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Abstract

In the constraint satisfaction problem (CSP) corresponding to a constraint language (i.e.,
a set of relations) Γ, the goal is to find an assignment of values to variables so that a given
set of constraints specified by relations from Γ is satisfied. The complexity of this problem
has received substantial amount of attention in the past decade. In this paper, we study the
fixed-parameter tractability of constraint satisfaction problems parameterized by the size of the
solution in the following sense: one of the possible values, say 0, is “free,” and the number of
variables allowed to take other, “expensive,” values is restricted. A size constraint requires that
exactly k variables take nonzero values. We also study a more refined version of this restriction:
a global cardinality constraint prescribes how many variables have to be assigned each particular
value. We study the parameterized complexity of these types of CSPs where the parameter
is the required number k of nonzero variables. As special cases, we can obtain natural and
well-studied parameterized problems such as Independent set, Vertex Cover, d-Hitting

Set, Biclique, etc.
In the case of constraint languages closed under substitution of constants, we give a complete

characterization of the fixed-parameter tractable cases of CSPs with size constraints, and we
show that all the remaining problems are W[1]-hard. For CSPs with cardinality constraints,
we obtain a similar classification, but for some of the problems we are only able to show that
they are Biclique-hard. The exact parameterized complexity of the Biclique problem is a
notorious open problem, although it is believed to be W[1]-hard.
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1 Introduction

In a constraint satisfaction problem (CSP) we are given a set of variables, and the goal is to find
an assignment of the variables subject to specified constraints. A constraint is usually expressed as
a requirement that combinations of values of a certain (usually small) set of variables belong to a
certain relation. In the theoretical study of CSPs, one of the key research directions has been the
complexity of the CSP when there are restrictions on the type of allowed relations [17, 7, 6, 5, 1].
This research direction has been started by the seminal Schaefer’s Dichotomy Theorem [28], which
showed that every Boolean CSP (i.e., CSP with 0-1 variables) restricted in this way is either solvable
in polynomial time or is NP-complete. An outstanding open question is the so called Dichotomy
conjecture of Feder and Vardi [12, 23], which suggests that the dichotomy remains true for CSPs
over any fixed finite domain. The significance of a dichotomy result is that it is very likely to
provide a comprehensive understanding of the algorithmic nature of the problem. Indeed, in order
to obtain the tractability part of such a conjecture, one needs to identify and understand all the
algorithmic ideas relevant for the problem.

Parameterized complexity [11, 14] investigates problem complexity in finer details than classical
complexity. Instead of expressing the running time of an algorithm as a function of the input size
n only, the running time is expressed as a function of n and a well-defined parameter k of the input
instance (such as the size of the solution k we are looking for). For many problems and parameters,
there is a polynomial-time algorithm for every fixed value of k, i.e., the problem can be solved in
time nf(k). In this case, it makes sense to ask whether there is an algorithm with running time
f(k) · nO(1), that is, whether the combinatorial explosion can be limited to the parameter k only.
Problems having algorithms with running time of this form are called fixed-parameter tractable
(FPT); it turns out that many well-known NP-hard problems, such as k-Vertex Cover, k-Path,
and k-Disjoint Triangles are FPT. On the other hand, the theory of W[1]-hardness suggests
that certain problems (e.g., k-Clique, k-Dominating Set) are unlikely to be FPT.

Investigating the fixed-parameter tractability is relevant only for those problems that can be
solved in polynomial time for every fixed value of k. For example, the canonical complete problems
of the W-hierarchy are (formula or circuit) satisfiability problems where the solution is required to
contain exactly k ones; clearly, such a problem is solvable in time nO(k), which is polynomial for
every fixed value of k. This leads us naturally to the study of Boolean CSP, where the goal is to
find a solution with exactly k ones.

The first attempt to study the parameterized complexity of Boolean CSP was made in [24].
If we consider 0 as a “cheap” value available in abundance, while 1 is “costly” and of limited
supply then the natural parameter is the number of 1’s in a solution. Boolean CSP asking for a
solution that assigns exactly k ones is known as the k-Ones problem (see, e.g. [10, 19]). Clearly, the
problem is polynomial-time solvable for every fixed k, as we can search through all assignments with
exactly k ones, but it is not at all obvious whether it is FPT. For example, it is possible to express
k-Vertex Cover (which is FPT) and k-Independent Set (which is W[1]-hard) as a Boolean
CSP. Therefore, characterizing the parameterized complexity of k-Ones requires understanding a
class of problems that includes, among many other things, the most basic parameterized graph
problems. It turned out that the parameterized complexity of the k-Ones problem depends on a
combinatorial property called weak separability in [24]. Assuming that the constraints are restricted
to a finite set Γ of Boolean relations, if every relation in Γ is weakly separable, then the problem
is FPT; if Γ contains even one relation violating weak separability, then the problem is W[1]-hard.
Another natural problem of this flavor is deciding whether there exists a solution with at most k
ones; however, this problem is always FPT, as it follows from Lemma 2.3 below even in a more
general case.
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There have been further parameterized complexity studies of Boolean CSP [21, 29, 22, 20], but
CSP’s with larger domains (i.e., where the variables are not Boolean) were not studied. In most
cases, we expect that results for larger domains are much more complex than for the Boolean case,
and usually require significant new ideas (compare e.g., Schaefer’s Theorem [28] with the 3-element
version [5]). The goal of the present paper is to generalize the results of [24] to non-Boolean
domains. First, we have to define what the proper generalization of k-Ones is if the variables
are not Boolean. One natural generalization assumes that there is a distinguished “cheap” value
0 and requires that in a solution there are exactly k nonzero variables. We will call this version
of the CSP a constraint satisfaction problem with size constraints and denote it by OCSP. In
another generalization of k-Ones, we have a cardinality requirement not only on the total number
of nonzero variables, but a separate cardinality requirement for each nonzero value restricting the
number of times this value is used: A mapping π : D \ {0} → N is given in the input, and it is
required that for each nonzero value d, exactly π(d) variables are assigned value d. In the CSP and
AI literature, requirements of this form are called global cardinality constraints [2, 3, 25, 9, 8, 15, 27]
and have been intensively studied. We will call this problem the constraint satisfaction problem
with cardinality constraints and denote it by CCSP. In both versions, the parameter is the number
of nonzero values required, that is, k for OCSP, and

∑

d∈D\{0} π(d) for CCSP. We investigate both
versions; as we shall see, there are interesting and unexpected differences between the complexity
of the two variants.

A natural minor generalization of CSPs is to allow the use of constants in the input, that is,
certain variables in the input can be fixed to constant values, or equivalently, the constant unary
relation {d} is allowed for every element d of the domain. Yet another equivalent way of formulating
this generalization is requiring that Γ is closed under substitution of constants. It is known that to
classify the complexity of the general CSP with respect to polynomial-time solvability, it suffices
to classify constraint languages closed under substitution of constants [7]. This motivates our
assumption that the constant relations are available for CSPs with cardinality and size constraints.
While there is no result similar to that from [7] for the versions of CSPs we study here (and thus this
assumption somewhat diminishes the generality of our results), this setting is still quite general
and at the same time more robust. Lots of technicalities can be avoided with this formulation.
For example, being able to substitute constants ensures that the decision and search problems are
equivalent: by repeatedly substituting constants and solving the resulting decision problems, we
can actually find a solution.

Is weak separability the right tractability criterion in the non-Boolean case? It is not difficult
to observe that the algorithm of [24] using weak separability generalizes for non-Boolean problems.
(In fact, we give a much simpler algorithm in this paper.) However, it is not true that only weakly
separable relations are tractable. It turns out that there are certain degeneracies and symmetries
that allow us to solve the problem even for some relations that are not weakly separable. To
understand these degenerate situations, we introduce the notion of multivalued morphisms, which
is a generalization of homomorphisms. While the use of algebraic techniques and homomorphisms
is a standard approach for understanding the complexity of CSPs [7], this notion is new and seems
to be essential for understanding the problem in our setting.

Results. For CSP with size constraints, we prove a dichotomy result:

Theorem 1.1. For every finite Γ closed under substitution of constants, OCSP(Γ) is either FPT
or W[1]-hard.

The precise tractability criterion (which is quite technical) is stated in Section 4. The algo-
rithmic part of Theorem 1.1 consists of preprocessing to eliminate degeneracies and trivial cases,
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followed by the use of weak separability. In the hardness part, we take a relation R having a coun-
terexample to weak separability, and try to use it to show that a known W[1]-hard problem can be
simulated with this relation. In the Boolean case [24], this can be done in a fairly simple way: by
identifying coordinates and substituting 0’s, we can assume that the relation R is binary, and we
need to prove hardness only for two concrete binary relations. For larger domains, however, this
approach does not work. We cannot reduce the counterexample to a binary relation by identifying
coordinates, thus it seems that a complex case analysis would be needed. Fortunately, our hardness
proof is more uniform than that. We introduce gadgets that control the values that can appear on
the variables. There are certain degenerate cases when these gadgets do not work. However, these
degenerate cases can be conveniently described using multivalued morphisms, and these cases turn
out to be exactly the cases that we can use in the algorithmic part of the proof.

In the case of cardinality constraints, we face an interesting problem. Consider the binary
relation R containing only tuples (0, 0), (1, 0), and (0, 2). Given a CSP instance with constraints of
this form, finding a solution where the number of 1’s is exactly k and the number of 2’s is exactly
k is essentially equivalent to finding an independent set of a bipartite graph with k vertices in
both classes, or equivalently, a complete bipartite graph (biclique) with k + k vertices. However,
the parameterized complexity of the k-Biclique problem is a longstanding open question (it is
conjectured to be W[1]-hard [16]). Thus at this point, it is not possible to give a dichotomy result
similar to Theorem 1.1 in the case of cardinality constraints, unless assuming that Biclique is
hard.

Theorem 1.2. For every finite Γ closed under substitution of constants, CCSP(Γ) is either FPT
or Biclique-hard.

Note that in many cases, we actually prove W[1]-hardness in Theorem 1.2 and we state Bi-

clique-hardness only in very specific situations. Similarly to Theorem 1.1, the algorithmic part
of Theorem 1.2 exploits weak separability after a preprocessing phase, but in this case there is
a final phase that extends the solution using certain degeneracies. The hardness proof is similar
to Theorem 1.1, however, it requires at times different combinatorial arguments, slightly different
types of degeneracies, and reductions from different hard parameterized problems.

The parameterized complexity of Biclique has been a significant open problem for a number
of years and in fact it is the most natural and most easily stated problem on graphs whose param-
eterized complexity status is open. The parameterized complexity of similar basic problems (such
as k-Clique, k-Path, k-Disjoint Triangles, etc.) is well understood, but it seems that very
different techniques are required to tackle Biclique. Our results give a further incentive for the
study of Biclique: its hardness would explain hardness in all the cases that are not classified as
FPT or W[1]-hard in this paper. In other words, in a very general problem family, the hardness
of Biclique is the only question that is not yet understood, highlighting the importance of this
problem. We believe this observation to be a significant byproduct of our study.

Organization. The paper is organized as follows. In Section 2 we introduce constraint sat-
isfaction problems with cardinality constraints and argue that only 0-valid constraint languages
need to be studied, so from that point on, we consider only cc0-languages. Weak separability and
various degeneracies of constraint languages are introduced and studied in Section 3. The main
classification results are proved in Section 4 (for size constraints) and Section 5 (for cardinality
constraints). In both sections, we first present the algorithmic side of the classification, then prove
hardness in various cases. After going through certain fairly degenerate situations, the most generic
(and from the point of view of proof techniques, most interesting) proofs are found at the end of
these sections. Section 6 contains examples that demonstrate some of the concepts introduced in
the paper. We will continuously refer to these examples throughout the paper.
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2 Preliminaries

Let D be a set. We assume that D contains a distinguished element 0. Let Dn denote the set of all
n-tuples of elements from D. An n-ary relation on D is a subset of Dn, and a constraint language
Γ is a set of relations on D. In this paper, constraint languages are assumed to be finite. We denote
by dom(Γ) the set of all values that appear in tuples of the relations in Γ. In proofs throughout
the paper, we use languages derived from the original language Γ, so this set does not have to be
equal to D. Given a set D and a constraint language Γ, an instance of the constraint satisfaction
problem (CSP) is a pair I = (V, C), where V is a set of variables, and C is a set of constraints. Each
constraint is a pair 〈s, R〉, where R is a (say, n-ary) relation from Γ, and s is an n-tuple of variables
(repetitions of variables are allowed). A satisfying assignment of I is a mapping τ : V → D such
that for every 〈s, R〉 ∈ C with s = (s1 . . . , sn) the image τ(s) = (τ(s1), . . . , τ(sn)) belongs to R.
The question in the CSP is whether there is a satisfying assignment for a given instance. The CSP
over constraint language Γ is denoted by CSP(Γ).

The size of an assignment is the number of variables receiving nonzero values. A size constraint
is a requirement to a satisfying assignment to have a prescribed size. The variant of CSP(Γ) that
allows size constraints will be denoted by OCSP(Γ). A cardinality constraint for a CSP instance I
is a mapping π : D \ {0} → N with

∑

a∈D π(a) ≤ |V |. A satisfying assignment τ of I satisfies the
cardinality constraint π if the number of variables mapped to each a ∈ D equals π(a). We denote
by CCSP(Γ) the variant of CSP(Γ) where the input also contains a cardinality constraint π and the
size constraint k =

∑

a∈D\{0} π(a) (this constraint is used a parameter); the question is, given an
instance I, an integer k, and a cardinality constraint π, whether there is a satisfying assignment of I
of size k and satisfying π. (Obviously,

∑

a∈D\{0} π(a) = k must hold, thus specifying k in the input
is in a sense redundant. However, for the uniform treatment of both problems, it will be convenient
to assume that k appears in the input in both cases.) A solution of an OCSP (resp., CCSP) instance
is a satisfying assignment that also satisfies the size (resp., cardinality) constraints. So, instances
of OCSP (resp., CCSP) are triples (V, C, k) (resp., quadruples (V, C, k, π)). For both OCSP(Γ) and
CCSP(Γ), we are interested in fixed-parameter tractability with respect to the parameter k, i.e., the
goal is an algorithm with running time f(k) · nO(1) for some computable function f . Note that we
are making a distinction between two terms: in “satisfying assignment,” we do not require that the
cardinality constraint is satisfied, while a “solution” always means that the cardinality constraint
is satisfied.

If Γ is a constraint language on the 2-element set {0, 1}, then to specify a global cardinality
constraint it suffices to specify the number of ones we want to have in a solution. This problem
is also known as the k-Ones(Γ) problem [10, 24]. Note that this problem can be viewed as both
CCSP(Γ) and OCSP(Γ). In the general case, OCSP(Γ) polynomial time reduces to CCSP(Γ).

Lemma 2.1. For any constraint language Γ over a set D, there is a polynomial-time reduction
from OCSP(Γ) to CCSP(Γ).

Indeed, for any instance (V, C, k) of OCSP(Γ) it suffices to solve O(kd−1) instances (V, C, k, π)
of CCSP(Γ) such that

∑

a∈D\{0} π(a) = k.
Examples 6.1–6.4 demonstrate some concrete problems that can be expressed in this framework.

2.1 Closures and 0-validity

A constraint language Γ is called constant closed (cc-, for short) if along with every (say, n-
ary) relation R ∈ Γ, any i, 1 ≤ i ≤ n, and any d ∈ D the relation obtained by substitution of
constants R|i;d = {(a1, . . . , ai−1, ai+1, . . . , an) | (a1, . . . , ai−1, d, ai+1, . . . , an) ∈ R}, also belongs to
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Γ. Substitution of constants d1, . . . , dq for coordinate positions i1, . . . , iq is defined in a similar way;
the resulting relation is denoted by R|i1,...,iq;d1,...,dq . We call the smallest cc-language containing a
constraint language Γ the cc-closure of Γ. It is easy to see that the cc-closure of Γ is the set of
relations obtained from relations of Γ by substituting constants. Let f be a satisfying assignment
for an instance I = (V, C, k) of OCSP(Γ) and S = {v | f(v) 6= 0}. We say that the instance
I ′ = (V ′, C′, k′) is obtained by substituting the nonzero values of f as constants if I ′ is constructed
as follows: V ′ = V \ S, and for each constraint 〈s, R〉 ∈ C such that i1, . . . ir are the indices of
the variables from s contained in S and {j1, . . . , jq} is the set of indices of variables from s not
in S, we include in C′ the constraint 〈(vj1 , . . . , vjq), R

|i1,...,ir;f(vi1 ),...f(vir )〉. The size constraint k′

is set to k minus the size of f (we always make sure that f is such that k′ ≥ 0). Observe that
assigning 0 to every variable of I ′ is a satisfying assignment. This operation is defined similarly for
a CCSP(Γ) instance I = (V, C, k, π), but in this case the new cardinality constraint π′ is given by
π′(d) = π(d)−|{v ∈ V | f(v) = d}| (we always assume that π and f are such that π′ is nonnegative).

In general, OCSP(Γ) or CCSP(Γ) can become harder if we replace Γ with its cc-closure, see
Examples 6.5 and 6.6. Thus a classification for cc-languages does not immediately imply a classi-
fication for all languages.

A relation is said to be 0-valid if the all-zero tuple belongs to the relation. A constraint language
Γ is a cc0-language if every R ∈ Γ is 0-valid, and every 0-valid relation R′ obtained from R by
substitution of constants belongs to Γ (see Example 6.7). An instance I is said to be 0-valid if the
all-0 assignment is a satisfying one. In particular every instance of OCSP(Γ) or CCSP(Γ) for a
cc0-language Γ is 0-valid. The following observation is clear (but note that Γ0 is not necessarily a
cc-language, as substitution into a 0-valid relation does not necessary result in a 0-valid relation):

Proposition 2.2. If Γ is a cc-language and Γ0 is the set of 0-valid relations in Γ, then Γ0 is a
cc0-language.

We say that tuple t1 = (a1, . . . , ar) is an extension of tuple t2 = (b1, . . . , br) if they are of
the same length and for every 1 ≤ i ≤ r, ai = bi if bi 6= 0. Tuple t2 is then called a subset of
t1. A minimal satisfying extension of an assignment f is an extension f ′ of f (where f, f ′ are
viewed as tuples) such that f ′ is satisfying, and f has no satisfying extension f ′′ 6= f ′ such that
f ′ is an extension of f ′′. We show that the minimal satisfying extensions of size at most k can be
enumerated by a simple branching algorithm, implying a bound on the number of such extensions.

Lemma 2.3. Let Γ be a finite constraint language over D. There are functions d′Γ(k) and e′Γ(k)
such that for every instance of CSP(Γ) with n variables, every assignment f has at most d′Γ(k)
minimal satisfying extensions of size at most k and all these minimal extensions can be enumerated
in time e′Γ(k)n

O(1).

Proof. Let k0 ≤ k be the size of f . The minimal satisfying extensions of f can be enumerated by
a bounded-depth search tree algorithm. If f is a satisfying assignment, then f itself is the unique
minimal satisfying extension of f . Suppose therefore that a constraint is not satisfied by f . If
every variable of the constraint has nonzero value, then the assignment has no satisfying extension.
Otherwise, we try to assign a nonzero value to one of the 0-valued variables of the constraint, thus
we branch into at most (|D| − 1)rmax directions, where rmax is the maximum arity of the relations
in Γ. If the assignment obtained by this modification is still not satisfying, then the process is
repeated with some unsatisfied constraint. If the assignment is still not satisfying after making
k − k0 variables nonzero, then this branch of the search is terminated. If we obtain a satisfying
assignment after assigning a nonzero value to a set S of at most k′ ≤ k−k0 variables, then we check
whether this extension is minimal by trying each of the 2k

′
subsets of the changed variables. This
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last check ensures that every extension produced by the algorithm is indeed minimal. To see that
every minimal satisfying extension f ′ of size at most k is eventually enumerated, observe that at
every branching we can make a substitution that is compatible with f ′, i.e., the current assignment
is a subset of f ′. Thus after at most k steps, the algorithm finds a satisfying assignment that is a
subset of f ′. As f ′ is a minimal satisfying extension, this subset cannot be proper and has to be f ′

itself.
The height of the search tree is at most k and the branching factor is at most (|D| − 1)rmax,

thus at most ((|D|−1)rmax)
k assignments are enumerated. The running time is polynomial at each

node and the final check at each leaf takes time 2knO(1). Thus the total running time is e′Γ(k)n
O(1)

for a suitable e′Γ.

A consequence of Lemma 2.3 is that, as in [24], CCSP(Γ) and OCSP(Γ) can be reduced to a
set of 0-valid instances. Let k be the parameter of the OCSP(Γ) or CCSP(Γ) instance (i.e., the
required size of the solution). We enumerate all the minimal satisfying extensions of size at most
k of the all zero assignment and obtain the 0-valid instances by substituting the nonzero values as
constants.

Corollary 2.4. Let Γ be a cc-language and let Γ0 ⊆ Γ be the set of all 0-valid relations. If CCSP(Γ0)
is FPT/W[1]-hard/Biclique-hard, then CCSP(Γ) is as well. The same holds for OCSP(Γ) and
OCSP(Γ0).

By Prop. 2.2, if Γ is a cc-language, then Γ0 is a cc0-language. Thus Corollary 2.4 reduces the
classification of the complexity of cc-languages into the classification of cc0-languages. Thus in the
rest of the paper, we have to deal with cc0-languages only.

2.2 Reductions

To obtain the W[1]-hardness results, we use the standard notion of parameterized reduction [11, 14].

Definition 2.5. A parameterized reduction from parameterized problem A to parameterized prob-
lem B is a mapping R from the instances of A to the instances of B with the following properties:

1. I is a yes-instance of A if and only if R(I) is a yes-instance of B,

2. R(I) is computable in time f(k) ·nO(1), where n is the size of I, k is the parameter of I, and
f(k) is a computable function depending only on k,

3. the parameter of R(I) is at most g(k), where k is the parameter of I and g(k) is a computable
function depending only on k.

It is easy to see that if there is a parameterized reduction from A to B and B is FPT, then A
is FPT as well.

In the hardness proofs, we will be reducing from the following parameterized problems (t is the
parameter of the instance).

• Independent Set. Given a graph G with vertices vi ( 1 ≤ j ≤ n), find an independent set
of size t.

• Multicolored Independent Set: Given a graph G with vertices vi,j (1 ≤ i ≤ t, 1 ≤ j ≤
n), find an independent set of size t of the form {v1,y1 , . . . , vt,yt}.

• Implications: Given a directed graph G and an integer t, find a set C of vertices with
exactly t vertices such that there is no directed edge −→uv with u ∈ C and v 6∈ C.
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• Multicolored Implications: Given a directed graph G with vertices vi,j (1 ≤ i ≤ t,
1 ≤ j ≤ n), find a set C = {v1,y1 , . . . , vt,yt} with exactly t vertices such that there is no
directed edge −→uv with u ∈ C and v 6∈ C.

• Biclique. Given a bipartite graph G(A,B), find two sets A′ ⊆ A and B′ ⊆ B, each of size
exactly t, such that every vertex of A′ is adjacent to every vertex of B′.

Independent Set is one of the basic W[1]-hard problems and it is not difficult to show that
Multicolored Independent Set is W[1]-hard as well (see [13]). Implications was introduced
and proved to be W[1]-hard in [24]. Lemma 2.6 below shows that Multicolored Implications

is W[1]-hard. The parameterized complexity of Biclique is a longstanding open question, and it
is expected to be W[1]-hard (cf. [16, Section 8]).

Lemma 2.6. Multicolored Implications is W[1]-hard.

Proof. The proof is by reduction from Clique: let H be a graph where a clique of size k has
to be found. It can be assumed that the number n of vertices in H equals the number of edges:
adding isolated vertices or removing acyclic components does not change the problem. Let u1,
. . . , un be the vertices of H and let e1, . . . , en be the edges of H. We construct the graph G of
the Multicolored Implications instance as follows. Set t := k +

(
k
2

)
. The vertex set of G is

{vi,j | 1 ≤ i ≤ t, 1 ≤ j ≤ n}. Let ι(i, j) be a bijective mapping between the 2-element subsets

of {1, . . . , k} and the set {k + 1, . . . , k +
(
k
2

)
}. Intuitively, for 1 ≤ i ≤ k, the choice of vertex vi,yi

represents the choice of the i-th vertex of the clique K of H we are looking for. Furthermore, for
1 ≤ i < j ≤ k, the choice of vertex vι(i,j),yι(i,j) represents the edge between the i-th and j-th vertex
of the clique K. To enforce this interpretation, for every 1 ≤ i < j ≤ n and 1 ≤ s ≤ n, if ua and
ub (a < b) are the endpoints of edge es of G, then let us add two directed edges −−−−−−→vι(i,j),svi,a and
−−−−−−→vι(i,j),svj,b to H. This completes the description of the reduction.

Suppose that G has a clique ux1 , . . . , uxk
of size k (x1 < · · · < xk) and ezi,j is the edge connecting

uxi
and uxj

. In this case, no directed edge of H leaves the set C that contains vi,xi
for 1 ≤ i ≤ k and

vι(i,j),zi,j for 1 ≤ i < j ≤ k, hence it is a solution of the Multicolored Implications instance.
For the reverse direction, suppose that C = {vi,yi | 1 ≤ i ≤ t} is a solution of the Multicol-

ored Implications instance. We claim that uy1 , . . . , uyk is a clique of size k in G. We claim
that edge eyι(i,j) connects uyi and uyj (in particular, this means that yi 6= yj). Let s = yι(i,j) and

let ua and ub (a < b) be the two endpoints of edge es. Since vι(i,j),s ∈ C, the edges −−−−−−→vι(i,j),svi,a and
−−−−−−→vι(i,j),svj,b imply that vi,a, vj,b ∈ C. As C contains exactly one of the vertices vi,1, . . . , vi,n, it follows
that yi = a and, similarly, yj = b. That is, uyi and uyj are connected by the edge es.

Let Γ be a constraint language. A relation R is intersection definable in Γ if R is the set of all
solutions to a certain instance of CSP(Γ).

Proposition 2.7. Let Γ be a constraint language and R a relation intersection definable in Γ.
Then CCSP(Γ ∪ {R}) (OCSP(Γ ∪ {R})) is polynomial time reducible to CCSP(Γ) (respectively, to
OCSP(Γ)).

Proof. Indeed, let I be an instance of CCSP(Γ) (OCSP(Γ)) that expresses R. To reduce we just
need to replace every occurrence of R with I.

3 Properties of constraints

By Corollary 2.4, it is sufficient for proving Theorems 1.1 and 1.2 to consider only cc0-languages.
Thus in the rest of the paper, we always assume that constraint languages are cc0-languages.
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3.1 Weak separability

In this subsection we introduce the key property regulating the complexity of CSPs with cardinality
constraints. In the Boolean case, the tractability of 0-valid constraints depends only on weak
separability [24]. This is not true exactly this way for larger domains: as we shall see (Theorems 4.1
and 5.2), the complexity characterizations have further technical conditions.

Definition 3.1. Two tuples t1 = (a1, . . . , ar) and t2 = (b1, . . . , br) of the same length r are called
disjoint if ai = 0 or bi = 0 for every 1 ≤ i ≤ r. The union of two disjoint tuples t1 and t2 is
the tuple t1 + t2 = (c1, . . . , cr) where ci = ai if ai 6= 0 and ci = bi otherwise. If (a1, . . . , ar) is an
extension of (b1, . . . , br), then their difference is the tuple (c1, . . . , cr) where ci = ai if bi = 0 and
ci = 0 otherwise. A tuple t = (c1, . . . , cr) is contained in a set C ⊆ D \ {0} if every nonzero ci is
in C.

The following property plays a crucial role in our classification:

Definition 3.2. A 0-valid relation R is said to be weakly separable if the following two conditions
hold:

1. For every pair of disjoint tuples t1, t2 ∈ R, we have t1 + t2 ∈ R.

2. For every pair of disjoint tuples t1, t2 with t2, t1 + t2 ∈ R, we have t1 ∈ R.

A constraint language Γ is said to be weakly separable if every relation from Γ is weakly separable.

If constraint language Γ is not weakly separable, then a triple (R, t1, t2), R ∈ Γ, witnessing that
is called a union counterexample if t1, t2 violate condition (1), while if t1, t2 violate condition (2)
it is called a difference counterexample. Examples 6.8 and 6.9 demonstrate these notions and show
how can we prove hardness in the Boolean case if there is a counterexample to weak separability
[24]. However, as Example 6.10 shows, in case of larger domains, OCSP(Γ) or CCSP(Γ) can be
fixed-parameter tractable even if the cc0-language Γ is not weakly separable.

Throughout the paper, we often refer to satisfying assignments that are nonzero, but have as
few nonzero elements as possible. A satisfying assignment f is said to be a minimal satisfying
assignment if it has a nonzero value and is not a proper extension of any nonzero satisfying assign-
ment (note that we explicitly exclude the all-0 assignment from this definition). A consequence of
Lemma 2.3 bounds the number of minimal satisfying assignments:

Lemma 3.3. Let Γ be a finite constraint language. There are functions dΓ(k) and eΓ(k) such
that for any instance of CSP(Γ) with n variables, every variable v is nonzero in at most dΓ(k)
minimal satisfying assignments of size at most k and all these minimal satisfying assignments can
be enumerated in time eΓ(k)n

O(1).

Proof. Let δv,d be the assignment that assigns value d to variable v and 0 to every other variable. For
a fixed variable v and every nonzero d ∈ dom(Γ), let us use the algorithm of Lemma 2.3 to enumerate
all the minimal satisfying extensions of δv,d. We claim that every minimal satisfying assignment f
with f(v) 6= 0 appears in the enumerated assignments. Indeed, if f(v) = d, then f is a satisfying
extension of δv,d, and clearly it is a minimal satisfying extension, as no nonzero subset of f is
satisfying. Thus dΓ(k) = (|dom(Γ)|−1)d′Γ(k) bounds the number of minimal satisfying assignments
where variable v is nonzero. The time bound follows from the time bound of Lemma 2.3.

The following combinatorial property is the key for solving weakly separable instances (this
property does not necessarily hold for arbitrary relations, see Example 6.11):
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Lemma 3.4. Let Γ be a weakly separable finite cc0-language over D and I an instance of CCSP(Γ)
or OCSP(Γ).

1. Every satisfying assignment f of I is the union of pairwise disjoint minimal satisfying as-
signments.

2. If there is a satisfying assignment f with f(v) = d for some variable v and d ∈ D, then there
is a minimal satisfying assignment f ′ with f ′(v) = d.

Proof. 1. The proof is by induction on the size of f ; if the size is 0, then there is nothing to show.
Let f ′ be a subset of f that is a minimal satisfying assignment. Let f ′′ be the difference of f and
f ′; since Γ is weakly separable, f ′′ is also a satisfying assignment. By the induction hypothesis, f ′′

is the disjoint union of minimal satisfying assignments f1, . . . , fℓ, and hence f is the disjoint union
of f1, . . . , fℓ, f

′.
2. Since f is the disjoint union of minimal satisfying assignments f1, . . . , fℓ, there has to be an

1 ≤ i ≤ ℓ for which fi(v) = d.

Lemma 3.4 allows us to solve weakly separable instances by enumerating all minimal satisfying
assignments and then finding a subset of these assignments that are disjoint and together satisfy the
size/cardinality constraint. When finding these disjoint assignments, we can exploit the fact that
by Lemma 3.3, each such assignment is non-disjoint from a bounded number of other assignments.

Theorem 3.5. If Γ over D is a finite weakly separable cc0-language, then CCSP(Γ) and OCSP(Γ)
are fixed-parameter tractable.

Proof. We present the proof for CCSP(Γ); the proof for OCSP(Γ) is analogous and actually simpler.
Alternatively, by Lemma 2.1, OCSP(Γ) reduces to CCSP(Γ) in polynomial time. Thus the fixed-
parameter tractability of CCSP(Γ) immediately implies those of OCSP(Γ).

First, we enumerate all minimal satisfying assignments of size at most k using Lemma 3.3; let
S be the set of all these assignments (note that S has size at most dΓ(k) ·n, where n is the number
of variables). By Lemma 3.4, every solution can be formed as the disjoint union of members of S.
Furthermore, by weak separability, the disjoint union of satisfying assignments is always satisfying.
Thus the question is whether it is possible to find a subset S′ of S that contains pairwise disjoint
assignments and their union satisfies the cardinality constraints.

Clearly, |S′| ≤ k. We can associate a mapping πf to each assignment f in S, with the meaning
that f sets exactly πf (i) variables to value i. Let K := k · dΓ(k) for the function dΓ appearing in
Lemma 3.3. For each mapping π′, let Sπ′ contain the firstK assignments whose associated mapping
is π′ (or all such assignments if there are less than K of them). Let S∗ be the union of all these
sets Sπ′ . We claim that if there is a solution S′ ⊆ S, then there is a solution which is a subset of
S∗. Thus we can find a solution by trying all subsets of size at most k in S∗.

To prove the claim, let S′ be a solution such that |S′ \S∗| is minimum possible. Let f ∈ S′ \S∗;
this means that f 6∈ Sπf

and hence |Sπf
| = K. Assignments in S′ \{f} assign nonzero values to less

than k variables, denote by X these variables. By Lemma 3.3, each variable is nonzero in at most
dΓ(k) assignments of S (and of the subset Sπf

), and hence there is at least one assignment f ′ ∈ Sπf

that is zero on every variable of X. Replacing f with f ′ ∈ S∗ yields a solution with strictly smaller
number of assignments not in S∗, contradicting the minimality of S′.

3.2 Morphisms

Homomorphisms and polymorphisms are standard tools for understanding the complexity of con-
straints [7, 18]. We make use of the notion of multivalued morphisms, a generalization of homo-
morphisms, that in a different context has appeared in the literature for a while (see, e.g. [26])
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under the guise of hyperoperation. For a constraint language, we introduce a classification of val-
ues from its domain into 4 types according to the existence of such morphisms of the language
(Definition 3.8). This classification into 4 types of elements and the observation that these types
play an essential role in the way the MVM gadgets (Section 3.4) work are the main technical ideas
behind the hardness proofs.

For a subset 0 ∈ D′ ⊆ D and an n-ary relation R on D, by R|D′ we denote the relation R∩(D′)n.
For a constraint language Γ, the language Γ|D′ denotes the set of all relations R|D′ for R ∈ Γ.

An endomorphism of Γ is a mapping h : dom(Γ) → dom(Γ) such that h(0) = 0 and for every
R ∈ Γ and (a1, . . . , ar) ∈ R, the tuple (h(a1), . . . , h(ar)) is also in R. Note that the requirement
h(0) = 0 is nonstandard, but it is very natural in our setting. For a tuple t = (a1, . . . , ar) ∈ dom(Γ)r,
we denote by h(t) the tuple (h(a1), . . . , h(ar)). Observe that the mapping sending all elements of
dom(Γ) to 0 is an endomorphism of any 0-valid language. An inner homomorphism of Γ from D1

to D2 with 0 ∈ D1,D2 ⊆ dom(Γ) is a mapping h : D1 → D2 such that h(0) = 0 and h(t) ∈ R holds
for any relation R ∈ Γ and t ∈ R|D1

.

A multivalued morphism of Γ is a mapping φ : dom(Γ) → 2dom(Γ) such that φ(0) = {0} and for
every R ∈ Γ and (a1, . . . , ar) ∈ R, we have φ(a1)×· · ·×φ(ar) ⊆ R. An inner multivalued morphism
φ from D1 to D2 where 0 ∈ D1,D2 ⊆ dom(Γ) is defined to be a mapping φ : D1 → 2D2 such that
φ(0) = {0} and for every R ∈ Γ and (a1, . . . , ar) ∈ R|D1

, we have φ(a1) × · · · × φ(ar) ⊆ R|D2
.

If φ is an (inner) multivalued morphism, and t = (a1, . . . , ar) is a tuple, then we define φ(t) =
φ(a1)× · · · × φ(ar). Example 6.12 shows several concrete examples.

Observation 3.6. Let φ : dom(Γ) → 2dom(Γ) be a multivalued morphism [ψ : D1 → 2D2 be an
inner multivalued morphism] of a constraint language Γ, and let φ′ : dom(Γ) → 2dom(Γ) [resp.,
ψ′ : D1 → 2D2 ] be a mapping such that φ′(d) ⊆ φ(d) for d ∈ dom(Γ) [resp., ψ′(d) ⊆ ψ(d) for
d ∈ D1]. Then φ′ is a multivalued morphism [ψ′ is an inner multivalued morphism].

The product g ◦ h of two endomorphisms or inner homomorphisms is defined by (g ◦ h)(x) =
h(g(x)) for every x ∈ D. That is, g ◦ h means that g is applied first and then h. It is easy to see
that g ◦ h is also an endomorphism (inner homomorphism). If φ and ψ are (inner) multivalued
morphisms, then their product φ ◦ ψ is given by (φ ◦ ψ)(x) =

⋃

y∈φ(x) ψ(y). Finally, let g be an
endomorphism or an inner homomorphism, and φ is an (inner) multivalued morphism. Then φ ◦ g
is given by (φ ◦ g)(x) = {g(y) | y ∈ φ(x)} and g ◦φ is given by (g ◦φ)(x) = φ(g(x)). Both mappings
are (inner) multivalued morphisms.

We classify the values based on a type of degeneracy defined in the following way (see Exam-
ple 6.13):

Definition 3.7. For x, y ∈ dom(Γ), we say that x produces y in Γ if Γ has a multivalued morphism
φ with φ(x) = {0, y} and φ(z) = {0} for every z 6= x.

In other words, for every R ∈ Γ and t ∈ R, replacing an arbitrary subset of the x values with
y and making every other coordinate 0 gives another tuple in R. Observe that the relation “x
produces y” is transitive, but not necessarily reflexive. The following classification of values plays
a central role in the paper:

Definition 3.8. A value y ∈ dom(Γ) is

1. regular if there is no multivalued morphism φ where 0, y ∈ φ(x) for some x ∈ dom(Γ),

2. semiregular if there is a multivalued morphism φ where 0, y ∈ φ(x) for some x ∈ dom(Γ), but
there is no x ∈ dom(Γ) that produces y,
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3. self-producing if y produces y, and for every x that produces y, y also produces x.

4. degenerate otherwise.

Example 6.14 demonstrates all four types. It will sometimes be convenient to say that a value
y has type 1, 2, 3, or 4 corresponding to the four cases of Definition 3.8, and use the natural order
on these types. We need some simple properties of the four types of elements.

Proposition 3.9. If there is an endomorphism h with h(x) = y, then the type of x cannot be larger
than that of y.

Proof. Suppose that x is semiregular, and ψ is a multivalued morphism witnessing that, i.e., x, 0 ∈
ψ(a) for some value a. Then 0, y ∈ (ψ◦h)(a), meaning that y cannot be regular. Suppose that some
value a produces x, let ψ be the corresponding multivalued morphism. Then ψ ◦h witnesses that a
produces y as well. Therefore, if x is self-producing, then y is either self-producing or degenerate.
Finally, suppose that x is degenerate and let a be a value such that a produces x, but x does not
produce a. Now a produces y: this is shown by taking the product ψ ◦h of a multivalued morphism
ψ witnessing that y produces x and the endomorphism h. If y produces a and this is witnessed by
multivalued morphism ψ′, then (as shown by h ◦ ψ′) x would produce a, a contradiction. Thus a
produces y, but y does not produce a, i.e., y is degenerate as well.

Proposition 3.10. Every degenerate value y is produced by a nondegenerate value x.

Proof. We construct a sequence x0, x1, x2, . . . as follows: Let x0 = y. If xi is degenerate, then there
is a value xi+1 6= xi that produces xi, but xi does not produce xi+1. As dom(Γ) is finite, either
xi is non-degenerate for some i or xi = xj for some i > j. If some xi is non-degenerate, then by
transitivity such xi produces x0 = y and we are done. Suppose that xi = xj for some i > j. Since
xj+1 6= xj, we have i > j+1. Thus xi = xj produces xj+1, contradicting the definition of xj+1.

Lemma 3.11. Let Γ be a cc0-language, R ∈ Γ a relation, and h an endomorphism of Γ. If t1 and
t2 are disjoint tuples such that t1, t1 + t2 ∈ R, then t1 + h(t2) ∈ R.

Proof. Without loss of generality, we assume that t1 = (a1, . . . , ar, 0, . . . , 0) and t2 = (0, . . . , 0, b1, . . . , bq, 0, . . . , 0).
Let R′ be the relation obtained from R by substituting a1, . . . , ar on the first r coordinates, re-
spectively. Since t1 ∈ R, we know that R′ is 0-valid and hence it is in Γ. Thus h is an en-
domorphism of R′ as well. From t1 + t2 ∈ R, we have (b1, . . . , bq, 0, . . . , 0) ∈ R′. Applying
h on this tuple gives (h(b1), . . . , h(bq), 0, . . . , 0) ∈ R′, which implies, by definition of R′, that
(a1, . . . , ar, h(b1), . . . , h(bq), 0, . . . , 0) = t1 + h(t2) ∈ R.

We can extend Lemma 3.11 to multivalued morphisms with the same proof:

Lemma 3.12. Let Γ be a cc0-language, R ∈ Γ a relation, and φ a multivalued morphism of Γ. If
t1 and t2 are disjoint tuples such that t1, t1 + t2 ∈ R, then t1 + t′2 ∈ R for every t′2 ∈ φ(t2).

3.3 Components

The structure of endomorphisms and inner homomorphisms plays an important role in our study.
The following notion helps to capture this structure.

Definition 3.13. Let Γ be a cc0-language. A retraction to X ⊆ D\{0} is a mapping retX such that
retX(x) = x for x ∈ X and retX(x) = 0 otherwise. A nonempty subset C ⊆ D\{0} is a component
of Γ if retC is an endomorphism of Γ. A component C is minimal if there is no component that is
a proper subset of C.
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Note that by definition, a component contains only nonzero values. The set D \ {0} is trivially
a component. If a set C is not a component, then there is a relation R ∈ Γ and t ∈ R such that
t′ = retCt 6∈ R.

We prove certain combinatorial properties of components. It is easy to see that, as the com-
position of retractions is a retraction, the set of components is closed under intersection (if the
intersection is not empty):

Observation 3.14. The intersection of two nondisjoint components is also a component. Hence
for every nonempty X ⊆ D\{0}, there is a unique inclusion-wise minimal component that contains
X; this component is called the component generated by X (or simply the component of X).

In case of cc0-languages, components are closed also under union:

Proposition 3.15. If Γ is a cc0-language, then the union of two components is also a component.

Proof. Suppose that C1, C2 are components. For a relation R ∈ Γ and tuple t, let t1 = retC1t,
t2 = retC2\C1

t, t3 = retD\(C1∪C2∪{0})t; clearly, t = t1 + t2 + t3. As C1 is a component, we have
t1 ∈ R. Thus by Lemma 3.11, we have t1 + retC2(t2 + t3) = t1 + t2 = retC1∪C2t ∈ R. This is true
for every R and t, thus C1 ∪ C2 is a component.

A consequence of Proposition 3.15 is that the component generated by a subset X ⊆ D \ {0} is
the union CX =

⋃

d∈X Cd, where Cd is the component generated by d. Indeed, CX is a component
by Proposition 3.15, and it is clear that no proper subset of CX can be a component containing X.

Proposition 3.16. If Γ is a cc0-language and d ∈ dom(Γ) is in the component generated by X for
some X ⊆ dom(Γ) \ {0}, then there is a d′ ∈ X such that d is in the component generated by d′.

The difference of two components is not necessarily a component, but in this case there is a
difference counterexample:

Proposition 3.17. If C1 and C2 are two components of Γ such that the nonempty set C1 \ C2 is
not a component, then Γ has a difference counterexample contained in C1.

Proof. As C1 ∩ C2 is also a component by Observation 3.14, we may assume that C2 = C1 ∩ C2,
that is, C2 ⊆ C1. As C1 \ C2 is not a component, there is an R ∈ Γ and a t ∈ R such that
t1 = retC1\C2

t 6∈ R. Since both C1 and C2 are components, we have t2 = retC2t ∈ R and
t1 + t2 = retC1t ∈ R. Thus (R, t1, t2) is a difference counterexample.

The following statement will be used when we restrict the language to a subset of the domain:

Proposition 3.18. Let 0 ∈ D′ ⊆ dom(Γ) be such that D′ \ {0} is a component of Γ. For every
d ∈ D′,

1. the component generated by d is the same in Γ and Γ|D′.

2. the type of d in Γ|D′ is not greater than that in Γ.

Proof. Let C (resp., C ′) be the component generated by d in Γ (resp., Γ|D′). Since D′ \ {0} is
a component containing d, we have C ⊆ D′ \ {0}. As retC is an endomorphism of Γ, it is an
endomorphism of Γ|D′ as well, thus C ′ ⊆ C. Furthermore, as retD′\0 ◦ retC′ is an endomorphism of
Γ, the set C ′ is a component of Γ, implying C ⊆ C ′.

For the second statement, suppose that d is semiregular in Γ|D′ and let ψ be a multivalued
morphism witnessing this, i.e., 0, d ∈ ψ(c) for some c ∈ D′. Then retD′\{0} ◦ ψ witnesses that d
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cannot be regular in Γ. Let us next show that for any a, b ∈ D′, a produces b in Γ if and only if a
produces b in Γ|D′. The forward direction follows from the fact that for any multivalued morphism
φ of Γ, the mapping φ ◦ retD′\{0} is a multivalued morphism of Γ|D′ , and if φ(a) = {0, b}, then
(φ ◦ retD′\{0})(a) = φ(a) = {0, b}. For the backward direction, let ψ be a multivalued morphism
of Γ|D′ witnessing that a produces b. Then retD′ ◦ ψ witnesses that a produces b in Γ. It is now
immediate that if d is degenerate in Γ|D′ , then it is degenerate in Γ as well, and if d is self-producing
in Γ|D′ , then (as d produces itself) it cannot be regular or semiregular in Γ.

The importance of components comes from the following result: there is a counterexample to
weak separability where each of t1 and t2 is contained in one component. This observation will be
essential in the hardness proofs.

Lemma 3.19. If Γ is not weakly separable, then there is a counterexample (R, t1, t2) which is either

1. a union counterexample, and t1 (resp., t2) is contained in a component generated by a value
a1 (resp., a2), or

2. a difference counterexample, and both t1 and t2 are contained in a component generated by a
value a1.

Proof. Let K1, . . . , Kr be the distinct components generated by the nonzero values in Γ. Assume
first that there are two components Ki, Kj that intersect; without loss of generality, we can assume
that Ki \Kj 6= ∅. Let a be a value that generates Ki. Clearly, a 6∈ Ki ∩Kj : otherwise Prop. 3.14
implies that Ki ∩ Kj ⊂ Ki is a component containing a, contradicting the assumption that a
generates Ki. Thus Ki \ Kj ⊂ Ki is not a component, since otherwise it would be a strictly
smaller component containing a. Now Prop. 3.17 implies that there is a difference counterexample
contained in the component Ki generated by a, satisfying the requirements.

Thus in what follows, we can assume that K1, . . . , Kr are pairwise disjoint, i.e., they partition
D. Suppose that there is a union counterexample (R, t1, t2). Tuple t1 can be represented as a
union t1,1 + · · · + t1,r1 of nonzero disjoint tuples such that each t1,i = retKji

t1 is contained in one
of the components K1, . . . ,Kr. The tuples t2,1, . . . , t2,r2 are defined similarly. Let s1, . . . , sr1+r2

be an arbitrary ordering of these r1 + r2 tuples. It is clear that each si is in R, since K1, . . . ,
Kr are components. As the union of these tuples is not in R, there is an integer j ≥ 1 such that
the union of any j of these tuples is in R, but there is a subset of j + 1 tuples whose union is
not in R. Without loss of generality, suppose that

⋃j+1
i=1 si is not in R. If j = 1, then (R, s1, s2)

is a required counterexample. If j > 1 then define s0 :=
∑j−1

i=1 si. By assumption, s0 ∈ R, hence
substituting the nonzero values of s0 into R as constants gives a 0-valid relation R′. Furthermore,
s0 + sj , s0 + sj+1 ∈ R by the definition of j; let s′j, s

′
j+1 ∈ R′ be the corresponding tuples. Now

(R′, s′j , s
′
j+1) is a union counterexample: tuples s′j , s

′
j+1 are disjoint and s′j + s′j+1 6∈ R′ follows from

s0 + sj + sj+1 6∈ R.
Thus we can assume that there is no union counterexample. Suppose that there is difference

counterexample (R, t1, t2). Assume that (R, t1, t2) is minimal in the sense that t1+ t2 has minimal
number of nonzero coordinates among such counterexamples. We claim that t1 + t2 is contained
in one of the components Ki defined above. Suppose that t1 + t2 contains nonzero values from
components K1, . . . ,Kg for g ≥ 2. We show that retKi

(t1) ∈ R for every 1 ≤ i ≤ g. This clearly
holds if retKi

(t1) equals retKi
(t1 + t2) or the zero tuple. Thus we can assume that retKi

(t1 + t2) ∈
R is the disjoint union of nonzero tuples retKi

(t1) and retKi
(t2) ∈ R. If retKi

(t1) 6∈ R, then
(R, retKi

(t1), retKi
(t2)) is a difference counterexample, contradicting the minimality of (R, t1, t2)

as g ≥ 2. Thus retKi
(t1) ∈ R for every i. However, the disjoint union of these tuples is also in R
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(since by assumption there is no union counterexample), that is, t1 ∈ R, a contradiction. It follows
that t1 + t2 belongs to some component Ki, i.e., there is a value a that generates Ki.

3.4 Multivalued morphism gadgets

The main technical tool in the hardness proofs are the gadgets defined in this section. Intuitively,
assuming that D = {0, 1, . . . ,∆}, we want a gadget consisting of variables v0, v1, . . . , v∆ that has
only two possible satisfying assignments: (1) either 0 appears on every vi, or (2) value i appears on
vi for every i. Such gadgets would allow us to use a counterexample to weak separability to prove
hardness in similar way as hardness is proved in the Boolean case (see Example 6.9). However, due
to the endomorphisms of the constraint language, such a gadget is not always possible to create: a
nontrivial endomorphism can be used to transform satisfying assignments into new ones.

Therefore, our goal is more modest: we want a gadget that is either fully zero or represents
an endomorphism in every satisfying assignment. That is, if variable vi gets value ci, then the
mapping h defined by h(i) = ci is an endomorphism. We enforce this requirement by introducing,
for every R ∈ Γ and (a1, . . . , ar) ∈ R, a constraint 〈(va1 , . . . , var ), R〉. Such a constraint ensures
that applying the mapping h given by an assignment to the tuple (a1, . . . , ar) gives a tuple in R.

The gadgets we use in the reductions are more general than the one described in the previous
paragraph: instead of a single variable vi representing value i, we have a bag Bi of a variables
representing this value. Setting the size of these bags and the cardinality/size constraint is an
essential and delicate part of the reduction. The requirement that we want to enforce now is that
if ψ(i) is the set of values appearing on the variables of Bi in a satisfying assignment, then ψ is
a multivalued morphism of Γ. This can be ensured in a way similar to the construction in the
previous paragraph (see below for details).

A minor technical detail is that we defined morphisms in such a way that 0 is always mapped to 0,
thus there is no need to introduce variables representing what 0 is mapped to; it is more convenient
to use constant 0’s instead. We need the following definition to formulate this conveniently. For a
relation R and a tuple t ∈ R, we denote by supp(t) the set of coordinate positions of t occupied by
nonzero elements. Let supp

t
(R) denote the relation obtained by substituting 0 into all coordinates

of R except for supp(t), i.e. if R is r-ary and supp(t) = {1, . . . , r} \ {i1, . . . , iq}, then supp
t
(R) =

R|i1,...,iq;0,...,0.
For a cc0-language Γ and some 0 ∈ D′ ⊆ dom(Γ), a multivalued morphism gadget MVM(Γ,D′)

consists of |D′| − 1 bags of vertices Bd, d ∈ D′ \ {0}. The number of variables in each bag will
be specified every time we use the gadget in a proof. The gadget is equipped with the following
set of constraints. For every R ∈ Γ and every tuple t = (a1, . . . , ar) ∈ R|D′ , we add all possible
constraints 〈s, suppt(R)〉 where supp(t) = {i1, . . . , iq}, s = (vi1 , . . . , viq ), and vij ∈ Baij

for every
1 ≤ j ≤ q. The standard assignment of a gadget assigns a to every variable in bag Ba. Observe
that the standard assignment satisfies all the constraints of the gadget. We say that bag Ba and
the variables in bag Ba represent a. When we say that a gadget is fully nonzero, then we mean
that all the variables are assigned nonzero values.

Proposition 3.20. Let 0 ∈ D′ ⊆ dom(Γ). Consider a satisfying assignment f of an MVM(Γ,D′)
gadget. If hf : D′ → 2dom(Γ) is a mapping such that hf (a) is the set of values appearing in bag Ba

of the gadget and hf (0) = {0}, then hf is an inner multivalued morphism of Γ from D′ to dom(Γ).

Proof. Let R be a relation of Γ and let t = (a1, . . . , ar) ∈ R|D′ . Let (b1, . . . , br) ∈ hf (t). By the
definition of hf , for every 1 ≤ i ≤ r, either ai = bi = 0 or ai 6= 0 and there is a variable vi in bag
Bai having value bi. Let suppt = {i1, . . . , ir′}. The gadget is defined such that there is a constraint
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〈(vi1 , . . . , vir′ ), suppt(R)〉, implying that (bi1 , . . . , bir′ ) ∈ supp
t
(R) and hence (b1, . . . , br) ∈ R. It

follows that hf (t) ⊆ R.

Note that if D′ = dom(Γ), then hf is a multivalued morphism of Γ. Mapping hf , or any
mapping h′ with h′(a) ⊆ hf (a) (for a ∈ D′), is said to be an (inner) multivalued morphism given
by the gadget and assignment f . If |h′(a)| = 1 for all a ∈ D′, we call it an endomorphism (inner
homomorphism) given by the gadget and assignment f .

We define two types of gadgets connecting MVM gadgets. The gadget NAND(G1, G2) on
MVM(Γ,D′) gadgets G1, G2 consists of the following constraints. For every R ∈ Γ and disjoint
tuples t1 = (a1, . . . , ar), t2 = (b1, . . . , br) in R|D′ , we add a constraint 〈s, supp

t1+t2
(R)〉, for every

s = (vi1 , . . . , viq ) with {i1, . . . iq} = supp(t1 + t2), such that vij is in bag Baij
of G1 if aij 6= 0 and

vij is in bag Bbij
of G2 if bij 6= 0.

It is not difficult to see (Lemma 3.21 below) that if one of G1, G2 has the standard assignment
and the other is fully zero, then all the constraints in NAND(G1, G2) are satisfied. On the other
hand, if both G1 and G2 have the standard assignment and there is a union counterexample, then
NAND(G1, G2) is not satisfied. For the reductions, we need this second conclusion not only if both
G1 and G2 have the standard assignment, but also assignments that “behave well” in some sense.
The right notion for our purposes is the following: An inner homomorphism h : D′ → dom(Γ)
of Γ is t-recoverable for some tuple t if h is invertible on elements of t in the following sense: Γ
has a multivalued morphism φ such that t ∈ (h ◦ φ)(t). In particular, this is true if there is an
endomorphism h′ of Γ with (h ◦ h′)(t) = t. We say that a MVM(Γ,D′) gadget is t-recoverable in
a given assignment if at least one of the inner homomorphisms given by it is t-recoverable.

Lemma 3.21. Let 0 ∈ D′ ⊆ dom(Γ) and let there be a NAND(G1, G2) gadget on MVM(Γ,D′)
gadgets G1, G2.

1. If one of G1 and G2 has the standard assignment and the other gadget is fully zero, then all
constraints of NAND(G1, G2) are satisfied.

2. Let f be a satisfying assignment of NAND(G1, G2). If hi is an inner homomorphism given by
gadget Gi and assignment f for i = 1, 2 and t1, t2 are disjoint tuples in R|D′, then h1(t1) +
h2(t2) ∈ R.

3. If there is a union counterexample (R, t1, t2) in Γ|D′ and gadget Gi is ti-recoverable in as-
signment f (for i = 1, 2), then some constraint of NAND(G1, G2) is not satisfied by f .

Proof. 1. Suppose without loss of generality that G1 has the standard assignment and G2 is fully
zero. Consider a relation R ∈ Γ and disjoint tuples t1 = (a1, . . . , ar), t2 = (b1, . . . , br) ∈ R|D′ . In a
corresponding constraint 〈(v1, . . . , vr), suppt1+t2

(R)〉, if ai 6= 0, then variable vi has value ai (since
it is in bag Bai of G1) and has value 0 otherwise. Thus (a1, . . . , ar) ∈ R implies that the constraint
is satisfied.

2. If the NAND(G1, G2) instance is satisfied, then one of the constraints corresponding to t1
and t2 ensures that h1(t1) + h2(t2) ∈ R.

3. For i = 1, 2, let hi be a ti-recoverable inner homomorphism given by Gi and let φi be a
multivalued morphism such that ti ∈ (hi ◦ φi)(ti). Since hi is an inner homomorphism, we have
that h1(t1), h2(t2) ∈ R. Statement 2 implies that h1(t1) + h2(t2) ∈ R. By Lemma 3.12, we have
that h1(t1) + t′2 ∈ R for any t′2 ∈ φ2(h2(t2)); in particular, this means that h1(t1) + t2 is in R. As
t2 ∈ R, we can apply Lemma 3.12 once more to get that t′1 + t2 ∈ R for any t′1 ∈ φ1(h1(t1)); in
particular, t1 + t2 ∈ R, a contradiction.

17



The IMP(G1, G2) gadget is defined similarly, but instead of t1, t2 ∈ R|D′ , we require t2, t1+t2 ∈
R|D′ .

Lemma 3.22. Let 0 ∈ D′ ⊆ dom(Γ) and let there be an IMP(G1, G2) gadget on MVM(Γ,D′)
gadgets G1, G2.

1. If G2 has the standard assignment and G1 either has the standard assignment or fully zero,
then all constraints of IMP(G1, G2) are satisfied.

2. Let f be a satisfying assignment of IMP(G1, G2). If hi is an inner endomorphism given by
gadget Gi and assignment f for i = 1, 2 and t1, t2 are disjoint tuples such with t2, t1 + t2 ∈
R|D′, then h1(t1) + h2(t2) ∈ R.

3. If there is a difference counterexample (R, t1, t2) in Γ|D′, G1 is t1-recoverable in assign-
ment f and G2 gives an inner homomorphism h2 with h2(t2) = 0, then some constraint of
IMP(G1, G2) is not satisfied.

Proof. 1. Similarly to the proof of Lemma 3.21, the constraint corresponding to (R, t1, t2) is
satisfied, since t2, t1 + t2 ∈ R.

2. As in Lemma 3.21, follows from the definition of IMP(G1, G2).
3. Let h1 be a t1-recoverable inner homomorphism given by G1. Let φ1 be a multivalued

morphism such that t1 ∈ (h1 ◦φ1)(t1). One of the constraints of IMP(G1, G2) ensure that h1(t1)+
h2(t2) = h1(t1) is in R. Now t1 ∈ φ1(h1(t1)) is also in R, a contradiction.

When the multivalued morphism gadgets are used in the reductions, it will be essential that the
bags of the gadgets have very specific sizes. We will ensure somehow that in a solution each bag is
either fully zero or fully nonzero. Our aim is to choose the sizes of the bags in such a way that if
the sum of the sizes of a collection of bags add up to a certain integer, then this is only possible if
the collection contains exactly one bag of each size.

In most of the reductions, the MVM(Γ,D′) gadgets are arranged in t groups (corresponding to
the t groups of vertices in the Multicolored Independent Set or Multicolored Implica-

tions instance we are reducing from). For a gadget in group i, the bag representing d ∈ D′ \ {0}

has size Zt,D′

i,d , which is defined as follows. Fix an integer t and a set 0 ∈ D′ ⊆ D. It will be
convenient to assume that D′ = {0, 1, . . . ,∆}. For 1 ≤ i ≤ t and 1 ≤ d ≤ ∆, we define

Zt,D′

i,d := (4t∆)2t∆+(i∆+d) + (4t∆)5t∆−(i∆+d).

By Zt,D′
we denote the set of integers Zt,D′

i,d for 1 ≤ i ≤ t and 1 ≤ d ≤ ∆. Note that these integers
have exactly two nonzero digits if written in base-(4t∆) expansion; the positions of these two digits
depend on i∆+ d. Furthermore, the “larger nonzero digit” of any number in Zt,D′

is always larger
than the “smaller nonzero digit” of any other number in Zt,D′

. We will use the following property
of these integers:

Lemma 3.23. Let us fix t and D′ = {0, 1, . . . ,∆}. If A is a subset of Zt,D′
and B is a multiset of

values from Zt,D′
such that |

∑

S∈A S −
∑

S∈B S| < (4t∆)2t∆, then B is a set and B = A.

Proof. It can be assumed that A ∩ B = ∅, since removing integers from both A and B does not
change the difference of the sums. Let T be the largest integer in A∪B. Assume first that T ∈ B\A.
This means that A contains only integers strictly smaller than T , and (as A is a set) an integer
appears at most once in A. Since there are t∆ integers in Zt,D′

and every integer smaller than T is
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at most 2T/(4t∆), we have that the sum of the integers in A is at most T/2. Thus the difference
of the sums is at least (4t∆)2t∆, a contradiction.

Assume now that T ∈ A \ B. Suppose that T = Zt,D′

i,d and let X := (4t∆)2t∆+(i∆+d). Since T is
the largest integer in A∪B (i.e, i∆+ d is as small as possible), every integer in A∪B other than T
is divisible by (4t∆)2t∆+(i∆+d+1) = X · 4t∆, while T is equal to X modulo X · 4t∆. Thus

∑

S∈A S
is X modulo X · 4t∆, while

∑

S∈B S is divisible by X · 4t∆. Therefore, |
∑

S∈A S −
∑

S∈B S| is at
least min{X, 4t∆ ·X −X} > (4t∆)2t∆, a contradiction.

3.5 Frequent instances

If a value d “can appear” only on a small number of variables, then we can branch on all possible
ways this value appears and then reduce the problem to simpler instances whose domain does
not contain d. Formally, we say that an instance of CCSP(Γ) or OCSP(Γ), with parameter k is
c-frequent (for some integer c) if for every d ∈ dom(Γ) \ {0} there are at least c variables v such
that f(v) = d for a satisfying assignment f of size at most k (note that we do not require that
these satisfying assignments satisfy the cardinality constraints). The algorithm of Lemma 2.3 can
be used to decide whether an instance is c-frequent. As we shall see in Lemma 3.24, if an instance
is not c-frequent, then it can be reduced to c-frequent instances by trying all possibilities for the
values that appear on less than c variables. We prove a stronger result, where the instances satisfy
an additional technical requirement. A subset 0 ∈ D′ ⊆ dom(Γ) is closed (with respect to Γ) if Γ
has no inner homomorphism from D′ to dom(Γ) that maps some element of D′ to an element in
dom(Γ) \D′.

Lemma 3.24. Let Γ be a finite cc0-language. Given an instance I of CCSP(Γ) or OCSP(Γ) with
parameter k and an integer c, we can construct in time fΓ(k, c)n

O(1) a set of c-frequent instances
such that

1. instance I has a solution if and only if at least one of the constructed instances has a solution,

2. each instance Ii is an instance of CCSP(Γ|Di
), respectively, OCSP(Γ|Di

), for some Di ⊆
dom(Γ) closed in Γ, and

3. the parameter ki of Ii is at most k.

Proof. We state the proof for CCSP(Γ), the proof is the same for OCSP(Γ). The reduction performs
the following branching step repeatedly. Let I ′ be the current instance, which is an instance of
CCSP(Γ|D′) for some D′. If I ′ is not c-frequent, then we branch as follows. Let Sd be the set of those
variables where value d can appear in a satisfying assignment of size at most k. This set can be
found using the algorithm Lemma 2.3 as follows: To decide if v ∈ Sd, let us assign d to v and find if
there is any minimal satisfying extension of this assignment of size at most k. Suppose that |Sd| < c.

We branch into
( |Sd|
π(d)

)
< 2|Sd| ≤ 2c directions by considering every subset S′

d ⊆ Sd of size exactly

π(d) and creating an assignment that gives value d to the variables of S′
d, and 0 to the remaining

variables. If this assignment does not satisfy I ′, then we use Lemma 2.3 to enumerate all the
minimal satisfying extensions f ′1, . . . , f

′
t of this assignment. For each such satisfying assignment

f ′i , we obtain an instance I ′i by substituting the nonzero variables as constants. Since f ′i is a
satisfying assignment, every relation of I ′i is 0-valid, hence it is an instance of CCSP(Γ|D′) as well.
Furthermore, since we have already considered all possible appearances of value d, the correctness
of the algorithm does not change if we consider I ′i as an instance of CCSP(Γ|D′\{d}). If the instance
I ′i is still not c-frequent, then we repeat the branching step.
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In each step, the maximum number of directions we branch into is at most a constant depending
only on c, Γ, and the current parameter k′ ≤ k. The depth of the branching tree is at most |D|,
since we decrease the domain at each step. Thus it is clear that the running time is fΓ(k, c)n

O(1),
for an appropriate function fΓ(k, c).

Let instance Ii of CCSP(Γ|Di
) be a 0-valid c-frequent instance obtained by the algorithm and

let ki be its size constraint. To show that Di is closed, we argue as follows. Suppose that there
is an inner homomorphism g : Di → D of Γ such that g(d) = d′ for some d ∈ Di, d

′ ∈ D \ Di.
Since Ii is c-frequent, there are c variables v1, . . . , vc and satisfying assignments f1, . . . , fc of size
at most ki such that fj(vj) = d. On the branch of the algorithm that produced instance Ii, there

has to be an instance I
(1)
i of CCSP(Γ|D(1)) that is reduced to an instance I

(2)
i of CCSP(Γ|D(2)) such

that Di ⊆ D(1), D(2) = D(1) \ {d′}, and d′ is not c-frequent in I(1). If we consider instance Ii
as an instance of CCSP(Γ|D(1)), then the assignment fj ◦ g assigns value d′ to vi. Since instance

Ii is obtained from instance I(1) via substitutions, we get that variables v1, . . . , vc can get value
d′ in I(1) in assignments whose size does not exceed the parameter of I(1). This contradicts the
assumption that d′ is not c-frequent in I(1).

4 Classification for size constraints

Unlike in the Boolean case, weak separability of Γ is not equivalent to the tractability of OCSP(Γ):
it is possible that Γ is not weakly separable, but OCSP(Γ) is FPT (see Example 6.10). However, if
there is a subset D′ ⊆ dom(Γ) of the domain such that Γ|D′ is not weakly separable and D′ has “no
special problems” in a certain technical sense, then OCSP(Γ) is W[1]-hard. We need the following
definitions. A value d ∈ dom(Γ) is weakly separable if Γ|{0,d} is weakly separable. A contraction of
Γ to D′ with 0 ∈ D′ ⊆ dom(Γ) is an endomorphism h : dom(Γ) → D′ such that h(d) 6= 0 for any
d ∈ dom(Γ) \ {0}. Contraction h is proper if D′ ⊂ dom(Γ). As the contraction can be applied on
any solution of an OCSP(Γ) instance without changing the number of nonzero variables, restriction
to D′ does not change the problem, i.e., replacing every R with R|D′ does not change the solvability
of the instance (see Example 6.15).

The main result for the size constraints CSP is the following dichotomy theorem.

Theorem 4.1. Let Γ be a finite cc0-language. If there are two sets {0} ⊆ D2 ⊆ D1 ⊆ dom(Γ) such
that

1. D1 is closed in Γ,

2. Γ|D1
has a contraction h to D2,

3. Γ|D2
has no proper contraction,

4. Γ|D1
has no weakly separable value that is either degenerate or self-producing, and

5. Γ|D2
is not weakly separable,

then OCSP(Γ) is W[1]-hard. If there are no such D1,D2, then OCSP(Γ) is fixed-parameter
tractable.

We present an algorithm solving the FPT cases of the problem in Section 4.1. Section 4.2
presents an important case of the hardness proof, demonstrating the concepts introduced in Sec-
tion 3.
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4.1 The algorithm

Let I = (V, C, k) be an instance of OCSP(Γ). Let us use the algorithm of Lemma 3.24 to obtain
instances I1, . . . , Iℓ such that Ii is a k-frequent instance of OCSP(Γ|Di) for some closed set Di ⊆

dom(Γ). Fix some i and let h be a contraction of Γ|Di such that |h(Di)| is minimum possible. Set

D1 := Di and D2 := h(Di).
In the cases where Theorem 4.1 claims fixed-parameter tractability, the pair D1,D2 violates

one of the properties (1)–(5). By the way D1 and D2 defined, it is clear that (1) and (2) hold. For
(3), suppose that Γ|D2

has a proper contraction g. Then h ◦ g is a contraction of Γ|D1
such that

|g(h(D1))| is strictly less than |h(D1)|, a contradiction.
If D1 violates (4), then instance Ii always has a solution. Indeed, suppose that d ∈ D1 is

weakly separable and d is produced by d′ ∈ D1 (possibly d = d′). Let ki be the parameter of Ii;
then ki ≤ k by Lemma 3.24(3). Since Ii is k-frequent, if we denote by S the set of variables of
Ii where d

′ can appear in a satisfying assignment of size at most k, then |S| ≥ k. As d′ produces
d, Γ|D1

has a multivalued morphism φ such that φ(d′) = {0, d} and φ(a) = {0} for a ∈ D1 \ {d
′}.

Applying multivalued morphism φ on any satisfying assignment f with f(v) = d′ shows that the
assignment δv,d with δv,d(v) = d and 0 everywhere else is a satisfying assignment of Ii. Therefore,
for every v ∈ S, assignment δv,d satisfies Ii. As d is weakly separable in Γ|D1

, the disjoint union of
ki such assignments δv,d is a solution to Ii. Finally, suppose that (5) is violated and Γ|D2

is weakly
separable. Instance Ii of OCSP(Γ|D1

) has a solution if and only if it has a solution restricted to D2

(because of the contraction h), and the latter can be decided using the algorithm of Lemma 3.5.

4.2 Hardness

Suppose that we have sets D1 and D2 as in Theorem 4.1. The aim of this section is to show
that OCSP(Γ) is W[1]-hard in this case. The reduction is based on a counterexample to the weak
separability of Γ|D2

, which exists by condition (5) of Theorem 4.1. To ensure that the MVM gadgets
work as intended, we have to make use of conditions (1)–(4) as well. Our first goal is to handle
the cases when some value in Γ|D1

is not regular (Sections 4.2.1–4.2.2). The main part of the proof
is to prove hardness in the case when every value in Γ|D1

is regular (Section 4.2.3). This case
contains the most important proof ideas; the reader is suggested to skim Sections 4.2.1–4.2.2 and
concentrate on Section 4.2.3 on a first reading.

4.2.1 Degenerate and self-producing values

Recall that a relation R is intersection definable in a constraint language Γ if R is the set of all
solutions to a certain instance of CSP(Γ). Let UΓ be the set of all 0-valid unary relations intersection
definable in the set of 0-valid relations from Γ.

Lemma 4.2. Let D1 be a closed set in Γ. If P is the set of nonzero values produced by d ∈ D1 in
Γ|D1

, then P ∪ {0} ∈ UΓ.

Proof. For every (r-ary) R ∈ Γ, every tuple b ∈ R|D1
where d appears, and every subset a =

(a1, . . . , ar) of b that contains only 0 and d (recall that it means that ai = bi whenever ai 6= 0),
we set Ra = R|i1,...,iq;0,...,0, where i1, . . . , iq are the positions such that aij = 0. Let T be the unary
relation expressed by the instance ({v}, C), where C contains constraints {〈(v, . . . , v), Ra〉) for all
such R ∈ Γ, b, and a. We claim that T = P ∪ {0}.

For every a ∈ P , the fact that d produces a in Γ|D1
implies the tuple obtained from b ∈ R|D1

by
replacing value d with 0 or a and replacing everything else with 0 gives a tuple of R. Thus setting
v to a is a satisfying assignment.
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On the other hand, suppose that there is a satisfying assignment with value a on v. It follows
that ψ(d) = {a, 0} and ψ(d′) = {0} for every d′ ∈ D1 \ {d} is an inner multivalued morphism ψ
of Γ from D1. Indeed, similar to the previous paragraph it means that the tuple obtained from
b ∈ R|D1

by replacing value d with 0 or a and replacing everything else with 0 gives a tuple of R.
By Observation 3.6, the mapping h such that h(d) = a and h(d′) = 0 for every d′ ∈ D1 \ {d} is an
inner homomorphism. Since D1 is closed, a ∈ D1, thus d produces a in Γ|D1

.

The following lemma proves hardness in the case when Γ|D1
contains some degenerate and self-

producing values. In this case, by condition (4) of Theorem 4.1, none of the values are weakly
separable.

Lemma 4.3. If D1 is a closed set such that Γ|D1
has degenerate or self-producing values, but no

such value is weakly separable, then OCSP(Γ) is W[1]-hard.

Proof. Let d ∈ D1 be a value that produces at least one nonzero value in Γ|D1
; let P be the set of

(nonzero) values produced by d. By Lemma 4.2, P ∪{0} ∈ UΓ. Let P
′ ⊆ P be a smallest nonempty

set such that P ′ ∪ {0} ∈ UΓ.
Let x be an arbitrary nonzero element of P ′. As x is produced by d, the assumption of the lemma

implies that x is not weakly separable in Γ|D1
. Suppose first that Γ|{0,x} has a union counterexample

(R, t1, t2), where R ∈ Γ|{0,x} is r-ary. Let A,B be the set of coordinates of R such that t1 equals x in
positions from A, t2 equals x in positions from B, and they are equal to 0 otherwise. By substituting
0’s, it can be assumed without loss of generality that A∪B = {1, . . . , r} and A = {1, . . . , q}. Let R′

be the binary relation expressed by the instance ({v,w}, {〈(v, . . . , v, w, . . . , w), R〉) where v occupies
the first q positions. As is easily seen, (0, 0), (x, 0), (0, x) ∈ R′, but (x, x) 6∈ R′. We show that
(y, y′) 6∈ R′ for arbitrary nonzero values y, y′ ∈ P ′. If this is true, then by Proposition 2.7 this binary
relation R′ and the unary relation restricting to P ′∪{0} can be used to reduce Independent Set

to OCSP(Γ). That is, a binary constraint with relation R′ can represent each edge: this ensures
that that a set of variables can be simultaneously nonzero if and only if they correspond to an
independent set in the graph.

Suppose that (y, y′) ∈ R′ for some y, y′ ∈ P ′ (including the possibility that y or y′ is equal to x).
If (y, 0) 6∈ R′, then by substituting 0 in the second coordinate we get a 0-valid unary relation that
includes x, but does not include y, contradicting the minimality of P ′ (the intersection of this set
with P ′ ∪ {0} is a proper subset of P ′ ∪{0}). It follows that (y, x) ∈ R′: otherwise, by substituting
y in the first coordinate, we would get a 0-valid relation containing y′, but not x. Finally, by
substituting x in the second coordinate, we get a 0-valid unary relation containing y, but not x, a
contradiction.

Suppose next that Γ|{0,x} has a difference counterexample. Again, without loss of generality, it
can be assumed that (0, 0), (0, x), (x, x) ∈ R′, but (x, 0) 6∈ R′ for a binary relation R′ intersection
definable in Γ. We claim that (y, 0) 6∈ R′ for any nonzero y ∈ P ′: otherwise, by substituting 0
in the second coordinate, we would get a 0-valid unary relation containing y, but not x. Now by
Proposition 2.7, we can use this binary relation R′ to reduce Implications to OCSP(Γ).

4.2.2 Semiregular values

Thus in the following, we assume that Γ|D1
has no degenerate or self-producing values. Next we

prove hardness in the case when there is a semiregular value d ∈ D1 in Γ|D1
. We say that a

multivalued morphism φ witnesses that d is semiregular if 0, d ∈ φ(c) for some c ∈ dom(Γ).

Lemma 4.4. If D1 is a closed set in Γ such that there are no self-producing or degenerate values
in Γ|D1

, but there is a semiregular value d ∈ D1, then OCSP(Γ) is W[1]-hard.
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Proof. From the semiregular values of Γ|D1
, let us choose d and its witness φ such that the size of

S := φ(D1) is minimum possible (note that 0 ∈ S).
The proof is by reduction from Implications. Let G, t be an instance of Implications. For

each vertex vi of G, we introduce a gadget MVM(Γ, S) denoted by Gi. The size of each bag of each
gadget is Z := t + 1, except the bag corresponding to d, whose size is 1. We set the cardinality
constraint to k := tZ(|S|−2)+ t. To finish the construction of the instance, we encode the directed
edges of the Implications instance by adding the gadget IMP(Gx, Gy) for each directed edge −−→vxvy.

Suppose that there is a solution C of size exactly t for the Implications instance. If vertex vi
is in C, then set the standard assignment on gadget Gi. It is clear that this results in an assignment
of size exactly k = tZ(|S|−2)+ t and the constraints of the MVM(Γ, S) gadgets are satisfied. From
the fact that there is no directed edge −−→vxvy with vx ∈ C, vy 6∈ C and from Lemma 3.22(1), it follows
that the constraints of IMP(Gx, Gy) are also satisfied.

For the other direction, we have to show that if there is a solution of size exactly k for the
OCSP(Γ) instance, then there is a solution C of size exactly t for Implications. Observe first that
only values from D1 can appear in a solution: if some value c ∈ D \D1 appears on a gadget Gx,
then there is a corresponding inner homomorphism gx of Γ from S to D such that for a certain inner
homomorphism from D1 to D given by φ ◦ gx, value c appears in the image of D1, contradicting
the fact that D1 is closed.

Next we show that if the variable in bag Bd of Gx is nonzero, then Gx is fully nonzero. Suppose
that the variable in bag Bd of Gx is nonzero, but there is a nonzero variable in bag Bc for some
some nonzero c ∈ S (since there is a single variable in bag Bd, we have c 6= d). Let g be an inner
homomorphism of Γ|D1

(from S) given by Gx such that g(d) 6= 0 and g(c) = 0. The multivalued
morphism φ ◦ g witnesses that g(d) is semiregular in Γ|D1

(as there are no self-producing or degen-
erate values by assumption), and (φ ◦ g)(D1) = g(S) has size strictly less than S, contradicting the
minimality of S.

Let us show that for every vx and c ∈ S \ {0, d}, the bag Bc of Gx is either fully zero or fully
nonzero. Suppose that both 0 and d′ appear in this bag. Let ψ′

x be an inner multivalued morphism
of Γ|D1

from S given by Gx such that ψ′
x(c) = {0, d′} and |ψ′

x(c
′)| = 1 for every c′ ∈ S, c′ 6= c. The

multivalued morphism φ ◦ ψ′
x witnesses that d′ is semiregular in Γ|D1

(note that by assumption,
there are no self-producing or degenerate values in Γ|D1

). Thus the minimality of S would be
violated by ψ′

x(d) = {0}, hence the variable in bag Bd is nonzero. In this case, by the previous
paragraph, the nonzero variable in bag Bd implies that every variable of Gx is nonzero.

Since the bags not corresponding to d have size Z and the cardinality constraint k equals t
modulo Z, there have to be at least t gadgets where bag Bd is nonzero. We have seen that in these
gadgets all the other Z(|S|−2) variables are nonzero as well. Thus it follows that there are exactly
t gadgets where all the variables are nonzero, and every variable of every other gadget is zero.

Let C be the set such that vx ∈ C if and only if the variables of Gx are nonzero; the previous
paragraph implies that |C| = t. We claim that C is a solution for the Implications instance.
Suppose that there is an edge −−→vxvy with vx ∈ C and vy 6∈ C. Let c be the value of the variable
of Gx in the bag Bd. We arrive to a contradiction by showing that in this case c is produced
by some value d′ in Γ|D1

(recall that by assumption, there are no self-producing or degenerate
values in Γ|D1

). Let d′ ∈ D1 be such that 0, d ∈ φ(d′). To show that d′ produces c, let t ∈ R for
some R ∈ Γ|D1

, and let tc be a tuple such that c is the only nonzero value appearing in tc and
whenever c appears in some coordinate of tc, then d

′ appears in the same coordinate of t. If we
show that every such tc is in R, then we prove that d′ produces c. Let td be the same as tc with
every c replaced by d. The multivalued morphism φ shows that there is a tuple t′ ∈ R|S disjoint
from tc such that td + t′ ∈ R|S. Gadget Gx gives an inner homomorphism fx with fx(d) = c and
gadget Gy gives an inner homomorphism fy with fy(t

′) = 0, the zero tuple. As both t′ ∈ R|S and
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td + t′ ∈ R|S hold, it follows from Lemma 3.22(2) that the IMP(Gx, Gy) constraint implies that
fx(td) + fy(t

′) = fx(td) = tc ∈ R, and we are done.

4.2.3 Regular values

Let D1,D2 be a pair satisfying (1)–(5) of Theorem 4.1. By previous sections, we can assume in the
following, that every value is regular in Γ|D1

. It follows that every value is regular in Γ|D2
as well:

if ψ is a multivalued morphism of Γ|D2
with 0, d ∈ ψ(c) for some nonzero c, d ∈ D2, then, as h is a

contraction, h ◦ ψ witnesses that d is not regular in Γ|D1
.

A technical tool in the proofs is that given a set of endomorphisms that are disjoint in the sense
that the image of a value is nonzero in exactly one of the endomorphisms, we would like to construct
a mapping that is the “sum” of these mapping, hoping that it is also an endomorphism. Formally,
we say that a set p1, . . . , pℓ of endomorphisms of Γ is a partition set if, for every d ∈ D \ {0},
pi(d) 6= 0 for exactly one i. The sum of the partition set is the mapping h : D → D defined such
that h(d) is the unique nonzero value in p1(d), . . . , pℓ(d). The partition set is good if the sum of
these pairwise disjoint endomorphisms is also an endomorphism; otherwise, the partition set is bad.
We can define partition sets similarly for inner endomorphisms.

The hardness proofs are simpler if we assume that there are no bad partition sets: we prove
W[1]-hardness under this assumption in Lemma 4.5 below if there is a union counterexample and
in Lemma 4.6 if there is a difference counterexample.

Note that if a partition set is bad, then there is a union counterexample in Γ using the values
⋃ℓ

i=1 pi(dom(Γ)). Indeed, suppose that there is a relation R ∈ Γ and a tuple t ∈ R such that
h(t) = p1(t) + p2(t) + · · ·+ pℓ(t) 6∈ R. If 1 < ℓ′ ≤ ℓ is the smallest value such that p1(t) + p2(t) +
· · ·+ pℓ′(t) 6∈ R, then t1 = p1(t) + p2(t) + · · ·+ pℓ′−1(t) and t2 = pℓ′(t) is a union counterexample.
Lemma 4.7 exploits this union counterexample to show hardness in case there is a bad partition
set, completing the proof of Theorem 4.1.

Lemma 4.5. If every value is regular in Γ|D2
, there is no bad partition set in Γ|D2

, and there is a
union counterexample in Γ|D2

, then OCSP(Γ) is W[1]-hard.

Proof. The reduction is from Multicolored Independent Set (see Section 2.2). Assume D2 =
{0, . . . ,∆}. For each vertex vx,y (1 ≤ x ≤ t, 1 ≤ y ≤ n), we introduce a gadget MVM(Γ,D2)

denoted by Gx,y. The bag of Gx,y corresponding to value d ∈ D2 \ {0} has size Zt,D2

x,d . The

size constraint is k :=
∑t

x=1

∑

d∈D2\{0}
Zt,D2

x,d . If vx,y and vx′,y′ are adjacent, then we add the

gadget NAND(Gx,y, Gx′,y′). Furthermore, for every 1 ≤ x ≤ t, 1 ≤ y, y′ ≤ n, y 6= y′, we add the
NAND(Gx,y, Gx,y′) gadget.

Suppose that there is a solution C for the Multicolored Independent Set instance. If
vertex vx,y is in C, then set the standard assignment on gadget Gx,y, otherwise set the zero assign-
ment. It is clear that this results in an assignment satisfying the size constraint. The constraints
of the MVM(Γ,D2) gadgets are satisfied and the constraints of NAND(Gx,y, Gx,y′) are satisfied as
well (by Lemma 3.21(1)).

For the other direction, suppose that there is a solution satisfying the size constraint. First,
we observe that a solution contains values only from D1. Indeed, if c 6∈ D1 appears in bag Bd of
a gadget Gx,y, then Gx,y gives an inner homomorphism g of Γ from D2 with g(d) = c. Now h ◦ g
maps a value of D1 to c, contradicting the assumption that D1 is a closed set. Furthermore, by
applying the contraction h on a solution, it can be assumed that only values from D2 are used.
Thus the MVM(Γ,D2) gadgets give multivalued morphisms of Γ|D2

. Since every value is regular in
Γ|D2

, each bag is either fully zero or fully nonzero. The sizes of the nonzero bags add up exactly
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to the size constraint k. Thus by Lemma 3.23, the only way this is possible if there is exactly one
nonzero bag with size Zt,D2

x,d for every 1 ≤ x ≤ t and d ∈ D2 \ {0}. However, the nonzero bags of

sizes Zt,D2

x,d1
and Zt,D2

x,d2
could appear in different gadgets.

Take a union counterexample (R, t1, t2) in Γ|D2
; by Lemma 3.19, we can assume that t1, t2

are in the components of Γ|D2
generated by some a1, a2 ∈ D2, respectively. We show that for

every 1 ≤ x ≤ t, there are values y1x and y2x such that every endomorphism of Γ|D2
given by Gx,y1x

(resp., Gx,y2x
) is t1-recoverable (resp., t2-recoverable). For a fixed x, let g1, . . . , gn be arbitrary

endomorphisms of Γ|D2
given by Gx,1, . . . , Gx,n, respectively. Since the sizes of nonzero bags are all

different, these endomorphisms are pairwise disjoint and hence they form a partition set. As there
is no bad partition set in Γ|D2

, their sum g is an endomorphism of Γ|D2
and in fact a contraction.

Since Γ|D2
has no proper contraction by assumption, g has to be a permutation and hence gs is

the identity for some s ≥ 1. There is a unique 1 ≤ y1x ≤ n such that gy1x(a1) = g(a1) 6= 0. The
endomorphism gy1x ◦g

s−1 maps a1 to (g◦gs−1)(a1) = gs(a1) = a1 and maps every a ∈ D2 either to 0
or a; i.e., gy1x ◦g

s−1 = retS for some set S ⊆ D2 \{0} containing a1. As S is a component containing
a1, it has to contain the component generated by a1 and S contains every value of t1. It follows that
gy1x given by Gy1x

is t1-recoverable: g
s−1(gy1x(t1)) = t1. A similar argument works for y2x, thus the

required values y1x, y
2
x exist. Let us observe that it is not possible that y1x 6= y2x: by Lemma 3.21(3)

the constraints of NAND(Gx,y1x
, Gx,y2x

) are not satisfied in this case. Let C contain vertex vx,y if
y = y1x = y2x. It follows that C is a multicolored independent set: if vertices vx,y, vx′,y′ are adjacent,
then again by Lemma 3.21(3), some constraint of NAND(Gx,y, Gx′,y′)=NAND(Gx,y1x

, Gx′,y2x
) is not

satisfied.

The proof using a difference counterexample is similar:

Lemma 4.6. If every value is regular in Γ|D2
, there is no bad partition set in Γ|D2

, and there is a
difference counterexample in Γ|D2

, then OCSP(Γ) is W[1]-hard.

Proof. The reduction is from Multicolored Implications. For each vertex vx,y (1 ≤ x ≤ t,
1 ≤ y ≤ n), we introduce a gadget MVM(Γ,D2) denoted by Gx,y. The bag Bd of Gx,y has size

Zt,D2

x,d . The size constraint is k :=
∑t

i=x

∑

d∈D2\{0}
Zt,D2

x,d . If there is a directed edge −−−−−−→vx,y, vx′,y′ , then
we add a constraint IMP(Gx,y, Gx′,y′).

Suppose that there is a solution C of size exactly t for the Multicolored Implications

instance. If vertex vi is in C, then set the standard assignment on gadget Gvi , otherwise set
the zero assignment. It is clear that this results in an assignment satisfying the size constraint.
The constraints of the MVM(Γ,D2) gadgets are satisfied and the IMP(Gx,y, Gx,y′) constraints are
satisfied as well (Lemma 3.22(1)).

For the other direction, suppose that there is a solution satisfying the size constraint. As in
Lemma 4.5, we can assume that only values from D2 are used in the solution. Since every value is
regular in Γ|D2

, every bag is either fully zero or fully nonzero. The sizes of the nonzero bags add
up exactly to the size constraint k. Thus by Lemma 3.23, the only way this is possible is if there
is exactly one nonzero bag of size Zt,D2

x,d for every 1 ≤ x ≤ t and d ∈ D2.
Let us choose a difference counterexample (R, t1, t2) in Γ|D2

; by Lemma 3.19, we can assume
that t1 + t2 is in the component C1 of Γ|D2

generated by some a1 ∈ D2. We show that for every
1 ≤ x ≤ t, there is an integer yx such that Gx,yx is t1-recoverable.

Let g1, . . . , gn be arbitrary endomorphisms given by Gx,1, . . . , Gx,n, respectively. The unique-
ness of the sizes of the nonzero bags implies that these endomorphisms are pairwise disjoint and
they form a partition set. We assumed that there is no bad partition set in Γ|D2

, thus the sum g of
the set is an endomorphism. Since Γ|D2

has no proper contraction, we have that g is a permutation
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and gs is the identity for some s ≥ 1. There is a 1 ≤ yx ≤ n such that gyx(a1) 6= 0. The homo-
morphism gyx ◦ gs−1 maps every value a ∈ D2 either to 0 or a; i.e., gyx ◦ gs−1 = retS for some set
S ⊆ D2 containing a1. This means that S is a component containing a1, hence C1 ⊆ S. It follows
that gyx is t1-recoverable. Moreover, as the bag Ba of Gx,yx for a ∈ C1 is fully nonzero, we have
that bag Ba of Gx,y for a ∈ C1 and y 6= yx is fully zero.

Let C = {v1,y1 , . . . , vt,yt}. It follows immediately that C does not violate any of the implications:
if there is a directed edge −−−−−−→vx,yxvx′,y′ , y

′ 6= yx′, then the gadget Gx,yx is t1-recoverable and h(t2) = 0
for every homomorphism given by Gx′,y′ , as t2 is contained in C1, and therefore Lemma 3.22(3)
implies that IMP(Gx,yx , Gx′,y′) is not satisfied.

The last step is to handle the case when there is a bad partition set. As mentioned earlier, this
implies that there is a union counterexample; the following proof exploits this fact.

Lemma 4.7. If every value is regular in Γ|D2
and there is a bad partition set in Γ|D2

, then OCSP(Γ)
is W[1]-hard.

Proof. Let p1, . . . , pℓ be a minimal bad partition set of Γ|D2
in the sense that D3 :=

⋃ℓ
i=1 pi(D2)

has minimum size. Assume D3 = {0, . . . ,∆}. Because of the bad partition set, Γ|D3
contains a

union counterexample. Furthermore, every value d ∈ D3 \ {0} is regular in Γ|D3
: if Γ|D3

has a
multivalued morphism ψ with 0, d ∈ ψ(c) for some c ∈ D3, and pi(c

′) = c for some 1 ≤ i ≤ ℓ and
c′ ∈ D2, then pi ◦ ψ witnesses that d is not regular in Γ|D2

.
The reduction is the same as in Lemma 4.5, with the only difference is that we use MVM(Γ,D3)

gadgets instead of MVM(Γ,D2) and the sizes of the bags are set using the values Zt,D3

x,d . It remains
true that a solution for Multicolored Independent Set implies a solution for the OCSP(Γ)
instance.

For the other direction, let us argue first that only values from D1 appear in a solution. Suppose
that a value d 6∈ D1 appears in bag Bc of a gadget Gx,y, which means that Gx,y gives an inner
homomorphism g from D3 to D with g(c) = d. Let 1 ≤ s ≤ ℓ be such that ps(c

′) = c for some
c′ ∈ D2. Now h ◦ ps ◦ g is an inner homomorphism from D1 to D mapping a value of D1 to d,
contradicting the assumption that D1 is a closed set. Furthermore, by applying the contraction h
on a solution, it can be assumed in the following that only values from D2 appear in the solution.
That is, each multivalued gadget describes an inner multivalued morphism from D3 to D2.

We show that every bag is either fully zero or fully nonzero. Suppose that ψ is an inner
multivalued morphism of Γ|D2

from D3 given by a gadget with 0, d ∈ ψ(c) for some nonzero c ∈ D3

and d ∈ D2. Suppose that ps(c
′) = c for some c′ ∈ D2 and 1 ≤ s ≤ ℓ. Now ps ◦ ψ witnesses that d

is not regular in Γ|D2
, and this contradiction shows that every bag is either zero or fully nonzero.

The sizes of the nonzero bags add up exactly to the size constraint k. Thus by Lemma 3.23, there
is exactly one nonzero bag with size Zt,D3

x,d for every 1 ≤ x ≤ t and d ∈ D2 \ {0}.
We know that there is a union counterexample in Γ|D3

(because of the bad partition set whose
image is in D3). Let us choose a union counterexample (R, t1, t2) in Γ|D3

; by Lemma 3.19, we can
assume that ti is in the component of Γ|D3

generated by some ai ∈ D3, for i = 1, 2. We show that
for every 1 ≤ x ≤ t, there are values y1x and y2x such that Gx,y1x

(resp., Gx,y2x
) gives a t1-recoverable

(resp., t2-recoverable) inner homomorphism from D3 to Γ|D2
.

Let p be the sum of this bad partition set p1, . . . , pℓ (note that p is not an endomorphism of
Γ|D2

). The uniqueness of the sizes of the nonzero bags imply that at most |D3| − 1 of the gadgets
Gx,1, . . . , Gx,n have nonzero bags. Furthermore, if we choose one inner homomorphism given by
each such gadget, then it is clear that these inner homomorphisms g1, . . . , gm form a partition set,
i.e., for any a ∈ D3, the value gi(a) is nonzero for exactly one i. Let g be the sum of g1, . . . , gm
(note that we have no reason to assume that g is an inner homomorphism from D3 to Γ|D2

).
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We show that g ◦ p is a permutation of D3. Let P be the set of all endomorphisms of Γ|D2
that

arise in the form pz1 ◦ gz2 ◦ pz3 for some 1 ≤ z1, z3 ≤ ℓ, 1 ≤ z2 ≤ m. Observe that for every a ∈ D2,
there is a unique triple (z1, z2, z3) such that (pz1 ◦ gz2 ◦pz3)(a) is nonzero: this follows from the fact
that both p1, . . . , pℓ and g1, . . . , gm are partition sets. Thus the endomorphisms in P also form a
partition set. Let p∗ be the sum of this set. We have p∗(D2) ⊆ (g ◦ p)(D3): if p

∗(a) = b, then there
is an a′ ∈ D3 with pz1(a) = a′ and (gz2 ◦pz3)(a

′) = b for some z1, z2, z3. If g ◦p is not a permutation
of D3, then (g ◦p)(D3) has size strictly smaller than |D3|, and hence p∗(D2) has size strictly smaller
than |D3| as well. If p∗ is an endomorphism of Γ|D2

, then (as there are no proper contractions by
assumption) it has to be a permutation, contradicting |p∗(D2)| < |D3| ≤ |D2|. Otherwise, suppose
that p∗ is not an endomorphism, i.e., the partition set P is bad. Now |p∗(D2)| < |D3| = |p(D2)|
contradicts the minimality of the bad partition set p1, . . . , pℓ.

Since g ◦ p is a permutation, there is an s ≥ 1 such that (g ◦ p)s is the identity. This means
that for an arbitrary sequence u1, u

′
1, . . . , us, u

′
s, the endomorphism (gu1 ◦ pu′

1
◦ · · · ◦ gus ◦ pu′

s
) is a

retraction retS of Γ|D3
, and we can choose the sequence such that a1 ∈ S. As S is a component

containing a1, it contains all the values of t1. It follows that gu1 is t1-recoverable, hence we can
set y1x := u1. The values y

2
x can be defined similarly. From this point, we can finish the proof as in

Lemma 4.5.

5 Classification for cardinality constraints

The characterization of the complexity of CCSP(Γ) requires a new definition, which was not relevant
for OCSP(Γ). The core of Γ is the component generated by the set of all nondegenerate values in
dom(Γ). Note that by Proposition 3.10, the set of nondegenerate values is not empty, and thus the
core is not empty. We say that Γ is a core if the core of Γ is dom(Γ) (see Example 6.16).

Lemma 5.1. Let Γ be a finite cc0-language over D. If C ⊆ D is the core of Γ, then Γ|C∪{0} is a
core.

Proof. Every nondegenerate value of Γ is in C. By Lemma 3.18(2), every such value is nondegen-
erate also in Γ|C∪{0} and by Lemma 3.18(1), they generate the same component C in Γ|C∪{0} as in
Γ. Thus Γ|C∪{0} is a core.

The statement of the classification theorem for CCSP is actually simpler than for OCSP: we
prove hardness if some core is not weakly separable.

Theorem 5.2. Let Γ be a finite cc0-language. If there is a set D′ with 0 ∈ D′ ⊆ dom(Γ) such
that Γ|D′ is a core and not weakly separable, then CCSP(Γ) is Biclique-hard, and fixed-parameter
tractable otherwise.

Note that our proof shows W[1]-hardness in most of the cases: there is only one specific situation
in the proof (Lemma 5.10) where only Biclique-hardness is shown. One can extract from the proof
the following sufficient condition for proving W[1]-hardness:

Corollary 5.3. Let Γ be a core that is not weakly separable and minimal in the sense that there is
no subset 0 ∈ D′ ⊂ dom(Γ) such that Γ|D′ is a core and not weakly separable. If Γ contains at least
one semiregular or regular value, then CCSP(Γ) is W[1]-hard.
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5.1 The algorithm

We present an algorithm solving the FPT cases of the problem. The algorithm consists of three
steps. First, as a preprocessing step, we use Lemma 3.24 to ensure that every value is “frequent.”
Next we solve the problem restricted to the core, which is weakly separable by our assumption and
hence the algorithm of Lemma 3.5 can be used. Finally, we show that by a postprocessing step, we
can extend the solution on the core to the original domain. For this last step, we need the following
lemma. For a set of variables let δv,d be the assignment that assigns value d to variable v and 0 to
every other variable. If Γ is weakly separable, then satisfying assignments of this form can be freely
combined together (as there is no union counterexample). The following lemma shows something
similar under the weaker assumption that Γ|D′ is weakly separable whenever it is a core.

Lemma 5.4. Suppose that for every D′ with 0 ∈ D′ ⊆ dom(Γ), if Γ|D′ is a core, then it is weakly
separable. Let I be an instance of CCSP(Γ) having the following property: for every nonzero
d ∈ dom(Γ), there are at least k|dom(Γ)| variables v such that δv,d is a satisfying assignment. Then
I has a solution satisfying the cardinality constraints and such a solution can be found in polynomial
time.

Proof. We prove the statement by induction on |dom(Γ)|; for dom(Γ) = {0}, we have nothing to
show. Let K be the core of Γ and π the cardinality constraint in I. By Lemma 5.1, Γ|K∪{0} is a
core, hence weakly separable by assumption. For every d ∈ K, let Vd be the set of those variables
v for which δv,d is a satisfying assignment. Since |Vd| ≥ k|dom(Γ)|, with greedy selection we can
find a V ′

d ⊆ Vd of size exactly π(d) for every d ∈ K such that these sets are pairwise disjoint.
Consider the assignment f that assigns, for every d ∈ K, value d to every variable of V ′

d and 0
to every variable that is not in S :=

⋃

d∈K V ′
d . Since f can be obtained as the disjoint union

of assignments δv,d with v ∈ V ′
d and Γ|K∪{0} is weakly separable, we have that f is a satisfying

assignment. Let I ′ = (V ′, C′, π′) be the 0-valid instance obtained by substituting the nonzero values
of f as constants. Note that π′(d) = 0 for every d ∈ K, since f assigns value d to exactly π(d)
variables. It is clear that if I ′ has a solution, then I has a solution.

For any v ∈ V ′ and d, let δ′v,d be the assignment of I ′ that assigns d to variable v and 0 to every
other variable. By definition, every value in dom(Γ)\K is degenerate in Γ. Thus by Proposition 3.10,
for every c ∈ dom(Γ) \K, there is a d ∈ K such that d produces c in Γ. We claim that δ′v,c is a
satisfying assignment of I ′ for any variable Vd\S. Using the weak separability of Γ|K∪{0}, we get that
f + δv,d is a satisfying assignment of I for any v ∈ Vd \S. Thus δ

′
v,d on V ′ is a satisfying assignment

of I ′, and, using that fact that d produces c in Γ, we get that δ′v,c is a satisfying assignment of
I ′. As |S| ≤ k, there are at least |Vd| − k ≥ |dom(Γ)|k − k = (|dom(Γ)| − 1)k ≥ |dom(Γ) \K| · k
variables v such that δ′v,c is a satisfying assignment of I ′. Since π′(d) = 0 for every d ∈ K, instance
I ′ can be viewed as an instance of CCSP(Γ|dom(Γ)\K). Thus we can apply the induction hypothesis
to conclude that I ′ has a solution.

Lemma 5.5. Suppose that for every D′ with 0 ∈ D′ ⊆ dom(Γ), if Γ|D′ is a core, then it is weakly
separable. Then CCSP(Γ) is fixed-parameter tractable.

Proof. Let I = (V, C, k, π) be an instance of CCSP(Γ). Set F := k2(|dom(Γ)|+dΓ(k)), where dΓ(k)
is the function from Lemma 3.3. Let us use the algorithm of Lemma 3.24 to obtain instances I1,
. . . , Iℓ such that Ii is an F -frequent instance of CCSP(Γ|Di

) for some set Di ⊆ dom(Γ).
Consider an instance Ii = (Vi, Ci, ki, πi). Let Ki be the core of Γ|Di

. Let I ′i = (V ′
i , C

′
i, k

′
i, π

′
i) be

the instance restricted to Ki ∪ {0}, that is, every constraint 〈s, R〉 ∈ Ci is replaced by 〈s, R|Ki∪{0}〉,
and π′i(d) = πi(d) for d ∈ Ki and π

′
i(d) = 0 otherwise. Note that the retraction retKi

ensures that
I ′i is F -frequent as well (by definition Ki, is a component). We show that Ii has a solution if and
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only if I ′i has. As CCSP(Γ|Ki∪{0}) is weakly separable by assumption, the algorithm of Theorem 3.5
can be used to check in fpt-time whether I ′i has a solution.

The retraction retKi
shows that if Ii has a solution f , then I ′i has a solution f ′ = prKi

f . For the
other direction, let f ′ be a solution of I ′i and let I ′′i be the instance of CCSP(Γ|Di

) obtained from Ii
by substituting the nonzero values of f ′ as constants. Since f ′ satisfies π′i, the cardinality constraint
is 0 in instance I ′′i for every d ∈ Ki. Thus I ′′i can be viewed as an CCSP(Γ|Di\Ki

) instance. We
show that the conditions of Lemma 5.4 hold for I ′′i (viewed as an CCSP(Γ|Di\Ki

) instance), hence
it has a solution f ′′. This means that solution f ′ of I ′i can be extended by f ′′ to obtain a solution
f of Ii.

Let c ∈ Di \Ki. By Proposition 3.10, there is a d ∈ Ki producing c in Γ|Di
. As Ii is F -frequent,

Ii has distinct variables v1, . . . , vF and (not necessarily distinct) satisfying assignments g1, . . . ,
gF of size at most k such that gj(vj) = d. We can assume that each gj is contained in Ki ∪ {0}
(as d ∈ Ki and retKi

is an endomorphism of Γ|Di
). Since each gj has size at most k, there are

at least F/k distinct assignments in the sequence g1, . . . , gF . By Lemma 3.4(2), we can assume
that every gj is a minimal assignment. By Lemma 3.3, each nonzero variable of f ′ is nonzero in
at most dΓ(k) minimal assignments of size at most k. Hence, among the F/k distinct minimal
assignments, there are at most k · dΓ(k) assignments nondisjoint with f ′, that is, there are at least
F/k − k · dΓ(k) ≥ |dom(Γ)|k assignments disjoint with f ′. Let us consider such an assignment gj .
As gj and f ′ are disjoint, both use only values from Ki, and Γ|Ki∪{0} is weakly separable, their
sum is a satisfying assignment. This means that I ′′i has a satisfying assignment where vj has value
d. Using the fact that d produces c, it follows that δvj ,c is a satisfying assignment of I ′′i . Thus for
every c ∈ Di \Ki, there are at least |dom(Γ)|k variables v such that δv,c is a satisfying assignment
of I ′′i . By Lemma 5.4, this means that I ′′i has a solution.

5.2 Hardness

A crucial difference between OCSP(Γ) and CCSP(Γ) is that for every 0 ∈ D′ ⊆ dom(Γ), it is
trivial to reduce CCSP(Γ|D′) to CCSP(Γ). Indeed, a CCSP(Γ|D′) instance can be interpreted as a
CCSP(Γ) instance with π(d) = 0 for every d ∈ dom(Γ) \D′.

Proposition 5.6. If CCSP(Γ|D′) is W[1]-hard for some 0 ∈ D′ ⊆ dom(Γ), then CCSP(Γ) is
W[1]-hard.

In particular, if Γ|{0,a} is not weakly separable for some value a ∈ D, then the result of [24] on the
Boolean case implies that CCSP(Γ|{0,a}) and hence CCSP(Γ) are W[1]-hard (see also Example 6.9).

Proposition 5.6 allows us to assume that the language Γ satisfies the hardness condition of
Theorem 5.2, but no restriction Γ|D′ satisfies it for any 0 ∈ D′ ⊂ dom(Γ). That is, Γ is a core and
not weakly separable, but every core Γ|D′ with 0 ∈ D′ ⊂ dom(Γ) is weakly separable. Indeed, if
0 ∈ D′ ⊂ dom(Γ) is a set such that Γ|D′ is a core and not weakly separable, then it is sufficient to
prove hardness for the constraint language Γ|D′ and the hardness for Γ follows by Prop. 5.6.

We proceed in the following way. Lemma 5.8 of Section 5.2.1 proves W[1]-hardness in the
case when there is a semiregular value in Γ. Section 5.2.2 considers the case when every element
is degenerate or self-producing. The main part of the proof appears in Section 5.2.3, where we
prove W[1]-hardness using a counterexample involving regular values; as in Section 4, the reader
is encouraged to focus on this part of the proof. The proof of a technical claim is deferred to
Section 5.2.4.
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5.2.1 Semiregular values

In the case when there is a semiregular value, we can identify a difference counterexample and use
it to simulate the constraints in an Implications instance. We say that a multivalued morphism
φ witnesses that d is semiregular if 0, d ∈ φ(c) for some c ∈ dom(Γ).

Lemma 5.7. If Γ contains a semiregular value, then there is a difference counterexample. More-
over, if φ witnesses that d is semiregular, then there is a difference counterexample in Γ|φ(dom(Γ)).

Proof. Suppose that 0, d ∈ φ(c). As d is semiregular, no value produces d. In particular, c does
not produce d, thus there is a relation R ∈ Γ, a tuple t ∈ R, and a nonzero tuple td 6∈ R such that
d is the only nonzero value appearing in td and at every coordinate where d appears in td, value
c appears in the same coordinate of t. Applying φ on t and turning each c into 0 yields a tuple
t′ ∈ R disjoint from td. Applying φ on t also shows that t′ + td ∈ R: instead of turning each c
into 0, we can turn it to either 0 or d (depending on the tuple td). Now (R, td, t

′) is a difference
counterexample in Γ|φ(dom(Γ)).

Lemma 5.8. Let Γ be a core. If there is a semiregular value d in Γ, then CCSP(Γ) is W[1]-hard.

Proof. Let ψ : dom(Γ) → 2dom(Γ) be a multivalued morphism witnessing that d is semiregular. Let
us choose d and ψ such that

1. the size of {a ∈ dom(Γ) | ψ(a) 6= {0}} is minimum possible, and

2. among such d and ψ, the size of S := ψ(dom(Γ)) is minimum possible.

Observe that we can assume that ψ(c) = {0, d} for a unique value c ∈ dom(Γ) and |ψ(a)| = 1
for every a 6= c. Furthermore, we can assume that d cannot be produced by any a ∈ S in Γ|S.

Otherwise, if ψd : S → 2S is the multivalued morphism witnessing that a ∈ S produces d in Γ|S,
then ψ ◦ ψd witnesses that d is produced by some a′ ∈ dom(Γ) in Γ, hence d is not semiregular
in Γ. Let S1 ⊆ S \ {d} contain the regular and semiregular values in Γ|S other than d and let
S2 ⊆ S contain the self-producing and degenerate values (thus S = S1 ∪ S2 ∪ {d, 0}). Note that by
Lemma 5.7, there is a difference counterexample (R, t1, t2) in Γ|S .

We show that CCSP(Γ|S) is W[1]-hard, hence (by Proposition 5.6) CCSP(Γ) is W[1]-hard as
well. The proof is by reduction from Implications. For each vertex vi of G, we introduce a gadget
MVM(Γ|S, S) denoted by Gi. The size of bag Bc of each gadget is Z := 2t|S| if c ∈ S1 and it is
1 if c ∈ S2 ∪ {d}. We set the cardinality constraint π′(c) = tZ for every c ∈ S1 and π′(c) = t for
every c ∈ S2 ∪ {d}, i.e., the parameter k equals tZ|S1| + t|S2| + t. To finish the construction of
the instance, we encode the directed edges of the Implications instance by adding the constraint
IMP(Gx, Gy) for each directed edge −−→vxvy of G.

Suppose that there is a solution C of size exactly t for the Implications instance. If vertex vi
is in C, then set the standard assignment on gadget Gi. It is clear that this results in an assignment
of size exactly tZ|S1|+ t|S2|+ t and the constraints of the MVM(Γ|S , S) gadgets are satisfied. From
the fact that there is no directed edge −−→vxvy with vx ∈ C, vy 6∈ C and from Lemma 3.22(1), it follows
that the constraints of IMP(Gx, Gy) are also satisfied.

For the other direction, we have to show that if there is a solution of the CCSP(Γ) instance
satisfying the cardinality constraint, then there is a solution C of size exactly t for Implications.

We show first that if a value c ∈ S1 ∪ {d} appears in bag Bd of Gx, then every variable of
Gx is nonzero. Suppose that c appears on the variable in bag Bd, but 0 appears in some variable
of bag Bd′ of Gx for some d′ ∈ S. As bag Bd contains only a single variable, we have d′ 6= d.
Let g be an endomorphism of Γ|S given by Gx such that g(d) = c and g(d′) = 0. Now the
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multivalued morphism ψ ◦ g witnesses that c = g(d) is semiregular in Γ: value c ∈ S1 ∪ {d}
is not self-producing or degenerate, hence ψ ◦ g cannot show that c is produced by some value.
Moreover, (ψ ◦ g)(dom(Γ)) = g(S) has size strictly less than |S|, contradicting either the first
or second minimality condition of ψ. It follows that there can be at most t gadgets where the
bag corresponding to d contains a value from S1 ∪ {d}: otherwise there would be more than
t(Z|S1|+ |S2|+ 1) nonzero variables.

Next we show that if a value c ∈ S1 ∪{d} appears in a bag Bc′ of a gadget Gx for some c′ ∈ S1,
then every variable of that bag is nonzero. Otherwise, let ψ′ be a multivalued morphism of Γ|S

given by Gx with ψ′(c′) = {0, c} and |ψ′(b)| = 1 for every b 6= c′. Let h be the endomorphism of Γ
defined such that h(a) = a′ if ψ(a) = {a′} and h(a) = 0 if ψ(a) = {0, d}. Now h◦ψ′ cannot witness
that c is produced by some value (as c ∈ S1 ∪ {d}), hence it witnesses that c is semiregular in Γ
and |{a ∈ dom(Γ) | ψ′(a) 6= {0}}| < |{a ∈ dom(Γ) | ψ(a) 6= {0}}|, contradicting the minimality of
d and ψ.

Consider those bags that contain values from S1 ∪ {d}. Each such bag represents a value in
S1 ∪{d}: if c ∈ S1∪{d} appeared in a bag representing a value from S2, then by Proposition 3.9, c
would be self-producing or degenerate in Γ|S . We have seen that at most t bags representing d can
contain values from S1 ∪ {d}. The total cardinality constraint of these values is t|S1|Z + t. Thus
at least t|S1| bags representing S1 contain values from S1 ∪ {d}. Moreover, there are exactly t|S1|
such bags: as shown in the previous paragraph, these bags are fully nonzero, thus t|S1| + 1 such
bags would mean that the size of the assignment is at least (t|S1| + 1)Z > tZ|S1| + t|S2| + t. As
∑

c∈S1∪{d}
π′(c) is exactly tZ|S1|+ t, it follows that there are exactly t gadgets where the variable

in bag Bd has a nonzero value from S1 ∪ {d}. We have already observed that the variables of these
t gadgets are fully nonzero, and the cardinality constraint π′ imply that every variable of every
other gadget is zero.

Let us construct the set C such that vx ∈ C if and only if the variables of Gx are nonzero;
the previous paragraph implies that |C| = t. We claim that C is a solution for the Implications

instance. Suppose that there is an edge −−→vxvy with vx ∈ C and vy 6∈ C. If vx ∈ C and h is an
endomorphism of Γ|S given by Gx, then h has to be a permutation of S: otherwise, ψ ◦h witnesses
that h(d) is semiregular and |(ψ ◦ h)(dom(Γ))| is strictly less than |S|, contradicting the choice
of d and ψ (note that h maps every nonzero value to a nonzero value, thus ψ ◦ h cannot witness
that h(d) is produced by some element). We have seen that there is a difference counterexample
(R, t1, t2) in Γ|S . Since h is a permutation, hs(t1) = t1 for some s ≥ 1, i.e., h is t1-recoverable.
Thus if Gy is fully zero, then IMP(Gx, Gy) is not satisfied by Lemma 3.22(3).

5.2.2 Self-producing values

In this section, we consider the case when every element is either self-producing or degenerate.
By Proposition 3.10, there is at least one self-producing element. It is not hard to see that the
component generated by self-producing elements contains only self-producing elements. Indeed,
the component generated by a self-producing element d ∈ D equals {d}, and by Proposition 3.15
the union of components is a component. Lemmas 5.9 and 5.10 consider the two possibilities in
this case: when there is a difference counterexample, and when all counterexamples are union.

Lemma 5.9. Let Γ be a core and let (R, t1, t2) be a difference counterexample to weak separability
satisfying the conditions of Lemma 3.19, and a1 is self-producing. Then CCSP(Γ) is W[1]-hard.

Proof. Since a1 is self-producing, {a1} is a component, hence a1 is the only nonzero value appearing
in t1 and t2. This means that Γ|{0,a1} is not weakly separable, hence CCSP(Γ) is W[1]-hard.
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Lemma 5.10. Let Γ be a core and let (R, t1, t2) be a union counterexample satisfying the conditions
of Lemma 3.19 such that a1 and a2 are self-producing. Then CCSP(Γ) is Biclique-hard.

Proof. We assume that a1 and a2 are weakly separable, otherwise we are done. As ai is self-
producing, {ai} is the component generated by ai, hence ti is contained in {0, ai}.

First, we show that there is no inner homomorphism h12 from {0, a1} with h12(a1) = a2 and
there is no inner homomorphism h21 from {0, a2} with h21(a2) = a1. Note that a1 produces itself,
thus the existence of h12 would mean that a1 produces a2. Since a2 is self-producing, this would
imply that a2 produces a1, and hence h21 exists as well. A symmetrical argument shows that the
existence of h21 implies the existence of h12. Suppose that both homomorphisms exist. In this
case, t1 + h21(t2) ∈ R follows from t1, h21(t2) ∈ R and from the fact that a1 is weakly separable.
By using t1 ∈ R and Lemma 3.11, we get t1 + h12(h21(t2)) = t1 + t2 ∈ R, a contradiction.

We reduceBiclique (see Section 2.2) to CCSP(Γ|{0,a1,a2}). Consider the gadget MVM(Γ|{0,a1,a2}, {0, a1})
where the bag Ba1 contains only one variable. Setting this variable to 0 or a1 is a satisfying as-
signment of the gadget. However, there is no inner homomorphism h from {0, a1} to {0, a1, a2}
with h(a1) = a2, thus the variable cannot have value a2. Thus the unary relation U1 = {0, a1} is
intersection definable in Γ|{0,a1,a2} and the same holds for the unary relation U2 = {0, a2}.

Since (R, t1, t2) is a union counterexample, we first obtain a relation R′ from R by substi-
tuting constant 0 to positions in which both t1 and t2, and then identifying variables to in-
tersection define a binary relation R′′ such that (0, 0), (a1, 0), (0, a2) ∈ R′′, but (a1, a2) 6∈ R′′.
Let us consider the binary relation R′′′ represented by the CSP instance ({x, y}, C′) where C′ =
{〈(x, y), R′′〉, 〈(x), U1〉, 〈(y), U2〉}. Clearly, this relation is intersection definable in Γ|{0,a1,a2}. It is
easy to see that (0, 0), (a1, 0), (0, a2) ∈ R′′′ and R′′′ contains no other tuple. Thus as observed in
Example 6.1, CCSP(R′′′) is equivalent to Biclique.

5.2.3 Regular values

A significant difference between the hardness proofs of OCSP(Γ) and CCSP(Γ) is that it can be
assumed in the case of OCSP(Γ) that no proper contraction exists and this assumption can be
used to show that certain endomorphisms have to be permutations. In Section 4.2, we used such
arguments to show that gadgets are t-recoverable. For CCSP(Γ), we cannot make this assumption,
thus the proof is based on a delicate argument (Claim 5.14), making use of the cardinality constraint,
to achieve a similar effect. The following lemma is not used directly in the proof, but it demonstrates
how we can deduce in some cases that a multivalued morphism gadget essentially behaves as if it
had the standard assignment. Recall that for D = {0, 1, . . . ,∆}, we defined in Section 3.4 the
constants

Zt,D
i,d = (4t∆)2t∆+(i∆+d) + (4t∆)5t∆−(i∆+d).

Lemma 5.11. Let Γ be a finite constraint language over D = {0, 1, . . . ,∆}. Consider an instance
consisting of a single MVM(Γ,D) gadget where bag Bb has size Z

1,D
1,b . Let the cardinality constraint

be π(b) = Z1,D
1,b . If φ is the maximal multivalued morphism given by the gadget in a solution, then

there is a p ≥ 1 such that b ∈ φp
′
(b) for every p′ ≥ p and nonzero b ∈ D. In particular, the gadget

is t-recoverable for any tuple t.

Proof. We prove the statement by induction on b. Suppose that for every a < b, there is a pa
such that a ∈ φp

′
(a) for every p′ ≥ pa (this statement is vacuously true if b is the smallest nonzero

value). Let φb = ret{0,1,...,b} ◦ φ. Let T =
⋃

p≥1 φ
p
b(b), that is, those values that can be reached

from b by repeated applications of φb (note that T can contain values larger than b, but because
of ret{0,1,...,b} in φb, such values can appear only during the last application of φb). As the total
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cardinality constraint is exactly the number of variables, all the variables are nonzero. The bag Bb

and the bags Ba for a < b and a ∈ T contain nonzero values only from T by definition. The total
size of these bags is

∑

a∈T,a<b

Z1,D
1,a + Z1,D

1,b . (1)

We claim that b ∈ T . Otherwise, the total cardinality constraint of the values in T is

∑

a∈T,a<b

Z1,D
1,a +

∑

a∈T,a>b

Z1,D
1,a . (2)

As Z1,D
1,b > |D|Z1,D

1,a for every a > b, the second term in (1) is strictly larger than the second term
of (2), a contradiction. Thus b ∈ T , and therefore b ∈ φsb(b) for some s ≥ 1. Consider the smallest
such s. If s = 1, then b ∈ φpb(b) for every p ≥ 1. Otherwise, as b ∈ φs−1

b (φb(b)), there is some a < b,

a ∈ T such that a ∈ φb(b) and b ∈ φs−1
b (a). By the induction assumption, a ∈ φp

′
(a) for every

p′ ≥ pa. This means that b ∈ φ1+p′+s−1(b) for every p′ ≥ pa, or in other words, b ∈ φp
′
(a) for every

p′ ≥ pa + s. Thus pb := pa + s proves the induction statement.
To see that the gadget is t-recoverable, observe that b ∈ φp+1(b) implies that there is a cb ∈ φ(b)

such that b ∈ φp(cb). Let h be the endomorphism that maps each b ∈ D to such a cb (note that h
is an endomorphism, as it is a subset of φ). Then h is t-recoverable, as witnessed by φp.

Thus in a sense we can assume that a gadget has the standard assignment, even if the values
appearing in the bags are arbitrary. However, the situation is more complicated in an actual
hardness proof, where there are several gadgets and moreover value 0 can also appear in some of
the bags. The following lemma contains the most generic part of the hardness proof of Theorem 5.2:
we are proving hardness using a counterexample to weak separability.

Lemma 5.12. Let Γ be a core that is not weakly separable, Γ|D′ is weakly separable for every core
Γ|D′ with 0 ∈ D′ ⊂ dom(Γ), there are no semiregular values in Γ, and there is a regular value in
Γ. Then CCSP(Γ) is W[1]-hard.

Proof. By Lemma 3.19, there is a counterexample with values contained in the component C1

generated by some value a1 ∈ dom(Γ), or with values in C1 ∪ C2, where C1 (resp., C2) is the
component generated by some value a1 (resp., a2). If a1 is degenerate, then (as Γ is a core) a1
is in the component generated by the nondegenerate values. Thus by Proposition 3.16, there is
a nondegenerate a′1 such that a1 is in the component C ′

1 generated by a′1. Since the intersection
of components is also a component, we have C1 ⊆ C ′

1. Thus we can assume that a1 and a2 are
nondegenerate. If a1 and a2 are both self-producing, then C1 = {a1}, C2 = {a2}, and hence
Γ|{0,a1,a2} is not weakly separable. By Prop. 3.15, C1 ∪ C2 is also a component. Therefore, as a1
and a2 are nondegenerate in Γ|{0,a1,a2} by Lemma 3.18(2), we have that Γ|{0,a1,a2} is a core. Thus
dom(Γ) = {0, a1, a2} by the minimality of Γ, implying that there is no regular value in dom(Γ), a
contradiction. Similarly, if the counterexample is contained in the component C1 = {a1} generated
by the self-producing value a1, then dom(Γ) = {0, a1} and again there is no regular value in Γ.
By assumption, there are no semiregular values. This means that there are only three cases to
consider: we have a counterexample (R, t1, t2) that is

1. a union or difference counterexample such that t1 + t2 is contained in the component of a
regular value a1;

2. a union counterexample such that t1 (resp., t2) is contained in the component of some regular
value a1 (resp., regular value a2);
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3. a union counterexample such that t1 (resp., t2) is contained in the component of some regular
value a1 (resp., some self-producing value a2);

We present a unifiedW[1]-hardness proof for the three cases. The reduction is fromMulticolored

Independent Set in the case of a union counterexample, while we are reducing from Multicol-

ored Implications in the case of a difference counterexample. Let vx,y (1 ≤ x ≤ t, 1 ≤ y ≤ n)
be the vertices of the graph in the instance we are reducing from. Let D := dom(Γ); we assume
that D = {0, . . . ,∆}. For each vertex vx,y, we introduce an MVM(Γ,D) gadget Gx,y. Without loss
of generality, we can assume that the nonzero values in D are ordered such that the regular values
precede all the nonregular values. The bag Bd of Gx,y has size

zx,d =

{

Zt,D
x,d if d is regular,

(4t∆)2t∆−(x∆+d) otherwise,

where Zt,D
x,d is as defined in Section 3.4. Observe that the size of any bag representing a regular

value is more than 4t∆ times larger than the size of any bag representing a nonregular value. The
cardinality constraint π(d) is set to be

∑t
x=1 zx,d. Observe that the cardinality constraint of any

regular value is larger than the total cardinality constraint of all the nonregular values.
If the reduction is fromMulticolored Independent Set, then we introduce a NAND(Gx,y, Gx′,y′)

constraint for each edge vx,yvx′,y′ of the graph. Furthermore, for every 1 ≤ x ≤ t and 1 ≤ y, y′ ≤ n,
y 6= y′, we introduce a constraint NAND(Gx,y, Gx,y′). If the reduction is from Multicolored Im-

plications, then we introduce a IMP(Gx,y, Gx′,y′) constraint for each edge −−−−−→vx,yvx′,y′ of the graph.
This completes the description of the reduction.

It is easy to see that the reduction works in one direction. Let S be a set of vertices that
form a solution for the instance we are reducing from. If vx,y ∈ S, then let us give the standard
assignment to the gadget Gx,y. The fact that S contains exactly one vertex of each color implies that
the resulting assignment satisfies the cardinality constraints. Furthermore, if S is an independent
set, then by Lemma 3.21(1), all the NAND(Gx,y, Gx′,y′) constraints are satisfied; if S is solution of
Multicolored Implications, then by Lemma 3.22(1), all the IMP(Gx,y, Gx′,y′) constraints are
satisfied.

For the other direction of the proof, we have to show that multivalued morphisms given by the
gadgets have certain properties that allow us to invoke Lemma 3.21(3) or Lemma 3.22(3). For this
purpose, we show that for i = 1, 2 and for every x, 1 ≤ x ≤ t, there is an yix such that values from
the component generated by ai appear only on gadget Gx,yix

and do not appear on Gx,y for any

y 6= yix. Furthermore, we have to show that Gx,yix
is ti-recoverable. The proof of these claims are

based on the properties of regular values and the way the cardinality constraints are defined.

Claim 5.13. Let K be the component generated by a regular value d and let K∗ be the regular
values in K.

1. If b ∈ K∗ appears in bag Ba of some gadget Gx,y, then every value appearing in the bag is
from K∗.

2. For every 1 ≤ x ≤ t, there is a unique 1 ≤ wx,d ≤ n such that values from K∗ appear in bag
Bd of Gx,wx,d

(and by (1), every value in bag Bd of Gx,wx,d
is nonzero and from K∗).

Proof. If value b ∈ K∗ appears in bag Ba, then a has to be regular as well by Proposition 3.9.
Furthermore, every variable of Ba has to be nonzero and has to belong to K: otherwise the gadget
would give a multivalued morphism φ such that 0, b ∈ (φ ◦ retK)(a), contradicting the assumption
that b is regular.
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We show next that every value appearing in Ba is actually from K∗, i.e., regular. Let B be
the multiset consisting of the sizes of the bags containing values from K∗ (as observed, each such
bag represents a regular value hence its size is from Zt,D) and let A = {Zt,D

x,a | 1 ≤ x ≤ t, a ∈ K∗}.
Note that the sum of the numbers in A is exactly the sum of cardinality constraint π(a) for every
regular value a ∈ K∗. The sum of the numbers in B cannot be less than that, but it might be
larger: the bags where values from K∗ appear might contain nonregular values from K as well (but
no value outside K). However, the sum of cardinality constraints π(a) of the nonregular values a
is at most ∆(4t∆)2t∆−(∆+1) < (4t∆)2t∆. Thus Lemma 3.23 can be used to conclude that A = B
and it follows that the bags where values from K∗ appear contain only values from K∗.

The second statement is also an immediate consequence of A = B: there is exactly one bag
with size Zt,D

x,d where values from K∗ appear.

Let φx,d be the maximal multivalued morphism given by Gx,wx,d
, where wx,d is defined by

Claim 5.13(2). Our aim is to show that then φx,ai is ti-recoverable. For this purpose, we prove the
following claim, which is the main technical ingredient of the proof. The proof idea was demon-
strated in Lemma 5.11, but here we need additional arguments to handle zero values appearing on
variables, values not in K appearing on variables, and the fact that there are gadgets having bags
of different sizes. The proof of the following claim is delicate and technical, hence we defer it to
Section 5.2.4 to maintain the flow of the proof.

Claim 5.14. Let K be the component generated by a regular value d and suppose that d is the
smallest value in K. For every 1 ≤ x ≤ t, the following are true:

1. φx,d is t-recoverable if t contains nonzero values only from K.

2. For any a ∈ K, bag Ba of Gx,wx,d
is fully nonzero and contains values only from K.

3. For any a ∈ K and any y 6= wx,d, bag Ba of Gx,y does not contain values from K.

Assuming Claim 5.14, we consider the following three cases for the counterexample (R, t1, t2).

Case 1: (R, t1, t2) is a union or difference counterexample such that t1 + t2 is contained in the
component of a regular value a1.

Let us observe first that the minimality of Γ implies that D \ {0} is equal to the component
C1 generated by a1. Indeed, by Lemma 3.18(1-2), a1 is regular in Γ|C1∪{0} and a1 generates C1 in
Γ|C1∪{0} (thus Γ|C1∪{0} is also a core). Set yx = wx,a1 and let S contain vx,yx for every 1 ≤ x ≤ t.
We may assume that a1 is the smallest nonzero value. Therefore, Claim 5.14(1) implies that Gx,yx

is both t1- and t2-recoverable, while Claim 5.14(3) implies that Gx,y gives a homomorphism h with
h(t2) = 0 if y 6= yx (as we have K = D \ {0}, Claim 5.14(3) implies that Gx,y is fully zero). Thus
we can use Lemma 3.21(3) or Lemma 3.22(3) to show that S is a solution for the instance we are
reducing from.

Case 2: (R, t1, t2) is a union counterexample such that for i = 1, 2, tuple ti is contained in the
component Ci of some regular value ai.

Set y1x = wx,a1 and y2x = wx,a2 . We may assume that ai is the smallest value in component
Ci (if both a1 and a2 appear in the same component Ci, then we can set a1 = a2 and we are in
Case 1). Claim 5.14(1) implies that Gx,y1x

is t1-recoverable and Gx,y2x
is t2-recoverable. Thus by

Lemma 3.21(3), a NAND(Gx,y, Gx′,y′) constraint excludes the possibility that y1x = y and y2x = y′

for some y 6= y′. In particular, the constraints of the form NAND(Gx,y, Gx,y′), y 6= y′ ensure that
y1x = y2x for every 1 ≤ x ≤ t; let S be the set of vertices that contains vx,y if and only if y = y1x = y2x.
Note that Gx,y1x

is both t1- and t2-recoverable. Now it is easy to see that S is a multicolored
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independent set: if vx,y, vx′,y′ ∈ S are adjacent vertices, then the constraint NAND(Gx,y, Gx′,y′)
would be violated (Lemma 3.21(3)).

Case 3: (R, t1, t2) is a union counterexample such that for i = 1, 2, tuple ti is contained in the
component Ci of value ai, where a1 is regular and a2 is self-producing.

As in Case 1, the minimality of Γ implies that D = C1 ∪ C2 ∪ {0}; note that C2 = {a2}
as a2 is self-producing. Furthermore, there are no self-producing values c ∈ C1: since {c} is a
component and C1 \ {c} is not a component (as C1 is the smallest component containing a1 6= c),
by Proposition 3.17, this would imply that there is a difference counterexample in C1, contradicting
the minimality of D. Thus a2 is the only self-producing value in D. We may assume that a1 is the
smallest value of C1.

Set y1x = y2x = wx,a1 . As in the previous case, Gx,y1x
is t1-recoverable. Let us show that a2 can

only appear in a bag representing a2. Indeed, suppose that a2 appears in bag Bc of Gx,y for some
c ∈ C1. It is clear that a2 cannot appear in a bag representing a degenerate value (Proposition 3.9)
and there are no self-producing values in C1, thus c is regular. If y = wx,a1 , then Claim 5.13(2)
states that bag Bc contains only values from C1. Thus y 6= wx,a1 , and hence by Claim 5.14(3), the
bag does not contain any values from C1. As c is regular, the size of the bag Bc is larger than
the cardinality constraint π(a2), implying that 0 also appears in bag Bc. Thus gadget Gx,y gives a
multivalued morphism φ with 0, a2 ∈ φ(c). If φa2 is the multivalued morphism witnessing that a2 is
self-producing, then we have 0, a2 ∈ (φ ◦φa2)(c) and 0 ∈ (φ ◦φa2)(c

′) for every value c′. This shows
that c produces a2. As c is regular, value a2 does not produce c, contradicting the assumption that
a2 is self-producing. Thus value a2 appears only in bags representing a2, and there are at least t
gadgets where a2 appears. Note that such a gadget is clearly t2-recoverable. Furthermore, it is
not possible that a2 appears in bag Ba2 of Gx,y for y 6= y1x: as Gy,y1x

is t1-recoverable and Gx,y

is t2-recoverable, the NAND(Gx,y1x
, Gx,y) constraint would not be satisfied. Thus value a2 has to

appear in the gadgets Gx,y1x
, 1 ≤ x ≤ t, implying that these gadgets are both t1- and t2-recoverable.

From this point, we can finish the proof as in the previous case.

5.2.4 Proof of Claim 5.14

First, we show that Claim 5.14 follows from the following claim:

Claim 5.15. Let K be the component generated by a regular value d and suppose that d is the
smallest value in K.

1. For every 1 ≤ x ≤ t and a ∈ K, bag Ba of Gx,wx,d
contains only values from K, i.e.,

φx,d(a) ⊆ K.

2. For every 1 ≤ x ≤ t, there is a multivalued morphism βx such that φ̂x,d = φx,d ◦ βx is a

multivalued morphism with φx,d(a) ∪ {a} ⊆ φ̂x,d(a) for every a ∈ K and φ̂x,d(a) = {0} for
every a 6∈ K.

Note that φx,d(a) ⊆ K implies, in particular, 0 6∈ φx,d(a).

Proof (of Claim 5.14 from Section 5.2.3). To see this, we first show that if t contains nonzero val-
ues only from K, then a ∈ φ̂x,d(a) implies that a subset of φx,d is a t-recoverable endomorphism.
Indeed, it means that for every a ∈ K, there is a ca ∈ φx,d(a) such that a ∈ βx(ca). Then any
endomorphism that maps a to ca is t-recoverable, as witnessed by βx. This proves Statement 1
of Claim 5.14. Statement 2 of Claim 5.14 is the same as Statement 1 of Claim 5.15. Statement
3 of Claim 5.14 follows from Statement 2 of Claim 5.14 and from the fact that the cardinality
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requirement for the values in K is exactly the same as the total size of the bags Ba of the gadgets
Gx,wx,d

for every a ∈ K and 1 ≤ x ≤ t.

In the rest of the section, we prove Claim 5.15 by induction on x.

Proof (of Claim 5.15). We show that βx and φ̂x,d exist if φ̂i,d exists for every 1 ≤ i < x (in case of
x = 1, this condition is vacuously true). Let Ψi be the set of those multivalued morphisms that can
be obtained as the product of an arbitrary sequence of at least one multivalued morphisms composed
from retK , φ̂1,d, . . . , φ̂i,d (possibly using some of them multiple times). Observe that Ψi has a unique
maximal element ψi, i.e, ψi(a) ⊇ ψ′

i(a) for every a ∈ K and ψ′
i ∈ Ψi. This follows from the fact that

if ψ′
i, ψ

′′
i ∈ Ψi, then a ∈ ψ′

i(a) and a ∈ ψ′′
i (a) for every a ∈ K implies ψ′

i(a) ∪ ψ
′′
i (a) ⊆ (ψ′

i ◦ ψ
′′
i )(a).

For notational convenience, we define ψ0 := retK . Note that ψi(a) = {0} for every a 6∈ K by
definition.

First, we prove Claim 5.15 assuming that the following claim is true:

Claim 5.16. For every b ∈ K, there is an integer pb ≥ 1 such that for every p ≥ pb, either 0 or b
is in (φx,d ◦ ψx−1)

p(b). Furthermore, for b = d we actually have d ∈ (φx,d ◦ ψx−1)
p(d).

Let p := maxb∈K pb. For every b ∈ K and p′ ≥ p, either 0 or b is in (φx,d ◦ ψx−1)
p′(b) and in

particular d ∈ (φx,d ◦ ψx−1)
p′(d) holds. For some p′ ≥ p, let S contain those elements b of K for

which b ∈ (φx,d ◦ ψx−1)
p′(b) holds; we have d ∈ S ⊆ K. Observe that S is a component containing

d (as retS is a subset of (ψx−1 ◦ φx,d)
p′), thus S has to contain the component generated by d, i.e.,

S = K. Therefore, we can assume that b ∈ (φx,d ◦ ψx−1)
p′(b) for every b ∈ K and p′ ≥ p. Let us

define βx := ψx−1 ◦ (φx,d ◦ψx−1)
p and φ̂x,d = φx,d ◦βx = (φx,d ◦ψx−1)

p+1; it is clear that b ∈ φ̂x,d(b)

for every b ∈ K. Furthermore, b ∈ (φx,d ◦ ψx−1)
p(b) implies φx,d(b) ⊆ φ̂x,d(b), proving the second

statement of Claim 5.15.
To prove the first statement, observe that we know from Claim 5.13(2) that φx,d(d) ⊆ K. For

b 6= d, if φx,d(b) contains a value not in K, then 0 ∈ (φx,d ◦ψx−1)
p(b) would follow and then retK\{b}

is a subset of (φx,d ◦ ψx−1)
p, again contradicting that K is the component generated by d. This

proves the first statement of Claim 5.15.

Now to finish the proof of Claim 5.15, it suffices to prove Claim 5.16. We prove Claim 5.16 by
double induction: for a fixed 1 ≤ x ≤ t and b ∈ K, we assume that Claim 5.15 is true for every
i < x, and that Claim 5.16 is true for x and for every a < b. It is clear that such a proof and the
proof of Claim 5.15 above together prove both Claim 5.15 and 5.16.

Proof of Claim 5.16. We prove the statement by induction on b. Suppose that the statement holds
for every a < b; let us prove it for b.

Let Kb = {a | a ∈ K,a ≤ b} and let us define

T =
⋃

p≥1

(retKb
◦ φx,d ◦ ψx−1 ◦ retK)p(b) \ {0},

which is a subset of K. (Note that we have no reason to assume that retKb
is an endomorphism.)

Intuitively, T is the set of values that can be obtained from b by a sequence of endomorphisms
using φ̂1,d, . . . , φ̂x−1,d and the endomorphisms given by gadget Gx,wx,d

. The two retractions in the
definition of T introduce two additional technical conditions: we never leave K (i.e., we consider
every value outside K to be 0) and we apply φx,d only on values at most b (i.e., we imagine the
bags Ba of Gx,wx,d

with a > b to be fully zero).
We show that if b ∈ T , then Claim 5.16 follows. Indeed, in that case if b ∈ (φx,d ◦ ψx−1)(b),

then we can define pb := 1 since b ∈ (φx,d ◦ ψx−1)
p(b) for every p ≥ 1. Thus we are done in this
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case. Suppose that b 6∈ (φx,d ◦ ψx−1)(b). As b ∈ T , this means that there is an a ∈ T , a < b
such that a ∈ (φx,d ◦ ψx−1)(b) and b ∈ (retKb

◦ φx,d ◦ ψx−1 ◦ retK)p(a) for some p ≥ 1. By the
induction hypothesis on a < b, there is a pa ≥ 1 such that either a or 0 is in (φx,d ◦ ψx−1)

pa+s(a)
for every s ≥ 0. Putting together, we get that either 0 or b is in (φx,d ◦ ψx−1)

1+pa+s+p(b) for every
s ≥ 0. Thus we can define pb := 1 + pa + p. To prove the second statement, observe that if b = d,
then (as d is the smallest element of K), there is no a < b with a ∈ T . Thus we can only get
b ∈ (φx,d ◦ ψx−1)(b) in this case.

In the rest of the proof our goal is to argue that we can assume b ∈ T . We show next that
Claim 5.16 is true if a value not in T (including 0, which is not in T by definition) appears in any
of the sets of bags (B1)–(B3) defined below, and then argue that if all values in these bags are from
T , then b ∈ T as well.

(B1) bag Ba (a ∈ T ) of gadget Gi,wi,d
, 1 ≤ i < x,

(B2) bag Bb of Gx,wx,d

(B3) bag Ba (a ∈ T , a < b) of gadget Gx,wx,d

For (B1), we know by induction that Statement 1 of Claim 5.15 holds for every i < x, showing
that bag Ba (a ∈ T ) of gadget Gi,wi,d

contains values only from K. This is the point where the
definition of ψx−1 becomes crucial. Intuitively, we can consider a sequence of multivalued morphisms
showing that a ∈ T , and then append an application of φi,d to show that φi,d(a) is in T as well;
the important point here is that ψx−1 ◦ φi,x can be replaced by ψx−1. Formally, if a ∈ T , then

there is a p′ ≥ 0 and an a′ ∈ K such that a′ ∈
(

(retKb
◦ φx,d ◦ ψx−1 ◦ retK)p

′
◦ (retKb

◦ φx,d)
)

(b)

and a ∈ ψx−1(a
′). The definition of ψx−1 implies that (ψx−1 ◦ φi,d)(a

′) ⊆ ψx−1(a
′), and therefore

φi,d(a) ⊆ ψx−1(a
′) holds as well. This means that φi,d(a) ⊆ (retKb

◦ φi,d ◦ ψx−1 ◦ retK)p
′+1(b), that

is, φi,d(a) ⊆ T . Thus, bags from (B1) cannot have values of K not in T .
For (B2), observe that if we show that only values from K appear in the bag Bb of Gx,wx,d

,
then it follows that all these values are in T . For b = d, Claim 5.13(2) implies that all these
values are in K. If b 6= d, then a value not in K appearing in bag Bb of Gx,wx,d

would imply that
0 ∈ (φx,d ◦ ψx−1)(b) (recall that ψx−1(a) = {0} for any a 6∈ K), and the statement of Claim 5.16 is
true for b with pb = 1.

For (B3), it is again sufficient to show that the bags from this set contain only values from K;
by the definition of T , then these values are in T . If a = d, then Claim 5.13(2) implies that the
bag contains values only from K. Otherwise, suppose that a 6= d, a ∈ T , a < b, and there is a
value c 6∈ K in the bag Ba of Gx,wx,d

. As a ∈ T , we have that a ∈ (retKb
◦ φx,d ◦ ψx−1 ◦ retK)p(b)

for some p ≥ 1, which clearly implies a ∈ (φx,d ◦ ψx−1)
p(b). Since 0 ∈ (φx,d ◦ ψx−1)(a) (recall that

ψx−1(c) = {0} if c 6∈ K), it follows that 0 ∈ (φx,d ◦ ψx−1)
p+1(b), proving Claim 5.16 for b with

pb = p+ 1. Note that in these cases we assumed a < b, i.e., b 6= d (as d is the smallest value in K)
and therefore we do not have to prove the second statement of Claim 5.16.

Therefore, in the following, we can assume that bags (B1)–(B3) contain values only from T .
The total size of these bags is

∑

a∈T

x−1∑

i=1

zi,a +
∑

a∈T,a<b

zx,a + zx,b, (3)

while the sum of cardinality constraints of the values in T is (assuming b 6∈ T )

∑

a∈T

t∑

i=1

zi,a =
∑

a∈T

x−1∑

i=1

zi,a +
∑

a∈T,a<b

zx,a +
∑

a∈T,a>b

zx,a +
∑

a∈T

t∑

i=x+1

zx,a. (4)
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Let us compare the last term of (3) with the last two terms of (4). Suppose first that b is regular.
Then zx,b ≥ (2t∆)zx,a for any a > b and zx,b ≥ (2t∆)zi,a for any a ∈ T and i ≥ x+ 1. Thus (3) is
strictly larger than (4) and this contradiction proves that b ∈ T . Suppose now that b is not regular.
Then T cannot contain any regular value (Proposition 3.9). Again, we have zx,b ≥ (2t∆)zx,a for
any a > b and zx,b ≥ (2t∆)zi,a for any a ∈ T and i ≥ x+ 1, leading to a contradiction. Therefore,
we can conclude that b ∈ T , concluding the proof of Claim 5.16.

6 Examples

Example 6.1. A number of graph problems can be represented in the form of CCSP(Γ) or
OCSP(Γ).

Independent Set: Given a graph G with vertices vi ( 1 ≤ j ≤ n), find an independent set of size
t. Independent Set is equivalent to CCSP({RIS}), or, equivalently to OCSP({RIS}), where RIS

is a binary relation on {0, 1} given by

RIS =

(
0 1 0
0 0 1

)

(tuples are written vertically). The size constraint is set to be t.

p-Colorable Subgraph: Given a graph G and an integer k, find a set S of k vertices that
induces a p-colorable subgraph. This problem is equivalent to OCSP({Rp−COL}), where Rp−COL

is a binary relation on p+ 1-element set D = {0, 1, . . . p} given by

Rp−COL = D2 \

{(
i
i

)

| i ∈ {1, . . . , p}

}

.

The size constraint is k, the size of the p-colorable graph to be found.

Implications: Given a directed graph G and an integer t, find a set C of vertices with exactly
t vertices such that there is no directed edge −→uv with u ∈ C and v 6∈ C. Implications can be
represented as CCSP({RIM}) and OCSP({RIM}), where

RIM =

(
0 0 1
0 1 1

)

The size constraint is set to be t.

Vertex Cover: Given a graph G and an integer t, find a set C of vertices such that every edge
of G is incident to at least one vertex from C. Vertex Cover is equivalent to the OCSP(RV C),
where

RV C =

(
0 1 1
1 0 1

)

,

and the size constraint is t.

Some problems reduce to the CSP with cardinality constraints in a less straightforward way.

Example 6.2. Biclique: Given a bipartite graph G(A,B), find two sets A′ ⊆ A and B′ ⊆ B,
each of size exactly t, such that every vertex of A′ is adjacent with every vertex of B′. As it is
mentioned in the introduction, Biclique is equivalent to CCSP({RBC}), where RBC is a relation
on {0, 1, 2} given by

RBC =

(
0 1 0
0 0 2

)

.
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A Biclique instance G(A,B) is reduced to CCSP({RBC}) by first taking the (bipartite) comple-
ment G of G and imposing constraint 〈(v,w), RBC 〉 on every pair v ∈ A, w ∈ B such that v,w are
adjacent in G. The cardinality constraint π : {0, 1, 2} → N is chosen to be π(1) = π(2) = t.

The variant of Biclique, where the graph G is not necessarily bipartite, is equivalent to
CCSP({R′

BC}), where R
′
BC is a relation on {0, 1, 2} given by

R′
BC =

(
0 1 0 2 0
0 0 2 0 1

)

.

The following examples generalize Biclique to finding complete p-partite graphs. Let us first
consider the version where the input graph is also p-partite:

Example 6.3. p-Partite Clique: Given a p-partite graph G with partition A1, . . . Ap, find sets
A′

1 ⊆ A1, . . . A
′
p ⊆ Ap, each of size exactly t, such that for any i, j, 1 ≤ i < j ≤ k every vertex from

A′
i is adjacent with every vertex of A′

j. The equivalent CCSP problem is CCSP({Rp−MC}) where
Rp−MC is the p-ary relation given by

Rp−MC = {0, 1} × {0, 2} × . . . × {0, p} − {(1, 2, . . . , p)}.

Reduction goes as follows. Given a p-partite graph G with partition A1, . . . Ap we first take
the (p-partite) complement G of G, and then introduce constraint 〈(v1, . . . , vp), Rp−MC〉 for each
p-tuple (v1, . . . , vp) such that vi ∈ Ai and some of the vertices v1, . . . , vp are adjacent in G. The
cardinality constraint is chosen to be π(1) = . . . = π(p) = t.

Another way to represent p-Partite Clique by a CCSP is the following. Let

Rp−PC =

(
0 1 0 · · · p 0
0 0 1 · · · 0 p

)

,

and Ri is the unary relation {0, i} for i ∈ {1, . . . , p}. Then p-Partite Clique reduces to
CCSP({Rp−PC , R1, . . . , Rp}) by imposing the constraint 〈(v), Ri〉 on each v ∈ Ai, and 〈(v,w), Rp−PC 〉
on each pair v,w adjacent in G.

The following example formulates the version of p-Partite Clique where the input graph is
not p-partite:

Example 6.4. p-Partite Complete Subgraph: Given a graph G and integers t1, . . . , tp, find
sets S1, . . . Sp of vertices such that S1 ∪ . . . ∪ Sp induces a complete p-partite graph with partition
S1, . . . , Sp, and |Si| = ti for 1 ≤ i ≤ p. This problem is equivalent to CCSP({Rp−CS}), where
Rp−CS is a binary relation on p+ 1-element set D = {0, 1, . . . p} given by

Rp−CS = {0, 1}2 ∪ {0, 2}2 ∪ . . . ∪ {0, p}2.

To reduce the p-Partite Complete Subgraph problem to CCSP({Rp−CS}) we, first, take the
complement G of G, and then impose constraint 〈(v,w), Rp−CS〉 on every pair v,w such that v,w
are adjacent in G. The cardinality constraint is set to be π such that π(i) = ti for all i.

Example 6.5. Let R = ({0, 1} × {0, 1} × {0, 2}) \ {(1, 1, 2)}. Let Γ be the cc-closure of R. Note
that Γ contains R|3;2 = {(0, 0), (1, 0), (0, 1)}, which is the relation RIS of Example 6.1, showing that
OCSP(Γ) is W[1]-hard. On the other hand, we show that OCSP({R}) is fixed-parameter tractable.

Let S1 be the set of variables v where value 1 can appear, that is, there is no constraint
〈(v′, v′′, v), R〉 on v. Observe that any combination of 0 and 1 on S1 is a satisfying assignment.
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Therefore, if |S1| ≥ k, then there is a solution. Let S2 be the set of variables v where value 2
can appear, that is, there is no constraint 〈(v, v′, v′′), R〉 or 〈(v′, v, v′′), R〉 on v. Observe that any
combination of 0 and 2 on S2 is a satisfying assignment. Therefore, if |S2| ≥ k, then there is a
solution. On the variables not in S1 and S2, only value 0 can appear. Therefore, if |S1|, |S2| < k,
then the number of possible assignments that we need to try is 2|S1|+|S2| < 22k.

Example 6.6. Let R = ({0, 1, 2} × {0, 1, 2} × {0, 2}) \ {(1, 1, 2)}. Let Γ be the cc-closure of R.
Note that Γ contains R|3;2 = ({0, 1, 2} ×{0, 1, 2}) \ {(1, 1)}. Therefore, Γ|{0,1} contains the relation
{(0, 0), (1, 0), (0, 1)}, which is the relation RIS of Example 6.1, showing that CCSP(Γ|{0,1}) is W[1]-
hard. We can reduce CCSP(Γ|{0,1}) to CCSP(Γ) by setting the cardinality constraint of value 2 to
0, thus the W[1]-hardness of CCSP(Γ) follows. On the other hand, we show that CCSP({R}) is
fixed-parameter tractable.

Let S be the set of variables v where value 1 can appear, that is, there is no constraint
〈(v′, v′′, v), R〉 on v. Observe that any combination of 0, 1, and 2 on S is a satisfying assign-
ment. Therefore, if |S| ≥ k, then there is a solution. If |S| < k, then we can try every possible
substitution of constants into S and obtain instances where 1 can no longer appear. As the problem
on Γ|{0,2} is trivial, fixed-parameter tractability follows.

Example 6.7. The language consisting of the relations

R1 =





0 1 0 1
0 1 0 1
0 0 2 2



 R2 =

(
0 0
0 2

)

R3 =
(
0 2

)
R4 =

(
0 1
0 1

)

R5 =
(
0 1

)
R6 =

(
0
)

is a cc0-language, but not a cc-language: substituting 1 into the first coordinate of R1 results in
the (non 0-valid) relation {(1, 0), (1, 2)}, which is not in the language.

Example 6.8. • Relation RIS is not weakly separable: (RIS , (1, 0), (0, 1)) is a union coun-
terexample (i.e., (1, 1) 6∈ RIS).

• Relation RIM is not weakly separable: (RIM , (1, 0), (0, 1)) is a difference counterexample.

• The r-ary relation

Reven = {(a1, . . . , ar) ∈ {0, 1}r | a1 + · · ·+ ar is even}

is weakly separable. Indeed, if there is an even number of 1’s in each of t1, t2 and they are
disjoint, then their union also contains an even number of 1’s. Similarly, if t1 + t2 and t2
contain even number of 1’s, then so does t1.

• We can generalize Reven the following way: let us define the r-ary Rmod-p relation over the
domain {0, . . . , d} the following way:

Rmod-p = {(a1, . . . , ar) ∈ {0, . . . , d}r | a1 + · · ·+ ar = 0 mod p}.

It is easy to see that this relation is weakly separable as well.

Example 6.9. We demonstrate how hardness is proved in the Boolean case [24] if there is a
relation that is not weakly separable. Let Γ be a cc0-language over {0, 1} that is not weakly
separable. Suppose that there is a union counterexample (R, t1, t2) in Γ; suppose for example that

t1 = (

p
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0), t2 = (0, . . . , 0,

q
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0).
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Since Γ is a cc0-language, by substituting 0’s in the last coordinates, we can obtain a relation
R′ ∈ Γ and a union counterexample (R′, t′1, t

′
2) with

t′1 = (

p
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0), t′2 = (0, . . . , 0,

q
︷ ︸︸ ︷

1, . . . , 1).

Now it is easy to see that the W[1]-hard problem OCSP(RIS) is reducible to OCSP(Γ): a constraint
〈(x, y), RIS〉 can be simulated by a constraint 〈(x, . . . , x, y, . . . , y), R′〉. The correctness of this
reduction follows from

(0, . . . , 0, 0, . . . , 0) ∈ R′

(

p
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0) ∈ R′

(0, . . . , 0,

q
︷ ︸︸ ︷

1, . . . , 1) ∈ R′

(

p+q
︷ ︸︸ ︷

1, . . . , 1, 1, . . . , 1) 6∈ R′.

Suppose now that there is a difference counterexample (R, t1, t2). As above, let us suppose
that there is also a difference counterexample (R′, t′1, t

′
2) with t′1 = (1, . . . , 1, 0, . . . , 0) and t′2 =

(0, . . . , 0, 1, . . . , 1). Now we can reduce the W[1]-hard problem OCSP(RIM ) to OCSP(Γ). Since
we have (0, . . . , 0), (1, . . . , 1), (0, . . . , 0, 1, . . . , 1) ∈ R′ and (1, . . . , 1, 0, . . . , 0) 6∈ R′, now a constraint
〈(x, . . . , x, y, . . . , y), R′〉 expresses the relation RIM .

Example 6.10. Consider the cc0-closure Γ of the following relation:

R =

(
0 1 2 0 2
0 0 0 2 2

)

,

Clearly, Γ is not weakly separable: (R, (1, 0), (0, 2)) is a union counterexample. Nevertheless, both
OCSP(Γ) and CCSP(Γ) are fixed-parameter tractable. In the case of OCSP(Γ), every 1 in a solution
can be replaced by 2. Hence it is sufficient to solve the problem restricted to {0, 2}, in which case
the problem is trivial, as every combination of 0 and 2 is a satisfying assignment. For CCSP(Γ),
we argue as follows. Let S be the set of variables v where value 1 can appear, that is, there is no
〈(v′, v), R〉 or any unary constraint excluding 1 on v. Observe that any combination of 0, 1, and 2
on S is a satisfying assignment. Therefore, if |S| ≥ k, then there is a solution. If |S| < k, then we
can try every possible substitution of constants into S and obtain instances where 1 can no longer
appear. As CCSP(Γ|{0,2}) is trivial, solving these instances is fixed-parameter tractable.

Example 6.11. The relation RIM of Example 6.1 is not weakly separable. Consider a CSP
instance on three variables v1, v2, v3 having two constraints 〈(v1, v3), RIM 〉 and 〈(v2, v3), RIM 〉. The
assignment (0, 0, 1) is the only minimal satisfying assignment. Assignment (1, 1, 1) is satisfying, but
it cannot be obtained as the union of pairwise disjoint satisfying assignments (even if we do not
require minimal satisfying assignments).

Example 6.12. • The cc0-closure Γp−PC of {Rp−PC} (defined in Example 6.3) consists of
Rp−PC itself and unary relations {(0)} and D = {0, 1, . . . , p}. It is easy to see that every
mapping h : D → D with h(0) = 0 is an endomorphism of Γp−PC , for any sets 0 ∈ D1,D2 ⊆ D,
any mapping f : D1 → D2 with f(0) = 0 is an inner homomorphism of Γp−PC . Finally, any
mapping φ : D1 → 2D2 such that 0 ∈ D1,D2 ⊆ D and φ(0) = {0} is a multivalued morphism
or an inner multivalued morphism of Γp−PC .
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• Multivalued morphisms of relation Rp−MC and relations from its cc0-closure are the mappings
φ : D → 2D satisfying φ(d) ⊆ {0, d} for every d ∈ D. A mapping g : D → D is an
endomorphism of Rp−MC if and only if g(d) ∈ {0, d} for each d ∈ D−{0} and g(0) = 0. Inner
homomorphisms and inner multivalued morphisms can be described in a similar way.

• The constraint R≤,d generalizes RIM to the domain {0, 1, . . . , d}: R≤,d = {(x, y) ∈ {0, 1, . . . , d}2 |
x ≤ y}. A function h with h(0) = 0 is an endomorphism of R≤,d if and only if it is monotone,
i.e., h(x) ≤ h(y) for every x ≤ y. R≤,d does not have a multivalued morphism that is not an
endomorphism: if ψ is a multivalued morphism of R≤,d with a, b ∈ ψ(x), then (x, x) ∈ R≤,d

implies that both (a, b) and (b, a) are in R≤,d.

• The constraint R<,d is defined similarly to R≤,d, but we also add the tuple (0, 0) to make it
0-valid: R≤,d = (0, 0) ∪ {(x, y) ∈ {0, 1, . . . , d}2 | x < y}. In this case, there are nontrivial
multivalued morphisms: for example, ψ(0) = ψ(1) = ψ(2) = {0}, ψ(3) = {1, 2}, ψ(4) = {3}
is a multivalued morphism of R<,4.

Example 6.13. In the cc0-closure of the relation

R =

(
0 1 0 1 2
0 0 1 1 2

)

,

both 1 and 2 produce 1, but neither 1 nor 2 produces 2.

Example 6.14. Consider the cc0-closure of the following two relations:

R1 =

(
0 1 1 2 0 2 3 0 3 4 4
0 0 1 0 2 2 0 3 3 5 4

)

R2 =

(
0 1 0 1 3 4 5
0 0 1 1 3 4 5

)

.

Value 2 produces 2 and 3, but there are no other producing relations. Thus 3 is degenerate and 2
is self-producing. The mapping ψ(0) = ψ(1) = ψ(2) = ψ(3) = {0}, ψ(4) = {1}, ψ(5) = {0, 1} is a
multivalued morphism, thus 1 is semiregular. Values 4 and 5 are regular.

Example 6.15. Consider the cc0-closure Γ of following two relations:

R1 =





0 3 2
0 1 2
0 2 1



 R2 =

(
0 1 0 1 2 0 2 0 3 2 1 2 1
0 0 1 1 0 2 2 3 3 1 2 3 3

)

.

Γ is not weakly separable: (R2, (3, 0), (0, 3)) is a difference counterexample. Let us observe that
h(0) = 0, h(1) = 2, h(2) = 1, h(3) = 2 is an endomorphism (a proper contraction) of Γ. Therefore,
by applying h on a solution for an OCSP(Γ) instance, we can obtain a solution using only the
values 0, 1, and 2. Γ restricted to {0, 1, 2} is weakly separable, thus finding such solutions is FPT.

Example 6.16. We have seen in Example 6.10 that CCSP(Γ) is fixed-parameter tractable for the
cc0-closure Γ of the following relation:

R =

(
0 1 2 0 2
0 0 0 2 2

)

.

Let us verify that Theorem 5.2 indeed classifies CCSP(Γ) as fixed-parameter tractable. Γ is not
weakly separable: (R, (1, 0), (0, 2)) is a union counterexample. However, Γ is not a core: value 1
is self-producing, 2 is degenerate, and the component generated by 1 is {1}. Γ|{0,1} and Γ|{0,2} are
cores, but they are weakly separable. Thus by Theorem 5.2, CCSP(Γ) is fixed-parameter tractable.
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Consider the cc0-closure Γ of following relation:

R =





0 0 0 3 3 0 3
0 1 2 0 2 4 4
0 2 0 0 0 0 0



 .

Value 3 produces 3, 1 produces 4, and both 1 and 4 produces 2, but there are no other producing
relations. Thus 2 and 4 are degenerate and 3 is self-producing. We can also see that 1 is regular.
The core of Γ is the component generated by {1, 3} which is K = {1, 2, 3}. Thus Γ is not a
core. However, Γ|{0,1,2,3} is a core and it is not weakly separable: (R, (3, 0, 0), (0, 1, 2)) is a union
counterexample. Thus by Theorem 5.2, CCSP(Γ) is W[1]-hard.
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