-
tion of a protein is F3(dx), σ3 denotes a random variable with distribution
F3 and

ρ3
def.
= λ3E(σ3) = λ3

∫
R+

xF3(dx).
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3. Equilibrium Distribution of the Number of mRNAs

This section investigates the first part of the protein production process: activa-
tion of the convenient gene and production of mRNAs.

3.1. State of the Gene. The behavior of the process (Y (t)) is well known. Once
equilibrium has been reached, it results

P(Y (0) = 1) = δ+ =
λ+

1

λ+
1 + λ−1

= 1− P(Y (0) = 0).

To express the variance of the number of proteins, the following quantity is required,
for t ≥ 0,

(2) P(Y (t) = 1|Y (0) = 1) = δ+ + (1− δ+)e−Λt,

with Λ = λ+
1 + λ−1 . See Norris [4] and Peccoud and Ycart [6] for detailed com-

putations. From now on, it will be assumed that (Y (t)) is defined on R and is at
equilibrium.

3.2. Number of mRNAs. A result on the number of mRNAs at equilibrium and
its distribution is derived in this section. The techniques used to prove it will also
be used to investigate the distribution of the number of proteins in the next section.
In order to present the MPPP approach, we will develop computations for mRNAs,
since they are simpler from the point of view of notations, but include the main
ideas.

Proposition 1. The number M of mRNA’s at equilibrium can be represented as

(3) M =

∫
R×R+

1{u≤0≤u+v,Y (u)=1}Nλ2
(du,dv),

where Nλ2
is a Poisson marked point process with intensity λ2 dx⊗ F2(dy).

Proof. Suppose there are no mRNAs at starting time 0, then the number Mt of
mRNAs at time t is given by

Mt =
∑
n

1{0≤sn≤t≤sn+σ2,n,Y (sn)=1} =

∫
R+

∫ t

0

1{u≤t≤u+v,Y (u)=1}Nλ2(du,dv),

if Nλ2 = (sn, σ2,n) as defined in Section 2. Recall that sn is the (potential) nth
binding time of a polymerase on the gene: an mRNA is created only if the gene is
active, i.e. Y (sn) = 1. The term σ2,n represents the lifetime of the newly produced
mRNA. The right-hand-side of the previous equation accounts for the number of
mRNAs produced in the interval [0, t] and still alive at time t (u+ v ≥ t).

Since the process (Y (t)) is stationary as well as the Poisson marked point process,
they are both invariant by translation. By translating by −t, one gets that Mt has
the same distribution as

Mt
dist.
=

∫
R+

∫ 0

−t
1{0≤u+v,Y (u)=1}Nλ2

(du,dv),

by letting t go to infinity, one obtains the desired result. �

Remark
It is crucial that the distribution of Mt can be explicitly expressed as a functional
of the marked Poisson process Nλ2

. The same property is true for its limit. In this
context, with the help of the coupling argument, there is no need of a Markovian
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setting to prove that Mt converges in distribution as t goes to infinity. As will
be seen, the distribution of the limit M can be obtained by using some properties
of Poisson point processes. For all these reasons, there is no need to impose the
random variables σ2 and σ3 to be exponentially distributed.

In the proof of the above result, we have in fact proved a more general result.

Theorem 1. The point process M representing the instants of creation of mRNAs
and the associated lifetime at equilibrium can be represented as

(4) M =

∫
R×R+

1{Y (u)=1}δ(u,v)Nλ2(du,dv),

where δz is the Dirac mass at z.

The number of mRNAs alive at equilibrium can thus be represented as

M =

∫
1{u≤t≤u+v}M(du,dv) =

∫
1{u≤t≤u+v,Y (u)=1}Nλ2

(du,dv)

which is precisely the expression of Proposition 1. When the activation rate of the
gene goes to infinity, the point processM is simply a marked Poisson point process
and M has a Poisson distribution with parameter ρ2 = λ2E(σ2).

We now use this representation to get an explicit expression of the variance of
the number of mRNAs at equilibrium.

Proposition 2. If the distribution of the lifetime of a mRNA is F2(dx), the average
of the number M of mRNAs at equilibrium is given by

E(M) = δ+ρ2 =
λ+

1

λ+
1 + λ−1

λ2

∫
xF2(dx).

The variance of M is

(5) var(M) = E(M) + 2ρ2
2δ+(1− δ+)

∫ +∞

0

e−ΛvF 2(u)F 2(u+ v) du dv

where F2(x) = F2([0, x]) and F 2(x) = (1− F2(x))/E(σ2).

Proof. Conditionally on the process (Y (t)), M follows a Poisson distribution, hence
for z ∈ [0, 1],

E
(
zM | (Y (t))

)
= exp

(
−λ2(1−z)

∫
R+

∫ 0

−∞
1{Y (u)=1,u+v>0} duσ2(dv)

)

= exp

(
−λ2(1−z)

∫ +∞

0

1{Y (−u)=1}P(σ2 ≥ u) du

)
(6)

by taking f(u, v) = 1{Y (u)=1,u≤0,u+v>0} in Relation (12). If we differentiate formula
(6) with respect to z and take z = 1, we obtain

E (M | (Y (t))) = λ2

∫ 0

−∞
1{Y (u)=1}P(σ2 ≥ −u) du,

since (Y (t)) is at equilibrium, P(Y (u) = 1) = δ+, hence integrating the last relation
we get

E(M) = δ+λ2

∫ 0

−∞
P(σ2 ≥ −u) du = δ+λ2E(σ2).
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If we differentiate twice Formula (6) and substitute z = 1, we obtain

E(M(M − 1) | (Y (t))) = λ2
2

(∫ +∞

0

1{Y (−u)=1}P(σ2 ≥ u) du

)2

= λ2
2

∫
R2

+

1{Y (−u)=1,Y (−v)=1}P(σ2 ≥ u)P(σ2 ≥ v) du dv,

which, integrated with respect to (Y (t)), gives

E
(
M2
)
− E(M) = λ2

2

∫
R2

+

P(Y (−u) = 1, Y (−v) = 1)P(σ2 ≥ u, σ2 ≥ v) du dv,

where the random variable σ2 is independent of σ2 and has the same distribution.
Using relation (2), for u ≤ v and Λ = λ+

1 + λ−1 , we get

P(Y (−u) = 1, Y (−v) = 1) = P(Y (−v) = 1)P(Y (−u) = 1 | Y (−v) = 1)

= δ+

(
δ+ + (1− δ+)e−Λ(v−u)

)
.

Therefore E(M2)− E(M) is the sum of

λ2
2δ

2
+

∫
R2

+

P(σ2 ≥ u, σ2 ≥ v) du dv = (λ2δ+E(σ2))2 = (E(M))2

and, up to the multiplicative factor 2λ2
2δ+(1− δ+), of∫

R2
+

P(σ2 ≥ u, σ2 ≥ v)e−Λ(v−u)
1{u≤v} du dv.

The proposition is proved. �

Normalized variance. By Relation (5), the normalized variance of M is defined
as

var(M)

E(M)2
=

1

E(M)
+ 2

1− δ+
δ+

∫ +∞

0

e−ΛvF 2(u)F 2(u+ v) du dv.

When the mean E(M) is fixed, the only quantity which depends on the distribution
of the lifetime of an mRNA is the integral

IF2
=

∫ +∞

0

e−ΛvF 2(u)F 2(u+ v) du dv.

To conclude this section, we now apply the previous general formulas to specific
choices of the probability distribution. In particular we will get analytical formula
of the previous integral for exponential and deterministic distributions. These as-
sumptions are not completely realistic from a biologic point of view, nevertheless
they are used to stress the impact of probability distribution on the messenger vari-
ance. If the distribution of the lifetime of an mRNA is the exponential distribution
Eµ2 with parameter µ2, one gets

IEµ2 =
1

2µ2(Λ + µ2)
.

If the lifetime of an mRNA is the deterministic distribution Dµ2 with a unit mass
at 1/µ2, the above formula yields

IDµ2 =
1

Λ2

(
e−Λ/µ2 − 1 +

Λ

µ2

)
.
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Straightforward calculations with these formulas show that IEµ2≤IDµ2 . The ratio

IDµ2/IEµ2 varies in fact between 1 and 2, see Figure 3.2. The variance for the
exponential distribution is smaller than the one for the deterministic distribution
with the same mean. This result is not quite intuitive if one takes into account that
the variance of the exponential distribution is quite large.
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Figure 2. Ratio of Variances of nb of mRNAs: Deterministic/Exponential

4. Variance of the Number of Proteins at equilibrium

Recall that if an mRNA is created at time u and has a lifetime v, then on the
time interval [u, u+ v] proteins are created according to the marked Poisson point
process N u

λ3
with intensity λ3 dx ⊗ F3(dy). The instants of creation of proteins

together with their lifetimes can thus be represented by the following point process

(7) P =

∫
R×R+

M(du,dv)

∫
[u,u+v]×R+

δ(x,y)N u
λ3

(dx, dy),

where M is the point process defined by formula (4).

Proposition 3. The number P of proteins at equilibrium can be represented by the
random variable

(8) P =

∫
R×R+

1{Y (u)=1}Nλ2
(du,dv)

∫
R×R+

1{x≤0≤x+y,u≤x≤u+v}N u
λ3

(dx,dy).

Proof. The derivation is quite straightforward. If an mRNA alive between time u
and u+ v generates a protein at time x with lifetime y, this protein will be present
at time 0 if x ≤ 0 ≤ x + y. The argument that this is indeed the representation
of the number of proteins at equilibrium follows the same lines of the proof of
Proposition 1. �
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Before the main technical result of the paper, we can get information on the
distribution of P using formula (8). We start with the simple case of the mean.
For fixed u, v ∈ R+, formula (13) gives

E

(∫
R×R+

1{
x≤0≤x+y,
u≤x≤u+v

}N u
λ3

(dx, dy)

)
= λ3

∫
R×R+

1{
x≤0≤x+y,
u≤x≤u+v

} dxF3(dy)

Integrating this expression with respect to 1{Y (u)=1}Nλ2
(du,dv) and taking its

expectation, we get

E[P | (Y (t))] =

= λ3 E
(∫

1{Y (u)=1}

[∫
1{

x≤0≤x+y,
u≤x≤u+v

} dxσ3(dy)

]
Nλ2

(du,dv)

∣∣∣∣ (Y (t))

)
= λ3

∫
1{Y (u)=1}

[∫
1{

x≤0≤x+y,
u≤x≤u+v

} dxσ3(dy)

]
λ2 duF2(dv)

= λ2λ3

∫
1{Y (u+x)=1}P(σ2 ≥ −u)P(σ3 ≥ −x) dx du,

where we used again formula (13). A further integration gives finally the expecta-
tion

E(P ) = λ2λ3

∫
R
P(Y (u+ x) = 1)P(σ2 ≥ −u)P(σ3 ≥ −x) dx du

= λ2λ3δ+

∫
P(σ2 ≥ −u)P(σ3 ≥ −x) dx du = δ+λ2E(σ2)λ3E(σ3),

with the notation introduced in Proposition 2.

Theorem 2. If the distribution of the lifetime of a mRNA [resp. protein] is F2(dx)
[resp. F3(dy)], then the expected value of the random variable P , which is the
number of proteins at equilibrium, is given by

E(P ) = δ+ρ2ρ3 =
λ+

1

λ+
1 + λ−1

λ2

∫
xF2(dx)λ3

∫
xF3(dy)

and its variance var(P ) can be expressed as

var(P ) = E(P ) + λ2ρ
2
3δ+

∫ +∞

0

∫
R+

[∫ (−s+t)∧0

−s
F 3(u) du

]2

dsF2(dt)(9)

+ ρ2
2ρ

2
3δ+(1− δ+)

∫
R4

+

e−Λ|(u1−u2)+(v1−v2)|
2∏
i=1

F 2(ui)F 3(vi) dui dvi,

where, for j = 2, 3, Fj(x) = Fj([0, x]) and F j(x) = (1− Fj(x))/E(σj).

Proof. Recall that Nλ2 can also be represented as Nλ2 = (sn, tn) and

P =
∑
n∈Z

∫
R×R+

1{Y (sn)=1}1{
x≤0≤x+y,
sn≤x≤sn+tn

}N sn
λ3

(dx, dy).
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Denote by Ê the conditional expectation E(· | (Y (t)), (sn, tn)). The conditional

generating function Ê
(
zP
)

can be written as

Ê

(∏
n∈Z

exp

(
− log(z)

∫
R×R+

1{Y (sn)=1}1{
x≤0≤x+y,
sn≤x≤sn+tn

}N sn
λ3

(dx,dy)

))

=
∏
n∈Z

Ê

(
exp

(
− log(z)

∫
R×R+

1{Y (sn)=1}1{
x≤0≤x+y,
sn≤x≤sn+tn

}N sn
λ3

(dx, dy)

))
,

since the point processes N sn
λ3

, n ∈ Z, are independent.
The nth term of this product is, applying Proposition 4 to the marked Poisson

point processes N sn
λ3

,

exp

(
−λ3(1− z)1{Y (sn)=1}

∫
1{

x≤0≤x+y,
sn≤x≤sn+tn

} dxF3(dy)

)
By integrating Ê

(
zP
)

with respect to Nλ2
, the generating function can thus be

written as

E
(
zP |(Y (t))

)
= E

(
exp

(
−
∫
g(u, v)Nλ2

(du,dv)

))
,

where

g(u, v) = λ3(1− z)1{Y (u)=1}

∫
1{

x≤0≤x+y,
u≤x≤u+v

} dxF3(dy).

Applying again Proposition 4 to the marked Poisson point process Nλ2 , we get

E
(
zP |(Y (t))

)
=

= exp

−λ2

∫
R

du

∫
R
F2(dv)

1− exp

−λ3(1− z)
∫
1{

x≤0≤x+y,
u≤x≤u+v
Y (u)=1

} dxF3(dy)



 .

In order to obtain an expression for E (P (P − 1)|(Y (t))), we have to differentiate
twice the previous formula with respect to z and evaluate it at z = 1. The resulting
formula should then be integrated with respect to (Y (t)) and we can get formula
(9), by using similar arguments as in the proof of Proposition 2 (with more technical
calculations). �

Applications.
To show the effectiveness of the analytic formula (9) of the protein variance, one
considers the cases of exponential and deterministic distributions. More realistic
cases are considered, see the figure. This specific analysis will give an indication
of the impact of the distribution on the protein variance. In each case the average
lifetime of an mRNA [resp. protein] is 1/µ2 [resp. 1/µ3]. Recall that δ+ = λ+

1 /Λ
and Λ = λ+

1 + λ−1 . As in the case of mRNAs above, if from a biological point of
view these assumptions are not completely realistic, this analysis shows the impact
of the distribution on the variance, and therefore of the necessity of having closed
form expressions for a large set of distributions.

Exponential Distribution.
If the distribution of the lifetime of an mRNA [resp. protein] is exponential with
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parameter µ2 [resp. µ3], then formula (9) gives the classical result on the variance,
see Paulsson [5],

(10) varE(P ) = E(P )

(
1 +

λ3

µ2 + µ3
+
λ2λ3(1− δ+)(Λ + µ2 + µ3)

(µ2 + µ3)(Λ + µ2)(Λ + µ3)

)
.

Deterministic Case.
If the lifetime of an mRNA is exponentially distributed with parameter µ2 and the
protein lifetime is deterministic, equal to 1/µ3, then formula (9) gives the identity

(11) varD(P ) = E(P )

[
1 + 2

λ3

µ2

(
1− µ3

µ2

(
1− e−µ2/µ3

))
+

2λ2λ3(1− δ+)µ2

Λ2 − µ2
2

(µ3

Λ2

[
1− e−Λ/µ3

]
−µ3

µ3
2

[
1− e−µ2/µ3

]
+

[
1

µ2
2

− 1

Λ2

])
.

]
As it can be seen Relation (9) gives an explicit, but intricate expression for

the variance, we will present some numerical experiments based on this formula.
The figures 3, 4 and 5 consider the case when the average number of proteins at
equilibrium is fixed and equal to 300, that λ2 = 0.02, λ−1 = 0.01 and that the
average of the lifetime of an mRNA [resp. protein] is 172 [resp. 1000]. We have
considered several possible choices for the distribution F3, it is assumed that all
the other distributions are exponential. The parameter S of the Gaussian is its
variance.
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Appendix A. A Reminder on Marked Poisson Processes

The main results concerning Poisson processes seen as marked point processes
are briefly recalled. See Kingman [3] and Chapter 1 of Robert [9] for a more detailed
account. Throughout this section H is the space Rd for some d ≥ 1.
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Definition 1. If λ > 0, µ is a probability distribution on H, a marked Poisson
process on R+×H with intensity λ dx⊗µ is a sequence Nλ = (tn, Xn) of elements
of R+ ×H where

— (tn) is a (classical) Poisson process on R+ with rate λ.
— (Xn) is an i.i.d. sequence with values in H and whose distribution is H.

The sequence Nλ can also be seen as a marked point process on R+ ×H, i.e. if
f : R+ ×H → R+ is a continuous function then

Nλ(f) =

∫
R+×H

f(u, x)Nλ(du,dx) =
∑
n≥1

f(tn, Xn).

In other words Nλ can also be seen as a sum of Dirac masses at the points (tn, Xn).
The following important proposition characterizes marked Poisson point processes.

Proposition 4. The point process Nλ = (tn, Xn) is a marked Poisson point process
with intensity λ dx⊗ µ if and only if the relation

(12) E (exp (−Nλ(f))) = exp

(
−λ
∫ +∞

0

(
1− e−f(u,x)

)
duµ(dx)

)
holds for any non-negative continuous function f on R+ ×H.

The left-hand-side of Equation (12) is usually defined as the Laplace transform
of Nλ at f . This quantity determines completely the distribution of any marked
point process.

For ξ > 0, by replacing f by ξf in Relation (12), one gets an expression for

E [exp (−ξNλ(f))] ,

if one differentiates it with respect to ξ and sets ξ = 0, the above identity gives

(13) E (Nλ(f)) = E

(∫
R+×H

f(u, x)Nλ(du,dx)

)
= λ

∫
R+×H

f(u, x) duµ(dx).
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