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A MATHEMATICAL MODEL OF SAP EXUDATION IN MAPLE TREES
GOVERNED BY ICE MELTING, GAS DISSOLUTION AND OSMOSIS∗

MAURIZIO CESERI AND JOHN M. STOCKIE†

Abstract. We develop a mathematical model for sap exudation in a maple tree that is based on a purely
physical mechanism for internal pressure generation in trees in the leafless state. There has been a long-standing
controversy in the tree physiology literature over precisely what mechanism drives sap exudation, and we aim to
cast light on this issue. Our model is based on the work of Milburn and O’Malley [Can. J. Bot., 62(10):2101–2106,
1984] who hypothesized that elevated sap pressures derive from compressed gas that is trapped within certain wood
cells and subsequently released when frozen sap thaws in the spring. We also incorporate the extension of Tyree
[in Tree Sap, pp. 37–45, eds. M. Terazawa et al., Hokkaido Univ. Press, 1995] who argued that gas bubbles are
prevented from dissolving because of osmotic pressure that derives from differences in sap sugar concentrations and
the selective permeability of cell walls. We derive a system of differential-algebraic equations based on conservation
principles that is used to test the validity of the Milburn–O’Malley hypothesis and also to determine the extent to
which osmosis is required. This work represents the first attempt to derive a detailed mathematical model of sap
exudation at the micro-scale.
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1. Introduction. Sap flow in deciduous trees is driven during the growing season by the
process of transpiration, in which evaporation of water in the leaves draws groundwater from the
roots to the crown [14, 28]. As much as 90% of water taken up by the tree is transpired into the
atmosphere to generate the large pressure differential needed to overcome gravity; only 10% of the
water is actually consumed in photosynthesis reactions in the leaves to produce the sugars needed
for growth and other life processes. These sugars are transported by the sap in dissolved form
back to the trunk and roots where they are either consumed immediately or else stored as starch
for later use. Transpiration halts in late fall when the leaves drop and the tree enters its winter
dormant phase, which lasts until the spring thaw. At that time, the stored starch reserves are
released and provide the energy needed to initiate budding and leaf growth before photosynthesis
and transpiration can begin again.

In the sugar maple (Acer saccharum), a process known as sap exudation occurs in the time
period between the dormant leafless phase and the active transpiration phase, when certain pro-
cesses are triggered that build up positive sap pressure and convert stored starches into sugars.
The stem pressure is large enough that when the tree is tapped, sap exudes naturally from the
tap-hole. The mechanism that generates this internal pressure is unique to the sugar maple and
a few other related species (black and red maple, birch, walnut, and butternut) whose sap sugar
content is also significant although not typically as high as sugar maple. Raw maple sap typically
contains 2 to 3% sugar by weight (primarily sucrose) and can be processed by repeated boiling to
produce sweet syrup and other edible maple products.

The scientific study of sap exudation has a long history that has seen several competing
hypotheses proposed for the mechanism that drives sap flow in spring. These hypotheses can be
roughly divided into two classes: “vitalistic” models that require some intervention by living cells;
and “physical” models that rely on passive, physical effects. Early in the 20th century, Wiegand’s
experiments [32] showed that even though up to one-quarter of the total volume of sapwood or
xylem is filled with gas, the expansion and contraction of this gas in response to temperature
changes alone could still not account for the observed pressure changes. He concluded that some
active process initiated by living cells must be responsible, a claim that was supported by the
experiments of Johnson [7].

Later studies questioned this vitalistic hypothesis, for example Stevens and Eggert [23] who
attributed the pressure generation in leafless maple trees to volume changes arising from freezing
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and thawing of sap. This hypothesis was further explored in subsequent years [20, 25], culminating
in the ground-breaking paper of Milburn and O’Malley [12] who proposed that gas trapped in the
xylem is compressed by growth of ice crystals and subsequent uptake of water when the tree freezes
in fall; during the spring thaw, they argued that this compressed gas generates the pressures that
drive exudation. This freeze/thaw hypothesis was later supported by experimental evidence [8, 13]
showing that gas expansion due to thawing sap is the primary cause of exudation pressure; they
also found no evidence to suggest that living cells play a significant role.

However, the Milburn–O’Malley model was unable to account for all observations, and so some
authors [22, 26, 28] cast doubt on the ability of gas expansion alone to explain exudation, arguing
that heightened pressures in the xylem will dissolve any gas bubbles within a few hours. Several
studies [5, 6] suggested that osmotic pressure, generated by differences in sugar concentration
across semi-permeable structures that separate various cells in the xylem, could play a significant
supporting role in sap exudation. Most notably, Tyree proposed [26] that a combination of the
freeze/thaw mechanism and osmosis is the key to maintaining stable gas bubbles in the xylem over
observed exudation time scales.

This issue remains controversial and the current situation is perhaps best summed up by
Améglio et al. who concluded that “no existing single model explains all of the xylem winter
pressure data,” so that both vitalistic and physical effects must play a role [2]. The lack of a clear
consensus in the tree physiology literature regarding the precise mechanisms driving sap exudation
is compounded by the fact that no detailed mathematical model has yet been developed for the
freeze/thaw mechanism, not to mention the other effects of osmosis and gas dissolution.

The aim of this paper is therefore to develop a mathematical model that captures the essential
processes driving sap exudation. We begin in Section 2 by providing details of tree physiology, sap
flow, and the Milburn–O’Malley and Tyree hypotheses for pressure generation, at the core of which
is the special role played by two types of non-living xylem cells called vessels and fibers. In Section 3
we derive a system of differential equations governing the multiphase gas/liquid/ice system that
incorporates the effects of thawing sap in the fibers, dissolving gas bubbles in the vessels, and
the osmotic pressure pressure gradient between the two. Numerical simulations in Section 4 are
used to validate the model and conclusions are drawn regarding the various mechanism for sap
generation in Section 5.

2. Basic tree physiology and the Milburn–O’Malley hypothesis. We first provide
some background information on tree structure and the hydraulics of sap flow that can be found in
texts such as [14, 28]. We also describe the freeze/thaw model proposed by Milburn and O’Malley,
and indicate how other mechanisms such as gas dissolution and osmotic pressure enter the picture.

The Milburn–O’Malley model is a purely physical one that operates at the cellular level and
depends fundamentally on the structure of the non-living cells making up the xylem. As pictured
in Figure 2.1(a), the xylem consists of long, hollow, roughly cylindrical cells of two types: fibers,
that are the main structural members in the wood; and vessels, that have a larger radius and
form the primary conduit for transmitting sap. An individual vessel can extend for up to tens
of centimeters vertically through the xylem, and is subdivided into elements that are connected
end-to-end via perforated plates to form a continuous hydraulic connection. Vessels are connected
to each other via numerous pits or cavities that perforate the vessel walls. The fibers are in turn
subdivided into two sub-classes: libriform fibers and tracheids. According to Cirelli et al. [5],
the tracheid walls also contain pits through which they exchange sap with the vessels and hence
integrating the tracheids into the water transport system of the tree. We will therefore ignore the
tracheids, treating them as a part of the vessel network, and focus instead on the fibers.

In comparison with tracheids, the libriform fibers (or simply “fibers”) lack the pits that provide
a direct hydraulic connection to the vessels and so they are often considered to play a primarily
structural role. However, the recent experiments of Cirelli et al. [5] suggest that the fiber sec-
ondary wall has a measurable permeability to water. Other experiments show that under normal
conditions, maple trees (and other species that exude sap in spring) are characterized by gas-filled
fibers and water-filled vessels [14, 26]. This is in direct contrast with most other tree species whose
fibers are completely filled with water. Hence, it is reasonable to suppose that the presence of gas
in xylem fibers may be connected with the ability of maple trees to generate exudation pressure
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in the leafless state.

The mechanism proposed by Milburn and O’Malley [12], and discussed in complete detail
in [26], can be summarized as follows:

• During late fall or early winter when the tree freezes, ice crystals form on the inner wall
of the fibers and the growing ice layer compresses the gas trapped inside.

• In early spring when temperatures rise above freezing, ice crystals in the fiber melt and
the pressure of the trapped gas drives the melted sap through the fiber walls into the
vessel, hence leading to the elevated pressures observed during sap exudation. Tyree [25]
estimates that this effect is responsible for a pressure increase of roughly 30–60 kPa.

• Exudation pressure is enhanced by the gravitational potential of sap that was drawn into
the crown during the previous fall, and once thawed is then free to fall toward the roots.

As mentioned before, this model can account for the initiation of exudation pressure but it cannot
explain how pressures are sustained over periods longer than about 12 hours because gas bubbles
will dissolve when pressurized. Tyree [26] explains how surface tension effects require that any gas
bubble is at higher pressure than the surrounding fluid. As a result, Henry’s law necessitates that
the concentration of dissolved gas in the region adjacent to the bubble is proportional to interfacial
pressure. Since the gas concentration is highest there, dissolved gas diffuses away from the bubble
and eventually causes the bubble to disappear.

One clue to identifying a mechanism that can sustain gas bubbles over longer time periods is
provided by experiments that show maple trees exude sap only when sugar is present [8]. With
this in mind, Tyree [26] proposed a modification of the Milburn–O’Malley mechanism in which
osmotic pressures arising from differences in sucrose concentration could permit gas bubbles to
remain stable. In particular, he suggested that the fiber secondary walls are selectively permeable,
permitting water to pass through but not larger molecules like sucrose. Therefore, the ice layer
that forms on the inner surface of the fibers in fall/winter is composed of pure water, which leads
to an osmotic potential difference between the fibers and the vessels.

(a) 3D view of the xylem, showing vessel el-
ements surrounded by fibers and illustrating
the difference in the cell diameters. The pits
forming the hydraulic connections between the
cells are also shown. Source: [29].

(b) 2D cross-section highlighting the vessel elements ( ve),
libriform fibers ( l-f), and fiber tracheids ( f-t). Source:
Cirelli et al. [5, Fig. 6b] (reproduced with permission, Ox-
ford Univ. Press).

Fig. 2.1. Two views of the layout of vessels and fibers in the xylem.

3. Derivation of the model equations. We now derive a compartment model describing
the dynamics of gas, water and ice in a single vessel that is in contact with the surrounding fibers.
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Fig. 2.2. Picture of ice and compressed gas taken from Milburn and O’Malley [12, Fig. 7] ( c© 2008 Canadian
Science Publishing, reproduced with permission). We are concerned here only with the “warming sequence” in the
bottom row, numbered 5–8. The fiber is the rectangular structure on the left of each image, while the vessel is
represented by the vertical channel on the right (not drawn to scale).

To begin with, we restrict ourselves to the time period before the ice in the fiber melts completely.
The geometry is depicted in Figure 3.1 which is an idealized view of Figure 2.1(b). Before deriving
the governing equations, we make the following simplifying assumptions:

A1. We consider only the thawing phase, assuming that all water within the fibers is initially
frozen.

A2. Gravitational potential differences due to height can be neglected since we focus only
locally on a small section of the xylem.

A3. We consider a single vessel element and ignore interactions between adjacent elements.
This is a reasonable assumption if all elements experience similar conditions, and any gas
contained within an element is isolated by the perforated plates from that of its neighbors.

A4. The vessel is surrounded by N identical fibers. Although our model considers only a single
fiber explicitly, the fluxes and other fiber quantities are scaled by a factor N to determine
the total influence of all N fibers on the vessel.

A5. The fiber and vessel are hollow and cylindrical in shape, with interior radii Rf and Rv,
and heights Lf and Lv respectively. Both have large aspect ratio so that R/L ≪ 1.

A6. We assume the problem is one-dimensional, with the domain extending horizontally from
the center of the fiber to the rightmost outer edge of the vessel (pictured at the top of
Figure 3.1). The coordinate system is chosen so that the horizontal (x) axis is directed
along the line joining the centers of the fiber and vessel and with origin x = 0 at the center
of the fiber. Referring to Figure 3.1, the fiber/vessel interface is located at x = Rf and
the center of the vessel at x = Rf +Rv.

A7. Gas is present in both fiber and vessel. Although the existence of gas in the fiber is a
fundamental assumption of the Milburn–O’Malley model, the gas in the vessel is a novel
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feature introduced in our model. Because water is incompressible and the xylem is a
closed system when the tree is frozen, pressure cannot be transferred between the fiber
and vessel compartments unless gas is also present in the vessel. Further justification
for this assumption is provided in the papers [22, 27], which indicate that maple trees
experience winter embolism (bubble formation) when gas in the vessels is forced out of
solution upon freezing.

A8. Gas in both fiber and vessel takes the form of a cylindrical bubble located at the center
of the corresponding cell. This seems reasonable in the vessel where the surface tension
is of the order of σ/Rv ≈ 4 × 103 Pa, which is several orders of magnitude smaller than
the typical gas and liquid pressures. In the fiber, the smaller radius gives rise to a much
larger surface tension (σ/Rf ≈ 2 × 104 Pa) which though still small relative to gas and
liquid pressures could still potentially initiate a break-up into smaller bubbles owing to
the Plateau-Rayleigh instability [?]. However, regardless of the precise configuration of
the gas in the fiber, we assume that the net effect on gas pressure is equivalent to that of
a single large bubble.

A9. Heat from outside the tree enters from the right in Figure 3.1. Consequently, the sap in
the vessel is taken to be initially in liquid form and the ice in the fiber begins melting on
the inner surface of the fiber wall.

A10. Gas and ice temperatures in the fiber can be taken as constant and equal to the freezing
point. This is justified by the fiber length scale being so much smaller than that of the
vessel (Rf ≪ Rv).

A11. Time scales for heat and gas diffusion are much shorter than those corresponding to ice
melting and subsequent phase interface motion (which our simulations show are on the
order of minutes to hours). This is justified by considering the various diffusion coefficients
(D) and a typical length scale (x ≈ 10−5 m), and in each case calculating the corresponding
diffusion time scale t ∼ x2/4D:

– diffusion in gas bubbles: using the air self-diffusion coefficient D ≈ 2 × 10−5 m2/s,
the time scale is t ≈ 1.3× 10−6 s;

– diffusion of dissolved gas: diffusivity D ≈ 1× 10−9 of air in water gives t ≈ 0.025 s;
– diffusion of heat: thermal diffusivities D ≈ 1.9 × 10−5 (for air) and 1.4 × 10−7 (for
water) yield t ≈ 1.3× 10−6 and 1.8× 10−4 respectively.

Therefore, heat transport is essentially quasi-steady and the temperature equilibrates
rapidly to any change in local conditions. Also, gas concentration and density (in both
gaseous and dissolved forms) can be taken as constants in space.

A12. A significant osmotic pressure arises owing to differences in sugar content between liquid
in the vessel and fiber. This is motivated by recent experiments which show that the fiber
cell wall is permeable to water but not to larger molecules such as sucrose [5], suggesting
that ice contained in the fiber is composed of pure water. A simple order of magnitude
estimate based on a sap sugar concentration of 2% then implies that the osmotic pressure
Π ∼ O(105) Pa, which is of the same order as typical gas and liquid pressures.

A13. There is no need to consider modelling the system beyond the time when either fiber or
vessel bubble is completely dissolved, since then no further exchange of pressure is possible.

Model equations are derived for the fiber and vessel compartments in the next two sections.
For easy reference, all parameters and variables are listed in Table 3.1 along with physical values
where appropriate. There are some similarities that can be found with other models developed
for related problems such as ice lensing in porous soils [24] and freeze/thaw processes in the food
industry [11]; however, neither problem contains all of the physical mechanisms encountered during
sap exudation.

3.1. Fiber model. We now develop a set of governing equations for the fiber that is restricted
to the time period when ice is present, so that an ice layer separates the gas from the water adjacent
to the wall. The modifications that are required to the model once the ice layer has disappeared
and the fiber bubble is in direct contact with the sap are described in Section 3.5.

The inner fiber wall is initially coated by an ice layer of uniform thickness, inside of which
is a cylindrical volume of compressed gas with radius sgi(t). As the ice layer melts, an ice/water
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Fig. 3.1. (Bottom) A 2D cross-section through a fiber–vessel pair showing the water, ice and gas regions, and
the moving interfaces. (Top) The 1D region corresponding to our simplified model geometry is outlined with a red,
dashed box in the bottom figure. The locations of the various phase boundaries are indicated, with the origin x = 0
at the center of the fiber.

interface x = siw(t) appears at the inner edge of the fiber wall (siw(0) = Rf) and propagates
inward. The speed of the interface depends not only on the volume difference between ice and
water but also on the seepage of liquid through the porous fiber wall. The gas pressure that drives
water through the wall into the vessel is transmitted through the ice layer to the adjacent water.

If we denote by V f
g (t), V f

w (t) and V f
i (t) the volumes of gas, water and ice within the fiber,

then owing to the cylindrical symmetry

V f
g (t) = πLf sgi(t)

2, (3.1)

V f
w (t) = πLf

(

(Rf )2 − siw(t)
2
)

, (3.2)

V f
i (t) = πLf

(

siw(t)
2 − sgi(t)

2
)

, (3.3)

which also satisfy

V f
g (t) + V f

w (t) + V f
i (t) = πLf

(

Rf
)2

=: V f . (3.4)

Recalling Assumption A10, which takes the gas temperature T f
g to be constant and equal to the

freezing point Tc = 273.15 ◦K, the gas density varies only due to changes in volume so that

ρfg (t) = ρfg (0)
V f
g (0)

V f
g (t)

. (3.5)

The corresponding gas pressure is given by the ideal gas law

pfg (t) =
ρfg (t)RTc

Mg

,
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Table 3.1

A list of nomenclature for all physical parameters and variables, including values in SI units. References are
given for each numerical value, either as a citation to the literature (in square brackets) or else an equation number
(in parentheses) for those values calculated from other parameters.

Description Units Value Ref.

Constant parameters:
A Area of vessel wall that is permeable m2 6.28× 10−8 (3.18)
cs Sucrose concentration in vessel sap mol/m3 58.4
g Gravitational acceleration m/s2 9.81 [30]
h Heat transfer coefficient W/m2 ◦K 10.0 [17]
H Henry’s constant – 0.0274 [19]
kg Thermal conductivity of air W/m ◦K 0.0243 [1]
kw Thermal conductivity of water W/m ◦K 0.580 [1]
K Cell wall hydraulic conductivity m/s 1.98× 10−14 [16]
Lf Length of fiber m 1.0× 10−3 [15]
Lv Length of vessel element m 0.5× 10−3 [15]
Mg Molar mass of air kg/mol 0.0290 [30]
Ms Molar mass of sucrose kg/mol 0.3423 [30]
N Number of fibers per vessel – 16 (3.16)
p̂ Pressure scale N/m2 1.01× 105 (3.29)
Rf Interior radius of fiber m 3.5× 10−6 [33]
Rv Interior radius of vessel m 2.0× 10−5 [33]
R Universal gas constant J/mol ◦K 8.314 [30]
t̂ Time scale s 46.1 (3.40)
Tc Freezing temperature of ice ◦K 273.15
Ta Ambient temperature of gas ◦K 0.005 + Tc

V f Volume of fiber m3 3.85× 10−14 (3.4)
V v Volume of vessel m3 6.28× 10−13 (3.28)
W Thickness of fiber + vessel wall m 3.64× 10−6 [31]
λ Latent heat of fusion J/kg 3.34× 105 [1]
ρi Ice density kg/m3 917 [1]
ρw Water density kg/m3 1000 [30]
ρ̂ Density scale kg/m3 1.29 [26]
σ Air-water surface tension N/m 0.0756 [30]

Dependent and independent variables:
cg Dissolved gas concentration mol/m3

m Mass m
p Pressure N/m2

r Radius of gas bubble in vessel m
s Fiber interface location m
t Time s
T Temperature ◦K
U Volume of melted ice m3

V Volume m3

x Spatial location m
ρ Density kg/m3

Subscript (denotes phase):
g Gas phase
i Ice phase
w Water phase
Superscript (denotes cell component):
f Fiber
v Vessel

where Mg is the molar mass of air. This can be combined with (3.1) and (3.5) to obtain

pfg (t) = pfg (0)

(

sgi(0)

sgi(t)

)2

. (3.6)

As ice thaws, some volume of melt-water (denoted U(t)) is forced through the fiber wall into
the vessel, while the remainder stays in the fiber sandwiched between the ice layer and the wall.
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Let the (constant) mass of gas in the fiber be mf
g0 and the mass of water and ice be

mf
i (t) = ρiV

f
i (t), (3.7)

mf
w(t) = ρwV

f
w (t), (3.8)

where ρw and ρi are the densities of water and ice respectively. Conservation of mass in the fiber
implies that

mf
g0 +mf

i (t) +mf
w(t) + ρwU(t) = mf

0 , (3.9)

where initially U(0) = 0 and mf
0 = mf

g0 +mf
i (0) +mf

w(0). Differentiating (3.9) yields

ṁf
i (t) + ṁf

w(t) + ρwU̇(t) = 0,

where the “dot” denotes a time derivative. Substituting (3.4) and (3.7)–(3.8) into the last expres-
sion yields

−ρiV̇
f
g + (ρw − ρi)V̇

f
w + ρwU̇ = 0,

and the volume terms can be replaced using (3.1) and (3.2) to obtain

2ρisgiṡgi + 2(ρw − ρi)siw ṡiw − ρw
πLf

U̇ = 0. (3.10)

Recall that the temperature in both gas and ice is assumed constant and equal to the freezing
point Tc. The water layer, on the other hand, is heated from the vessel side so that the water
temperature T f

w(x, t) is not constant but instead obeys the steady-state heat equation and boundary
condition

∂xxT
f
w = 0 for all x ∈

(

siw , R
f
)

, (3.11a)

T f
w = Tc at x = siw. (3.11b)

The speed ṡiw of the ice/water interface is determined by the Stefan condition

λρw ṡiw = −kw∂xT
f
w at x = siw, (3.12)

where λ is the latent heat of fusion and kw is the thermal conductivity of water.
In summary, (3.6), (3.10), (3.11a) and (3.12) represent a coupled system of equations for the

fiber unknowns siw(t), sgi(t), p
f
g (t), and T f

w(x, t). In the next section, we will derive an equation

for U̇ and also determine the missing boundary condition for T f
w as a matching condition with the

vessel temperature at the fiber/vessel wall x = Rf .

3.2. Vessel model and matching conditions. Let V v
w (t) and V v

g (t) denote the volume of
the water and gas compartments. The time derivative of the total volume (gas + water) must be
zero so that

d

dt

(

V v
w (0) +NU(t) + V v

g (t)
)

= 0,

or simply

V̇ v
g = −NU̇. (3.13)

This equation embodies the assumption that there is no flow between vessel elements so that the
portion of the volume consisting of water equals the initial value V v

w (0) plus whatever water enters
from the N surrounding fibers. Using the fact that the bubble radius and volume are connected
by

V v
g (t) = πLv r(t)2, (3.14)
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equation (3.13) can then be rewritten as

rṙ = − NU̇

2πLv
. (3.15)

Assuming that fibers are packed tightly around the vessel and that both vessel and fiber have wall
thickness W , a simple geometric argument provides an estimate for the constant N :

N ≈ 2π(Rf +Rv +W )

2Rf +W
. (3.16)

We next focus on porous transport through the fiber wall which is governed by Darcy’s law

NU̇(t) = − KA

ρwgW
(pvw(t)− pfg (t)), (3.17)

where pvw(t) is the vessel water pressure, K is the hydraulic conductivity, W is the wall thickness,
and A is the area of the wall that is permeable to water. In the absence of experimental measure-
ments for hydraulic conductivity in maple, we use the value K = 1.98 × 10−14 m/s obtained for
birch trees [16]. Finally, A is taken equal to the internal surface area of the cylindrical vessel

A = 2πRvLv. (3.18)

We next describe the temperature evolution within the various vessel compartments, recalling
that the diffusive time scale is short in relation to either melting or gas dissolution. We therefore
employ a quasi-steady approximation in which temperatures obey a steady-state heat equation.
Denote by T v

g (x, t) the temperature within the gas bubble, and T v
w1(x, t) and T v

w2(x, t) the water
temperatures to the left and right of the bubble respectively. Then, in the water region on the left
(adjacent to the vessel wall) T v

w1(x, t) obeys

∂xxT
v
w1 = 0 for all x ∈

(

Rf , Rf +Rv − r
)

. (3.19a)

Both temperature and heat flux are continuous at the vessel wall

T v
w1 = T f

w at x = Rf , (3.19b)

kw∂xT
v
w1 = kw∂xT

f
w at x = Rf , (3.19c)

and at the water/gas interface

T v
w1 = T v

g at x = Rf +Rv − r, (3.19d)

kw∂xT
v
w1 = kg∂xT

v
g at x = Rf +Rv − r. (3.19e)

The gas temperature T v
g (x, t) inside the bubble obeys

∂xxT
v
g = 0 for all x ∈

(

Rf +Rv − r, Rf +Rv + r
)

, (3.20a)

with temperature and flux continuity conditions

T v
g = T v

w2 at x = Rf +Rv + r, (3.20b)

kg∂xT
v
g = kw∂xT

v
w2 at x = Rf +Rv + r. (3.20c)

Finally, the water temperature T v
w2(x, t) to the right of the gas obeys

∂xxT
v
w2 = 0 for all x ∈

(

Rf +Rv + r, Rf + 2Rv
)

, (3.21a)
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with a Robin condition on the right-most boundary

kw∂xT
v
w2 = h(Ta − T v

w2) at x = Rf + 2Rv, (3.21b)

where h is a convective heat transfer coefficient. The ambient temperature Ta refers to the tem-
perature in the neighboring layer of xylem cells; using a temperature difference of 10◦K through
the sapwood over a tap depth of 0.05 m, we obtain a rough estimate of Ta ≈ 0.005◦K for the
temperature difference on the cell scale.

The final component of the model is a description of the process whereby elevated pressures
in the gas bubble cause the gas to dissolve at the gas/water interface. Because of the small bubble
size, it is essential to take into account the effect of surface tension. Gas and liquid pressures in
the vessel are connected by the Young–Laplace equation1,

pvw(t) = pvg(x, t)−
σ

r(t)
at x = Rf + Rv − r, (3.22)

where σ is the air-water surface tension and r(t) is the bubble radius. In this formula, the gas
pressure can be written using the ideal gas law

pvg(x, t) =
ρvg(t)RT v

g (x, t)

Mg

, (3.23)

where ρvg(t) is the gas density which we have taken uniform in space according to Assumption A11.
The concentration cvg(t) of dissolved gas in the sap is then related to the gas density by Henry’s
law

cvg(t) =
H

Mg

ρvg(t), (3.24)

where H is a dimensionless constant. The gas density in the preceding equations decreases over
time owing to dissolution and can be written

ρvg(t) =
ρvg(0)V

v
g (0)−Mg

∫

Ωv
w
cvg(t) dV

V v
g (t)

=
ρvg(0)V

v
g (0)−Mgc

v
g(t)(V

v − V v
g (t))

V v
g (t)

, (3.25)

where V v
g (t) is given by (3.14) and the integral in the first expression is taken over Ωw, the annular

portion of the vessel filled with liquid.
In summary, equations (3.15), (3.17) and (3.19)–(3.25) represent a nonlinear system of differential-

algebraic equations for the nine unknown functions r(t), pvw(t), p
v
g(x, t), T

v
w1(x, t), T

v
w2(x, t), T

v
g (x, t),

ρvg(t), c
v
g(t) and U(t). The vessel and fiber solutions are coupled via matching conditions (3.17),

(3.19b) and (3.19c).

3.3. Osmotic effects. Tyree and co-workers have argued that a pressurized gas bubble in the
xylem will dissolve entirely over a period of 12 hours or less, so that some other pressure-generating
mechanism must operate to sustain the bubbles actually observed in xylem sap [5, 26, 28]. Recent
experiments by Cirelli et al. [5] suggest that the fiber secondary wall is selectively-permeable,
allowing water to pass through but preventing the passage of larger molecules such as sucrose
and thereby generating a significant osmotic potential difference between fibers and vessels. This
leads naturally to the hypothesis that osmotic pressure might provide the extra mechanism needed
to enhance flow of sap from fiber to vessel and hence prevent bubbles in the fiber from totally
dissolving once the ice layer has completely melted.

Osmosis can be described mathematically by means of the Morse equation that relates osmotic
pressure Π within a solution to the dissolved solute concentration cs via Π = csRT . Following the

1The Young–Laplace equation states that the pressure difference is proportional to the mean curvature, pg−pw =

σ
(

1

R1

+ 1

R2

)

, where the proportionality constant is the interfacial surface tension σ. For a cylindrical gas bubble

with radius r, the principal radii of curvature are R1 = r and R2 = ∞.
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approach in [18], we apply this equation to the sap solutions in fiber and vessel and hence obtain
a modified version of the melt volume equation (3.17)

NU̇ = − KA

ρwgW

[

(pvw − pfg )−RT f
w(R

f , t) (cvs − cfs )
]

,

where cfs and cvs are the sucrose concentrations in the fiber and vessel respectively. According to
Tyree and Zimmermann [28], sucrose is present only in the vessels, so that cfs ≡ 0 and

NU̇ = − KA

ρwgW

[

(pvw − pfg )−RT f
w(R

f , t)cvs
]

. (3.26)

This equation replaces (3.17), but otherwise the governing equations remain unchanged. For the
sake of simplicity, we assume that the vessel sucrose concentration cvs is a constant which for a 2%
sucrose solution corresponds to taking cvs = 0.02ρw/Ms ≈ 58.4 mol/m3, where the molar mass of
sucrose is Ms = 0.3423 kg/mol. This assumption can be justified by arguing that ray parenchyma
cells (which provide the bulk of the sucrose to the tree vascular system) are so numerous in maples
that they should be capable of maintaining the sucrose concentration at a relatively constant level.

3.4. Non-dimensional variables. To simplify the governing equations, we reduce the num-
ber of parameters in the problem by introducing the following change of variables:

x = Rvx̄, s = Rvs̄, r = Rv r̄,

t = t̂ t̄, U = V vŪ , p = p̂ p̄,

ρ = ρ̂ ρ̄, c = ρ̂
Mg

c̄, T = Tc + (Ta − Tc)T̄ ,

(3.27)

where an overbar denotes a dimensionless quantity. The melt volume is non-dimensionalized using

V v = πLv(Rv)2, (3.28)

density and pressure scales are chosen based on initial values as

ρ̂ = ρvg(0) and p̂ = pvg(0) =
ρ̂RTc

Mg

, (3.29)

and the time scale t̂ will be specified shortly.
The above expressions are then substituted into the dimensional equations from Section 3,

after which we immediately simplify notation by dropping asterisks. The differential equations
and boundary conditions (3.11) and (3.19)–(3.21) governing the temperatures T̄ f

w(x, t), T̄
v
w1(x, t),

T̄ v
w2(x, t) and T̄ v

g (x, t) become:

Fiber water: ∂x̄x̄T̄
f
w = 0 for all x̄ ∈ (siw, δ) , (3.30a)

T̄ f
w = 0 at x̄ = siw , (3.30b)

Vessel water (left): ∂x̄x̄T̄
v
w1 = 0 for all x̄ ∈ (δ, δ + 1− r̄) , (3.31a)

T̄ v
w1 = T̄ f

w at x̄ = δ, (3.31b)

∂x̄T̄
v
w1 = ∂x̄T̄

f
w at x̄ = δ, (3.31c)

T̄ v
w1 = T̄ v

g at x̄ = δ + 1− r̄, (3.31d)

∂x̄T̄
v
w1 = η∂x̄T̄

v
g at x̄ = δ + 1− r̄, (3.31e)

Vessel gas bubble: ∂x̄x̄T̄
v
g = 0 for all x̄ ∈ (δ + 1− r̄, δ + 1 + r̄) , (3.32a)

T̄ v
g = T̄ v

w2 at x̄ = δ + 1 + r̄, (3.32b)

η∂x̄T̄
v
g = ∂x̄T̄

v
w2 at x̄ = δ + 1 + r̄, (3.32c)
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Table 3.2

A list of dimensionless parameters and their numerical values.

Symbol Definition Value

Bi hRv

kw
3.45× 10−4

α KAp̂t̂
ρwgWV v 0.258

β ρi
ρw

0.917

γ Lv

Lf 0.500

δ Rf

Rv 0.175

η
kg

kw
0.0419

θ Ta−Tc
Tc

1.83× 10−5

ω σ
p̂Rv 0.0374

Vessel water (right): ∂x̄x̄T̄
v
w2 = 0 for all x̄ ∈ (δ + 1 + r̄, δ + 2) , (3.33a)

∂x̄T̄
v
w2 = Bi(1 − T̄ v

w2) at x̄ = δ + 2. (3.33b)

The dimensionless parameter Bi = hRv/kw is the Biot number.
Next are five algebraic equations for p̄fg (t̄), p̄

v
g(x̄, t̄), p̄

v
w(t̄), c̄

v
g(t̄) and ρ̄vg(t̄):

p̄fg = p̄fg (0)

(

s̄gi(0)

s̄gi

)2

, (3.34)

p̄vg = ρ̄vg(1 + θT̄ v
g ), (3.35)

p̄vw = p̄vg −
ω

r̄
, (3.36)

c̄vg = Hρ̄vg , (3.37)

ρ̄vg =
(r̄(0))2 − c̄vg(1− r̄2)

r̄2
. (3.38)

The non-dimensionalized Stefan condition (3.12) becomes

˙̄siw = −∂x̄T̄
f
w at x̄ = s̄iw, (3.39)

where we have chosen the time scale

t̂ =
λρw(R

v)2

kw(Ta − Tc)
, (3.40)

so as to eliminate the coefficient in the Stefan condition. This is clearly an appropriate time scale
for our problem because the melting process governs the dynamics of the ice layer and hence also
the water transport from fiber to vessel. Using parameter values from Table 3.1, we find that a
typical value of the time scale is t̂ ≈ 46.1 s. Finally, the remaining differential equations (3.10),
(3.15) and (3.17) for the quantities s̄gi(t̄), r̄(t̄) and Ū(t̄) become

2βs̄gi ˙̄sgi + 2(1− β)s̄iw ˙̄siw − γ ˙̄U = 0, (3.41)

2r̄ ˙̄r = −N ˙̄U, (3.42)

N ˙̄U = −α
[

p̄vw − p̄fg − (1 + θT̄ f
w(δ, t̄))c̄

v
s

]

. (3.43)

3.5. Onset of gas dissolution in fiber after ice melts completely. As the ice in the
fiber melts, we eventually reach a critical time when the ice layer disappears and the two interfaces
s̄gi and s̄iw merge into a single gas–water interface whose position we denote by x̄ = s̄(t̄). Similar
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to the gas/water interface in the vessel, the dynamics of s̄ are governed by dissolution of gas within
the fiber water and changes in pressure/volume of the gas bubble. Assuming as before that the gas
in the fiber diffuses much faster than it dissolves, we again employ a quasi-steady approximation
in which the dissolved gas concentration is assumed constant at any given time. Therefore, we
replace (3.34) with

p̄fg = ρ̄fg (1 + θT̄ f
g ) = ρ̄fg , (3.44)

and eliminate (3.39) and (3.41) in favor of the single equation

2s̄ ˙̄s = γ ˙̄U. (3.45)

These last two equations are already dimensionless and are analogous to (3.35) and (3.42) for
the vessel. The modified system has as additional unknowns the water pressure p̄fw, dissolved gas
concentration c̄fg , and gas density ρ̄fg , which are governed by the following analogues of the vessel
equations (3.38) and (3.37):

p̄fw = p̄fg − ω

s̄
(3.46)

c̄fg = Hρ̄fg , (3.47)

ρ̄fg =
ξ(s̄gi(0))

2 − c̄fg (1− s̄2)

s̄2
, (3.48)

where ξ = ρfg (0)/ρ
v
g(0) is a dimensionless parameter corresponding to the ratio of initial gas

densities. Finally, without the ice layer to transmit the gas pressure directly to the fiber water
located on the other side, Darcy’s law (3.43) must be modified so as to replace the fiber gas pressure
by p̄fw:

N ˙̄U = −α
[

p̄vw − p̄fw − (1 + θT̄ f
w(δ, t̄))c̄

v
s

]

. (3.49)

3.6. Analytical solution for temperatures. Because the quasi-steady temperature equa-
tions (3.30)–(3.33) have such a simple form, they can be solved analytically. In fact, the tem-
perature is a linear function of x̄ in each sub-domain, and applying the corresponding boundary
and matching conditions leads to the following explicit solutions in terms of x̄, t̄ and the non-
dimensional parameters:

T̄ f
w(x̄, t̄) ≡ T̄ v

w1(x̄, t̄) =
η(x̄− s̄iw(t̄))

η(δ + 2 + Bi−1) + 2(1− η)r̄(t̄)− ηs̄iw(t̄)
, (3.50)

T̄ v
g (x̄, t̄) =

x̄− (1− η) (δ + 1− r̄(t̄))− ηs̄iw(t̄)

η(δ + 2 + Bi−1) + 2(1− η)r̄(t̄)− ηs̄iw(t̄)
, (3.51)

T̄ v
w2(x̄, t̄) =

ηx̄+ 2(1− η)r̄(t̄)− ηs̄iw(t̄)

η(δ + 2 + Bi−1) + 2(1− η)r̄(t̄)− ηs̄iw(t̄)
. (3.52)

The temperature solution on the whole domain may then be summarized as

T̄ (x̄, t̄) =



















0, if x̄ ∈ [0, s̄iw],

T̄ f
w(x̄, t̄), if x̄ ∈ (s̄iw, δ + 1− r̄],

T̄ v
g (x̄, t̄), if x̄ ∈ (δ + 1− r̄, δ + 1 + r̄],

T̄ v
w2(x̄, t̄), if x̄ ∈ (δ + 1 + r̄, δ + 2].

(3.53)

Note that the matching conditions on temperature and heat flux at the vessel wall imply that the
functions T̄ f

w and T̄ v
w1 are identical.
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3.7. Initial conditions. We choose a “base case” for our simulations in which the initial
conditions are taken consistent with the typical scenario described by Tyree [26]:

• pvg(0) = 100 kPa: gas in the vessel is initially at atmospheric pressure.

• pfg(0) = 200 kPa: gas in the fiber is at twice the pressure in the vessel owing to compression
by the frozen sap. Based on Tyree’s data, we expect that this value is an upper bound, so
that pfg (0) actually lies in the range [100, 200] kPa.

• s̄iw(0) = δ, s̄gi(0) = δ/
√
2 ≈ 0.7δ and Ū(0) = 0: corresponding to a fiber gas bubble

that is initially half the total fiber volume, with the other half filled by ice. This initial
state is established during the previous fall/winter freeze, when gas-filled fibers are at
atmospheric pressure in equilibrium with the vessels. As the temperature falls below
freezing, ice forms on the inside of the fiber wall and the gas pressure increases by a factor
inversely proportional to the ice thickness according to equation (3.34); hence, the value
s̄gi(0) = 0.7δ is consistent with the initial gas pressures chosen above.

• r̄(0): is the quantity in this study with the greatest uncertainty since we haven’t yet found
data on gas concentration or bubble size in the vessels; hence, this is a natural parameter
to vary in our simulations. We expect that the initial vessel volume fraction taken up by
gas is significantly less than in the fiber, otherwise a large embolus is likely to remain in
the vessel and hinder sap transport once transpiration recommences.

Initial values are not required for the temperatures, although they can be obtained by substituting
the above values into (3.50)–(3.53) and the algebraic relations in Section 3.4.

4. Numerical simulations. Owing to the nonlinear coupling in the governing equations
derived in the previous section, numerical simulations are required in order to obtain solutions
of the full system. We employ a straightforward numerical approach in which the four ordinary
differential equations (3.39) and (3.41)–(3.43) are solved for s̄gi, s̄iw, r̄ and Ū using the stiff solver
ode15s in MATLAB, with error tolerances RelTol = 10−10 and AbsTol = 10−8. Temperatures
are calculated using the analytical expressions in (3.50)–(3.52), and the system is closed using the
algebraic equations (3.34)–(3.38).

The above procedure applies when ice is present in the fiber. In order to permit MATLAB to
modify the equations automatically once the ice disappears, the event detection feature in ode15s

is used to determine the instant when s̄gi = s̄iw and V f
i → 0; at this time, the simulation is

halted and the calculation is restarted with the equations modified as described in Section 3.5. To
assist in understanding which equations are solved under which circumstances, we have provided
in Figure 4.1 a graphical summary of the equations and variables in the two cases.

In the remainder of this section, we perform a series of simulations with increasing model
complexity, first studying the dynamics of gas dissolution and flow through the fiber wall when
the pressurized fibers contain no ice, then introducing osmotic effects, and finally incorporating
the ice layer and phase change. Even though the code is written in dimensionless variables, all
parameters and results from this point on are converted to dimensional variables using equations
(3.27).

4.1. Case 1: Dissolution and porous transport only (no ice, no osmosis). We begin
by considering the simple situation in which there is no sucrose in the vessel and no ice in the fiber
(and hence, no phase change). As a result, the sap dynamics are governed primarily by two effects:
gas dissolution and the flow of sap driven by pressure exchange between gas bubbles in the fiber
and vessel. We note that temperature variations are relatively small and so they have a negligible
effect on the solution.

Gas bubble dissolution has been studied extensively in the context of sap flow by several au-
thors [10, 21, 33], who concluded based on experimental evidence and simple physical arguments
that pressurized gas bubbles in xylem sap should dissolve completely over a time period ranging
anywhere from 20 minutes to several hours. These results are partially supported by the mathe-
matical study of bubble dissolution by Keller [9], who proved that for an under-saturated solution
(such as xylem sap) that fills an unbounded domain, the only stable equilibrium solution is one in
which the gas bubble shrinks and eventually disappears. An analogous situation was studied by
Yang and Tyree [33], who performed experiments on excised maple branches open to the air and
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Temperatures:

T̄ f
w T̄ v

w1
T̄ v
g T̄ v

w2

(3.50) (3.50) (3.51) (3.52)

Is ice present
in fiber?

Algebraic equations:

p̄fg
(3.34)

p̄vg p̄vw c̄vg ρ̄vg
(3.35) (3.36) (3.37) (3.38)

Algebraic equations:

p̄fg p̄fw c̄fg ρ̄fg
(3.44) (3.46) (3.47) (3.48)

p̄vg p̄vw c̄vg ρ̄vg
(3.35) (3.36) (3.37) (3.38)

Interface ODEs:
s̄iw s̄gi r̄ Ū

(3.39) (3.41) (3.42) (3.43)

Interface ODEs:
s̄ r̄ Ū

(3.45) (3.42) (3.49)

Yes

No

Fig. 4.1. List of variables and governing equations depending on whether or not ice is present in the fiber.

developed a corresponding mathematical model in which the pressure is maintained at atmospheric
conditions at the open boundary. Their experimental and numerical results are consistent with
the complete dissolution of gas bubbles in finite time.

In our study of sap exudation however, we are interested in the behavior of xylem sap within
an intact maple tree stem that is not exposed to the open air; consequently, the open boundary
conditions treated by Yang-Tyree above are not applicable here. Fortunately, Keller also considered
a pressurized gas bubble suspended in a closed fluid container [9] for which he proved that the
bubble will still shrink in size as it dissolves, but in this case will reach an equilibrium state having
non-zero radius. This behavior is contrary to that observed above in experiments on excised maple
branches, and so bears careful consideration.

To investigate the ability of our model to capture Keller’s results for a closed container, we
performed several simulations with bubbles of various sizes in both fiber and vessel. We start
with a scenario in which the fiber bubble takes up 50% of the fiber volume and the vessel bubble
only 10%, corresponding to sgi(0) = Rf/

√
2 ≈ 0.7Rf and r(0) = Rv/

√
10 ≈ 0.3Rv. Based on

the discussion of initial conditions in Section 3.7, the gas in the vessel is initially at atmospheric
pressure (100 kPa) while that in the fiber is twice as large (200 kPa). The resulting dynamics
for the pressures and bubble radii are shown in Figure 4.2, from which we observe that the fiber
bubble grows in size while the vessel bubble shrinks, until both reach an equilibrium state at a time
of roughly t = 40 seconds. Figure 4.2(a) shows shows that the system approaches an equilibrium
state in which the water pressure in the two compartments is equal (at approximately 155 kPa).
This is clearly consistent with (3.43) since there can be no flux across the porous cell wall at the
equilibrium state, which requires that p̄fw = p̄gw (remembering also that c̄vs = 0). The plots show
that the gas and water pressures vary inversely with the radii as expected, and the piecewise linear
dependence of temperature on position in equations (3.50)–(3.53) is evident in Figure 4.2(d).

The plot of gas pressure shows a decrease in pfg over time as the fiber bubble expands and
a corresponding decrease in pvg as the vessel bubble is compressed. This behavior is consistent
with Keller’s results for bubbles in a closed system, and also captures the transfer of pressure from
fiber to vessel that we would expect in sap exudation. It is important to note that the increase
in vessel water pressure from roughly 90 to 155 kPa (see Figure 4.2(a)) is close to the upper limit
of the range of 30–60 kPa that is to be expected for positive pressures in maple according to [25].
Finally, we note that the magnitude of the pressure change in the fiber arising from dissolution of
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Fig. 4.2. Case 1 – base case: No ice, initial radii s(0) = 0.7Rf , r(0) = 0.3Rv , and pressure pfg (0) = 200 kPa.

gas is only 5 kPa, which is small relative to the other pressure differences between fiber and vessel;
consequently, dissolution has only a small effect on sap flow over this time scale.

The parameter value with the most uncertainty is the initial value of vessel bubble radius,
and so we focus next on the effect of reducing r(0) in Figure 4.3. As long as r(0) is greater than
approximately 0.2Rv, we observe behavior similar to the earlier simulations in Figure 4.2 in that
the fiber gas bubble expands, driving water through the cell wall and hence compressing the gas
in the vessel. However, when r(0) = 0.2Rv the vessel gas bubble dissolves entirely, causing the gas
pressure to become unbounded as r → 0 owing to the air/water surface tension term in (3.36).
At the precise moment when the vessel bubble disappears, the model breaks down because there
is no further transfer of pressure between fiber and vessel, nor is there any flow of sap through
the fiber/vessel wall. This point actually corresponds to a terminal steady state of the system,
and in our computations we have found it necessary to specify a very small threshold value of the
bubble radius below which we halt the simulation. The collapsing vessel bubble case r(0) = 0.2Rv

is illustrated in more detail in the plots in Figure 4.4.

The dissolution of gas in the vessel has an intriguing connection with the phenomenon of
embolism repair [33], in which gas bubbles within the vessel that could potentially hinder sap
transport are known to dissolve during the spring thaw. The physical mechanism underlying
embolism repair is still not fully understood, and has implications for a wide range of other tree
species; hence, a more detailed study of bubble dissolution as relates to embolism would form a
fascinating avenue for future research.

Since pfg (0) = 200 kPa is at the upper end of the range of fiber gas pressures we would expect

in actual trees, we next consider the effect of varying pfg (0) over the range [100, 200] kPa. As
seen in Figure 4.5, the qualitative behavior is similar until the initial fiber gas pressure approaches
the atmospheric level in the vessel; for pfg (0) low enough, the dynamics are reversed in the sense
that the fiber bubble shrinks and the vessel bubble expands. As seen in the detailed plots for
pfg(0) = 100 kPa in Figure 4.6, the fiber and vessel again equilibrate at a state where the water
pressures are equal, although in this case the level of pw ≈ 75 kPa is much lower than that
observed in the base case. Clearly, when the fiber begin at lower pressure, then the tree is less able
to pressurize the vessel sap; furthermore, the fiber compartment must be above some threshold
pressure for there to be any pressure transfer from fiber to vessel that is consistent with exudation.
In fact, if the initial fiber gas pressure and radius are both small enough, then it is the gas

in the fiber that dissolves entirely. Although this situation is not likely to occur in practice, we
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Fig. 4.3. Case 1 – varying r(0): No ice, initial radius s(0) = 0.7Rf , and pressure pfg (0) = 200 kPa.
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Fig. 4.4. Case 1 – collapsing vessel bubble: No ice, initial radii s(0) = 0.7Rf , r(0) = 0.2Rv , and pressure

pfg (0) = 200 kPa. Here, the initial vessel bubble is so small that it dissolves entirely.
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Fig. 4.5. Case 1 – varying pfg (0): No ice, initial radii s(0) = 0.7Rf , r(0) = 0.3Rv .
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Fig. 4.6. Case 1 – reduced fiber pressure: No ice, initial radii s(0) = 0.7Rf and r(0) = 0.3Rv , and pressure

pfg (0) = 100 kPa.
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have nonetheless included a simulation with pfg(0) = 100 kPa and s(0) = 0.25Rf in Figure 4.4 to
illustrate this point.
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Fig. 4.7. Case 1 – collapsing fiber bubble: No ice, initial radii s(0) = 0.25Rf , r(0) = 0.4Rv , and pressure

pfg (0) = 100 kPa. The fiber bubble radius and pressure are initially so small in this case that the fiber bubble
dissolves entirely.

4.2. Case 2: No ice, with osmosis. For the next round of simulations, we introduce
osmotic effects arising from the presence of sucrose in the vessel, and still maintain our focus
on the effect of porous flow and gas dissolution by assuming all sap is in the liquid phase. The
vessel sap is taken to contain 2% sucrose by mass (with 0% in the fiber), but otherwise the initial
conditions are similar to Case 1.

The first simulation with r(0) = 0.3Rv, pvg(0) = 100 kPa and pfg (0) = 200 kPa is displayed
in Figure 4.8 and should be compared with Figure 4.2 (base case, without osmosis). Osmotic
pressure has a relatively small impact on the fiber bubble dynamics, with the fiber radius being
only slightly smaller and the equilibrium water pressure dropping from 155 kPa to just under
150 kPa. In contrast, there is a major change in the vessel bubble evolution, with the equilibrium
radius dropping to roughly half that of the base case. The source of the difference is evident from
the pressure plots: the initial vessel water pressure is nearly 140 kPa lower than the base case in
Figure 4.2(a) owing to the osmotic pressure, and the equilibrium vessel gas pressure increases by
roughly the same amount.

Maintaining the fiber bubble at pressure pfg (0) = 100 kPa, we next draw comparisons with
Figure 4.3 which varied the vessel bubble radius over values r(0) = {0.2, 0.25, 0.3, 0.4}Rv. From
the summary of results shown in Figure 4.9, we see that the presence of osmosis enhances the flow
from fiber to vessel and leads to a much larger pressure increase in the vessel sap. The smallest
vessel gas bubble with r(0) = 0.2 disappears sooner in the presence of osmosis, which is to be
expected.

A more insightful comparison is afforded by reducing the fiber gas pressure to pfg (0) = 100 kPa,
and comparing Figure 4.10 to the corresponding case without osmosis in Figure 4.6 (where we
observed a reversed sap flow, from vessel to fiber). Clearly, osmotic effects act to return the sap
dynamics to “normal,” with water now being driven from fiber to vessel. Except for the shift
in equilibrium pressures, the qualitative solution behavior is now consistent with the base case
simulation in Figure 4.2. Consequently, our model demonstrates that osmotic pressures owing to
sucrose in the vessel can provide a mechanism for enhancing sap exudation, even when the gas
pressure in the fiber is as low as that in the vessel. In this respect, our model is consistent with
the hypothesis of Tyree [26] that claims osmosis prevents gas bubble dissolution in the fiber and
sustains sap exudation pressures over longer time periods.

4.3. Case 3: Milburn–O’Malley model (with ice, no osmosis). We next test Milburn
and O’Malley’s hypothesis for sap exudation that includes the effects of melting ice and gas disso-
lution, but ignores osmosis. We restrict ourselves to the time period over which ice is present, so
that gas in the fiber is isolated from the water phase by the frozen ice layer and hence gas disso-
lution occurs only in the vessel (the long-time dynamics after the ice layer melts are considered in
Case 5). Furthermore, gas–water interfacial tension plays no role in the fiber in this case, so that
the pressure of the melted liquid adjacent to the fiber wall is simply equal to the gas pressure.
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Fig. 4.8. Case 2 – base case with osmosis: No ice, with osmosis, initial radii s(0) = 0.7Rf , r(0) = 0.3Rv , and

pressure pfg (0) = 200 kPa.
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Fig. 4.9. Case 2 – varying r(0): No ice, with osmosis, initial radius s(0) = 0.7Rf , and pressure pfg (0) = 200 kPa.

In Figure 4.11, we present the simulation results using initial conditions sgi = 0.7Rf , swi = Rf ,
r(0) = 0.3Rv, pfg (0) = 200 kPa and pvg(0) = 100 kPa, which can be compared with the base case
depicted in Figure 4.2. Until a time of roughly 40 s, the qualitative features of the two solutions
are similar, with the water pressure decreasing in the fiber and increasing in the vessel until they
equilibrate at some intermediate value. Over this time period, the fiber bubble radius increases
smoothly from the initial 2.45 µm to roughly 2.6 µm, and the motion of the vessel bubble (not
shown) is also similar to that of the base case. There is, however, a significant difference in the
gas and water pressures owing to the absence of surface tension.

After the initial rapid equilibration phase, the two water pressures remain equal and experience
a gradual decrease over a much longer time scale. This slow adjustment in pressure is due to
phase change and is attributed to the roughly 10% difference in density between water and ice.
The ice/water interface siw(t) has a roughly linear variation in time according to Figure 4.11(c),
which should be contrasted with the

√
t dependence that typically arises in Stefan problems; this

discrepancy is due to the fact that sap outflow through the fiber wall dominates the interface
motion. The intersection of the sgi and siw curves near t ≈ 2000 s represents the time when the
ice layer disappears. Our main conclusion from these results is that even when ice is present, the
vessel compartment is pressurized by the fiber, with the main difference (comparing Figures 4.2
and 4.11) being that the vessel sap pressure is higher because of the missing interfacial tension
force.

A final series of simulations is then performed in which the initial vessel bubble radius is varied
over the range r(0) = {0.2, 0.25, 0.3, 0.4}Rv. Figure 4.12 shows that the smallest bubble dissolves
entirely within approximately 10 seconds, after which the transfer of pressure from fiber to vessel
stops. In all other cases, the fiber and vessel compartments equilibrate over a time scale of roughly
2 hours.
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Fig. 4.10. Case 2 – reduced fiber pressure: No ice, with osmosis, initial radii s(0) = 0.7Rf , r(0) = 0.3Rv , and

pressure pfg (0) = 100 kPa.
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Fig. 4.11. Case 3 – base case with ice: Milburn–O’Malley scenario, no osmosis. Initial radii are sgi(0) =

0.7Rf , siw = Rf , r(0) = 0.3Rv , and pressure pfg (0) = 200 kPa.

4.4. Case 4: Full model, with ice and osmosis. In this section, we simulate the full
model including ice and osmosis, beginning again with the base case. The solution plots displayed
in Figure 4.13 should be compared with the Milburn–O’Malley simulation in Figure 4.11, which
differs only in the lack of osmosis. The two sets of results are qualitatively similar, there being
slight changes in the water pressure and bubble radii owing to the inclusion of osmotic pressure.
Consistent with the ice-free results in Cases 1 and 2, the vessel gas pressure is increased by an
amount roughly equal to the osmotic pressure Π = csRT ≈ 132 kPa.

If the initial vessel bubble radius is decreased slightly from 0.30Rv to 0.29Rv, then the vessel
bubble is no longer unable to equilibrate with the fiber and dissolves completely as shown in
Figure 4.14. This is consistent with the other results in Figures 4.4 and 4.9, except that the extra
osmotic pressure in the vessel causes the gas to disappear at larger values of r(0). When viewed
in the context of embolism recovery, this is evidence that suggests osmosis can enhance the ability
of the tree to recover from embolism.

A series of simulations for different values of the initial vessel bubble radius are reported in
Figure 4.15, which shows a similar outcome as in Case 3. The main difference is that the bubbles
with radii r(0) = 0.2Rv and 0.25Rv both dissolve completely, which is further evidence that osmosis
enhances the effect of exudation and makes the vessel bubbles more likely to collapse.

4.5. Case 5: Long-time behavior after ice melts completely. The purpose of this final
set of simulations is to study the behavior over the longer term once the ice is totally melted, and
to demonstrate that our approach is capable of computing through the disappearance of the ice
layer and the corresponding change in the governing equations. We present results for a few choices
of parameters considered in the previous section (Case 4) and emphasize that until the time that
the ice melts, the plots are identical. Our main observation is that after the ice disappears, the
solution dynamics exhibit a rapid equilibration to a constant equilibrium state that is consistent
with what we saw earlier in Case 2 (no ice, with osmosis).

Simulations are shown in Figures 4.16 and 4.17 for two values of vessel radius, r(0) = 0.3 and
0.6, that can be compared with results in Figure 4.13 and 4.15. At the instant the ice layer melts
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(a) Vessel bubble radius (b) Vessel water pressure
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Fig. 4.13. Case 4 – base case with ice and osmosis: Initial radii sgi(0) = 0.7Rf , r(0) = 0.3Rv , and pressure

pfg (0) = 200 kPa.

away, the water pressures undergo a sudden transition in which pfw and pvw drop sharply and then
rapidly equilibrate to a new constant value. This pressure discontinuity arises from the sudden
appearance of the surface tension term in equation (3.46), when the ice layer vanishes and the fiber
sap comes into contact with the gas. We emphasize here that the numerical algorithm handles
the discontinuity and change in governing equations easily and without introducing any spurious
oscillations or other non-physical effects.

After the jump in water pressure, there is a rapid but smooth variation in the radii and gas
pressure as the system equilibrates (although in the case when r(0) = 0.3Rv the change in gas
pressure is too small to be seen on this scale). Otherwise, the behavior after the loss of ice is
analogous to the earlier ice-free simulations.

In reality, we would expect to see a rapid but smooth variation in liquid surface tension as the
disappearing ice layer transitions through a “mushy region” where both ice and water coexist [?].
Including this additional level of detail would not have a major effect on our solution, but it could
form the basis for an interesting future study of the detailed structure of the transition layer.

5. Conclusions and future work. The aim of this work was to develop a detailed mathe-
matical model that captures the physical effects – heat and mass transport, gas dissolution, surface
tension, osmosis and phase change – that are believed to play a significant role in sap exudation
in maple trees. In particular, we were interested in investigating two competing hypotheses for
sap exudation based on a model of Milburn–O’Malley (without osmosis) [12] and another of Tyree
(with osmosis) [26]. The model focuses on the cellular scale and the transfer of pressure between
two main xylem components: fibers and vessels. We derived a coupled system of nonlinear, time-
dependent, differential-algebraic equations, which we solved using MATLAB. Extensive numerical
simulations were performed that uncovered the following:

• It is necessary to include the effect of gas bubbles in the vessel sap in order to allow a
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Fig. 4.14. Case 4 – collapsing vessel bubble: With ice and osmosis, initial radii sgi(0) = 0.7Rf , r(0) = 0.29Rv ,

and pressure pfg (0) = 200 kPa.
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Fig. 4.16. Case 5 – base case with ice and osmosis: Long-time behavior with initial radii sgi(0) = 0.7Rf ,

r(0) = 0.3Rv, and pressure pfg (0) = 200 kPa.
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Fig. 4.17. Case 5 – larger vessel bubble: With ice and osmosis, initial radii sgi(0) = 0.7Rf , r(0) = 0.6Rv ,

and pressure pfg (0) = 200 kPa.
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transfer of stored pressure in the fibers to the vessel sap. This gas in the vessels was not
explicitly mentioned by either Milburn–O’Malley or Tyree.

• Taking parameter values consistent with data in the literature, our model captures positive
vessel pressures provided that the gas in the fiber is sufficiently compressed during the
previous year’s freezing phase. The observed increase in vessel sap pressure lies in the
range of 30–60 kPa that is consistent with experimental values reported in the literature
for maple sap exudation.

• For a wide range of parameters, and provided the vessel gas content is low enough, the fibers
are able to completely dissolve the gas bubbles within the vessel sap. This is consistent
with the phenomenon of embolism repair that is known to occur in maple as well as other
hardwood species.

• Reasonable exudation pressures are obtained both with and without osmosis. One impact
of including osmotic effects is to increase slightly the threshold vessel bubble size below
which gas in the vessel gas dissolves entirely; in this respect, our model suggests that
osmosis may enhance embolism repair. The second main impact of osmosis is to lessen the
likelihood that the fiber gas bubble collapses, which enhances the ability to exude sap.

This paper can only be considered as a preliminary study of sap exudation because the com-
parisons and conclusions we have drawn so far are mainly qualitative. More detailed comparisons
with experimental data in the literature are currently underway to further validate the model, and
will form the basis of a future publication. There are a number of other specific areas that we
believe would provide fruitful avenues for future research:

• The long-time behavior pictured in Figures 4.16 and 4.17 suggests that this problem is
ripe for a multi-layer asymptotic analysis in which the solution is divided into two pieces:
a linear solution, matched to initial conditions via a boundary layer on the left; and a
constant equilibrium state that is matched across an interior layer to the linear solution.

• The predictive power of this model would be strengthened with better estimates of two
parameters: the gas content in the vessel, and the initial pressure in the fiber. We will
perform a more extensive search of the literature and focus in particular on data from
studies of embolism. In conjunction with this effort, we believe that our model (with only
minor modifications) could also be applied to study the phenomenon of embolism repair
coinciding with the spring thaw [33].

• The conditions under which the maple tree freezes at the end of the previous season are
known to have a significant impact on sap exudation during the following spring. To study
this process, we could run our model “in reverse” to study the cooling sequence in the
Milburn–O’Malley model (steps 1–4 in Figure 2.2).

• We are currently developing a macroscopic tree-level model, based on the 1D model of
Chuang et al. [3] that uses Richards’ equation to capture sap flow in the porous xylem.
In order to apply this work to the study of exudation, we require solution-dependent
transport coefficients that will be derived from the microscopic cell-level model derived in
the current paper using an up-scaling procedure.
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