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STOCHASTIC HOMOGENIZATION OF MONOTONE SYSTEMS OF VISCOUS

HAMILTON-JACOBI EQUATIONS WITH CONVEX NONLINEARITIES

BENJAMIN J. FEHRMAN

Abstract. We consider the homogenization of monotone systems of viscous Hamilton-Jacobi equa-
tions with convex nonlinearities set in the stationary, ergodic setting. The primary focus of this
paper is on collapsing systems which, as the microscopic scale tends to zero, average to a de-
terministic scalar Hamilton-Jacobi equation. However, our methods also apply to systems which
do not collapse and, as the microscopic scale tends to zero, average to a deterministic system of
Hamilton-Jacobi equations.

1. Introduction

In this paper we study the limiting behavior, as ǫ → 0, of the solutions

uǫ = (uǫ1, . . . , u
ǫ
m) : Rn × [0,∞) × Ω → Rm

of degenerate elliptic, monotone systems of the form

(1.1)

{
uǫk,t − ǫ tr(Ak(

x
ǫ , ω)D

2uǫk) +Hk(Du
ǫ
k, u

ǫ,
uǫ
k−uǫ

j

ǫ , xǫ , ω) = 0 on Rn × (0,∞),

uǫ = u0 on Rn × {0} ,

where to simplify notation we write
uǫ
k−uǫ

j

ǫ for the vector
(
uǫ
k−uǫ

1

ǫ , . . . ,
uǫ
k−uǫ

m

ǫ

)
∈ Rm−1.

The Hamiltonians Hk = Hk(p, r, s, y, ω) and the diffusion matrices Ak = Ak(y, ω) are random
processes depending on an underlying probability space (Ω,F ,P). The intuition is that ω ∈ Ω
indexes the collection of all systems like (1.1). We postpone the precise assumptions until Section
2, but remark here that the Ak’s and Hk’s are stationary ergodic in (y, ω) and the Hk’s are convex
and coercive in p and s. Due to the stationarity and ergodicity, the uǫ’s “see” the entirety of the
systems indexed by Ω and, as ǫ → 0, average out to a deterministic limit which, in view of the
coercivity, must be scalar. There is also an initial boundary layer which forces the limiting solution
to satisfy a new initial data.

The result is that, as ǫ → 0, the uǫ’s converge almost surely to a deterministic scalar function
which solves a deterministic Hamilton-Jacobi equation for an appropriate initial condition. More
precisely, we identify a deterministic Hamiltonian H : Rn × R → R such that, as ǫ → 0, for each
k ∈ {1, . . . ,m} and almost surely in Ω,

(1.2) uǫk → u locally uniformly on Rn × (0,∞),

where u is the solution of the scalar initial value problem

(1.3)

{
ut +H(Du, u) = 0 on Rn × (0,∞),
u = u0 on Rn × {0} ,

with u0 : R
n → R the point-wise minimum, for u0 = (u1,0, . . . , um,0),

u0 = min
1≤k≤m

uk,0.
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Concrete examples of systems like (1.1) and (1.6) below are

uǫk,t − ǫ∆uǫk + |Duǫk|
2 +

∑

i 6=k

cki(
x

ǫ
, ω)e(u

ǫ
k−uǫ

i)/ǫ = Vk(
x

ǫ
, ω),

which arises in the study of neutron transport, e.g., Armstrong and Souganidis [2], as well as
coupled systems like

uǫk,t − ǫdk(
x

ǫ
, ω)∆uǫk +Hk(Du

ǫ
k, u

ǫ,
x

ǫ
, ω) +

∑

i 6=k

ck,i(
x

ǫ
, ω)(

uǫk − uǫi
ǫ

)2+ = 0,

and systems of switching games like

uǫk,t +min
{
max

{
−ǫ∆uǫk +Gk(Du

ǫ
k, u

ǫ
k,
x

ǫ
, ω), uǫk −Mk(u

ǫ,
x

ǫ
, ω)

}
, uǫk −Nk(u

ǫ,
x

ǫ
, ω)

}
= 0,

withMk(u
ǫ, xǫ , ω) = min

{
uǫi − gk,i(

x
ǫ , ω) | j 6= k

}
andNk(u

ǫ, xǫ , ω) = max
{
uǫi − hk,i(

x
ǫ , ω) | j 6= k

}
,

which were studied, for ǫ = 1, by Engler and Lenhart [11] and Lenhart [17] and Capuzzo-Dolcetta
and Evans [7], Yamada [27], Ishii and Koike [14], Lenhart and Yamada [19] and Lenhart and Belbas
[18] respectively.

The identification of H and proof of homogenization follow the methods of Armstrong and
Souganidis [2, 3], with more references given later in the introduction. We use, for each (p, r) ∈
Rn × R, ω ∈ Ω and δ > 0, the approximate macroscopic system

δvδk − tr(Ak(y, ω)D
2vδk) +Hk(p+Dvδk, r̂, v

δ
k − vδj , y, ω) = 0 on Rn

with r̂ = (r, . . . , r) ∈ Rm, to characterize H(p, r), almost surely, by

H(p, r) = lim sup
δ→0

−δvδ1(0, ω).

We then use the asymptotic properties of the solution mµ = (m1,µ, . . . ,mm,µ) of the so called
“metric system,”

{
− tr(Ak(y, ω)D

2mk,µ) +Hk(p+Dmk,µ, r̂,mk,µ −mj,µ, y, ω) = µ on Rn \D,
mµ = 0 on ∂D,

for D either a ball or a point (See Section 6 for details), to prove that, almost surely in Ω and for
each R > 0,

(1.4) lim
δ→0

sup
y∈BR/δ

|H(p, r) + δvδ1(y, ω)| = 0.

If there exist estimates, uniform in ǫ, for the |uǫk,t| and |Duǫk|, then (1.4) is sufficient to apply the
perturbed test function method and conclude the proof. However, such estimates are not available
in general, unless the initial condition u0 satisfies

ui,0 = uj,0 for each i, j ∈ {1, . . . ,m} .

We therefore must use additional tools from the theory of viscosity solutions to identify the correct
initial condition u0 and prove the convergence, as ǫ→ 0, of the uǫk’s.

A simple example of the above difficulty is illustrated by the system, for m = 2,

(1.5)

{
uǫk,t − ǫ∆uǫk + |Duǫk|

2 +
(
uǫ
k−uǫ

j

ǫ

)2

+
= 0 on Rn × (0,∞),

uǫ1 = 1, uǫ2 = 0 on Rn × {0} ,

with solution
uǫ1(x, t) = (1 + t/ǫ2)−1 and uǫ2(x, t) = 0.

It is immediate that, as ǫ→ 0, uǫ1,t is unbounded from below and, for k = 1, 2,

uǫk → 0 locally uniformly on Rn × (0,∞).
2



Notice that u = 0 is the the unique solution of the limiting problem{
ut + |Du|2 = 0 on Rn × (0,∞),
u = u0 = 0 on Rn × {0} .

We prove that the analogous behavior is replicated for general such systems in the random setting.
Finally, we remark that our methods are easily adapted to systems of the form

(1.6)

{
uǫk,t − ǫ tr(Ak(

x
ǫ , ω)D

2uǫk) +Hk(Du
ǫ
k, u

ǫ, xǫ , ω) = 0 on Rn × (0,∞),

uǫ = u0 on Rn × {0} ,

which, as ǫ → 0, do not collapse and homogenize to a deterministic system, as well as the corre-
sponding time-independent analogues of (1.1) and (1.6).

The homogenization of scalar equations in stationary ergodic random environments has been
studied extensively. The linear case was first analyzed by Papanicolaou and Varadhan [23, 24] and
Kozlov [16], and general variational problems were considered by Del Maso and Modica [9, 10].

More recently, results for Hamilton-Jacobi equations were first obtained by Souganidis [26] and
Rezakhanlou and Tarver [25], for viscous Hamilton-Jacobi equations by Lions and Souganidis [20,
21] and Kosygina, Rezakhanlou and Varadhan [15], and for viscous Hamilton-Jacobi equations in
unbounded environments by Armstrong and Souganidis [3].

The homogenization of systems has been most extensively studied in the periodic setting. The
homogenization of linear elliptic systems has been considered, for example, by Avellaneda and Lin
[4]. Camilli, Ley and Loreti [6] considered the homogenization of a first-order monotone system of
Hamilton-Jacobi equations. And, more recently, Mitake and Tran [22] considered a weakly-coupled,
collapsing system of first-order Hamilton-Jacobi equations.

In the stationary, ergodic setting, Armstrong and Souganidis [2] considered a time-independent,
uniformly-elliptic version of (1.1). In addition to characterizing the limiting behavior, as ǫ → 0, of
the system’s principle eigenvalue, they prove that if (1.2) is known, a priori, then the limit satisfies
the time-independent version of (1.3). We prove (1.2) in general and obtain a similar result in
Proposition 10.2. However, beginning with the study of the approximate macroscopic system, our
analysis differs from [2] due to the absence of uniform ellipticity and the existence of an initial
boundary layer for general parabolic problems.

The paper is organized as follows. In Section 2, we introduce the notation, state the precise
hypotheses for the coefficients Ak and Hk, and recall two ergodic theorems used throughout the
paper. In Section 3, we study the approximate macroscopic problem. The effective Hamiltonian H
and its properties are the subjects of Sections 4 and 5. We study the metric system in Sections 6
and 7. The effective Hamiltonian is further investigated in Section 8. We identify the initial data
u0 and conclude the proof of the main result in Section 9. We present precise results for (1.6) and
the time-independent analogues in Section 10.

Acknowledgments. I would like to thank Scott Armstrong and Panagiotis Souganidis for suggest-
ing this problem and for many useful conversations. Furthermore, I would like to thank Panagiotis
Souganidis for his numerous suggestions and advice throughout the process of writing and editing
this paper.

2. Preliminaries

2.1. Notation. Elements of Rn and [0,∞) are denoted by x and y and t respectively and, for
r ∈ R, r̂ = (r, . . . , r) ∈ Rm. For r, s ∈ Rl, we write r ≤ s if ri ≤ si for each i ∈ {1, . . . , l}. We write
Dv and vt for the derivative of the scalar function v with respect to x ∈ Rn and t ∈ [0,∞), while
D2v stands for the Hessian of v. Regarding the Hamiltonians Hk we write p for the dependence on
Duǫk and r for the dependence on uǫ. The variable s ∈ Rm−1 is used for the differences ǫ−1(uǫk−u

ǫ
j).

We use the notation DpHk for the derivative of Hk with respect to the gradient variable, while
other derivatives are expressed analogously. The spaces of k × l and k × k symmetric matrices
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with real entries are respectively written Mk×l and S(k). If M ∈ Mk×l, then M t is its transpose

and |M | is its norm |M | = tr(MM t)1/2. If M is a square matrix, we write tr(M) for the trace
of M . For U ⊂ Rn, USC(U ;Rd), LSC(U ;Rd), BUC(U ;Rd), Lip(U ;Rd) and Ck(U ;Rd) are the
spaces of upper-semicontinuous, lower-semicontinuous, bounded continuous, Lipschitz continuous
and k-continuously differentiable functions on U with values in Rd. Moreover, BR and BR(x) are
respectively the open balls of radius R centered at zero and x ∈ Rn. We denote by Ω ⊃ Ω1 ⊃ Ω2 ⊃
Ω3 nested subsets of full probability. Finally, throughout the paper we write C for constants that
may change from line to line but are independent of ω ∈ Ω unless otherwise indicated.

2.2. The random medium. The random medium is described by the probability space (Ω,F ,P).
An element ω ∈ Ω then corresponds to a particular realization of the environment.

It is assumed that Ω is equipped with a group (τy)y∈Rn of transformations τy : Ω → Ω which are

(2.1) measure-preserving and ergodic,

where the latter means that, if E ⊂ Ω satisfies τy(E) = E for each y ∈ Rn then P(E) = 0 or
P(E) = 1.

A process f : Rn ×Ω → R is said to be stationary if the law of f(y, ·) is independent of y ∈ Rn,
a property which can be reformulated using (τy)y∈Rn as

(2.2) f(y + z, ·) = f(y, τz·) for all y, z ∈ Rn.

To simplify statements we say that a process is stationary ergodic if it satisfies (2.2) and (τy)y∈Rn

is ergodic.
The following ergodic theorem will be used frequently in this paper. A proof may be found in

Becker [5]. Here Ef denotes the expectation of a random variable f .

Proposition 2.1. Assume (2.1) and suppose that f : Rn×Ω → R is stationary and E|f(0, ·)| <∞.

There exists a subset Ω̃ ⊂ Ω such that P(Ω̃) = 1 and, for every bounded domain V ⊂ Rn and ω ∈ Ω̃,

lim
t→∞

−

∫

tV
f(y, ω)dy = Ef.

The subadditive ergodic theorem is also used in this paper. A proof may be found in Akcoglu
and Krengel [1]. Its statement requires more terminology. Let I denote the class of subsets of
[0,∞) consisting of finite unions of intervals of the form [a, b) and let (σt)t≥0 be a semigroup of

measure-preserving transformations σt : Ω → Ω. A map Q : I → L1(Ω,P) such that:

(1) Q(I)(σtω) = Q(I + t)ω almost surely in Ω,
(2) E|Q(I)| ≤ C|I|, for some C > 0 and every I ∈ I,

(3) If I1, . . . , Ik ∈ I are disjoint then, Q(∪k
j=1) ≤

∑k
j=1Q(Ij),

is called a continuous subadditive process with respect to the semigroup (σt)t≥0.

Proposition 2.2. If Q is a continuous subadditive process with respect to the semigroup (σt)t≥0,

there exists a random variable a which is invariant under (σt)t≥0 such that, almost surely,

lim
t→∞

1

t
Q([0, t))(ω) = a(ω).

If (σt)t≥0 is ergodic, then a is constant.

2.3. The assumptions. We state below a number of assumptions for the Ak’s and Hk’s. Some
are necessary to insure the well-posedness of (1.1), while others are crucial for the homogenization,
collapse and identification of the appropriate initial condition.

Because every assumption must hold for all k ∈ {1, . . . ,m}, to avoid cumbersome statements,
we do not repeat this quantifier for each of the assertions below. Furthermore, we make the

4



convention that, unless otherwise indicated, each statement holds globally for p ∈ Rn, r ∈ Rm,
s ∈ Rm−1, y ∈ Rn and ω ∈ Ω.

For each fixed (p, r, s),

(2.3) (y, ω) → Ak(y, ω) and (y, ω) → Hk(p, r, s, y, ω) are stationary.

For each fixed (r, s, y, ω),

(2.4) p→ Hk(p, r, s, y, ω) is convex,

and for each fixed (p, r, y, ω),

(2.5) s→ Hk(p, r, s, y, ω) is convex.

The Hamiltonians Hk are coercive in p and s, i.e., for each R > 0, there exist constants
C1, C2, C3 > 0 and γk > 1 satisfying, for all r ∈ BR,

(2.6) C1|p|
γk + C2 max

i 6=k
(si)+ −C3 ≤ Hk(p, r, s, y, ω).

We also assume that the matrix Ak has a Lipschitz continuous square root in the sense that

(2.7) Ak(y, ω) = Σk(y, ω)Σ
t
k(y, ω)

with, for C > 0 and every ω ∈ Ω,

(2.8) ‖Σk(·, ω)‖C0,1(Rn;Mnk×sk ) ≤ C.

Moreover, for each fixed (p, y, ω),

(2.9) Hk(p, r, s, y, ω) is nondecreasing in rk and si

and

(2.10) Hk(p, r, s, y, ω) is nonincreasing in ri for i 6= k.

In addition, the Hamiltonians are bounded for bounded (p, r, s), i.e., for each R > 0 there exists
C4 = C4(R) > 0 such that, for all (p, r, s) ∈ BR ×BR ×BR,

(2.11) |Hk(p, r, s, y, ω)| ≤ C4,

and, locally in p, Lipschitz continuous, i.e., for each R > 0 there exists C5 = C5(R) > 0 such that,
for all (ri, si) ∈ BR ×BR,
(2.12)
|Hk(p1, r1, s1, y1, ω)−Hk(p2, r2, s2, y2, ω)| < C5[(1+|p1|+|p2|)

γk−1|p1−p2|+|r1−r2|+|s1−s2|+|y1−y2|].

We remark that (2.9) and (2.10) imply that the Hamiltonian Hk is monotone in the sense that,
for r, q ∈ Rm, if r ≤ q and rk = qk then,

(2.13) Hk(p, r, s, y, ω) ≥ Hk(p, q, s, y, ω).

The last assumption we need for the Hk’s is that, for r, q ∈ Rm, if rk − qk = maxi |ri − qi| then,

(2.14) Hk(p, r, s, y, ω) −Hk(p, q, s, y, ω) ≥ 0.

Finally, we assume that

(2.15) u0 ∈ BUC(Rn;Rm).

Among the above, (2.6), (2.7), (2.8), (2.9), (2.10), (2.11), (2.12), (2.13), (2.14) and (2.15) are
necessary for the well-posedness of (1.1) (See Ishii and Koike [13]). The rest, i.e., (2.3), (2.4) and
(2.5), are necessary for the homogenization and (2.6) for the collapse of the system.

Throughout the paper we will assume each of the statements (2.1)-(2.15). To avoid repeating all
of these, we introduce a steady assumption.

(2.16) Assume (2.1), (2.2), (2.3), . . . , (2.14), (2.15).
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3. The Macroscopic System

We study here, for each (p, r) ∈ Rn ×R, ω ∈ Ω and δ > 0, the solutions vδ = (vδ1, . . . , v
δ
m) of the

approximate macroscopic system

(3.1) δvδk − tr(Ak(y, ω)D
2vδk) +Hk(p+Dvδk, r̂, v

δ
k − vδj , y, ω) = 0 on Rn,

where r̂ = (r, . . . , r) ∈ Rm.

Proposition 3.1. Assume (2.16). For each (p, r) ∈ Rn×R, δ > 0 and ω ∈ Ω, there exists a unique
solution vδ of (3.1) such that, for C = C(p, r, n) > 0,

(3.2) max1≤k≤m‖δvδk‖L∞(Rn) ≤ C and max1≤k≤m‖Dvδk‖L∞(Rn) ≤ C.

Furthermore, for each R > 0, there exists C = C(p, r, n,R) > 0 such that

max
1≤j,k≤m

‖vδk − vδj‖L∞(BR) ≤ C.

Finally, the process vδ : Rn × Ω → Rm is stationary in the sense of (2.3).

Proof. The existence and uniqueness of a solution for (3.1), for each (p, r) ∈ Rn × R, δ > 0 and
ω ∈ Ω, follow from the standard comparison result and Perron’s method (See [13]). The stationarity
of vδ is an immediate consequence of (2.3) and the uniqueness. Finally, the estimates for the δvδk’s

and Dvδk’s are obtained almost exactly as in [2, 3, 20].
The new part of the argument is the inequality on the differences. Choose a function ψ ∈ C∞(Rn)

satisfying 0 ≤ ψ ≤ 1 with ψ = 1 on B1 and ψ = 0 on Rn \ B2. Define φ = ψ4 and observe, for
C > 0,

(3.3) |Dφ|2 ≤ Cφ
3

2 and |D2φ| ≤ Cφ
1

2 .

Fix R ≥ 1, α ≥ 1 and k ∈ {1, . . . ,m}. Let φR(·) = φ( ·
R ) and observe that φR satisfies (3.3) with

the same constant. We multiply the k-th component of (3.1) by the test function

wδ
k = φR(v

δ
k − min

1≤i≤m
vδi )

α

and integrate over Rn.
Using (2.6), we have

C2(v
δ
k −min1≤i≤m v

δ
i )− C3 ≤ Hk(p+Dvδk, r̂, v

δ
k − vδj , y, ω) on Rn

and, hence, using the equivalence of viscosity and distributional solutions for linear inequalities
(See Ishii [12]),

∫

Rn

(δvδk)w
δ
kdy +

∫

Rn

vδk,xi
(aijw

k
δ )xjdy + C2

∫

Rn

φR(v
δ
k − min

1≤i≤m
vδi )

α+1dy ≤ C3

∫

Rn

wδ
kdy.

In view of (3.2) and (3.3), there exists C > 0 satisfying

|Dwδ
k| = |DφR(v

δ
k −min1≤i≤m v

δ
i )

α + φRα(v
δ
k −min1≤i≤m v

δ
i )

α−1D(vδk −min1≤k≤m v
δ
i )|

≤ C(αφR(v
δ
k −min1≤i≤m v

δ
i )

α−1 + φ
3

4

R(v
δ
k −min1≤i≤m v

δ
i )

α).

Therefore, it follows from (2.7) and (2.8) that, for C = C(R,α) > 0,
∫

Rn

φR(v
δ
k − min

1≤i≤m
vδi )

α+1dy ≤ C

∫

Rn

φ
3

4

R(v
δ
k − min

1≤i≤m
vδi )

αdy + C

∫

Rn

φR(v
δ
k − min

1≤i≤m
vδi )

α−1dy.

We use Hölder’s inequality and Cauchy’s inequality to conclude that, for C = C(α,R) > 0,
∫

BR

(vδk − min
1≤i≤m

vδi )
α+1dy ≤

∫

Rn

φR(v
δ
k − min

1≤i≤m
vδi )

α+1dy ≤ C.

6



Fix α = 2n− 1. In view of (3.2), Morrey’s inequality yields, for C = C(R,n) > 0,

‖vδk − min
1≤i≤m

vδi ‖L∞(BR) ≤ ‖vδk − min
1≤i≤m

vδi ‖C0, 1
2 (BR)

≤ C.

Since k ∈ {1, . . . ,m} was arbitrary, we conclude using the triangle inequality. �

In the following proposition, we show that the solutions vδ depend continuously on (p, r) ∈ Rn×R.
Its proof is identical to (5.2), and is therefore omitted. We remark that, because the estimates
appearing in Proposition 3.1 depend on (p, r), we obtain here only local estimates.

Proposition 3.2. Assume (2.16). For each R > 0 and ω ∈ Ω, there exists C = C(R) > 0 such
that, if vi,δ is the solution of (3.1) corresponding to (pi, ri) ∈ BR ×BR, then

max
1≤k≤m

‖δv1,δk − δv2,δk ‖L∞(Rn) ≤ C max
1≤k≤m

(
(1 + |p1|+ |p2|)

γk−1|p1 − p2|+ |r1 − r2|
)
.

4. The Effective Hamiltonian

In this section, we construct the deterministic Hamiltonian H(p, r) and obtain, on a subset of
full probability, a subsolution which grows sublinearly at infinity of the macroscopic system

(4.1) − tr(Ak(y, ω)D
2wk) +Hk(p+Dwk, r̂, wk − wj , y, ω) = H(p, r) on Rn.

Define

H(p, r, ω) = lim sup
δ→0

−δvδ1(0, ω)

for vδ the solution of (3.1) corresponding to (p, r), and observe that Propositions 3.1 and 3.2 and
(2.1) imply H(p, r, ω) = H(p, r) is deterministic, satisfying, on a subset full probability,

(4.2) H(p, r) = lim sup
δ→0

−δvδ1(0, ω).

We remark that the choice −δvδ1(0, ω) in (4.2) is arbitrary but, in view of Proposition 3.1, it does
not effect the definition of H.

Let

(4.3) wδ = (wδ
1, . . . , w

δ
m) with wδ

k(y, ω) = vδk(y, ω)− vδ1(0, ω)

for vδ the solution of (3.1) corresponding to (p, r), and observe that wδ satisfies the system

(4.4) δwδ
k − tr(Ak(y, ω)D

2wδ
k) +Hk(p+Dwδ

k, r̂, w
δ
k −wδ

j , y, ω) = −δvδ1(0, ω) on Rn.

The following proposition is an immediate consequence of the uniform estimates obtained in Propo-
sition 3.1.

Proposition 4.1. Assume (2.16). For each (p, r) ∈ Rn×R and ω ∈ Ω, there exists C = C(p, r, n) >
0 satisfying, for each R > 0,

max1≤k≤m‖Dwδ
k‖L∞(Rn) ≤ C and max1≤k≤m‖wδ

k‖L∞(BR) < C(1 +R).

We now obtain the desired subsolution of (4.1) by passing to the limit, as δ → 0, in (4.4).
More precisely, we use the convexity of the Hk’s and the equivalence of viscosity and distributional
solutions for linear inequalities to pass weakly to the limit in (4.4) and obtain, on a subset of full
probability, a subsolution of (4.1) which grows sublinearly at infinity.

The following proposition is used to characterize the behavior at infinity. Its proof is a conse-
quence of the ergodic theorem and may be found in the appendix of [3].
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Proposition 4.2. Let w : Rn × Ω → R and W : Rn × Ω → Rn satisfy W (·, ω) = Dw(·, ω) almost
surely in the sense of distributions. Assume that W is stationary satisfying EW (0, ·) = 0 and
W (0, ·) ∈ Lα(Ω) for some α > n. Then, almost surely,

(4.5) lim
|y|→∞

w(y, ω)

|y|
= 0.

Proposition 4.3. Assume (2.16). There exists a subset Ω1 ⊂ Ω of full probability such that,
for every (p, r) ∈ Rn × R, (4.1) admits a subsolution w = (w1, . . . , wm) satisfying, for each k ∈
{1, . . . ,m} and C = C(p, r, n) > 0,

(4.6) lim|y|→∞
wk(y,ω)

|y| = 0, ‖Dwk‖L∞(Rn) ≤ C and ‖wk‖L∞(BR) ≤ C(1 +R).

Proof. The proof is nearly identical to the analogous arguments in [2, 3, 21]. We therefore only
sketch each step. To simplify notation, we write wδ = (wδ

1, . . . , w
δ
m) ∈ L∞

loc(R
n)m and Dwδ =

(Dwδ
1, . . . ,Dw

δ
m) ∈ L∞(Rn;Rn)m.

For each δ > 0, wδ is a distributional solution of (4.4) (See [12]). We now pass weakly to the
limit, as δ → 0, to obtain a subsolution of (4.1).

Using Proposition 4.1 and (2.1), there exists a deterministic H̃(p, r) ∈ L∞(Ω) and, for each
R > 0, there exist w = (w1, . . . , wm) ∈ L∞(BR×Ω)m and W = (W1, . . . ,Wm) ∈ L∞(BR×Ω;Rn)m

such that, after passing to a subsequence,

(4.7) −δvδ1(0, ω) ⇀ H̃(p, r) in L∞(Ω) weak-*

and

(4.8) (wδ ,Dwδ)⇀ (w,W ) in L∞(BR × Ω)m × L∞(BR × Ω;Rn)m weak-*

where, on a subset of full probability and for each k ∈ {1, . . . ,m}, Wk = Dwk in the sense of
distributions (See [3]). Moreover, (4.8) implies that, for each R > 0 and any 1 ≤ p < ∞, there
exists a sequence of convex combinations of the (wδ ,Dwδ), depending on p, which converges strongly
to (w,Dw) in Lp(BR × Ω)m × Lp(BR ×Ω;Rn)m.

The convexity (2.4) and (2.5) and Proposition 4.1, (4.7) and (4.8) imply using the Dominated
Convergence Theorem that, on a subset of full probability, w = (w1, . . . , wm) is a distributional
solution of the system

(4.9) − tr(Ak(y, ω)D
2wk) +Hk(p+Dwk, r̂, wk − wj , y, ω) ≤ H̃(p, r) ≤ H(p, r).

The convexity (2.4) and (2.5) and the equivalence of distributional and viscosity solutions for linear
inequalities imply that w is a viscosity solution of (4.1) (See [12]).

The estimates (4.6) are an immediate consequence of (4.8) and Proposition 3.1. Furthermore,
since vδ is stationary we have, for each δ > 0 and k ∈ {1, . . . ,m},

E(Dvδk(0, ·)) = 0 and, therefore, E(Dwk(0, ·)) = 0.

We conclude using Proposition 4.2 that there exists a subset of full probability on which, for each
k ∈ {1, . . . ,m}, lim|y|→∞|y|−1wk(y, ω) = 0.

Therefore, there exists a subset Ω1(p, r) ⊂ Ω of full probability such that w is a subsolution of
(3.1) corresponding to (p, r) satisfying (4.6). To conclude, define Ω1 =

⋂
(p,r)∈Qn×QΩ1(p, r) and

apply Proposition 3.2. �

We conclude this section by strengthening our characterization of H(p, r). We will use crucially
that, on a subset of full probability, the constructed subsolution w of (4.1) grows sub-linearly at
infinity.

Proposition 4.4. Assume (2.16). For each (p, r) ∈ Rn × R and R > 0,

(4.10) lim
δ→0

sup
y∈BR/δ

E(|H(p, r) + δvδ1(y, ω)|) = 0.
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Proof. We first show, using the notation of Proposition 4.3, that H̃(p, r) = H(p, r). Fix (p, r) ∈
Rn × R and let vδ denote the solution of (3.1) corresponding to (p, r). In view of (4.7),

(4.11) H̃(p, r) ≤ H(p, r).

The opposite inequality is obtained by a comparison argument.
Define

ϕ(y) = −(1 + |y|2)1/2 + 1

and introduce, for each ω ∈ Ω, δ > 0 and ǫ > 0,

zδ = (zδ1, . . . , z
δ
m) with zδk = wk − δ−1(H̃(p, r) + η) + ǫϕ.

In view of (2.4), (2.5), (2.7), (2.8), (2.12) and (4.9), there exists C > 0 such that, for every
ω ∈ Ω1, the function zδ is a solution of the inequality

(4.12) δzδk − tr(Ak(y, ω)D
2zδk) +Hk(p +Dzδk, r̂, z

δ
k − zδj , y, ω) ≤ δzδk + H̃(p, r) + Cǫ.

For each ω ∈ Ω1 and k ∈ {1, . . . ,m},

lim|y|→∞
vδk(y,ω)

|y| = 0 and lim|y|→∞
zδk(y,ω)

|y| = −1

and, hence, for all δ > 0 and ω ∈ Ω1, there exists R(δ, ω) > 0 such that zδ ≤ vδ on ∂BR(δ,ω).
Furthermore, for each ω ∈ Ω1 and ǫ > 0, there exists Cǫ = Cǫ(ω) > 0 such that

max1≤k≤mwk(y, ω) ≤ ǫ|y|+ Cǫ on Rn.

The righthand side of (4.12) is therefore bounded by

δzδk − tr(Ak(y, ω)D
2zδk) +Hk(p +Dzδk, r̂, z

δ
k − zδj , y, ω) ≤ δCǫ + Cǫ− η.

We choose ǫ = η
4C to conclude that zδ is a global subsolution of (3.1) for each 0 < δ < η

4Cǫ
and

ω ∈ Ω1.
For all ω ∈ Ω1 and for all δ < η

4Cǫ
, the comparison principle yields zδ ≤ vδ on BR(δ,ω). In

particular, for each η > 0 and ω ∈ Ω1,

(4.13) − δzδ1(0, ω) = H̃(p, r) + η ≥ −δvδ1(0, ω).

In view of (4.11) and (4.13), on a subset of full probability,

(4.14) H̃(p, r) = H(p, r) = lim sup
δ→0

−δvδ1(0, ω).

We now prove (4.10). Fix (p, r) ∈ Rn × R. In view of (4.14), a basic measure-theoretic lemma
implies (See [3, 21]),

(4.15) lim
δ→0

E(|H(p, r) + δvδ1(0, ω)|) = 0.

It remains to prove that, for each R > 0,

lim
δ→0

sup
y∈BR/δ

E(|H(p, r) + δvδ1(y, ω)|) = 0.

Fix R > 0 and ǫ > 0. Using the Vitali covering lemma, choose balls {B(y1, ǫ), . . . , B(yk, ǫ)}
satisfying k ≤ C(Rǫ )

n and BR ⊂ ∪k
i=1B(yi, ǫ). In view of Propositions 3.1 and 4.3 there exists

C > 0 satisfying, for each δ > 0,

supy∈BR/δ
|H(p, r) + δvδ1(y, ω)| ≤ max1≤i≤k(|H(p, r) + δvδ1(yi/δ, ω)|) + Cǫ

= max1≤i≤k(|H(p, r) + δvδ1(0, ω) + δwδ
1(yi/δ, ω)|) + Cǫ.

Since P(Ω1) = 1, it follows from (4.15) and Proposition 4.3 that

lim sup
δ→0

sup
y∈BR/δ

E(|H(p, r) + δvδ1(y, ω)|) ≤ lim sup
δ→0

E(|H(p, r) + δvδ1(0, ω)|) + Cǫ = Cǫ.
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Because ǫ > 0 was arbitrary, this completes the proof. �

5. Properties of H(p, r)

We identify the properties of the effective Hamiltonian H(p, r), which yield the well-posedness
of the scalar equation

(5.1)

{
ut +H(Du, u) = 0 on Rn × (0,∞),
u = u0 on Rn × {0} .

The continuity properties of H(p, r) are inherited from (2.12). We remark that, because the
estimates contained in Proposition 3.1 depend on (p, r), only local continuity estimates are obtained
forH. Furthermore, the effective Hamiltonian inherits the minimal coercivity occurring for theHk’s
in (2.6). And, H(p, r) is monotone in the variable r and convex in the variable p. The monotonicity
is inherited from (2.14) and the convexity from (2.4).

Proposition 5.1. Assume (2.16). For each R > 0 there exists C = C(R) > 0 such that, for all
(pi, ri) ∈ BR ×BR,

(5.2) |H(p1, r1)−H(p2, r2)| ≤ C max
1≤k≤m

((1 + |p1|+ |p2|)
γk−1|p1 − p2|+ |r1 − r2|).

For each R > 0 and for the same constants occurring in (2.6) we have, for all (p, r) ∈ Rn ×BR,

(5.3) min
1≤k≤m

(C1|p|
γk − C3) ≤ H(p, r).

If r1 < r2 then, for each p ∈ Rn,

(5.4) H(p, r1) ≤ H(p, r2).

For each r ∈ R,

(5.5) p→ H(p, r) is convex.

Proof. Each property is obtained using a straightforward comparison argument. Therefore, we
prove only (5.2). Fix R > 0. Let vi,δ be the solution of (3.1) corresponding to (pi, ri) ∈ BR ×BR.
In view of (2.12) and Proposition 3.1, there exists C = C(R) > 0 such that, for each ω ∈ Ω,

zδ = (zδ1 , . . . , z
δ
m) with zδk = v1,δk − δ−1Cmax1≤i≤m((1 + |p1|+ |p2|)

γi−1|p1 − p2|+ |r1 − r2|)

is a subsolution of (3.1) corresponding to (p2, r2) and, by the comparison principle,

max1≤k≤m(δv1,δk − δv2,δk ) ≤ Cmax1≤i≤m((1 + |p1|+ |p2|)
γi−1|p1 − p2|+ |r1 − r2|) on Rn.

The opposite inequality is obtained by reversing the roles of v1,δ and v2,δ.
We conclude using Proposition 4.4. �

The well-posedness of (5.1) is now an immediate consequence of (5.2), (5.3) and (5.4) (See
Crandall, Ishii and Lions [8]).

Proposition 5.2. Assume (2.16). For each T > 0, (5.1) admits a unique solution u ∈ BUC(Rn ×
[0, T )) and, if u0 ∈ C0,1(Rn), then there exists C > 0 satisfying ‖ut‖L∞(Rn×[0,∞)) ≤ C and
‖Du‖L∞(Rn×[0,∞)) ≤ C.
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6. The Metric System

In this section we introduce, for µ ∈ R, (p, r) ∈ Rn×R and ω ∈ Ω1, the so called “metric system”

(6.1)

{
− tr(Ak(y, ω)D

2mk,µ) +Hk(p+Dmk,µ, r̂,mk,µ −mj,µ, y, ω) = µ on Rn \D,
mµ(·, ω) = w(·, ω) − w(x, ω) on ∂D,

for D a closed bounded subset of Rn, x ∈ D and w the subsolution constructed in Proposition
4.3 corresponding to (p, r). The scalar version of (6.1) was considered in [3] to prove the homog-
enization of viscous Hamilton-Jacobi equations in unbounded environments, and the first proofs
of homogenization for scalar, first-order Hamilton-Jacobi equations in [20, 26] were based on the
behavior of the first-order, time-dependent version of (6.1).

We first aim to prove that the metric system is well-posed for each µ > H(p, r). To obtain this
result, we will use crucially the fact that, for each µ > H(p, r), we have by Proposition 4.3 a strict
subsolution of (6.1) which grows sublinearly at infinity.

Proposition 6.1. Assume (2.16). Let u ∈ USC(Rn;Rm) and v ∈ LSC(Rn;Rm) be respectively a
subsolution and a supersolution of (6.1) for µ > H(p, r) and ω ∈ Ω1 satisfying

(6.2) min1≤k≤m lim inf |y|→∞
vk(y)
|y| ≥ 0 and max1≤k≤m lim sup|y|→∞

uk(y)
|y| <∞

with u ≤ v on ∂D. Then u ≤ v on Rn \D.

Proof. Fix (p, r) ∈ Rn × R. In view of the known comparison principles, it suffices to show that
(See [8, 13]),

min
1≤k≤m

lim inf
|y|→∞

vk(y)− uk(y)

|y|
≥ 0.

For each k ∈ {1, . . . ,m}, consider the set

Λk =

{
0 ≤ λ ≤ 1 | lim inf

|y|→∞

vk(y)− λuk(y)

|y|
≥ 0

}
.

The goal is to show that, for each k ∈ {1, . . . ,m},

(6.3) Λk = [0, 1].

Fix k ∈ {1, . . . ,m}. By assumption 0 ∈ Λk. A basic argument proves that Λk = [0, λk] for some
0 ≤ λk ≤ 1 (See [3]). If lim sup|y|→∞ uk(y)/|y| ≤ 0 then λk = 1. We may therefore assume that, for

some j ∈ {1, . . . ,m}, we have lim sup|y|→∞ uj(y)/|y| ≥ 0.

To prove (6.3) we argue by contradiction. Assume that

λ = min
1≤k≤m

λk < 1,

where we include the possibility λ = 0.
For each R > 0, let

ϕR(y) = R− (R2 + |y|2)1/2.

It is immediate that there exists C > 0 such that ‖DϕR‖L∞(Rn) ≤ C and ‖D2ϕR‖L∞(Rn) ≤ C
uniformly for R ≥ 1 and, furthermore, as R→ ∞

(6.4) ϕR → 0 locally uniformly on Rn.

Let w denote the subsolution constructed in Proposition 4.3 corresponding to (p, r). By sub-
tracting a constant we may assume w ≤ 0 on D.

Let

ũ = (1− λ)w + λu
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and observe that, in view of (2.4) and (2.5), ũ satisfies
{

− tr(Ak(y, ω)D
2ũk) +Hk(p+Dũk, r̂, ũk − ũj, y, ω) ≤ (1− λ)H(p, r) + λµ on Rn \D,

ũ ≤ v on ∂D.

Notice that, because µ > H(p, r), this implies ũ is a strict subsolution of (6.1).

For 0 < ǫ < 1 and a > max1≤k≤m lim sup|y|→∞
uk(y)
|y| ≥ 0, let

ũR(y) = (1− ǫ)ũ+ ǫ(u+ aϕR).

It follows from (2.4) and (2.5) that, for some C > 0 independent of R ≥ 1, ũR satisfies the system




− tr(Ak(y, ω)D
2ũk,R) +Hk(p+Dũk,R, r̂, ũk,R − ũj,R, y, ω) on Rn \D,

≤ (1− ǫ)(1− λ)H(p, r) + (1− ǫ)λµ+ ǫµ+ aCǫ
ũR ≤ v +maxy∈D(aǫϕR(y)) on ∂D.

Observe that, because λ < 1 and µ > H(p, r), ũR is a strict subsolution of (6.1) for all ǫ sufficiently
small.

In view of the choice of a > 0, for each k ∈ {1, . . . ,m},

lim inf
|y|→∞

vk(y)− ũk,R(y)

|y|
≥ lim inf

|y|→∞

vk(y)− (1− ǫ)λuk(y)

|y|
− ǫ lim inf

|y|→∞

uk(y) + aϕR(y)

|y|
≥ 0.

The comparison principle implies, for each R ≥ 1,

max
1≤k≤m

sup
y∈Rn\D

(ũk,R − vk) ≤ sup
y∈∂D

(ǫaϕR)

and, after letting R→ ∞, we have by (6.4) that

max
1≤k≤m

sup
y∈Rn\D

(
(1− ǫ)(1− λ)wk + ((1− ǫ)λ+ ǫ)uk − vk

)
≤ 0.

The strict sub-linearity of w at infinity yields

min
1≤k≤m

lim inf
|y|→∞

vk(y)− ((1− ǫ)λ+ ǫ)uk(y)

|y|
≥ 0.

Therefore, for each k ∈ {1, . . . ,m} and each ǫ > 0 sufficiently small, 0 < λ < ((1 − ǫ)λ + ǫ) ∈ Λk,
contradicting the definition of λ. �

Proposition 6.1 yields that, for µ > H(p, r), a solution to (6.1) is unique provided it satisfies
the required growth conditions at infinity. The existence of such a solution follows from Perron’s
method. For this, it is necessary to build an appropriate supersolution of (6.1).

The supersolutions available depend on the minimal coercivity of the Hamiltonians Hk, and are
constructed in a manner similar to the analogous fact in [3]. We therefore only sketch the argument.
Let

γ = min
1≤k≤m

γk,

define, for each x ∈ Rn,

Dǫ(x) =

{
{x} Ak = 0 for each k ∈ {1, . . . ,m} or γ > 2,
Bǫ(x) Ak 6= 0 for some k ∈ {1, . . . ,m} and γ ≤ 2,

and consider the metric system

(6.5)

{
− tr(Ak(y, ω)D

2mk,µ) +Hk(p+Dmk,µ, r̂,mk,µ −mj,µ, y, ω) = µ on Rn \D1(x),
mµ(y) = wk(y, ω)−wk(x, ω) on ∂D1(x).
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Proposition 6.2. Assume (2.16). For each (p, r) ∈ Rn×R, ω ∈ Ω1 and µ > H(p, r), (6.5) admits
a unique solution mµ = (m1,µ, . . . ,mm,µ) subject to the growth conditions

(6.6) 0 ≤ min
1≤k≤m

lim inf
|y|→∞

mk,µ(y, ω)

|y|
≤ max

1≤k≤m
lim sup
|y|→∞

mk,µ(y, ω)

|y|
<∞.

Furthermore, there exists C = C(p, r) > 0 such that

max
1≤k≤m

‖Dmµ,k‖L∞(Rn\D1(x)) ≤ C.

Proof. The uniqueness follows by Proposition (6.1). The regularity follows by Bernstein’s method
and is nothing more than a repetition of the argument presented in Proposition 3.1.

The existence of a solution follows by Perron’s method. Basic properties of viscosity solutions
imply that it suffices to consider w = (w1, . . . , wm) satisfying, for each k ∈ {1, . . . ,m}, wk ∈ Lip(Rn)
and Dwk ∈ Lip(Rn;Rn).

Proposition 4.2 yields that w̃(·, ω) = w(·, ω) − w(x, ω) is a global subsolution of (6.1) satisfying
w̃(·, ω) = w(·, ω) − w(x, ω) on ∂D1(x). It remains to construct an appropriate supersolution.

In view of the definition of γ, there exists a > 0 such that

z(y) =





w̃(y) + a|y − x| if Ak = 0 for all k ∈ {1, . . . ,m} ,

w̃(y) + a(|y − x|(γ−2)/(γ−1) + |y − x|) if Ak 6= 0 for some k and γ > 2,
w̃(y) + a(|y − x| − 1) if Ak 6= 0 for some k and γ ≤ 2,

is a supersolution of (6.5) satisfying z = w̃ on ∂D1(x).
Perron’s method yields a solution mµ = (m1,µ, . . . ,mm,µ) of (6.5) satisfying

w̃ ≤ mµ ≤ z on Rn \D1(x)

with mµ = w̃ on ∂D1(x), which implies (6.6). �

For each (p, r) ∈ Rn×R, we writemµ(y, x, ω) for the solution of (6.5) corresponding to Rn\D1(x)
and ω ∈ Ω1. In the case Ak 6= 0 for some k ∈ {1, . . . ,m} and γ ≤ 2, we extend mµ(y, x, ω) to
Rn × Rn ×Ω1 by

(6.7) mµ(y, x, ω) = w(y, ω)− w(x, ω) for all |x− y| < 1.

Proposition 6.3. Assume (2.16). For each µ > H(p, r) and ω ∈ Ω1, there exists C = C(p, r) > 0
such that

max
1≤k≤m

‖Dmk,µ‖L∞(Rn×Rn) ≤ C.

Proof. In view of Proposition 6.2, it suffices to prove that there exists C = C(p, r) > 0 satisfying,
for each y ∈ Rn and ω ∈ Ω1,

max
1≤k≤m

‖Dmk,µ(y, ·, ω)‖L∞(Rn) ≤ C.

Fix y ∈ Rn, ω ∈ Ω1 and µ > H(p, r) and let x1, x2 ∈ Rn. The comparison principle implies

max
1≤k≤m

( sup
y∈Rn

mk,µ(y, x1, ω)−mk,µ(y, x2, ω)) = max
1≤k≤m

( max
y∈D1(x1)∪D1(x2)

mk,µ(y, x1, ω)−mk,µ(y, x2, ω)).

If Ak = 0 for each k ∈ {1, . . . ,m} or γ > 2, we conclude in view of Proposition 6.2 that there
exists C = C(p, r) > 0 satisfying, for each µ > H(p, r) and ω ∈ Ω1,

max
1≤k≤m

( sup
y∈Rn

mk,µ(y, x1, ω)−mk,µ(y, x2, ω)) ≤ C|x1 − x2|.
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If Ak 6= 0 for some k ∈ {1, . . . ,m} and γ ≤ 2, Propositions 6.2 and 4.3 yield that, for every
y ∈ D1(x1), there exists C = C(p, r) > 0 satisfying, for each k ∈ {1, . . . ,m},

mk,µ(y, x1, ω)−mk,µ(y, x2, ω) = (wk(y, ω)− wk(x1, ω))−mk,µ(y, x2, ω)

≤ wk(x2, ω)− wk(x1, ω) ≤ C|x1 − x2|.

If y ∈ D2(x) \D1(x1), we have

(6.8) max
1≤k≤m

(mk,µ(y, x1, ω)−mk,µ(y, x2, ω)) = max
1≤k≤m

(mk,µ(y, x1, ω)− (wk(y, ω)− wk(x2, ω))

= max
1≤k≤m

(mk,µ(y, x1, ω)− (wk(y, ω)− wk(x1, ω)) + (wk(x2, ω)− wk(x1, ω))) .

In view of Propositions 4.3 and 6.2, there exists C = C(p, r) > 0 satisfying, for each k ∈ {1, . . . ,m},

mk,µ(y, x1, ω)− (wk(y, ω)− wk(x1, ω)) ≤ C(|y − x1| − 1) ≤ C|x2 − x1|

and
|wk(x2, ω)− wk(x1, ω)| ≤ C|x2 − x1|.

Therefore, using (6.8),

max
1≤k≤m

(mk,µ(y, x1, ω)−mk,µ(y, x2, ω)) ≤ C|x2 − x1|.

We obtain the opposite inequality by reversing the roles of x1 and x2. �

We show next that the processes mµ(x, y, ω) are jointly stationary and subadditive up to a
modification in the case Ak 6= 0 for some k ∈ {1, . . . ,m} and γ ≤ 2. These facts, together with the
subadditive ergodic theorem, will be used in the next section to prove the homogenization of (6.5).

Proposition 6.4. Assume (2.16). If Ak = 0 for each k ∈ {1, . . . ,m} or γ > 2, then for all
(p, r) ∈ Rn ×R, µ > H(p, r) and ω ∈ Ω1, the processes mµ are jointly stationary in the sense that,
for all x, y, z ∈ Rn,

(6.9) mµ(y, x, τzω) = mµ(y + z, x+ z, ω),

and subadditive in the sense that, for all x, y, z ∈ Rn,

(6.10) mµ(y, x, ω) ≤ mµ(y, z, ω) +mµ(z, x, ω).

If Ak 6= 0 for some k ∈ {1, . . . ,m} and γ ≤ 2, then there exists C = C(p, r) > 0 such that, for
each (p, r) ∈ Rn × R, µ > H(p, r) and ω ∈ Ω1, the process

m̃µ(y, x, ω) = mµ(y, x, ω) + C

is stationary and subadditive in the sense of (6.9) and (6.10).

Proof. We omit for both cases the proof of (6.9), which is identical to the proof of Proposition 3.1
and follows immediately from Proposition 6.2 and (2.3). To prove (6.10), we first consider the case
that either Ak = 0 for each k ∈ {1, . . . ,m} or γ > 2 and fix x, y, z ∈ Rn and ω ∈ Ω1. It follows
from Proposition 6.1 that, for all y ∈ Rn,

w(y, ω) − w(x, ω) ≤ m(y, x, ω).

After reversing the roles of x and y, we conclude that

(6.11) 0 ≤ mµ(y, x, ω) +mµ(x, y, ω).

In view of Proposition 6.1 with D = {x, z}, we have

mµ(y, x, ω) ≤ mµ(y, z, ω) +mµ(z, x, ω) for all y ∈ Rn

provided the inequality holds on D = {x, z}. But, we have equality at y = z and the inequality at
y = x is (6.11).
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We now consider the case that Ak 6= 0 for some k ∈ {1, . . . ,m} and γ ≤ 2. We fix x, y, z ∈ Rn

and ω ∈ Ω1 and choose C > 0 satisfying

C > 2 max
1≤k≤m

‖Dmk,µ‖L∞(Rn×Rn).

In view of Proposition 6.1 with D = D1(x) ∪D1(z), we have

m̃µ(y, x, ω) ≤ m̃µ(y, z, ω) + m̃µ(z, x, ω) for all y ∈ Rn

provided the inequality holds on D1(x) ∪D1(z).
If y ∈ D1(x), then

m̃k,µ(y, x, ω) = wk(y)− wk(x) + C = (wk(y, ω)− wk(z, ω)) + (wk(z, ω) −wk(x, ω)) + C

≤ mk,µ(y, z, ω) +mk,µ(z, x, ω) + C ≤ m̃k,µ(y, z, ω) + m̃k,µ(z, x, ω),

where Proposition 6.1 is used to obtain the second to last inequality.
If y ∈ D1(z), then |mk,µ(y, z, ω)| = |wk(y, ω)−wk(z, ω)| ≤ C/2 and

m̃k,µ(y, x, ω) ≤ mk,µ(z, x, ω) + 3C/2

≤ mk,µ(z, x, ω) + wk(y, ω)− wk(z, ω) + 2C = m̃k,µ(y, z, ω) + m̃k,µ(z, x, ω).

�

We conclude this section with a continuous dependence estimate, similar to Proposition 3.2, for
the mµ with respect to (p, r). As before, we only obtain local continuity estimates.

Proposition 6.5. Assume (2.16). Fix µ > H(p, r), R > 0 and write mi
µ for the solution of (6.5)

corresponding to (pi, ri) ∈ BR ×BR.
If Ak = 0 for each k ∈ {1, . . . ,m} or γ > 2 then, for each ω ∈ Ω1, there exists C = C(R) > 0

satisfying, for all (pi, ri) ∈ BR ×BR,

max1≤k≤m|m1
k,µ(y, x, ω) −m2

k,µ(y, x, ω)| ≤
C

µ−H(p,r)
(|p1 − p2|+ |r1 − r2|)|y − x| on Rn × Rn.

If Ak 6= 0 for some k ∈ {1, . . . ,m} and γ ≤ 2 then, for each ω ∈ Ω1, there exists C = C(R) > 0
satisfying, for all (pi, ri) ∈ BR ×BR,

max1≤k≤m|m1
k,µ(y, x, ω)−m2

k,µ(y, x, ω)| ≤ C + C
µ−H(p,r)

(|p1 − p2|+ |r1 − r2|)|y − x| on Rn × Rn.

Proof. Fix ω ∈ Ω1 and x ∈ Rn. Let wi be the subsolution of (4.1) constructed in Proposition 4.3
corresponding to (pi, ri). And, let w̃

i(·) = wi(·)− wi(x).
We first consider the case that Ak = 0 for each k ∈ {1, . . . ,m} or γ > 2. In view of Proposition

6.3 and (2.12), there exists C = C(R) > 0 such that m1
µ is a solution of the inequality

(6.12) − tr(Ak(y, ω)D
2m1

k,µ)+Hk(p2 +Dm1
k,µ, r̂2,m

1
k,µ−m1

j,µ, y, ω) ≤ µ+C(|p1− p2|+ |r1 − r2|)

on Rn \ {x} satisfying m1
µ(x) = 0.

Define 0 < λ ≤ 1 by

λ =
µ−H(p, r)

C(|p1 − p2|+ |r1 − r2|) + (µ−H(p, r))
.

In view of (2.4) and (2.5), the function λm1
µ + (1− λ)w̃2 is a subsolution of (6.5) corresponding to

(p2, r2).
Proposition 6.1 implies

m1
µ −m2

µ ≤ m1
µ − (λm1

µ + (1− λ)w̃2) = (1− λ)(m1
µ − w̃2) on Rn.

In view of Propositions 4.3 and 6.2, there exists C = C(R) > 0 satisfying, for every y ∈ Rn,

max
1≤k≤m

(m1
k,µ(y, x, ω) − w̃2

k(y, ω)) ≤ C|y − x|.
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Therefore, by the definition of λ, we conclude that there exists C = C(R) > 0 such that, for each
y ∈ Rn,

max
1≤k≤m

(m1
k,µ(y, x, ω)−m2

k,µ(y, x, ω)) ≤
C

µ−H(p, r)
(|p1 − p2|+ |r1 − r2|)|y − x|.

We obtain the opposite inequality by reversing the roles of m1
µ and m2

µ.
We now consider the case that Ak 6= 0 for some k ∈ {1, . . . ,m} and γ ≤ 2. In view of Proposition

4.3, for C1 = C1(R) > 0,

max
1≤k≤m

‖w̃1
k − w̃2

k‖L∞(D1(x)) ≤ max
1≤k≤m

(‖Dw̃1
k‖L∞(Rn) + ‖Dw̃2

k‖L∞(Rn)) ≤ C1.

And, therefore, m1
µ − Ĉ1 is a subsolution of (6.12) on Rn \D1(x) satisfying m1

µ − Ĉ1 ≤ w̃2 = m2
µ

on D1(x).

For 0 < λ ≤ 1 as above, the function λ(m1
µ−Ĉ1)+(1−λ)w̃2 is a subsolution of (6.5) corresponding

to (p2, r2). This, in view of Proposition 6.1, implies

m1
µ −m2

µ ≤ m1
µ − (λ(m1

µ − Ĉ1) + (1− λ)w̃2) = λĈ1 + (1− λ)(m1
µ − w̃2) on Rn.

It follows from Propositions 4.3 and 6.2 that there exists C2 = C2(R) > 0 satisfying

max
1≤k≤m

|m1
k,µ(y, x, ω)− w̃2

k(y, ω)| ≤ C1 + C2|y − x|.

Therefore, by definition of λ, there exists C = C(R) > 0 satisfying, for each y ∈ Rn,

max
1≤k≤m

(m1
k,µ(y, x, ω) −m2

k,µ(y, x, ω)) ≤ C +
C

µ−H(p, r)
(|p1 − p2|+ |r1 − r2|)|y − x|.

We obtain the opposite inequality be reversing the roles of m1
µ and m2

µ. �

7. The Homogenization and Collapse of the Metric System

We introduce, for each (p, r) ∈ Rn × R, µ > H(p, r), ω ∈ Ω1 and ǫ > 0, the rescaled metric
system

(7.1)

{
−ǫ tr(Ak(

y
ǫ , ω)D

2mǫ
k,µ) +Hk(p+Dmǫ

k,µ, r̂,
mǫ

k,µ−mǫ
j,µ

ǫ , yǫ , ω) = µ on Rn \Dǫ(0),

mǫ
µ(·) = ǫw( ·ǫ)− ǫw(0) on ∂Dǫ(0),

which, in view of Proposition 6.2, has the unique solution mǫ
µ(y, 0, ω) = ǫmµ(

y
ǫ , 0, ω), for mµ the

solution of (6.5) corresponding to (p, r).
The main result of this section is the homogenization and collapse of (7.1) to a deterministic

scalar equation. More precisely, we prove that, as ǫ→ 0, for each k ∈ {1, . . . ,m},

mǫ
k,µ → mµ locally uniformly on Rn,

for mµ : Rn → R satisfying

(7.2)

{
H(p +Dmµ, r) = µ on Rn \ {0} ,
mµ(0) = 0.

We first make use of the subadditive ergodic theorem to identify the limit, as ǫ → 0, of the
solutions mǫ

µ almost surely. We then show that this limit is deterministic and coincides with mµ,
the solution of (7.2).

Proposition 7.1. Assume (2.16). There exists a subset Ω2 ⊂ Ω1 of full probability such that,
for each (p, r) ∈ Rn × R, there exists Mµ ∈ Lip(Rn) satisfying, for each y ∈ Rn, ω ∈ Ω2 and
k ∈ {1, . . . ,m},

lim
t→∞

1

t
mk,µ(ty, 0, ω) =Mµ(y).
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Proof. Fix (p, r) ∈ Rn×R. We first show that there exists a subset Ω2(p, r) satisfying the conclusion
of Proposition 7.1 for this (p, r).

Define for each y ∈ Rn the semigroup (σt)t≥0 of measure-preserving transformations of Ω by

σt(ω) = τty(ω).

In view of Proposition 6.4, in the case Ak = 0 for each k ∈ {1, . . . ,m} or γ > 2, we have, for each
k ∈ {1, . . . ,m},

mk,µ((t1 + t2)y, 0, ω) ≤ mk,µ(t1y, 0, σt2ω) +mk,µ(t2y, 0, ω),

and, in the case Ak 6= 0 for some k ∈ {1, . . . ,m} and γ ≤ 2, with the notation of Proposition 6.4,
we have, for each k ∈ {1, . . . ,m},

m̃k,µ((t1 + t2)y, 0, ω) ≤ m̃k,µ(t1y, 0, σt2ω) + m̃k,µ(t2y, 0, ω).

The subadditive ergodic theorem (See Proposition 2.2) implies that for each y ∈ Rn there exists
a subset Ωy ⊂ Ω of full probability and a random variable Mµ(y, ω) = (M1,µ(y, ω), . . . ,Mm,µ(y, ω))
such that

limt→∞
1
tmµ(ty, 0, ω) =Mµ(y, ω) for each ω ∈ Ωy.

Let Ω2(p, r) = Ω1∩(∩y∈QnΩy). Then, in view of Proposition 6.3, we define, for every ω ∈ Ω2(p, r)
and y ∈ Rn,

(7.3) Mµ(y, ω) = lim
t→∞

1

t
m(ty, 0, ω).

We now show that Mµ is deterministic. In view of the assumed ergodicity, it suffices to show
that, for each x, y ∈ Rn and ω ∈ Ω2(p, r),

Mµ(y, τxω) =Mµ(y, ω).

This again follows from Proposition 6.3. Indeed, for each x, y ∈ Rn and ω ∈ Ω2(p, r),

Mµ(y, τxω) = lim
t→∞

1

t
mµ(ty, 0, τxω) = lim

t→∞

1

t
mµ(ty + x, x, ω) =Mµ(y, ω).

In view of Proposition 6.3 and (7.3), it is immediate that Mµ ∈ Lip(Rn;Rm). Therefore, it
remains only to show that Mµ is scalar. By repeating the argument presented in Proposition 3.1

with ǫ−1(mǫ
k,µ − mǫ

j,µ) playing the role of (vδk − vδj ), for each R > 0 there exists C = C(R) > 0
satisfying

max
1≤i,j≤m

‖mǫ
i,µ −mǫ

j,µ‖L∞(BR) ≤ ǫC

and, hence, for each y ∈ Rn, ω ∈ Ω2(p, r) and i, j ∈ {1, . . . ,m},

lim
ǫ→0

mǫ
i,µ(y, 0, ω) = lim

t→∞

1

t
mi,µ(ty, 0, ω) = lim

t→∞

1

t
mj,µ(ty, 0, ω) = lim

ǫ→0
mǫ

j,µ(y, 0, ω).

In view of (7.3), we conclude that Mi,µ = Mj,µ for each i, j ∈ {1, . . . ,m} and, henceforth, we will
write Mµ for the scalar function Mk,µ for each k ∈ {1, . . . ,m}.

We conclude by defining Ω2 =
⋂

(p,r)∈Qn×QΩ2(p, r) and applying Proposition 6.5. �

In view of Proposition 4.3, as ǫ→ 0, the expected limiting equation for (7.1) is

(7.4)

{
H(p +mµ, r) = µ on Rn \ {0} ,
mµ(0) = 0,

subject, in view of (6.6), to the condition

(7.5) 0 ≤ lim inf
|y|→∞

mµ(y)

|y|
≤ lim sup

|y|→∞

mµ(y)

|y|
<∞.

Proposition 7.2. Assume (2.16). For each µ > H(p, r), Mµ is the unique solution of (7.4) subject
to (7.5).
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Proof. We begin with (7.5). In view of (6.6), Mµ ≥ 0 and, furthermore, it follows by definition
that Mµ(y) is positively one-homogenous in the sense that, for each t > 0 and y ∈ Rn, we have
Mµ(ty) = tMµ(y). Therefore, Mµ satisfies (7.5) because

0 ≤ min
|y|=1

Mµ(y) = lim inf
|y|→∞

Mµ(y)

|y|
≤ lim sup

|y|→∞

Mµ(y)

|y|
= max

|y|=1
Mµ(y) <∞.

Next we prove Mµ is a subsolution of (7.4). Arguing by contradiction, we assume that Mµ − φ
has a strict local maximum at x0 ∈ Rn \ {0} for φ ∈ C2(Rn) satisfying

(7.6) H(p+Dφ(x0), r)− µ = θ > 0.

We follow now the classical perturbed test function method. For each δ > 0, let wδ be the
solution of (4.4) corresponding to (p+Dφ(x0), r). We define the perturbed test function

φǫ = (φǫ1, . . . , φ
ǫ
m) with φǫk(y) = φ(y) + ǫwǫ

k(
y
ǫ , ω).

In view of Proposition 4.4, for almost every ω ∈ Ω2, there exists a sequence ǫj = ǫj(ω) → 0
satisfying

(7.7) lim
j→∞

|ǫjv
ǫj
1 (0, ω) +H(p+Dφ(x0), r)| = 0.

We will show that, for each ω ∈ Ω2 satisfying (7.7) and for all ǫj sufficiently small, φǫj is a
supersolution of (7.1) near x0.

We fix ω ∈ Ω2 satisfying (7.7) and suppress the dependence on ω in what follows to simplify
notation. Suppose that, for some k ∈ {1, . . . ,m} and ψ ∈ C2(Rn), the function φ

ǫj
k − ψ has a local

minimum at y0 ∈ Rn. Then, the rescaled function

y → w
ǫj
k (y)−

1

ǫj
(ψ(ǫjy)− φ(ǫjy))

achieves a local minimum at y0
ǫj
. Because wǫj is a solution of (4.4), after returning to the original

scaling and evaluated at y0,

ǫjw
ǫj
k − ǫj tr(Ak(

y0
ǫj
)(D2ψ −D2φ)) +Hk(p+Dφ(x0) +Dψ −Dφ, r̂,

φ
ǫj
k − φ

ǫj
i

ǫ
,
y0
ǫ
) ≥ −ǫjv

ǫj
1 (0, ω).

In view of (7.6) and (7.7) and because ω ∈ Ω2 ⊂ Ω1, there exists j0 = j0(ω) such that, for all
j > j0,

(7.8) |ǫjw
ǫj (y0ǫj , ω)| <

θ
4 and −ǫjv

ǫj
1 (0, ω) > 3θ

4 + µ.

Using (2.12), Proposition 4.1 and because φ ∈ C2(Rn), there exists r > 0 such that if |x0 − y0| < r
then, for all j sufficiently large,

ǫjw
ǫj
k − ǫj tr(Ak(

y0
ǫj
, ω)D2ψ) +Hk(p+Dψ, r̂,

φ
ǫj
k − φ

ǫj
i

ǫ
,
y0
ǫ
, ω) ≥ −ǫjv

ǫj
1 (0, ω) −

θ

4
.

We conclude by (7.8) that if |x0 − y0| < r then, for all j > j0 sufficiently large,

−ǫj tr(Ak(
y0
ǫj
, ω)D2ψ) +Hk(p +Dψ, r̂,

φ
ǫj
k − φ

ǫj
i

ǫ
,
y0
ǫ
, ω) > µ+

θ

4

and, therefore, that φǫj is a strict supersolution of (7.4) on Br(x0).
The comparison principle implies, for all j > j0 sufficiently large,

max
1≤k≤m

max
x∈Br(x0)

(m
ǫj
k,µ − φ

ǫj
k ) = max

1≤k≤m
max

x∈∂Br(x0)
(m

ǫj
k,µ − φ

ǫj
k ).

Since, as j → ∞, for each ω ∈ Ω2 and k ∈ {1, . . . ,m},

φ
ǫj
k → φ locally uniformly on Rn
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and

m
ǫj
k,µ(·, 0, ω) →Mµ(·) locally uniformly on Rn,

standard optimization results yield a contradiction to the assumption that Mµ−φ has a strict local
maximum at x0.

The proof that Mµ is a supersolution of (7.4) is analogous. �

The deterministic limit Mµ constructed in Proposition 7.1 is therefore the solution mµ of (7.2)

corresponding to (p, r) and µ > H(p, r). We conclude this section by presenting some properties of
the solution mµ which will be used in the sequel. Because the arguments are scalar and identical
to the analogous facts in [3] we omit the proofs.

Proposition 7.3. Assume (2.16). For each (p, r) ∈ Rn×R and each µ > H(p, r), mµ is positively
one-homogenous satisfying mµ > 0 on Rn \ {0}.

We now obtain a formula for the solution mµ in terms of the effective Hamiltonian.

Proposition 7.4. Assume (2.16). For each (p, r) ∈ Rn × R and µ > H(p, r), mµ is convex and
given by the formula

(7.9) mµ(y) = sup
{
q · y | q ∈ Rn satisfies H(p+ q) ≤ µ

}
.

We conclude this section with a characterization of mµ to be used in the sequel.

Proposition 7.5. Assume (2.16). Fix (p, r) ∈ Rn × R and µ > H(p, r). Suppose that q0 ∈ Rn

satisfies H(p + q0, r) = µ. Then, there exists x0 ∈ Rn such that |x0| = 1 and mµ(x0) = x0 · q0.

8. A Further Identification of H(p, r)

We prove here that, almost surely in Ω, for each (p, r) ∈ Rn × R and R > 0,

(8.1) lim
δ→0

sup
y∈BR/δ

|H(p, r) + δvδ1(y, ω)| = 0.

This convergence is necessary to apply the perturbed test function method in the following section.
In the following proposition, we provide a characterization of the minimum, for each r ∈ R, of

the function

p→ H(p, r) on Rn.

To this end, we consider the collection of v ∈ Lip(Rn,Rm) satisfying, for fixed ω ∈ Ω and µ ∈ R,
the system

(8.2) − tr(Ak(y, ω)D
2vk) +Hk(p +Dvk, r̂, vk − vj , y, ω) ≤ µ on Rn.

Proposition 8.1. Assume (2.16). Fix r ∈ R. If p ∈ Rn satisfies H(p, r) = minq∈Rn H(q, r) then,
on a subset of full probability,

(8.3) H(p, r) = inf { µ | There exists v ∈ Lip(Rn;Rm) satisfying (8.2) } .

Proof. Let H̃(p, r, ω) denote the righthand side of (8.3). The stationarity of the coefficients imply

that, for each x ∈ Rn, H̃(p, r, τxω) = H̃(p, r, ω). It follows from (2.1) that H̃(p, r, ω) = H̃(p, r) is
deterministic.

For every ω ∈ Ω1, the subsolution w constructed in Proposition 4.3 is Lipschitz continuous and
a subsolution of (8.2) corresponding to µ = H(p, r). Therefore H̃(p, r) ≤ H(p, r). We now obtain
the opposite inequality.

Let µ > H̃(p, r) and ω ∈ Ω1. By definition there exists v = (v1, . . . , vm) ∈ Lip(Rn;Rm) satisfying
(8.2) where, by standard properties of viscosity solutions, we may assume that, for each k ∈
{1, . . . ,m}, Dvk ∈ Lip(Rn;Rn).
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We follow the proof of Proposition 6.2. Define ṽ(y) = v(y) − v(0) and observe that there exists
a > 0 such that

z(y) =





ṽ + a|y| if Ak = 0 for all 1 ≤ k ≤ m,

ṽ + a(|y|(γ−2)/(γ−1) + |y|) if Ak 6= 0 for some k and γ > 2,
ṽ + a(|y| − 1) if Ak 6= 0 for some k and γ ≤ 2,

is a supersolution of (8.2) on Rn \D1(0) satisfying z = ṽ on ∂D1(0).
Perron’s method yields a solution s = (s1, . . . , sm) of the system

(8.4)

{
− tr(Ak(y, ω)D

2sk) +Hk(p+Dsk, r̂, sk − sj, y, ω) = µ on Rn \D1(0),
s = ṽ on ∂D1(0),

satisfying ṽ ≤ s ≤ z on Rn \D1(0). Moreover, by repeating the proof of Proposition 3.1, we have
s ∈ Lip(Rn;Rm).

Observe that sǫ(·) = ǫs( ·ǫ) satisfies the rescaled system
{

−ǫ tr(Ak(
y
ǫ , ω)D

2sǫk) +Hk(p +Dsǫk, r̂,
sǫk−sǫj

ǫ , yǫ , ω) = µ on Rn \Dǫ(0),
sǫ = ṽǫ on ∂Dǫ(0),

with ṽǫ(·) = ǫṽ( ·ǫ). And, by repeating the proof of Proposition 3.1 with ǫ−1(sǫk − sǫj) playing the

role of (vδk − vδj ), for each R > 0 there exists C = C(R) > 0 satisfying

max
1≤j,k≤m

‖sǫk − sǫj‖L∞(BR) ≤ ǫC.

Define

S(x) = lim sup
ǫ→0

max
1≤k≤m

{ sǫk(y) | |y − x| < ǫ }

and observe that S ∈ Lip(Rn). We remark that the condition µ > H(p, r) in Proposition 7.2 is
only used to ensure the existence of the mǫ

µ’s. Therefore, since we have the sǫ’s a priori and since
ω ∈ Ω1, by repeating the proof of Proposition 7.2 and using standard optimization results (See [8]),
we conclude that S satisfies the effective equation

{
H(p+DS, r) ≤ µ on Rn \ {0} ,
S(0) = 0,

and, therefore, that H(p, r) = minq∈Rn H(q, r) ≤ µ for each µ > H̃(p, r). �

The homogenization of the metric problem, Proposition 7.2, and the characterization of minpH(p,r)
are now used to prove (8.1). We follow closely the methods of [3] and use Proposition 7.5 and mµ

to construct, in the proof’s final step, a supersolution of (7.1) corresponding to H(p, r).

Proposition 8.2. Assume (2.16). There exists a subset Ω3 ⊂ Ω2 of full probability such that, for
each R > 0, (p, r) ∈ Rn ×R, and ω ∈ Ω3,

lim
δ→0

sup
y∈BR/δ

|δvδ1(y, ω) +H(p, r)| = 0.

Proof. Fix (p, r) ∈ Rn×R. It is necessary to show that there exists Ω3(p, r) ⊂ Ω of full probability
satisfying, for each ω ∈ Ω3(p, r) and R > 0,

lim sup
δ→0

( sup
y∈BR/δ

−δvδ1(y, ω)) = H(p, r) = lim inf
δ→0

( inf
y∈BR/δ

−δvδ1(y, ω)).

Let Ω′
3(p, r) ⊂ Ω be the subset of full probability satisfying, for every ω ∈ Ω′

3(p, r),

Ĥ(p, r) := lim infδ→0(−δv
δ
1(0, ω)) and H(p, r) := lim supδ→0(−δv

δ
1(0, ω)).
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We first prove that there exists Ω̃3(p, r) ⊂ Ω of full probability satisfying, for every ω ∈ Ω̃3(p, r)
and R > 0,

(8.5) lim sup
δ→0

( sup
y∈BR/δ

−δvδ1(y, ω)) = lim sup
δ→0

(−δvδ1(0, ω)) = H(p, r)

and,

(8.6) lim inf
δ→0

( inf
y∈BR/δ

−δvδ1(y, ω)) = lim inf
δ→0

(−δvδ1(0, ω)) = Ĥ(p, r).

Using Egoroff’s theorem and Proposition 4.4, for each ρ > 0 there exists δ(ρ) > 0 and a subset
Eρ satisfying P(Eρ) > 1− ρ with

(8.7) supω∈Eρ

(
−δvδ1(0, ω)−H(p, r)

)
< ρ for all 0 < δ < δ(ρ),

and using the ergodic theorem (See Proposition 2.1), for each ρ > 0 there exists Fρ ⊂ Ω of full
probability satisfying, for each ω ∈ Fρ,

(8.8) lim
R→∞

−

∫

BR

1Eρ(τyω)dy = P(Eρ) ≥ (1− ρ).

Define F0 =
⋂∞

j=1 F2−j and fix ω ∈ F0, R > 0 and ρ = 2−j for some j ∈ N. Using (8.8), there

exists δ = δ(R, ρ, ω) > 0 such that, for all 0 < δ < δ,

(8.9) |
{
y ∈ BR/δ | τyω ∈ Eρ

}
| ≥ (1− 2ρ)|BR/δ |.

This implies that for each z ∈ BR/δ there exists y ∈ BR/δ satisfying |z − y| ≤ Cρ
1

nRδ−1 and
τyω ∈ Eρ.

Therefore, using Proposition 3.1 and (8.7), for each z ∈ BR/δ , for y ∈ BR/δ as above,

− δvδ1(z, ω) −H(p, r) ≤ |δvδ1(y, ω)− δvδ1(z, ω)| − δvδ1(y, ω)−H(p, r)

≤ Cρ
1

nR− δvδ1(0, τyω)−H(p, r) ≤ Cρ
1

nR+ ρ.

Since ρ > 0 was arbitrary, for each ω ∈ F0 and R > 0,

lim sup
δ→0

( sup
y∈BR/δ

−δvδ1(y, ω)) ≤ H(p, r).

We conclude that, for each ω ∈ F0 ∩ Ω′
3(p, r) and R > 0,

lim sup
δ→0

( sup
y∈BR/δ

−δvδ1(y, ω)) = lim sup
δ→0

−δvδ1(0, ω) = H(p, r).

An analogous argument proves that there exists a subset F̃0 of full probability such that, for each
ω ∈ F̃0 ∩ Ω′

3(p, r) and R > 0,

lim inf
δ→0

( inf
y∈BR/δ

−δvδ1(y, ω)) = lim inf
δ→0

−δvδ1(0, ω) = Ĥ(p, r).

Define Ω̃3(p, r) = F0∩ F̃0∩Ω′
3(p, r) to conclude that (8.5) and (8.6) hold for every ω ∈ Ω̃3(p, r) and

R > 0.
To conclude, we show that there exists a subset Ω3(p, r) ⊂ Ω̃3(p, r) ∩ Ω2 of full probability

satisfying, for every ω ∈ Ω3(p, r),

Ĥ(p, r) = lim inf
δ→0

(−δvδ1(0, ω)) = lim sup
δ→0

(−δvδ1(0, ω)) = H(p, r)

by considering two cases: the caseH(p, r) = minq∈Rn H(q, r) and the caseH(p, r) > minq∈Rn H(q, r).

In the first case, suppose that H(p, r) = minq∈Rn H(q, r). Let Ω′′
3(p, r) denote the subset of full

probability satisfying (8.3) and define Ω3(p, r) = Ω′′
3(p, r) ∩ Ω̃3(p, r) ∩ Ω2.
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Fix ω ∈ Ω3(p, r) and choose a sequence δj = δj(ω) → 0 satisfying

lim
j→∞

−δjv
δj
1 (0, ω) = Ĥ(p, r).

In view of Proposition 4.1 and standard properties of viscosity solutions, after passing to a further
subsequence δjk = δjk(ω) → 0, as k → ∞,

wδjk → w locally uniformly on Rn,

for w ∈ Lip(Rn;Rm) satisfying

− tr(Ak(y, ω)D
2wk) +Hk(p+Dwk, r̂, wk − wj , y, ω) = Ĥ(p, r) on Rn.

Using Proposition 8.1, this implies that Ĥ(p, r) ≥ H(p, r) and, hence, by definition that Ĥ(p, r) =
H(p, r).

In the second case, suppose that H(p, r) > minq∈Rn H(q, r). Define Ω3(p, r) = Ω̃3(p, r) ∩Ω2 and
fix ω ∈ Ω3(p, r). Using (5.3), we assume without loss of generality that

H(0, r) = min
q∈Rn

H(q, r).

We proceed by contradiction. Assume

ρ := H(p, r)− Ĥ(p, r) > 0

and choose a sequence δj = δj(ω) → 0 satisfying

lim
j→∞

−δvδ1(0, ω) = Ĥ(p, r) = H(p, r)− ρ.

Let mǫ
µ be the solution of (7.1) corresponding to (0, r) and µ = H(p, r). Since H(p, r) > H(0, r),

Proposition 7.5 implies that there exists |x0| = 1 satisfying

mµ(x0) = x0 · p.

Define for η > 0, vδ the solution of (3.1) corresponding to (p, r) and x0 as above,

zj = (zj1, . . . , z
j
m) with zjk(x) = x · p+ δjv

δj
k ( x

δj
, ω)− η|x− x0|

2.

Since ω ∈ Ω3(p, r), for every 0 < r < 1 and η > 0 sufficiently small and j sufficiently large, zj is a
subsolution of the system

−δj tr(Ak(
y
δj
, ω)D2zjk) +H(Dzjk, r̂,

zjk−zji
δj

, y
δj
, ω) ≤ H(p, r)− ρ

2 on Br(x0).

The comparison principle implies, for each j sufficiently large,

(8.10) max
1≤k≤m

max
x∈Br(x0)

(zjk(x)−m
δj
k,µ(x, 0, ω)) = max

1≤k≤m
max

x∈∂Br(x0)
(zjk(x)−m

δj
k,µ(x, 0, ω)).

We write, for each j ∈ N and k ∈ {1, . . . ,m},

(8.11) zjk(x)−m
δj
k,µ(x, 0, ω) = (δjv

δj
k (

x

δj
, ω)−η|x−x0|

2)+(p ·x−mµ(x))+(mµ(x)−m
δj
k,µ(x, 0, ω)).

Using Proposition 7.1, since ω ∈ Ω3(p, r), as j → ∞, for each k ∈ {1, . . . ,m},

(8.12) mµ(x)−m
δj
k,µ(x, 0, ω) → 0 locally uniformly on Br(x0),

using formula (7.9),

(8.13) p · x−mµ(x) ≤ 0 and vanishes at x = x0.

And, since ω ∈ Ω3(p, r) ⊂ Ω1 and by our choice of δj → 0, for each k ∈ {1, . . . ,m},

lim
j→∞

( sup
x∈∂Br(x0)

δjv
δj
k (

x

δj
, ω)) = lim

j→∞
( sup
x∈∂BR(x0)

δjw
δj
k (

x

δj
, ω) + δjv

δj
1 (0, ω)) = −Ĥ(p, r)
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and
lim
j→∞

δjv
δj
k (
x0
δj
, ω) = lim

j→∞
δjw

δj
k (
x0
δj
, ω) + δjv

δj
1 (0, ω) = −Ĥ(p, r).

Therefore,

(8.14) lim sup
j→∞

( sup
x∈∂Br(x0)

δjv
δj
k (

x

δj
, ω)−η|x−x0|

2) = −Ĥ(p, r)−ηr2 < −Ĥ(p, r) = lim
j→∞

δjv
δj
k (
x0
δj
, ω).

It follows from (8.11), (8.12), (8.13) and (8.14) that (8.10) is impossible for large j and, therefore,

that H(p, r) = Ĥ(p, r).
We conclude by defining Ω3 =

⋂
(p,r)∈Qn×QΩ3(p, r) and applying Proposition 3.2 and (5.2). �

9. The Proof of Homogenization and Collapse

We recall the system

(9.1)

{
uǫk,t − ǫ tr(Ak(

x
ǫ , ω)D

2uǫk) +Hk(Du
ǫ
k, u

ǫ,
uǫ
k−uǫ

j

ǫ , xǫ , ω) = 0 on Rn × (0,∞),

uǫ = u0 on Rn × {0} ,

for u0 = (u1,0, . . . , um,0) ∈ BUC(Rn;Rm). The aim of this section is to prove the homogenization
and collapse of (9.1) to the deterministic scalar equation

(9.2)

{
ut +H(Du, u) = 0 on Rn × (0,∞),
u = u0 on Rn × {0} ,

with u0 the point-wise minimum
u0 = min

1≤k≤m
uk,0.

The following contraction properties of (9.1) and (9.2) will be used frequently throughout this
section. The proofs follow from elementary methods in the theory of viscosity solutions and are
therefore omitted (See [8, 13]).

Proposition 9.1. Assume (2.16). Fix ǫ > 0. If uǫ and vǫ are solutions of (9.1) with initial
conditions u0 and v0 respectively, then

(9.3) max
1≤k≤m

‖uǫk − vǫk‖L∞(Rn×[0,∞)) ≤ max
1≤k≤m

‖uk,0 − vk,0‖L∞(Rn).

If u and v are solutions of (9.2) with initial conditions u0 and v0 respectively, then

(9.4) ‖u− v‖L∞(Rn×[0,∞)) ≤ ‖u0 − v0‖L∞(Rn).

We begin by characterizing the solutions of (9.1). The proof of the following proposition follows
from standard properties of viscosity solutions and is therefore omitted.

Proposition 9.2. Assume (2.16). System (9.1) admits, for each ǫ > 0 and T > 0, a unique
solution uǫ ∈ BUC(Rn × [0, T );Rm) such that, for each T > 0, there exists C = C(‖u0‖L∞ , T ) > 0
satisfying

max
1≤k≤m

‖uǫk‖L∞(Rn×[0,T ]) ≤ C.

In order to obtain Lipschitz estimates in what follows, we consider

(9.5) u0 ∈ C1,1(Rn;Rm).

We account for this in the section’s final proposition, where our main result is proven for arbitrary
initial data u0 ∈ BUC(Rn;Rm).

Estimates are first obtained for the |uǫk,t|. As demonstrated by (1.5), these estimates cannot be
obtained uniformly, as ǫ → 0, for general initial conditions. However, if u0 satisfies

(9.6) ui,0 = uj,0 for each 1 ≤ i, j ≤ m,

then estimates may be obtained uniformly in ǫ.
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Proposition 9.3. Assume (2.16) and (9.5). There exist constants C > 0 and cǫ > 0 satisfying,
for each k ∈ {1, . . . ,m},

−cǫ ≤ uǫk,t ≤ C on Rn × [0,∞).

If u0 satisfies (9.6) then cǫ > 0 may be chosen independently of ǫ.

Proof. The dependence on ω ∈ Ω is suppressed as it plays no role. Let

Mǫ = max
1≤k,j≤m

‖
uk,0 − uj,0

ǫ
‖L∞(Rn).

In view of (2.6) and (2.9), for each k ∈ {1, . . . ,m},

−C3 ≤ Hk(Duk,0, u0,
uk,0−uj,0

ǫ , xǫ ) ≤ ‖Hk(Duk,0, u0, M̂ǫ,
x
ǫ )‖L∞(Rn) <∞ on Rn.

Moreover, (2.7) and (2.8) yield that there exists M > 0 satisfying

max
1≤k≤m

‖tr(AkD
2uk,0)‖L∞(Rn) ≤M.

Let C = C3 + M and cǫ = max1≤k≤m‖Hk(Duk,0, u0, M̂ǫ,
x
ǫ )‖L∞(Rn) + M. It follows that the

functions

z+ = u0 + Ĉt and z− = u0 − ĉǫt

are respectively a supersolution and a subsolution of (9.1).
The comparison principle implies

z− ≤ uǫ ≤ z+ on Rn × [0,∞),

which, in view of (9.3), implies

−cǫ ≤ uǫk,t ≤ C on Rn × [0,∞).

If u0 satisfies (9.6), then Mǫ = 0 for each ǫ > 0. Therefore, cǫ > 0 may be chosen uniformly as
ǫ→ 0. �

We now establish a gradient estimate by Bernstein’s method. The proof is essentially a repetition
of the argument appearing in Proposition 3.1 and, because this fact is not needed in what follows,
we omit it. Notice that in this case, however, the bounds for the |Duǫk| depend on the previous
estimates for the |uǫk,t|. We therefore obtain these bounds uniformly, as ǫ → 0, only in the case

that u0 satisfies (9.6).

Proposition 9.4. Assume (2.16) and (9.5). There exists Cǫ > 0 such that

max
1≤k≤m

‖Duǫk‖L∞(Rn×[0,∞)) ≤ Cǫ.

If u0 satisfies (9.6), then Cǫ may be chosen uniformly as ǫ → 0.

We now obtain more precise control of the uǫk’s from above. This estimate will play an important
role in the proof of the collapse of (9.1).

Proposition 9.5. Assume (2.16) and (9.5). There exist Ci = Ci(T ) > 0, for i = 1, 2, satisfying,
for each ǫ > 0 and k ∈ {1, . . . ,m},

uǫk − u0 ≤ C1(ǫ+ t+ e−
C2t
ǫ ) on Rn × [0, T ].

Proof. The role of ω ∈ Ω is suppressed as it plays no role. We consider, for each ǫ > 0, with C > 0
as in Proposition 9.3,

M ǫ(t) = max
1≤k≤m

sup
(x,y)∈Rn×Rn

(uǫk(x, t)− u0(y)−
1

2ǫ
|x− y|2 − Ct).
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We will show that, in the viscosity sense, there exists C̃ > 0 satisfying, for each ǫ > 0,

M ǫ′(t) ≤ C̃(1−
M ǫ(t)

ǫ
).

Fix ǫ > 0. Suppose that M ǫ − φ has a strict local maximum at t0 ∈ (0, T ) for φ ∈ C2(0, T ). We
may assume, without loss of generality, that t0 is a strict global maximum.

Define, for each η > 0,

Φ(x, y, t, k) = uǫk(x, t)− u0(y)−
1

2ǫ
|x− y|2 − φ(t)−

η

2
|y|2.

For all η sufficiently small, by Proposition 9.2 and because u0 ∈ C0,1(Rn), the function Φ achieves
a global maximum at (xη, yη, tη, kη). Therefore, with the notation of [8],

(
φ′(tη), ǫ

−1(xη − yη), ǫ
−1I

)
∈ J 2,+uǫkη(xη, tη),

and, because uǫ is a solution of (9.1), we have

φ′(tη)− tr(Akη (
xη
ǫ
, ω)) +Hkη(ǫ

−1(xη − yη), u
ǫ,
uǫkη − uǫj

ǫ
,
xη
ǫ
, ω) ≤ 0.

It follows from (2.6), (2.7) and (2.8) that there exists C̃ > 0 independent of ǫ > 0 satisfying

φ′(tη) ≤ C̃(1−
uǫkη(xη, tη)−min1≤i≤m u

ǫ
i(xη, tη)

ǫ
).

Proposition 9.3 yields, for the same constant C > 0 independent of ǫ > 0,

(9.7) φ′(tη) ≤ C̃(1−
uǫk(xη, tη)− u0(xη)− Ctη

ǫ
).

Since u0 ∈ C0,1(Rn), we have |xη − yη| ≤ ǫ‖Du0‖L∞(Rn). Therefore, for a perhaps larger constant

C̃ > 0 independent of ǫ > 0,
(9.8)

φ′(tη) ≤ C̃(1−
uǫkη(xη , tη)− u0(yη)− Ctη

ǫ
) ≤ C̃(1−

uǫkη(xη, tη)− u0(yη)−
1
2ǫ |xη − yη|

2 − Ctη

ǫ
).

Since t0 is a strict global maximum of M ǫ − φ we have, as η → 0,

tη → t0 and M ǫ(t0) = limη→0(u
ǫ
kη
(xη, tη)− u0(yη)−

1
2ǫ |xη − yη|

2 − Ctη).

Therefore, by passing to the limit as η → 0 in (9.8),

φ′(t0) ≤ C̃(1−
M ǫ(t0)

ǫ
).

This implies that, in the viscosity sense,

M ǫ′ ≤ C̃(1− Mǫ

ǫ ) on (0, T ) and, therefore, M ǫ(t) ≤ ǫ+ (M ǫ(0)− ǫ)e−
C̃t
ǫ on [0, T ].

Let M0 = supǫ>0M
ǫ(0) < ∞ and conclude, using the definition of M ǫ, that the proposition holds

for C1 = max {1, C,M0} and C2 = C̃. �

We now obtain more precise control of the uǫk’s from below. This estimate and Proposition 9.5
combine to identify the appropriate initial data u0.

Proposition 9.6. Assume (2.16) and (9.5). For each δ > 0 there exists Cδ > 0 satisfying, for each
ω ∈ Ω, k ∈ {1, . . . ,m} and ǫ > 0,

uǫk ≥ u0 − δ − Cδt on Rn × [0,∞).
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Proof. The role of ω ∈ Ω is suppressed as it plays no role. Fix δ > 0. Since u0 ∈ C0,1(Rn), define
by convolution uδ0 ∈ C1,1(Rn) which, after subtracting a constant, satisfies

u0 − δ ≤ uδ0 ≤ u0 on Rn.

Let uǫ,δ = (uǫ,δ1 , . . . , uǫ,δm ) denote the solution of (9.1) corresponding to the initial condition ûδ0.

Since ûδ0 satisfies (9.6) with ûδ0 ≤ u0, the comparison principle and Proposition 9.3 imply that there
exists Cδ > 0 independent of ǫ > 0 satisfying, for each k ∈ {1, . . . ,m},

uǫk ≥ uǫ,δk ≥ u0 − δ − Cδt on Rn × [0,∞).

�

Having characterized the solutions uǫ we begin the proof of the main result. In order to overcome
the absence of estimates, uniform in ǫ, for the |uǫk,t| and |Duǫk|, we introduce the half-relaxed limits

(9.9) u∗(x, t, ω) = lim sup
ǫ→0

max
1≤k≤m

{ uǫk(y, s, ω) | |y − x|+ |s− t| ≤ ǫ }

and
u∗(x, t, ω) = lim inf

ǫ→0
min

1≤k≤m
{ uǫk(y, s, ω) | |y − x|+ |s− t| ≤ ǫ } ,

where it is understood that, for each ǫ > 0, the respective maximum and minimum are taken for
max(t− ǫ, 0) ≤ s ≤ t+ ǫ.

Following standard methods in the theory of viscosity solutions, we wish to prove that u∗ and u∗
are respectively a subsolution and a supersolution of (9.2) on a subset of full probability. However,
as demonstrated by (1.5) and due to the initial boundary layer, definition (9.9) does not yield a
relationship between u∗ and u0 at t = 0. Indeed, if u0 does not satisfy (9.6), Proposition 9.3 yields

u∗ = max1≤k≤m uk,0 > min1≤k≤m uk,0 = u0 on Rn × {0} .

To obtain the desired relationship at t = 0, we use that, in view of Proposition 9.5, there exists
C > 0 satisfying, for each ω ∈ Ω,

(9.10) u∗ ≤ u0 + Ct on Rn × (0, 1],

and define

ũ∗ =

{
u∗ on Rn × (0,∞),
u0 on Rn × {0} .

Observe that, in view of (9.10), ũ∗ is continuous at t = 0 and therefore ũ∗ ∈ USC(Rn × [0,∞)).
We now present, in the final two propositions, the proof of our main result.

Proposition 9.7. Assume (2.16) and (9.5). For each ω ∈ Ω3, ũ
∗ and u∗ are respectively a

subsolution and a supersolution of
{
ut +H(Du, u) = 0 on Rn × (0,∞),
u = u0 on Rn × {0} .

Proof. Propositions 9.5 and 9.6 yield that, for each ω ∈ Ω and δ > 0,

u0 − δ ≤ u∗ ≤ ũ∗ = u0 on Rn × {0}

and, therefore, u∗ = ũ∗ = u0 on Rn × {0}.
The remainder of the proof follows by the standard perturbed test function method. Fix ω ∈ Ω3.

We argue by contradiction and assume that ũ∗ − φ has a strict local maximum at (x0, t0) for
φ ∈ C2(Rn × (0,∞)) satisfying

(9.11) φ(x0, t0) = ũ∗(x0, t0) and φt(x0, t0) +H(Dφ(x0, t0), φ(x0, t0)) = δ > 0.

Define
φǫ = (φǫ1, . . . , φ

ǫ
m) with φǫk(x, t) = φ(x, t) + ǫwǫ

k(
x
ǫ , ω),
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where wǫ is the solution of (4.4) corresponding to the pair (Dφ(x0, t0), φ(x0, t0)). Notice that, by
Proposition 4.3, since ω ∈ Ω3 ⊂ Ω1, as ǫ → 0,

(9.12) φǫ → φ locally uniformly on Rn × (0,∞).

We now prove that there exists r > 0 such that, for all ǫ sufficiently small, φǫ is a supersolution of
(9.1) on Br(x0)× (t0 − r, t0 + r).

Fix ǫ > 0. Suppose that, for some k ∈ {1, . . . ,m} and η ∈ C2(Rn × (0,∞)), φǫk − η has a strict
local minimum at (y0, s0). Then, the rescaled function

wǫ
k(y, ω)−

1

ǫ
(η(ǫy, ǫs)− φ(ǫy, ǫs))

has a strict local minimum at (y0ǫ ,
s0
ǫ ) with

(9.13) φt(y0, s0) = ηt(y0, s0).

Since wǫ is a solution of (4.4) we have, after rescaling and evaluated at (y0, s0),

ǫwǫ
k − ǫ tr(Ak(

y0
ǫ
, ω)(D2η−D2φ)) +Hk(Dη−Dφ+Dφ(x0, t0), ̂φ(x0, t0),

φǫk − φǫj
ǫ

,
y

ǫ
, ω) ≥ −ǫvǫ1(0).

It follows from Proposition 8.2, (9.11) and because ω ∈ Ω3 ⊂ Ω1 that, for all ǫ > 0 sufficiently
small,

|ǫwǫ
k(

y0
ǫ , ω)| <

δ
4 and φt(x0, t0)− ǫvǫ1(0) >

δ
2 ,

and, hence, in view of Proposition 4.1, (9.13), (2.7), (2.8), (2.12) and because φ ∈ C2(Rn× (0,∞)),
there exists r > 0 independent of η such that, for all ǫ > 0 sufficiently small, whenever |x0−y0| < r,

ηt − ǫ tr(Ak(
y

ǫ
, ω)D2η) +Hk(Dη, ̂φ(x0, t0),

φǫk − φǫj
ǫ

,
y

ǫ
, ω) > 0.

We conclude that, for all ǫ > 0 sufficiently small, φǫ is a supersolution of (9.1) on Br(x0)× (t0 −
r, t0 + r). The comparison principle yields, for all ǫ sufficiently small,

max
1≤k≤m

max
Br(x0)×[t0−r,t0+r]

(uǫk − φǫk) = max
1≤k≤m

max
∂(Br(x0)×[t0−r,t0+r])

(uǫk − φǫk) .

By (9.12) and standard optimization results (See [8]), this contradicts the assumption that ũ∗ − φ
has a strict local maximum at (x0, t0).

The proof that u∗ is a supersolution is analogous. �

We now present our main result. In the proof, we first deduce the result for initial conditions
u0 ∈ C1,1(Rn;Rm) and then prove the result for general u0 ∈ BUC(Rn;Rm) by approximation.

Proposition 9.8. Assume (2.16). For each ω ∈ Ω3, the solutions uǫ of (9.1) satisfy, as ǫ→ 0, for
each k ∈ {1, . . . ,m},

(9.14) uǫk → u locally uniformly on Rn × (0,∞),

for u the solution of the scalar equation

(9.15)

{
ut +H(Du, u) = 0 on Rn × (0,∞),
u = u0 on Rn × {0} .

Proof. Suppose that u0 ∈ C1,1(Rn;Rm). Then, in view of Proposition 9.7 and the comparison
principle, ũ∗ ∈ USC(Rn × [0,∞)) and u∗ ∈ LSC(Rn × [0,∞)) satisfy, for each ω ∈ Ω3,

ũ∗ ≤ u∗ on Rn × [0,∞).

Since the opposite inequality follows by definition, we conclude that, for each ω ∈ Ω3, ũ
∗ = u∗ is

the unique solution of (9.15) which, by standard properties of viscosity solutions, implies (9.14).
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We now consider u0 ∈ BUC(Rn;Rm). Define by convolution functions uδ0 = (uδ1,0, . . . , u
δ
m,0) ∈

C1,1(Rn;Rm) satisfying

max
1≤k≤m

‖uδk,0 − uk,0‖L∞(Rn) < δ.

Let uǫ be the solution of (9.1) with initial condition u0 and let uǫ,δ be the solution with initial
condition uδ0. Similarly, let u be the solution of (9.2) with initial condition u0 and let uδ be the
solution with initial condition uδ0.

Fix a compact set K ⊂ Rn × (0,∞), η > 0 and ω ∈ Ω3. We have

max
1≤k≤m

‖uǫk − u‖L∞(K) ≤ max
1≤k≤m

(‖uǫk − uǫ,δk ‖L∞(K) + ‖uǫ,δk − uδ‖L∞(K) + ‖uδ − u‖L∞(K))

which, in view of (9.3) and (9.4), yields, for δ = η
2 ,

max
1≤k≤m

‖uǫk − u‖L∞(K) < η + max
1≤k≤m

‖u
ǫ, η

2

k − u
η
2 ‖L∞(K).

Since, for each δ > 0, uδ0 ∈ C1,1(Rn;Rm), the above implies

limǫ→0max1≤k≤m‖u
ǫ, η

2

k − u
η
2 ‖L∞(K) = 0 and, hence, lim supǫ→0max1≤k≤m‖uǫk − u‖L∞(K) < η.

Because K ⊂ Rn × (0,∞), η > 0 and ω ∈ Ω3 were arbitrary this completes the proof. �

10. Variations

We conclude the paper with a summary of the results for related systems. Because the proofs
are either simpler or identical to those presented above we omit them. The system

(10.1)

{
uǫk,t − ǫ tr(Ak(

x
ǫ , ω)D

2uǫk) +Hk(Du
ǫ
k, u

ǫ, xǫ , ω) = 0 on Rn × (0,∞),

uǫ = u0 on Rn × {0} ,

where the coefficients satisfy assumptions identical to those presented in Section 2, differs from
(9.1) in that the Hamiltonians are no longer coercive in the differences ǫ−1(uǫk − uǫj). The result is

therefore the homogenization of (10.1) to a deterministic system.

Proposition 10.1. Assume (2.16). There exist deterministic Hamiltonians Hk(p, r) and Ω′ ⊂ Ω
of full probability such that, for each ω ∈ Ω′, the solutions uǫ of (10.1) satisfy, as ǫ → 0, for each
k ∈ {1, . . . ,m},

uǫk → uk locally uniformly on Rn × [0,∞),

for u = (u1, . . . , um) the solution of the system
{
uk,t +Hk(Duk, u) = 0 on Rn × (0,∞),
u = u0 on Rn × {0} .

Our methods also apply to the analogous time-independent systems,

(10.2) −ǫ tr(Ak(
x
ǫ , ω)D

2uǫk) +Hk(Du
ǫ
k, u

ǫ,
uǫ
k−uǫ

j

ǫ , xǫ , ω) = 0 on Rn,

and,

(10.3) −ǫ tr(Ak(
x
ǫ , ω)D

2uǫk) +Hk(Du
ǫ
k, u

ǫ, xǫ , ω) = 0 on Rn,

where the coefficients satisfy assumptions identical to those presented in Section 2. Furthermore,
we assume that there exists λ > 0 such that, for r, q ∈ Rm, if rk − qk = max1≤i≤m|ri − qi| then, for
each (p, s, y, ω),

(10.4) Hk(p, r, s, y, ω) −Hk(p, q, s, y, ω) ≥ λ(rk − qk).

The following two propositions summarize, respectively, the main results for (10.2) and (10.3).
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Proposition 10.2. Assume (2.16) and (10.4). There exists a deterministic Hamiltonian H(p, r)
and Ω′ ⊂ Ω of full probability such that, for each ω ∈ Ω′, the solutions uǫ of (10.2) satisfy, as ǫ → 0,
for each k ∈ {1, . . . ,m},

uǫk → u locally uniformly on Rn,

for u the solution of the scalar equation

H(Du, u) = 0 on Rn.

Proposition 10.3. Assume (2.16) and (10.4). There exist deterministic Hamiltonians Hk(p, r)
and Ω′ ⊂ Ω of full probability such that, for each ω ∈ Ω′, the solutions uǫ of (10.3) satisfy, as ǫ → 0,
for each k ∈ {1, . . . ,m},

uǫk → uk locally uniformly on Rn,

for u = (u1, . . . , um) the solution of the system

Hk(Duk, u) = 0 on Rn.
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