
ar
X

iv
:1

20
6.

29
55

v2
  [

m
at

h.
C

O
] 

 9
 J

ul
 2

01
3

Density theorems for intersection graphs of t-monotone curves

Andrew Suk∗

September 23, 2021

Abstract

A curve γ in the plane is t-monotone if its interior has at most t− 1 vertical tangent points.
A family of t-monotone curves F is simple if any two members intersect at most once. It is
shown that if F is a simple family of n t-monotone curves with at least ǫn2 intersecting pairs
(disjoint pairs), then there exists two subfamilies F1, F2 ⊂ F of size δn each, such that every
curve in F1 intersects (is disjoint to) every curve in F2, where δ depends only on ǫ. We apply
these results to find pairwise disjoint edges in simple topological graphs with t-monotone edges.

1 Introduction

Given a collection of objects C in the plane, the intersection graph G(C) has vertex set C and two
objects are adjacent if and only if they have a nonempty intersection. Intersection graphs have
recently received a lot of attention due to its applications in VLSI design [11], map labeling [1, 3],
graph drawing [7, 9, 21, 23], and graph theory [12]. Over the past several decades, many researchers
have shown that intersection graphs of certain geometric objects, such as of segments, chords of
a circle, axis parallel rectangles, etc., have very strong properties (see [10, 4, 22, 7]). The aim of
this paper is to establish density-type theorems for intersection graphs of t-monotone curves in the
plane.

A curve in the plane is the image of a smooth injective function f : I → R
2, whose domain is a

closed interval I ⊂ R. For integer t ≥ 1, a curve γ in the plane is t-monotone,1 if its interior has at
most t− 1 vertical tangent points. In 2001, Pach and Solymosi proved the following two theorems.

Theorem 1.1 ([16]). Let F be a family of n segments in the plane with at least ǫn2 intersecting
pairs. Then there exists a δ that depends only on ǫ, and two subfamilies F1, F2 ⊂ F , such that
|F1|, |F2| ≥ δn, and every segment in F1 intersects every segment in F2.

Theorem 1.2 ([16]). Let F be a family of n segments in the plane with at least ǫn2 disjoint
pairs. Then there exists a δ that depends only on ǫ, and two subfamilies F1, F2 ⊂ F , such that
|F1|, |F2| ≥ δn, and every segment in F1 is disjoint to every segment in F2.

These theorems were later generalized by Alon et al. to semi-algebraic sets in R
d [2], and

by Basu [5] to definable sets belonging to some fixed definable family of sets in an o-minimal
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1A 1-monotone curve is often referred to as x-monotone. Every t-monotone curve can be decomposed into t

1-monotone curves.
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structure. In all three papers [16], [2], [5], the authors only considered geometric objects with
bounded or fixed description complexity, that is, each geometric object can be encoded as a point
in R

q where q = q(d). Previously, there were no known generalizations of Theorem 1.2 to geometric
objects with large complexity.

Our main result generalizes Theorems 1.1 and 1.2 to t-monotone curves, which can have arbi-
trarily large complexity. We say that a family of curves F is simple if any two members intersect
at most once and no two curves are tangent, i.e., if two curves have a common interior point, they
must properly cross at that point.

Theorem 1.3. Let F be a simple family of n t-monotone curves in the plane with at least ǫn2

intersecting pairs. Then there exists a constant ct that depends only on t, and two subfamilies
F1, F2 ⊂ F , such that |F1|, |F2| ≥ ǫctn, and every curve in F1 intersects every curve in F2.

Theorem 1.4. Let F be a simple family of n t-monotone curves in the plane with at least ǫn2

disjoint pairs. Then there exists a constant ct that depends only on t, and two subfamilies F1, F2 ⊂
F , such that |F1|, |F2| ≥ ǫctn, and every curve in F1 is disjoint to every curve in F2.

Interestingly, Theorem 1.4 does not hold if one drops the simple condition. That is, there exists a
family F of n 1-monotone curves in the plane, with at least n2/4 disjoint pairs, such that for any
two subsets F1, F2 ⊂ F of size Ω(log n) each, there exists a curve in F1 that crosses a curve in F2

[15].
While Theorem 1.4 is a new result, Theorem 1.3 is a special case of a theorem due to Fox, Pach,

and Tóth. In [7], Fox, Pach, and Tóth generalized Theorem 1.1 to families of curves in the plane
with the property that any two curves intersect at most a constant number of times. Let us remark
that our proof is conceptually simpler.

1.1 Applications to topological graphs

A topological graph is a graph drawn in the plane such that its vertices are represented by points
and its edges are represented by nonself-intersecting arcs connecting the corresponding points.
The arcs are allowed to intersect, but they may not intersect vertices except for their endpoints.
Furthermore, no two edges are tangent, i.e., if two edges share an interior point, then they must
properly cross at that point in common. A topological graph is simple if every pair of its edges
intersect at most once. Two edges of a topological graph cross if their interiors share a point, and
are disjoint if they neither share a common vertex nor cross.

Over 40 years ago, Conway asked what is the maximum number of edges in a thrackle, that is,
a simple topological graph with no two disjoint edges. He conjectured that every n-vertex thrackle
has at most n edges. Lovász, Pach, and Szegedy [13] were the first to establish a linear bound,
proving that all such graphs have at most 2n edges. Despite recent improvements by Cairns and
Nikolayevsky [6] and Fulek and Pach [9], this conjecture is still open. In the special case that
the edges are drawn as 1-monotone curves, Pach and Sterling settled Conway’s conjecture in the
affirmative [17].

Determining the maximum number of edges in a simple topological graph with no k pairwise
disjoint edges, seems to be a difficult task. Pach and Tóth [19] showed that every simple topological
graph with no k pairwise disjoint edges has at most O(n log4k−8 n) edges. They conjectured that
for every fixed k, the number of edges in such graphs is at most O(n). A linear bound was obtained
by Pach and Töröcsik [18], in the special case that the edges are drawn as 1-monotone curves (see
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also [23]). As an application of Theorem 1.4, we improve (for large k) the Pach and Tóth bound,
in the special case that the edges are drawn as t-monotone curves (where t is independent of n).

Theorem 1.5. Let G = (V,E) be an n-vertex simple topological graph with edges drawn as t-
monotone curves. If G does not contain k pairwise disjoint edges, then |E(G)| ≤ n(log n)c

′

t
log k,

where c′t depends only on t.

In 2009, Fox and Sudakov [8] showed that all dense simple topological graphs have at least
Ω(log1+δ n) pairwise disjoint edges, where δ ≈ 1/40. As an immediate Corollary to Theorem 1.5,
we improve this lower bound (to nearly polynomial) in the special case that the edges are drawn
as t-monotone curves

Corollary 1.6. Let G = (V,E) be an n-vertex simple topological graph with edges drawn as t-
monotone curves. If |E(G)| ≥ ǫn2, then G has at least nδ/ log logn pairwise disjoint edges, where δ
depends only on ǫ and t.

We note that Suk recently showed that every complete n-vertex simple topological graph has
at least Ω(n1/3) pairwise disjoint edges [21].

2 A two-color theorem

In this section, we will prove the following two-color theorem.

Theorem 2.1. Given a family B of n blue t-monotone curves and a family R of n red t-monotone
curves in the plane such that B ∪ R is simple, there exist a c′′t > 0 that depends only on t, and
subfamilies B′ ⊂ B, R′ ⊂ R, such that |B′|, |R′| ≥ n/c′′t , and either each curve in B′ intersects
every curve in R′, or each curve in B′ is disjoint to every curve in R′.

In what follows, we will prove a sequence of lemmas that will lead to the proof of Theorem 2.1.
First we need some definitions. Let F be a simple family of curves in the plane. For γ ∈ F , the
endpoint with the left (right) most x-coordinate we refer to as the left (right) endpoint of γ. By
a slight perturbation, we can assume that all endpoints have unique x-coordinates, no curve has a
vertical inflection point, no endpoint of one curve lies on another curve, and no three curves in F
have a nonempty intersection. For any simply connected region ∆ ⊂ R

2, we denote the boundary
of ∆ as bd(∆). For the rest of the paper, the term region will always mean a simply connected
region.

A point q is called a critical point of γ ∈ F , if q is an endpoint of γ or if γ has a vertical
tangent at q. Now given a subset S ⊂ F , the vertical decomposition of the arrangement of S is
constructed by subdividing the cells of the arrangement A(S) =

⋃

γ∈S γ into trapezoid-like regions
∆1,∆2, ...,∆s, by drawing a vertical line in both directions through every intersection point of a
pair of curves and through every critical point of a curve in S until it hits some element in S. We
let T (S) be the vertical decomposition of S, and for simplicity we will call the elements in T (S)
trapezoids. See Figure 1. Note that a trapezoid may be unbounded. Let Reg =

⋃

S⊂F T (S) be the
set of all trapezoids that can ever appear in the vertical decomposition for some S ⊂ F . For each
trapezoid ∆ ∈ Reg, let D(∆) be the set of curves in F that intersects the boundary of ∆ but does
not intersect the interior of ∆. One can easily check that |D(∆)| ≤ 4 (see [14]). Finally, we let
I(∆) denote the set of curves of F intersecting the interior of ∆.
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∆1 ∆2

Figure 1: Trapezoids ∆1 and ∆2. Notice that |D(∆1)| = 2 and |D(∆2)| = 3.

Lemma 2.2. Given a simple family F of n t-monotone curves and a set P of n points in the
plane with no point in P lying on any curve from F , there exists a constant C1, subsets F ′ ⊂ F
and P ′ ⊂ P of size n/(C1t log

2 t) each, and a trapezoid ∆, such that P ′ ⊂ ∆ and no curve in F ′

intersects the interior of ∆.

Proof. Let S be a random subset of F by selecting each curve in F independently with probability
p = r/n. Notice that for any subset S ⊂ F , |T (S)| ≤ C2(|S|

2 + |S|t) for some constant C2, since F
is simple. An easy calculation shows that E[|S|t] = rt and E[|S|2] ≤ r2 + r, and thus

E[|T (S)|] ≤ C2(r
2 + r + rt) ≤ 3C2r

2t.

For ∆ ∈ Reg, we let p(∆) denote the probability that ∆ appears in the vertical decomposition
of S. Since ∆ appears if and only if all curves of D(∆) are selected into S and none of I(∆) is
selected, we have

p(∆) = p|D(∆)|(1− p)|I(∆)|.

We call a trapezoid ∆ ∈ Reg bad if |I(∆)| ≥ n/2, otherwise it is good. Let Bad = {∆ ∈ Reg :
|I(∆)| ≥ n/2}, and let X denote the number of bad trapezoids in the vertical decomposition of S.
Since |D(∆)| ≤ 4, and any four curves define at most 20t trapezoids, we have

E[X] =
∑

∆∈Bad

p|D(∆)|(1− p)|I(∆)| ≤
∑

1≤i≤4

20t

(

n

i

)

( r

n

)i (

1−
r

n

)n/2
.

For r = C3 log t, where C3 is a sufficiently large constant and t ≥ 2, we have

E[X] ≤ 80tr4e−r/2 = 80t(C3 log t)
4t−C3/2 ≤

1

3
.

Hence

E

[

1

9C2r2t
|T (S)| +X

]

≤
2

3
.

By setting C1 = 9C2(C3)
2, there exists a sample S such that

|T (S)| ≤ 9C2r
2t = 9C2(C3 log t)

2t = C1t log
2 t

and X = 0. By the pigeonhole principle, there exists a good trapezoid ∆ ∈ T (S) that contains at
least n/(C1t log

2 t) points from P , and at least n/2 curves from F do not intersect the interior of
∆. This completes the proof.

4



Lemma 2.3. Given a family R of n red t-monotone curves and a family B of n blue t-monotone
curves in the plane such that R ∪B is simple, there exists a constant C4, subsets R′ ⊂ R,B′ ⊂ B
of size n/(C4t log

2 t)4 each, trapezoids ∆bl,∆br, and regions ∆rl,∆rr ⊂ R
2, such that

1. the left endpoint of each blue curve in B′ lies inside ∆bl,

2. the right endpoint of each blue curve in B′ lies inside ∆br,

3. the left endpoint of each red curve in R′ lies inside ∆rl,

4. the right endpoint of each red curve in R′ lies inside ∆rr,

5. ∆bl ∪∆br is disjoint to ∆rl ∪∆rr, and

6. no curve in R′ intersects ∆bl ∪∆br, and no curve in B′ intersects ∆rl ∪∆rr.

Proof. Let Pbl be the set of left endpoints among the blue curves in B, and apply Lemma 2.2 to
the red t-monotone curves R and the point set Pbl. Then we obtain subsets P ′

bl ⊂ Pbl, R1 ⊂ R, and
a trapezoid ∆bl, such that |P ′

bl|, |R1| ≥ n/(C1t log
2 t), P ′

bl ⊂ ∆bl, and no curve in R1 intersects the
interior of ∆bl. Let B1 ⊂ B be the blue curves whose left endpoint belongs to P ′

bl, and discard all
curves not in B1 ∪R1. See Figure 2(a).

Let Pbr be the right endpoint of the curves in B1, and apply Lemma 2.2 to Pbr and R1.
Then again, we obtain subsets P ′

br ⊂ Pbr, R2 ⊂ R1, and a trapezoid ∆br, such that |P ′
br|, |R2| ≥

n/(C1t log
2 t)2, and no curve in R2 intersects the interior of ∆br. Let B2 ⊂ B1 be the blue curves

whose right endpoint belongs to P ′
br, and discard all curves not in B2 ∪R2. See Figure 2(b).

We repeat this entire process to the curves in B2 with the endpoints of R2, and obtain subsets
B3 ⊂ B2, R3 ⊂ R2, trapezoids ∆bl,∆br,∆3,∆4, such that

1. |B3|, |R3| ≥ n/(C1t log
2 t)4,

2. the left endpoint of each blue curve in B3 lies inside ∆bl,

3. the right endpoint of each blue curve in B3 lies inside ∆br,

4. the left endpoint of each red curve in R3 lies inside ∆3,

5. the right endpoint of each red curve in R3 lies inside ∆4, and

6. no curve in R3 intersects ∆bl ∪∆br, and no curve in B3 intersects ∆3 ∪∆4.

See Figure 2(c). Now we will find regions ∆rl ⊂ ∆3 and ∆rr ⊂ ∆4 that satisfy the disjointness
property (property 5). Let Prl be the set of left endpoints of R3. Recall that regions ∆bl,∆br,∆3,
and ∆4 are trapezoids. Since R ∪B is simple, this implies that

R
2 \ (bd(∆3) ∪ bd(∆bl ∪∆br))

has at most (say) 80 connected components. Since no point from Prl lies inside ∆bl ∪∆br, by the
pigeonhole principle there exists a simply connected region ∆rl that contains at least n/(3C1t log

2 t)4

points of Prl, and ∆rl is disjoint to ∆bl ∪∆br. Let P
′
rl ⊂ Prl be the points that lie inside ∆rl, and

let R4 be the red curves whose left endpoints are in P ′
rl.
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Figure 2: Finding regions ∆bl,∆br,∆3,∆4.

We repeat this process to find region ∆rr ⊂ ∆4 and R5 ⊂ R4, such that |R5| ≥ n/(9C1t log
2 t)4,

∆rr contains the right endpoints of R5, and ∆rr is disjoint to ∆bl ∪∆br. By letting C4 = 9C1, the
statement of the lemma follows.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. We start by applying Lemma 2.3, to obtain subsets R1 ⊂ R and B1 ⊂ B,
trapezoids ∆bl,∆br, and regions ∆rl,∆rr, with the properties described in Lemma 2.3. Suppose
at least |B1|/2 blue curves lie completely inside ∆bl ∪∆br. Then by property 6 in Lemma 2.3, all
of these blue curves must be disjoint to every red curve in R1, and we are done. Therefore, we
can assume that there exist B2 ⊂ B1 such that |B2| ≥ |B1|/2, and each blue curve in B2 does not
lie completely inside ∆bl ∪ ∆br. Fix a curve α ∈ B2, and let α′ be a subcurve of α that lies in
R
2 \ (∆bl ∪∆br) and has endpoints on bd(∆bl) and bd(∆br). See Figure 3(a). Now the proof falls

into several cases.

Case 1. Suppose that for at least |B2|/3 curves γ ∈ B2, regions ∆rl and ∆rr both lie in the same
cell in the arrangement

γ ∪ α′ ∪ bd(∆bl ∪∆br).

See Figure 3(b). Then each red curve β ∈ R1 intersects γ if and only if β intersects α′. Indeed, if β
intersects α′, then β must intersect γ in order to come back inside the cell (since R1 ∪B1 is simple
and β does not intersect ∆bl ∪ ∆br). Likewise, if β is disjoint to α′, then β must lie completely
inside of the cell. Since at least half of the red curves in R1 either intersect or are disjoint to α′,
the statement of the theorem follows.

Case 2. Suppose that for at least |B2|/3 curves γ ∈ B2, regions ∆rl and ∆rr lie in distinct cells in
the arrangement

γ ∪ α′ ∪ bd(∆bl ∪∆br),

and one of these cells is not incident to α′ (i.e., the cell is surrounded by γ and ∆bl ∪ ∆br). See
Figure 3(c). Then clearly every red edge in R1 must intersect γ, and the statement follows.

6



bl∆

br∆
α’

(a) Drawing of α
′. Note that ∆bl

and ∆br may or may not be dis-
joint.

bl∆

br∆
α’

∆
∆rl

rr

γ

(b) Both ∆rl and ∆rr lie in the
same cell.

bl∆

br∆
α’∆rl

∆rr
γ

(c) Here, ∆rl lies in a cell that is
not incident to α

′.

Figure 3: Drawing of α′, cases 1 and 2.

Therefore, we can assume that we are not in case 1 or 2. Hence there exists a subset B3 ⊂ B2

such that |B3| ≥ |B2|/3, and for each curve γ ∈ B2, regions ∆rl and ∆rr lie in distinct cells in the
arrangement

γ ∪ α′ ∪ bd(∆bl ∪∆br),

and both of these cells are incident to α′.

Case 3. Suppose that for at least |B3|/3 curves γ ∈ B3, in the arrangement

γ ∪ α′ ∪ bd(∆bl ∪∆br),

∆rl and ∆rr lie in distinct cells that share α′′ ⊂ α′ as a common side. See Figures 4(a) and 4(b).

bl∆

br∆

∆rr

α’

∆rl
γ

(a) Subcurve α
′′ drawn thick.

bl∆

br∆α’

∆rl
∆rrγ

(b) Subcurve α
′′ drawn thick.

Figure 4: Defining α′′.

Notice that α′′ is unique since R ∪ B is simple. Then each red curve β ∈ R1 intersects γ if
and only if β is disjoint to α′. Indeed, notice that one of these cells must be surrounded by α′′,
γ, ∆bl ∪∆br. Without loss of generality, assume that ∆rl lies in such a cell. Starting at ∆rl, each
curve β ∈ R1 must intersect either γ or α′′ in order to leave the cell. Suppose β first intersects α′′.
Then β must now be in the cell that ∆rr lies in since these cells share α′′ as a common side. Since
R ∪B is simple, β must remain the the current cell and, therefore, must be disjoint to γ.

Now if β crossed γ first, then β must be in the same cell as ∆rr. Indeed, otherwise β would
then cross α′ and either be in the same cell as ∆rl is in, or would be in a cell that is not adjacent
to α′′. Since R ∪B is simple, we have a contradiction in either case. Hence β is disjoint to α′.

Since at least of half of the red curves in R1 either intersect or are disjoint to α′, the statement
of the theorem follows.
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bl∆

α’

br∆

∆rl

∆rr

γ

(a) Case 4.

bl∆

br∆α’

∆rl

∆rr

γ

(b) Case 5.

Figure 5: Last two remaining cases.

Case 4. Suppose that for at least |B3|/3 curves γ ∈ B3, in the arrangement

γ ∪ α′ ∪ bd(∆bl ∪∆br),

∆rl and ∆rr lie in distinct adjacent cells not sharing α′ as a common side. See in Figure 5(a). Then
clearly, each red curve in R1 intersects γ since R ∪ B is simple, and the statement of the theorem
follows.

Case 5. Suppose that for at least |B3|/3 curves γ ∈ B2, in the arrangement

γ ∪ α′ ∪ bd(∆bl ∪∆br),

∆rl and ∆rr lie in distinct non-adjacent cells as in Figure 5(b). This is the final case. Then, clearly,
each red curve in R1 intersects γ since R∪B is simple, and the statement of the theorem follows.�

3 Proof of Theorems 1.3 and 1.4

The proof of Theorems 1.3 and 1.4 is now a standard application of Szemerédi’s regularity lemma
(see [14], [16]). Let us recall the weak bipartite regularity lemma.

Theorem 3.1 ([14]). Let G = (X1,X2, E) be a bipartite graph with parts X1 and X2 such that
|X1| = |X2| = n. Let c ≥ 2. If |E| ≥ ǫn2, then there exists subsets Y1 ⊂ X1, Y2 ⊂ X2 such that

1. |Y1| = |Y2| = ǫc
2

n, and

2. |E(Y1, Y2)| ≥ ǫ|Y1||Y2|, and

3. |E(Z1, Z2)| > 0 for any Zi ⊂ Yi, with |Zi| ≥ |Yi|/c for i ∈ {1, 2}.

Proof of Theorem 1.3. Let F be a simple family of n t-monotone curves with ǫn2 intersecting
pairs. Then by a random partition, we can partition F into two subfamilies F1, F2, such that
|F1|, |F2| ≥ n/3 and the number of pairs of curves, one from F1 and one from F2, that intersect is
at least ǫn2/2.

Set c = c′′t , where c′′t is defined in Theorem 2.1. Then by Theorem 3.1, there exist subsets
Y1 ⊂ F1, Y2 ⊂ F2, of size (ǫ/2)c

2

n/3 each, such that for any subsets Z1 ⊂ Y1, Z2 ⊂ Y2 with
|Zi| ≥ |Yi|/c for i ∈ {1, 2}, there must be a curve in Z1 that intersects a curve in Z2. By Theorem
2.1, there exists subsets Z1 ⊂ Y1, Z2 ⊂ Y2 such that every curve in Z1 intersects every curve in Z2,
and

8



|Zi| ≥
|Yi|

c
≥

(ǫ/2)c
2

3c
n ≥ ǫctn,

where ct depends only on t. �

Theorem 1.4 follows by replacing the word “intersect” with “disjoint” in the proof above.

4 Simple topological graphs with no k pairwise disjoint edges

As defined in [20], the odd-crossing number odd-cr(G) of a graph G is the minimum possible number
of unordered pairs of edges that cross an odd number of times over all drawings of G. The bisection
width of a graphG, denoted by b(G), is the smallest nonnegative integer such that there is a partition
of the vertex set V = V1 ∪̇V2 with 1

3 · |V | ≤ |Vi| ≤
2
3 · |V | for i = 1, 2, and |E(V1, V2)| = b(G). The

following lemma, due to Pach and Tóth, relates the odd-crossing number of a graph to its bisection
width.

Lemma 4.1 ([19]). There is an absolute constant c1 such that if G is a graph with n vertices of
degrees d1, . . . , dn, then

b(G) ≤ c1 log n

√

√

√

√odd-cr(G) +

n
∑

i=1

d2i .

Since all graphs contain a bipartite subgraph with at least half of its edges, Theorem 1.5 immediately
follows from the following theorem.

Theorem 4.2. Let G = (V,E) be an n-vertex simple topological bipartite graph with edges drawn as
t-monotone curves. If G does not contain k pairwise disjoint edges, then |E(G)| ≤ n(log n)c

′

t
log k,

where c′t is a constant that depends only on t.

Proof. We define f(n, k) to be the maximum number of edges in an n-vertex simple topological
bipartite graph with edges drawn as t-monotone curves, that does not contain k pairwise disjoint
edges. We will prove by induction on n and k that

f(n, k) ≤ n(log n)c
′

t
log k.

Note that f(n, k) ≤
(

n
2

)

, and by [9] f(n, 2) ≤ 1.43n. Now assume the statement is true for n′ < n
and k′ < k, and let G be an n-vertex simple topological bipartite graph with edges drawn as
t-monotone curves, which does not contain k pairwise disjoint edges. The proof falls into two cases.

Case 1. Suppose there are at least |E(G)|2/((2c1)
2 log6 n) disjoint pairs of edges in G. By Theorem

1.4, there exist subsets E1, E2 ⊂ E(G) such that |E1|, |E2| ≥ |E(G)|/(c log n)6ct, every edge in E1

is disjoint to every edge in E2, and c is an absolute constant. Since G does not contain k pairwise
disjoint edges, this implies that there exists an i ∈ {1, 2} such that |Ei| does not contain k/2
pairwise disjoint edges. Hence

|E(G)|

(c log n)6ct
≤ |Ei| ≤ f(n, k/2).

By the induction hypothesis, we have

9
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Figure 6: Redrawing procedure

f(n, k/2) ≤ n(log n)c
′

t
log(k/2) ≤ n(log n)c

′

t
log(k)−c′

t.

For sufficiently large c′t, we have |E(G)| ≤ n(log n)c
′

t
log(k).

Case 2. Suppose there are at most |E(G)|2/((2c1)
2 log6 n) disjoint pairs of edges in G. In what

follows, we will apply a redrawing technique that was used by Pach and Tóth [19]. Since G is
bipartite, let Va and Vb be its vertex class. By applying a suitable homeomorphism to the plane,
we can redraw G such that

1. the vertices in Va are above the line y = 1, the vertices in Vb are below the line y = 0,

2. edges in the strip 0 ≤ y ≤ 1 are vertical segments,

3. we have neither created nor removed any crossings.

Now we reflect the part of G that lies above the y = 1 line about the y-axis. Then erase the edges
in the strip 0 ≤ y ≤ 1 and replace them by straight line segments that reconnect the corresponding
pairs on the line y = 0 and y = 1. Note that our topological graph is no longer simple, and the
edges are no longer t-monotone. See Figure 6, and note that our graph is no longer simple.

Notice that if any two edges crossed in the original drawing, then they must cross an even
number of times in the new drawing. Indeed, suppose the edges e1 and e2 crossed in the original
drawing. Since G is simple, they share exactly 1 point in common. Let ki denote the number of
times edge ei crosses the strip for i ∈ {1, 2}, and note that ki must be odd. After we have redrawn
our graph, these k1 + k2 segments inside the strip will now pairwise cross, creating

(

k1+k2
2

)

crossing

points. Since edge ei will now cross itself
(ki
2

)

times, this implies that there are now

(

k1 + k2
2

)

−

(

k1
2

)

−

(

k2
2

)

(1)

crossing points between edges e1 and e2 inside the strip. One can easily check that (1) is odd
when k1 and k2 are odd. Since e1 and e2 had 1 point in common outside of the strip, this implies
that e1 and e2 cross each other an even number of times. Note that one can easily get rid of
self-intersections by making local modifications in a small neighborhood at these crossing points.

Hence, the odd-crossing number in our new drawing is at most the number of disjoint pair of
edges in the original drawing of G, plus the number of pair of edges that share a common vertex.
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Since there are at most
∑

v∈V (G)

d2(v) ≤ 2|E(G)|n

pairs of edges that share a vertex in G, this implies

odd-cr(G) ≤
|E(G)|2

(2c1)2 log
6 n

+ 2|E(G)|n.

By Lemma 4.1, there is a partition of the vertex set V = V1 ∪̇V2 with 1
3 · |V | ≤ |Vi| ≤

2
3 · |V | for

i = 1, 2 and

|E(V1, V2)| ≤ b(G) ≤ c1 log n

√

|E(G)|2

(2c1)2 log
6 n

+ 4n|E(G)|.

If |E(G)|2/((2c1)
2 log6 n) ≤ 4n|E(G)|, then we have |E(G)| ≤ n(log n)c

′

t
log k and we are done.

Therefore, we can assume

b(G) ≤ c1 log n

√

2|E(G)|2

(2c1)2 log
6 n

≤
|E(G)|

log2 n
.

Let |V1| = n1 and |V2| = n2. By the induction hypothesis we have

|E(G)| ≤ b(G) + n1(log n1)
c′
t
log k + n2(log n2)

c′
t
log k

≤ |E(G)|

log2 n
+ n(log(2n/3))c

′

t
log k

≤ |E(G)|

log2 n
+ n(log n− log(3/2))c

′

t
log k,

which implies

|E(G)| ≤ n(log n)c
′

t
log k (1− log(3/2)/ log n)c

′

t
log k

1− 1/ log2 n
≤ n(log n)c

′

t
log k.

5 Concluding Remarks

It would be interesting to see if one can remove the t-monotone condition in Theorem 1.4 and
Lemma 2.2.

Problem 5.1. Given a simple family F of n curves in the plane, and an n-element point set P
such that no point of P lies on a curve from F , does there exist a constant ǫ > 0, a region ∆ ⊂ R

2,
subsets F ′ ⊂ F,P ′ ⊂ P of size ǫn each, such that P ′ ⊂ ∆ and every curve in F ′ does not intersect
the interior of ∆?

We list two more unsolved problems related to this paper.
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Problem 5.2. Let G be an n-vertex simple topological graph with edges drawn as 2-monotone
curves. If G has no two disjoint edges, then does G have at most n edges? What if the edges are
drawn as 3-monotone curves?

Problem 5.3. Given a simple family F of n 2-monotone curves in the plane with no 3 pairwise
disjoint members, can one color the members in F with at most c colors, such that each color class
consists of pairwise crossing members?
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