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Abstract. Two algorithms that combine Brownian dynamics (BD) simulations with mean-field
partial differential equations (PDEs) are presented. This PDE-assisted Brownian dynamics (PBD)
methodology provides exact particle tracking data in parts of the domain, whilst making use of
a mean-field reaction-diffusion PDE description elsewhere. The first PBD algorithm couples BD
simulations with PDEs by randomly creating new particles close to the interface which partitions
the domain and by reincorporating particles into the continuum PDE-description when they cross
the interface. The second PBD algorithm introduces an overlap region, where both descriptions
exist in parallel. It is shown that to accurately compute variances using the PBD simulation requires
the overlap region. Advantages of both PBD approaches are discussed and illustrative numerical
examples are presented.
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1. Introduction. Spatial reaction-diffusion models have been widely used for
the description of biological systems [25]. Often continuum approaches, written in
the form of reaction-diffusion partial differential equations (PDEs), are used due to
their simplicity and the vast number of ready-to-use numerical solvers. However,
many biological effects cannot be fully described by deterministic PDE-based models.
This is because a deterministic model requires large copy numbers of molecules to
minimize the relative fluctuation of the spatial concentration. If low copy numbers
are present in a biological system [22, 26], then stochastic models such as mesoscopic
compartment-based algorithms [19, 6] or trajectory tracking (Brownian dynamics)
methods, may be deployed [2, 29].

In many situations individual trajectories are important only in certain parts of
the domain, whilst in the remainder of the domain a coarser, less detailed, method can
be used [15]. This is the case, for example, in the modelling of ion-channels [24]. Ions
pass through a channel in single file and an individual-based model has to be used to
accurately compute the discrete, stochastic, current in the channel [4]. The positions
of individual ions are less important away from the channel where copy numbers
may be very large (rendering a detailed Brownian dynamics description infeasible)
[5]. Another example is the stochastic reaction-diffusion modelling of filopodia which
are dynamic finger-like protrusions used by eukaryotic motile cells to probe their
environment and help guide cell motility [33]. These relatively small protrusions are
connected to a larger cytosol compartment. If a modeller is interested to understand
the dynamics of filopodia, then there is a potential to decrease the computational
cost of simulations by using a coarser model in the cytosol. In both examples, it is
important to understand how models with a different level of detail can be used in
different parts of the computational domain [15].

In this paper, we develop algorithms that calculate Brownian dynamics (BD)
paths in a desired part of the domain, whilst using a continuum PDE-based model
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in the remainder. This PDE-assisted Brownian dynamics (PBD) methodology has
the advantage that efficient methods for solving PDEs can be used for large parts of
the modelled domain, whilst BD data is available in other areas where required. The
main goal of the PBD methodology is to get the same statistics (means and variances)
in the BD subdomain as we would get if we we were able to use BD simulations in
the whole domain. In particular, the correct coupling between the two parts of the
domain is of vital importance for the accuracy of a PBD algorithm.

The paper is organised as follows. Section 2 states, in mathematical terms, the
requirements for the developed algorithms and introduces the notation used through-
out the remainder of the paper. We then introduce the first PBD algorithm for a
pure diffusion system in Section 3, where we also explore the complications of this
algorithm. In Section 4 we present the second PBD algorithm which provides more
accurate computations. In Section 5 we investigate issues relating to the introduction
of reactions into the system and present several computational examples.

2. Problem formulation. Consider a general Brownian dynamics reaction-
diffusion simulation with M chemical species in the (open) domain Ω ⊂ R3. We
denote by nj(x, t), j = 1, 2, . . . ,M, the expected spatio-temporal concentration of the
j-th chemical species at the position x and time t over our domain Ω. The approxi-
mate mean-field reaction-diffusion PDEs for the time evolution of concentrations can
be written as follows

∂pj
∂t

= Dj ∆pj +Rj(p1, p2, . . . , pM ) , j = 1, 2, . . . ,M, (2.1)

where pj ≡ pj(x, t) : Ω× [0,∞)→ [0,∞) is the mean-field approximation of nj , Dj is
the diffusion constant of the j-th chemical species and Rj : [0,∞)M → R represents
the reaction terms.

The goal of PBD algorithms is to couple macroscopic description (2.1) in the open
subdomain ΩP ⊂ Ω with a stochastic BD simulation in the open subdomain ΩB ⊂ Ω,
where the closures of ΩB and ΩP cover Ω, i.e.

Ω ⊂ ΩB ∪ ΩP . (2.2)

In ΩB , we will consider BD trajectories of individual molecules, i.e. the state of the

microscopic subdomain ΩB is defined by the number N
(j)
B (t) of molecules of the j-

th chemical species at time t and their positions x
(j)
i (t) ∈ ΩB , i = 1, 2, . . . , N

(j)
B (t),

j = 1, 2, . . . ,M . We denote by I the interface between the subdomains ΩB and ΩP ,
namely

I = ΩB ∩ ΩP . (2.3)

In this paper, we will investigate two cases:

[A] ΩB and ΩP do not overlap, i.e. ΩB ∩ ΩP = ∅;
[B] there exists an overlap region where the PDE description and BD simulations

exist in parallel, i.e. ΩB ∩ ΩP 6= ∅.

The case [A] will lead to the PBD algorithm (A1)–(A5) presented in Table 3.1. The
case [B] is implemented in the second PBD algorithm (B1)–(B5) which is presented
in Table 4.1. We will start our discussion with the case [A] because it is less technical
to implement than the case [B].
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Fig. 2.1. Sketch of the first PBD algorithm and the notation related to it. In ΩP , molecules

are described by their density distribution p(x, t) and in the microscopic domain ΩB described by
the number NB(t) of molecules and their positions xi(t), i = 1, 2, . . . , NB(t). The interface between
these domains is denoted I.

To simplify our presentation, we will consider that Ω is a “narrow” three-dimen-
sional domain, and hence only consider the process mapped onto an effective one-
dimensional domain Ω ⊂ R by assuming that the system is well mixed in the other
two dimensions. In particular, we have ΩB ⊂ Ω ⊂ R and the state of the BD
subdomain ΩB will be described by the x-coordinates of molecules which we will

denote as x
(j)
i (t) ∈ ΩB , i = 1, 2, . . . , N

(j)
B (t), j = 1, 2, . . . ,M . We simulate the system

using finite time step ∆t > 0, in which particles in ΩB change their position according
to the discretized version of the overdamped Langevin equation

x
(j)
i (t+ ∆t) = x

(j)
i (t) +

√
2Dj∆t ξ , (2.4)

where ξ is a normally distributed random variable with zero mean and unit variance.
Figure 2.1 shows a sketch of the described system for one chemical species along with
the notation used in the case [A]. Our goal is to construct PBD algorithms which will
satisfy the following two conditions:

Condition (C.1): We require that the expected distribution of molecules in ΩB \ΩP

match that of the expected distribution nj(x, t), i.e. the distribution which we would
obtain if we used detailed BD simulations in the whole domain Ω. In particular this
means that for every set A ⊂ ΩB \ΩP , the expected number of particles in A at time
t > 0 has to satisfy

E
[∣∣∣{x(j)

i (t) ∈ A , i = 1, . . . , N
(j)
B (t)

}∣∣∣] =

∫
A

nj(x, t)dx , ∀A ⊂ ΩB \ ΩP . (2.5)

The choice of an arbitrarily small but finite interval A = [x, x+ dx) for x ∈ ΩB \ ΩP

leads to an alternative formulation of this condition

E
[∣∣∣{x(j)

i (t) ∈ [x, x+ dx) , i = 1, . . . , N
(j)
B (t)

}∣∣∣] = nj(x, t)dx , ∀x ∈ ΩB \ ΩP .

(2.6)

Condition (C.2): Whilst we aim to match the expected outcome of the stochastic
simulation to n(x, t), we also want the variances of molecule distribution in ΩB \ ΩP

to match that which would be expected if a BD simulation were to be performed over
the entire domain Ω.

In ΩP \ ΩB , the system is described by the concentration vector pj , j = 1, 2, . . . ,M ,
which evolves according to the PDE (2.1). This distribution, whilst continuous, is
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not strictly deterministic since it is coupled with the stochastic outcomes of the BD
subdomain ΩB . If the stochastic reaction-diffusion model only includes zero-order
or first-order reactions, then the mean-field PDE (2.1) describes the expected be-
haviour of stochastic models [12]. In this case it is reasonable to require the following
additional condition.

Condition (C.3): We require

E [pj(x, t)] = nj(x, t) , ∀x ∈ ΩP \ ΩB , t > 0 . (2.7)

In the case [A], the conditions (C.1)–(C.3) can be simplified by observing that ΩB =
ΩB \ ΩP and ΩP = ΩP \ ΩB . In the case [B], we will also require that the PBD
algorithm gives the correct mean distribution of molecules in the overlap region O =
ΩB ∩ ΩP , i.e.

E [pj(x, t)] dx+ E
[∣∣∣{x(j)

i (t) ∈ [x, x+ dx) , i = 1, . . . , N
(j)
B (t)

}∣∣∣] = nj(x, t)dx (2.8)

for all x ∈ O = ΩB ∩ ΩP and t > 0.

3. PBD simulation of diffusion. In this section, we explain our case [A] PBD
algorithm (i.e. ΩB∩ΩP = ∅) using a system of diffusing non-interacting molecules of a
single chemical species. Therefore, for all further discussions in this and the following
section we will drop the index j representing the species. Then the macroscopic PDE
(2.1) for this system becomes the diffusion equation

∂n

∂t
= D

∂2n

∂x2
, (3.1)

where n ≡ n(x, t) : Ω × [0,∞) → [0,∞) and D is the diffusion constant. We will
consider the infinite domain Ω = R for simplicity. Without loss of generality, we
assume that ΩP = (−∞, 0) and ΩB = (0,∞), i.e. the internal boundary I = {0}
is situated at the origin x = 0. In the case of diffusion only, the total number of
molecules N in the system is conserved, i.e.

N =

∫
Ω

n(x, t) dx, for all t ≥ 0 . (3.2)

Hence, for the PBD algorithm the conservation of mass condition takes the form

N =

∫
ΩP

p(x, t) dx+NB(t) , for all t ≥ 0 . (3.3)

Since the diffusing molecules are non-interacting, we can express Condition (C.2) in
mathematical terms. If all particles start with the same initial condition, then each
particle has the (identical) probability pA =

∫
A
n(x, t)dx/N of being in a set A at

time t. Consequently, the expected number of particles in A at time t is NpA and the
variance is equal to NpA(1− pA). Substituting pA =

∫
A
n(x, t)dx/N and using (3.2),

we get Condition (C.2) in the following form

var [|{xi(t) ∈ A , i = 1, . . . , NB(t)}|] =

∫
A

n(x, t)dx

(
1−

∫
A
n(x, t)dx∫

Ω
n(x, t)dx

)
, (3.4)
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p(x, t)

p̃(x, t+ ∆t)

α(t+ ∆t)

x
Fig. 3.1. Illustration of step (A1) of the first PBD algorithm. Dashed line: p(x, t); solid line:

p̃(x, t+ ∆t) as defined in (3.6); shaded area: α(t+ ∆t) as defined in (3.8).

for all A ⊂ ΩB and t > 0. Using again A = [x, x + dx), we obtain the alternative
formulation

var [|{xi(t) ∈ [x, x+ dx) , i = 1, . . . , NB(t)}|] = n(x, t)dx . (3.5)

In Sections 3.1 and 3.2, we present one update step of the continuum and the
particle-based simulations respectively, before the full PBD algorithm (A1)–(A5) is
formulated in Section 3.3. In Section 3.4, we will discuss the accuracy of the algorithm
with respect to the Conditions (C.1)–(C.3).

3.1. Updating the PDE regime in ΩP . At time t, we have the concentration
p(x, t) for x ∈ ΩP and are aiming to calculate the concentration p(x, t + ∆t) that
corresponds to a realisation of one time step ∆t of the diffusion process (3.1). We
therefore define the exact outcome of a diffusion step in the full domain Ω given initial
data p(x, t):

p̃(x, t+ ∆t) =

∫
ΩP

K(x− x′,∆t) p(x′, t) dx′ , (3.6)

where K(x− x′,∆t) is the diffusion kernel

K(ξ,∆t) =
1√

4πD∆t
exp

(
− ξ2

4D∆t

)
, (3.7)

and the function p̃(x, t) has support Ω. Using this process, a certain proportion of
the concentration distribution, namely

α(t+ ∆t) ≡
∫

ΩB

p̃(x, t+ ∆t) dx (3.8)

would have crossed the interface I in the time interval [t, t+∆t) (see Figure 3.1). This
value α(t + ∆t) represents the expected number of molecules to cross the interface
from ΩP to ΩB in the time interval [t, t+ ∆t). Since all molecules in ΩP are identical
(of the same chemical species and have the same probability distribution proportional
to p̃(x, t + ∆t)), the number of molecules that cross the interface from ΩP to ΩB in
the time interval [t, t + ∆t) is Poisson distributed with average α(t + ∆t). Let us
assume that ∆t has been chosen small enough to ensure that α(t+ ∆t)� 1. In this
case the probability of more than one particle crossing the interface is negligible and
we need to consider two cases:
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(i) one particle gets created in ΩB with the probability α(t+ ∆t);
(ii) no particle is created with the probability 1− α(t+ ∆t).

For both cases we need to calculate the updated concentration p(x, t + ∆t) where
x ∈ ΩP .

We consider the concentration p(x, t) as the distribution of N −NB(t) identically
distributed particles at time t. Therefore each of these particles has at time t the
probability distribution p(x, t)/(N−NB(t)). After one time step each of these particles
can be found in an infinitesimal interval [x, x + dx) with probability p̃(x, t + ∆t) dx.
For each particle, its probability distribution given that it did not leave ΩP can be
calculated as

p1(x, t+ ∆t) =
p̃(x, t+ ∆t)

N −NB(t)− α(t+ ∆t)
, for x ∈ ΩP .

On the other hand, if a particle does leave the domain ΩP , then its distribution
function becomes zero for x ∈ ΩP . Instead the particle is introduced into ΩB at time
t+ ∆t at a location x with the probability distribution given by

p2(x, t+ ∆t) =
p̃(x, t+ ∆t)

α(t+ ∆t)
, for x ∈ ΩB . (3.9)

This updating process is rather like collapsing a wavefunction in quantum mechanics
[30]. We have a look to see if a particle has crossed the boundary into ΩB : if it is
there on the other side then its distribution function collapses to a δ function at its
new position, while if it is not, then the distribution function collapses to zero in ΩB

with corresponding rescaling in ΩP .
Combining these arguments for all the particles, we see that the last update step

is a simple rescaling of the probability distribution so that the updated distribution
satisfies conservation of mass according to (3.3). We therefore have

pcont(x, t+ ∆t) =

{
β(i) p̃(x, t+ ∆t), in the case (i),
β(ii) p̃(x, t+ ∆t), in the case (ii).

for x ∈ ΩP , (3.10)

with the rescaling constants β(i), β(ii) given by

β(i) =
N −NB(t)− 1

N −NB(t)− α(t+ ∆t)
, β(ii) =

N −NB(t)

N −NB(t)− α(t+ ∆t)
. (3.11)

Note that the update step for the continuum regime satisfies conservation of mass
(3.3). An illustration of the two cases can be seen in Figure 3.2.

3.2. Updating the BD regime in ΩB. We use the discretized version of the
overdamped Langevin equation introduced in (2.4) to update the positions of particles
in ΩB . If the position of the i-th molecule, computed by (2.4), is in ΩB at the end
of the time step, then we will continue representing it as a particle. Note, that a
particle that crossed the boundary I and came back into ΩB during the time step
[t, t + ∆t) is also captured by this case. We have to be more careful whenever the
position xi(t + ∆t), computed by (2.4), is inside the PDE subdomain ΩP at time
t + ∆t, i.e. xi(t + ∆t) ∈ ΩP . In this case, the random walk of the i-th molecule
crossed the interface I without crossing back at the end of the time step. This event
needs to be taken into account for the update of the final concentration p(x, t + ∆t)
in ΩP . As we know the exact position of this particle i at time t+ ∆t we add a Dirac
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ΩP ΩBI
x

p̃(x, t+ ∆t)

pcont(x, t+ ∆t)

xi(t+ ∆t)

NB(t) + 1

(a) Case (i)

ΩP ΩBI
x

p̃(x, t+ ∆t)

pcont(x, t+ ∆t)

NB(t)

(b) Case (ii)

Fig. 3.2. Illustration of steps (A2) and (A3) of the first PBD algorithm. Dashed line: p̃(x, t+
∆t); solid line: pcont(x, t+ ∆t); (green) circle: created particle.

δ function at the position xi(t+ ∆t) ∈ ΩP . Therefore we compute p(x, t+ ∆t) in ΩP

by

p(x, t+ ∆t) = pcont(x, t+ ∆t) +
∑

xi(t+∆t)∈ΩP

δ(x− xi(t+ ∆t)),

where pcont(x, t+ ∆t) is given by (3.10).

3.3. The first PBD algorithm. This algorithm computes the concentration
p(x, t) for x ∈ ΩP , and the number NB(t) and positions of BD particles xi(t) ∈ ΩB ,
i = 1, 2, . . . , NB(t). One time step of the first PBD algorithm is presented in Table 3.1
as algorithm (A1)–(A5). In order to simplify the presentation of this algorithm, we
consider that the time step ∆t is chosen so small that α(t+∆t)� 1. In particular, we
only need to implement cases (i)–(ii) presented in Section 3.1, because the probability
that two or more molecules are initiated in ΩB during one time step is negligible.

The auxiliary distribution p̃(x, t+ ∆t) in step (A1) is in practice calculated using
a numerical approximation algorithm. To calculate α(t + ∆t) we can either use this

numerical approximation of p̃(x, t+∆t), which requires an additional time step ∆̃t�
∆t to be used to ensure the accuracy of α(t + ∆t), or (more efficiently) we can
approximate α(t + ∆t) analytically using a boundary layer expansion in the vicinity
of the interface I.

By construction, the algorithm (A1)–(A5) satisfies the conservation of mass con-
dition (3.3) and the concentration p(x, t) satisfies non-negativity. We will now show
that this algorithm also guarantees the correct expected outcome and therefore satis-
fies Conditions (C.1) and (C.3).

Theorem 3.1. Consider the BD simulation of N diffusing molecules in the
computational domain Ω which is divided into sudomains ΩB ⊂ Ω and ΩP ⊂ Ω
satisfying (2.2) and the case [A]. Suppose that NB(0) particles are initially in ΩB

at positions xi(0), i = 1, 2, . . . , NB(0). Let us initialize p(x, 0) as sums of Dirac δ
functions describing molecules which are initially in ΩP , i.e. p(x, 0) = n(x, 0) for
x ∈ ΩP . Then the expected outcome of the PBD algorithm (A1)–(A5) (presented in
Table 3.1) satisfies the Conditions (C.1) and (C.3) for arbitrary ∆t > 0.

Proof. We will show that the identities (2.5) and (2.7) hold during one iteration
(A1)–(A5) presented in Table 3.1. It will then follow by induction that they hold for
all times k∆t, k = 0, 1, 2, . . . .

Let us assume that the probability distribution of particles in ΩB at time t is
given through n(x, t), x ∈ ΩB . Given the probability distribution p(x, t), x ∈ ΩP , at
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(A1) Calculate p̃(x, t+ ∆t) using (3.6) and α(t+ ∆t) using (3.8).
(A2) Generate uniformly distributed random number r in (0, 1).

(i) If r < α(t + ∆t), then create new particle in ΩB according to the
probability density p2(x, t+∆t) defined in (3.9). Set β = β(i) where
β(i) is given by (3.11). Set NB,1 = 1.

(ii) If r ≥ α(t+ ∆t), then set β = β(ii) where β(ii) is given by (3.11).
Set NB,1 = 0.

(A3) Compute positions xi(t + ∆t), i = 1, 2, . . . , NB(t), of BD particles ac-
cording to (2.4).

(A4) Compute new concentration in ΩP by

p(x, t+ ∆t) = β p̃(x, t+ ∆t) +
∑

xi(t+∆t)∈ΩP

δ(x− xi(t+ ∆t)) , for x ∈ ΩP .

(A5) Update the number of BD particles by

NB(t+ ∆t) = NB(t) +NB,1 − |{xi(t+ ∆t) ∈ ΩP , i = 1, . . . , NB(t)}| .

Terminate computation of trajectories of BD molecules which landed in
ΩP (i.e. the BD particles which satisfy xi(t+ ∆t) ∈ ΩP .)
Then continue with step (A1) for time t+ ∆t.

Table 3.1
One time step of the first PBD algorithm for a system of diffusing molecules.

time t, the conditional expected value of p(x, t+ ∆t) for x ∈ ΩP is given by

E
[
p(x, t+ ∆t) | p(x, t)

]
= α(t+ ∆t)β(i) p̃(x, t+ ∆t)

+ (1− α(t+ ∆t))β(ii) p̃(x, t+ ∆t)

+

∫
ΩB

K(x− x′,∆t)n(x′, t) dx′ ,

where β(i) and β(ii) are given by (3.11), K(x− x′,∆t) is the diffusion kernel given in
(3.7) and the last term represents particles that moved across the interface I, defined
by (2.3), during the time step [t, t+ ∆t). Using (3.11), we obtain

E
[
p(x, t+ ∆t) | p(x, t)

]
= p̃(x, t+ ∆t) +

∫
ΩB

K(x− x′,∆t)n(x′, t) dx′.

Using (3.6) and the law of total expectation (law of iterated expectations), we get

E
[
p(x, t+ ∆t)

]
=

∫
ΩP

K(x− x′,∆t)E[p(x′, t)] dx′ +

∫
ΩB

K(x− x′,∆t)n(x′, t) dx′.

Using the induction assumption that E[p(x, t)] = n(x, t), we obtain

E
[
p(x, t+ ∆t)

]
=

∫
Ω

n(x′, t)K(x− x′,∆t) dx′ = n(x, t+ ∆t) , for x ∈ ΩP ,

i.e. we have derived (2.7).
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Let us consider a set A ⊂ ΩB . Given the probability distribution p(x, t), x ∈ ΩP ,
at time t, the conditional expected number of particles in A at time t+ ∆t is

E
[
|{xi(t) ∈ A , i = 1, . . . , NB(t)}|

∣∣ p(x, t) ] =

∫
A

α(t+ ∆t) p2(x, t+ ∆t) dx

+

∫
A

∫
ΩB

K(x− x′,∆t)n(x′, t) dx′ dx,

where the first term represents newly created particles from the PDE regime ΩP and
the second term represents the movement of particles inside ΩB . Using (3.6), (3.9)
and the law of total expectation, we obtain

E
[ ∣∣ {xi(t) ∈ A , i = 1, . . . , NB(t)}

∣∣ ] =

∫
A

∫
Ω

K(x− x′,∆t)n(x′, t) dx′ dx

=

∫
A

n(x, t+ ∆t) dx ,

which is the condition (2.5). Thus we have showed that both Conditions (C.1) and
(C.3) are satisfied. This concludes the proof.

Theorem 3.1 also holds if the algorithm (A1)–(A5) is extended to the creation of
more than one new particle per time step as long as the expected value of the number
of created particles is α(t+ ∆t) and the rescaling is done accordingly. The algorithm
(A1)–(A5) and the proof can be easily extended for a finite domain Ω = [0, L] with
no flux boundary conditions by redefining the kernel K(ξ,∆t) accordingly.

3.4. Discussion of the PBD algorithm (A1)–(A5). In Theorem 3.1 we
showed that the PBD algorithm (A1)–(A5) satisfies the Conditions (C.1) and (C.3).
However, we still need to check whether the Condition (C.2) on the variances is also
satisfied.

To investigate the variances created by this algorithm, we show the outcome of
an illustrative numerical example in Figure 3.3. We simulate the diffusion of 100
molecules in the domain Ω = [−1, 1] which are initialized at the same location x =
−0.95. We use no flux boundary conditions. We test the algorithm (A1)–(A5) where
ΩP = (−1, 0), ΩB = (0, 1) and I = {0}. To calculate p̃(x,∆t) we use an implicit

Euler-scheme with ∆x = 0.01 and a numerical time-step of ∆̃t = 10−6. The time
step ∆t used by the algorithm (A1)–(A5) is ∆t = 10−3 and we simulate the system

until Tfinal = 0.2. The time step ∆̃t � ∆t for the approximation of p̃(x, t + ∆t)
was chosen in order to minimise numerical artefacts. We run 1000 realisations of
this process and measured the number of particles in 10 intervals (‘bins’) of the size
0.1 in ΩB . Averaging over 1000 realisations, we calculate the mean value and the
variance of the particle number for each of the bins at time Tfinal. The results are
presented in Figure 3.3 as gray histograms. In this example, it is easy to calculate
the correct distribution n(x, t) which the algorithm (A1)–(A5) tries to approximate.
It can be obtained by solving the diffusion equation (3.1) in the domain Ω = (−1, 1)
with n(x, 0) = 100 δ(x+ 0.95) and no flux boundary conditions. The expected values
for both means and variances are plotted as (red) dashed lines in Figure 3.3.

In Figure 3.3(a), we see that the mean value of the simulation results matches
well with the solution of the diffusion process, with only small fluctuations close to
the internal boundary I at x = 0 due to stochastic effects and inaccuracies caused by
the numerical approximation of p̃(x, t + ∆t). However, in Figure 3.3(b) it becomes
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Fig. 3.3. Simulation results of diffusion of 100 particles in (−1, 1) with no flux boundary
conditions initialized at x = −0.95, i.e. n(x, 0) = 100 δ(x + 0.95). Results averaged over 1000
realisations. Dashed (red) line: expected outcome. (a) Solid line: mean value in ΩP ; (gray) bars:
particle concentrations in ΩB. (b) (Gray) bars: measured variances in particle concentrations.
Parameter values are described in the text.

clear that the variance between different realisations is higher than the desired value,
in particular close to the internal interface. We can explain this effect clearly using a
thought experiment.

Let us consider a situation where p(x, 0) is 0 close to the internal boundary I
and has a peak of mass 99 arbitrarily far away from I. Additionally, we assume
that one particle is situated in ΩB close to the interface I. Assuming the particle
crosses the interface in the first simulation step, a Dirac δ function is created in ΩP

close to the interface, as illustrated in Figure 3.4(a). This δ function has a large
impact on the region in ΩP that is close to the interface, as the distribution p(x,∆t)
is negligible in this region. Immediately after incorporating the particle into p(x,∆t),
all its information is lost and we are forced to assume 100 independent particles with
the probability distribution p(x,∆t) in ΩP . In particular this implies that every
particle has a 1% chance of being at the position of the δ and 99% chance of being
in the bulk distribution far away from the boundary. This is indeed not the case,
since we know that there is exactly one molecule near the interface and 99 molecules
away from the interface, but the nature of the continuum distribution means that this
information must be lost or else we should necessarily demand a separate distribution
for all molecules in ΩP .

In the second diffusion step, we calculate p̃(x, 2∆t) according to (3.6) and some
‘mass’ α(2∆t) may have drifted across the interface I (see Figure 3.4(b)). Because the
bulk distribution is far away from the boundary, almost all of this mass α(2∆t) comes
from the δ function close to I. Let us imagine that a new particle is now created in ΩB

(according to the probability α(2∆t)), in which case the whole distribution needs to
be rescaled, as shown in Figure 3.4(c). Because 99% of the mass in p(x,∆t) is situated
in the bulk far away from the boundary, the majority of the rescaling happens in this
region, such that effectively the mass needed to create the particle is almost entirely
taken from the bulk, rather than from the region close to the interface. This also
implies that most of the mass close to the boundary will stay and it is therefore
possible to create another particle from this mass in further time steps. This is in
contradiction to the result that would be expected if information was not lost in the



11

ΩP ΩBI
x

xi(0)δ(x− xi(∆t))

p(x,∆t)

99 1

(a) Particle jumps into ΩP and creates a Dirac
δ function at the landing position.

ΩP ΩB

I

α(2∆t)

x

p(x,∆t)

p̃(x, 2∆t)

99 1

(b) The distribution diffuses for one time step
and an amount of the δ flows back across the
boundary.

ΩP ΩB

I

xi(2∆t)

x

p̃(x, 2∆t)

p(x, 2∆t)

98 1

(c) If a particle is created, the majority of its
mass is virtually taken from the bulk distribu-
tion and the peak near the boundary remains.

Fig. 3.4. Thought experiment that leads to errors in the variance.

first time step. That is, the distribution close to the interface should dissapear and
the bulk far from the interface is left alone. This effect is the main reason a higher
than expected variance can be measured in ΩB . Note, however, that this does not
effect the expected values, as shown in Theorem 3.1.

Of course, our thought example is an extreme case: we would expect that in prac-
tical cases there would be a significant density of particles throughout the continuum
region (otherwise we would be tracking them individually). Nevertheless the fact that
all information about an individual particle is lost as soon as it crosses the interface
does generate an error in the variance of particle numbers near the interface, and the
effect becomes more pronounced when the concentrations in ΩP close to I are low.

3.4.1. Dependence of the variance on the system parameters. We want
to quantify the error in the variance as a function of the system parameters, which
are the size of the domain [−L,L], the diffusion constant D, the simulated time Tfinal

and the total mass N . After a nondimensionalisation the macroscopic PDE (3.1) can
be written in the form

∂n

∂t
=
∂2n

∂x2
, x ∈ [−1, 1] ,

where the simulation is run until

T ∗final = Tfinal
L2

D
.

Hence, the system only has two parameters that need to be investigated: the final
simulation time T ∗final and the total number of molecules N .
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Fig. 3.5. Mean values and standard deviations of the number of NB(T ∗
final) depending on T ∗

final
and N . Dashed line: expected number of particles; shaded area: expected standard deviation; dots:
measured mean values; error bars: measured standard deviations. Other parameters are chosen as
for Figure 3.3.

As in Figure 3.3, we use PBD algorithm (A.1)–(A.5) with ΩP = (−1, 0), ΩB =
(0, 1) and I = {0}. For each parameter (T ∗final and N), we simulate the system 1000
times for different values of this parameter and measure in each case the number of
particles in ΩB at the end of the simulation, i.e. the value NB(T ∗final). In Figure 3.5,
we see that the measured mean values match well with the expected outcomes. For the
standard deviations, however, we see that for all values of T ∗final and N the measured
outcomes are higher than expected. This is an undesired effect and the next section
will discuss a way to reduce this artefact.

4. A PBD algorithm with an overlap region. In Section 3.4 we saw that
the immediate return of particles from ΩP into ΩB in combination with relatively
low concentrations close to the interface can lead to errors in the variance of particle
concentrations in ΩB . One way to overcome this problem is the introduction of an
overlap region where BD simulation and a continuum description exist in parallel, i.e.
we will consider the case [B] defined in Section 2 by ΩB ∩ ΩP 6= ∅. A sketch of this
new set up can be seen in Figure 4.1 with the overlap region denoted as O = ΩB∩ΩP .
We also denote the interfaces I1 and I2 by

I1 = ∂ΩB ∩ ΩP , I2 = ΩB ∩ ∂ΩP .

In the case of diffusion only, this new setup requires only subtle changes in the al-
gorithm. Molecules are now incorporated into the concentration when they cross
the boundary I1. The definition of p̃ is still equal to (3.6), but we have to redefine
α(t+ ∆t) and p2(x, t+ ∆t) as follows

α(t+ ∆t) =

∫
ΩB\ΩP

p̃(x, t+ ∆t) dx , (4.1)

p2(x, t+ ∆t) =
p̃(x, t+ ∆t)

α(t+ ∆t)
, for x ∈ ΩB \ ΩP . (4.2)

The introduction of the overlap region prevents undesired effects generated by molecu-
les crossing over and coming back straight away, as discussed in the thought exper-
iment in Section 3.4. In particular, a molecule initialized as a Dirac δ function in
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ΩP ΩBOI1 I2

p(x, t) NB(t)

xi(t) xj(t)

t

x
Fig. 4.1. Sketch of the PBD algorithm with overlap region and the notation related to it. In ΩP ,

molecules are described by their density distribution p(x, t), in the microscopic domain ΩB described
by the number NB(t) of molecules and their positions xi(t), i = 1, . . . , NB(t). In the overlap region
O, both descriptions exist in parallel. The interfaces between the various subdomains are denoted I1
and I2.

(B1) Calculate p̃(x, t+ ∆t) using (3.6) and α(t+ ∆t) using (4.1).
(B2) Generate uniformly distributed random number r in (0, 1).

(i) If r < α(t+ ∆t), then create new particle in ΩB \ ΩP according to
the probability density p2(x, t + ∆t) defined in (4.2). Set β = β(i)

where β(i) is given by (3.11). Set NB,1 = 1.
(ii) If r ≥ α(t+ ∆t), then set β = β(ii) where β(ii) is given by (3.11).

Set NB,1 = 0.
(B3) Compute positions xi(t + ∆t), i = 1, 2, . . . , NB(t), of BD particles ac-

cording to (2.4).
(B4) Compute new concentration in ΩP by

p(x, t+∆t) = β p̃(x, t+∆t)+
∑

xi(t+∆t)∈ΩP \ΩB

δ(x−xi(t+∆t)) , for x ∈ ΩP .

(B5) Update the number of BD particles by

NB(t+∆t) = NB(t)+NB,1−|{xi(t+ ∆t) ∈ ΩP \ ΩB , i = 1, . . . , NB(t)}| .

Terminate computation of trajectories of BD molecules which landed in
ΩP \ ΩB (i.e. the BD particles which satisfy xi(t+ ∆t) ∈ ΩP \ ΩB .)
Then continue with step (B1) for time t+ ∆t.

Table 4.1
One time step of the PBD algorithm with overlap region for system of diffusing molecules.

ΩP \ ΩB initially contributes very little to the overall probability density near the
interface I2; by the time it has a significant probability of crossing I2 its distribution
has become sufficiently spread that it is ‘lost’ in the subdomain ΩP as is required for
the continuous distribution. One time step of the second PBD algorithm is presented
in Table 4.1. As before, we consider that the time step ∆t is chosen so small that
α(t + ∆t) � 1. Therefore, we only need to implement cases (i)–(ii) in step (B2),
because the probability that two or more molecules are initiated in ΩB during one
time step is negligible.
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Fig. 4.2. Simulation results of a diffusion process in Ω = (−1, 1) with no flux boundary con-
ditions and initial conditions n(x, 0) = 100δ(x + 0.95) with ΩP = (−1, 0), ΩB = (−0.1, 1) and
O = (−0.1, 0) averaged over 1000 realisations. Dashed (red) line: expected outcome. (a) Solid line:
mean value in ΩP ; bars: particle concentrations in ΩB \ O (gray) and O (green). (b) (Gray) bars:
measured variances in particle concentrations. Parameter values as for Figure 3.3.

In order to highlight the advantages of the overlap region, we simulate the same
diffusion process as in Figure 3.3 with ΩP = (−1, 0) and ΩB = (−0.1, 1). Then the
overlap region is O = ΩP ∩ ΩB = (−0.1, 0). The results are shown in Figure 4.2.
As before, the mean outcome matches well with the exact solution, with stochastic
fluctuations inside the overlap region O due to the mixed description. In Figure 4.2(b)
we see that the introduction of the overlap region indeed reduced the problem of high
variances inside ΩB \ ΩP . A proof similar to Theorem 3.1 can be used to show that
the PBD algorithm (B1)–(B5) satisfies Conditions (C.1) and (C.3) for ∆t > 0. We
will now further show that the algorithm describes a diffusion process exactly in the
limit ∆t→ 0.

Theorem 4.1. Suppose that a PDE-description of the system is used in ΩP =
(−∞, 0), and a BD simulation in ΩB = (−d,∞) with the overlap region O = (−d, 0)
where d > 0. In the limit that ∆t → 0 the expected concentration distribution
PP (x, t) = E[p(x, t)] in the continuum regime and the expected concentration dis-
tribution PB(x, t) in the BD regime obey the equations

∂PP

∂t
= D

∂2PP

∂x2
+ D

∂PB

∂x

∣∣∣∣
x→−d+

δ (x+ d) , x ∈ ΩP , (4.3)

∂PB

∂t
= D

∂2PB

∂x2
− D

∂PP

∂x

∣∣∣∣
x→0−

δ (x) , x ∈ ΩB , (4.4)

where

PP (0, t) = 0 , PB(−d, t) = 0 , for t > 0.

Extend each distribution to the whole line by defining PP (x, t) = 0 for x ∈ (0,∞)
and PB(x, t) = 0 for x ∈ (−∞,−d). Then the sum of these two processes n(x, t) =
PP (x, t) + PB(x, t), x ∈ Ω, t > 0 satisfies the diffusion equation (3.1).

Proof. Consider the function

n(x, t) = PP (x, t) + PB(x, t). (4.5)
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Fig. 4.3. Mean values and standard deviations of the number of particles in ΩB \ ΩP at
time T ∗

final depending on T ∗
final and N . Dashed line: expected number of particles; shaded area:

expected standard deviation; dots: measured mean values; error bars: measured standard deviations.
Parameters as for Figure 4.2.

Clearly

∂n

∂t
= D

∂2n

∂x2
for x ∈ (−∞,−d) ∪ (−d, 0) ∪ (0,∞).

Since each of PP and PB is continuous at x = −d and x = 0, function n will be
continuous there. Moreover, since[

∂PP

∂x

]x=0+

x=0−

= −∂PP

∂x
(0−, t) ,

[
∂PB

∂x

]x=0+

x=0−

=
∂PP

∂x
(0−, t) ,

∂n/∂x is continuous at x = 0. Similarly, since[
∂PP

∂x

]x=−d+

x=−d−

= −∂PB

∂x
(−d+, t) ,

[
∂PB

∂x

]x=−d+

x=−d−

=
∂PB

∂x
(−d+, t) ,

∂n/∂x is also continuous at x = −d. By standard regularity results this is enough to
guarantee that n satisfies the diffusion equation on the whole real line.
Remark. For the overlap region to give a different result from the simple PDB
algorithm (A1)–(A5), we should choose d much bigger than the mean displacement√

2D∆t of a particle given the time step ∆t as defined in (2.4).

4.1. Dependence of the variance on the system parameters. In order to
show that the variances are indeed accurately produced by the PBD algorithm (B1)–
(B5), we repeated the numerical experiments conducted in Section 3.4.1. We chose
ΩP = (−1, 0), O = (−0.1, 0) and ΩB = (−0.1, 1) and measure the number molecules
situated in ΩB \ ΩP = [0, 1) at the end of the simulation. We again calculate the
mean values and standard deviation and present the results in Figure 4.3. We can
clearly see that the adjusted algorithm produces more accurate standard deviations
than the original algorithm, whilst keeping the mean values correct. We conclude
that the algorithm (B1)–(B5) produces an accurate BD simulation inside ΩB \ ΩP

and therefore satisfies the Conditions (C.1)–(C.3). We will use the PBD algorithm
(B1)–(B5) in the remainder of this paper.
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5. Reaction-diffusion systems. In the next step we introduce chemical re-
actions into the system presented in Section 4. We will concentrate on zero-order
and first-order reactions [12]. First-order reactions are reactions which only have one
reactant, for example,

X1
k1−→ X2 , or X1

k2−→ X4 +X5 , (5.1)

where Xi denote chemical species and k1 (resp. k2) the corresponding rate constant
(which has physical units [sec−1]). In what follows, we will denote by ∅ chemical
species which are of no interest to a modeller. Then, considering that X1 is the only
chemical species of interest, we can rewrite the reactions (5.1) as

X1
kd−→ ∅, (5.2)

where kd = k1 + k2. We will also consider zero-order reactions. An example is:

∅ kp−→ X1, (5.3)

where the rate constant kp has physical units [M sec−1], i.e. it is the production rate
per unit of volume and unit of time. It is relatively straightforward to implement
zero-order and first-order chemical reactions in the PBD algorithms (A1)–(A5) and
(B1)–(B5), because these reactions can be treated in the individual parts of the system
(continuum and BD simulation) independently. Note that for higher-order reactions
this is not necessarily the case, as particles could react with the continuum inside the
overlap region O. This case is not discussed in this paper.

In the continuum regime reactions are represented by the term Rj(p1, p2, . . . , pM )
on the right-hand side of the reaction-diffusion PDE (2.1). For example, if the chemical
speciesX1 is subject to chemical reactions (5.2)–(5.3), then the reaction-diffusion PDE
(2.1) takes the form

∂p1

∂t
= D1

∂2p1

∂x2
− kd p1 + kp .

In the BD simulations, the molecules act independently and the reactions can therefore
be treated individually. A summary of how to implement various reactions in BD
simulations can be found in [12].

Although implementation of the zero-order and first-order reactions is relatively
straighforward, one has to still consider some special effects that are related to the
coupling of the two parts of the domain. First, what happens when a particle that
is supposed to react at time t1 crosses the interface I1 at an earlier time t2 < t1?
Since we assumed that all information about particles is lost as soon as they cross the
interface I1, we incorporate it into the continuum and the reaction at time t1 does not
happen. Second, what happens when a particle is created inside the overlap region
O? A number of solutions to this problem are possible: one could split the creation
in equal parts, or declare creation to only contribute to either the continuum or the
molecular-based description. We will here assume that all creation inside the overlap
region occurs in the form of molecules with exact positions.

Finally, let us note that (reactive) boundary conditions on the external boundary
∂Ω can be treated according to the corresponding modelling regime, i.e. whether the
corresponding segment of ∂Ω is part of ∂ΩP or ∂ΩB . Derivation of reactive boundary
conditions of BD simulations which are consistent with the PDE description can be
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found in [8]. External boundaries slightly modify the computation of p̃(x, t + ∆t) in
ΩP . It is still given by (3.6) but the kernel (3.7) has to be updated to take into account
the boundary condition imposed on the external boundary ∂Ω. We have already done
this when we showed simulations of the diffusion process in Figures 3.3 and 4.2 in the
finite interval (−1, 1) with no flux boundary conditions. However, for small timesteps
∆t the change is negligible, since all the action takes place near the interface I2.

We conclude this section with three examples which illustrate the behaviour of the
PBD algorithm (B1)–(B5) for reaction-diffusion systems. They include the modelling
of morphogen gradients and chemisorption.

5.1. Example 1: morphogen gradient. In the first example we compute a
steady state for a morphogen gradient model [28, 32, 20]. We consider one chemical
species (morphogen) inside the domain Ω = (−1, 1). All parameters are dimension-
less for simplicity. The only reaction inside Ω = (−1, 1) is the degradation (5.2).
Additionally to this reaction, we assume a constant influx J/D through the left-hand
boundary x = −1 to the continuum subdomain ΩP = (−1, 0). We use O = (−0.1, 0)
and ΩB = (−0.1, 1) with a no flux boundary at x = 1. Since we only have first-order
reaction (5.2), the exact solution n(x, t) is given by

∂n

∂t
= D

∂2n

∂x2
− k1n ,

∂n

∂x
(−1, t) = −J , ∂n

∂x
(1, t) = 0 . (5.4)

This system is initialised with n(x, 0) = 0, x ∈ Ω, and we let it run until it (approx-
imately) reaches the steady state. We use J = 1000 and k1 = 1. The second PBD
algorithm (B1)–(B5) is run with the same parameters presented in Section 4 for time
Tfinal = 20 which is (approximately) a time at which the model settles into the steady
state. The reaction (5.2) is simulated in a time-driven manner in ΩB , which means
that for each morphogen molecule it is decided randomly at the end of each time step
whether it was degraded or not (the probability of degradation of each molecule is
equal to kd ∆t provided that kd ∆t� 1).

The result of a single simulation of the PBD algorithm (B1)–(B5) is plotted in
Figure 5.1(a). We plot the PDE solution in ΩP \ O as a black line and the (gray)
histogram of molecules in ΩB \ O. In the overlap region O, we compute the total
“number” of particles by

NO(Tfinal) ≡
∫
O

p(x, Tfinal)dx+
∣∣ {xi(Tfinal) ∈ O , i = 1, 2, . . . , NB(Tfinal)}

∣∣. (5.5)

The value of NO(Tfinal) is plotted as the green bar in Figure 5.1(a). The results of
a single simulation of the PBD algorithm (B1)–(B5) are compared with the exact
solution, which is obtained by solving the PDE (5.4) numerically until time Tfinal. In
this simple example, it is also possible to find an analytical expression for the steady
state profile which is approximately equal to the presented dashed line.

Note that the jagged appearance of the continuum solution close to the interface is
not numerical error, but represents the fact that as molecules cross from the discrete to
the continuum side information about their exact location is lost gradually over time
(remember that Figure 5.1(a) shows just one realisation of the stochastic process). The
corresponding distribution on the discrete side ΩB \ΩP would be δ function spikes at
the location of the particles, which we have in effect locally averaged by our binning
process. Thus the jaggedness can be seen as a gradual transition in the solution from
isolated discrete particles to a continuum density distribution. An ensemble average
over 100 simulations of the PBD algorithm (B1)–(B5) is shown in Figure 5.1(b). The
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(b) Average over 100 realisations

Fig. 5.1. Simulation results for Example 1. Dashed (red) line: exact solution given by (5.4);
solid line: p(x, Tfinal); (gray) bars: spatial concentration of particles at t = Tfinal in ΩB \O; (green)
bar: NO(Tfinal) given by (5.5). Parameters as described in the text.

stochastic fluctuations are reduced compared to the single simulation and the results
compare well with the exact solution for the expected probability density (5.4).

5.2. Example 2: reversed morphogen gradient. In this example we intro-
duce a second reaction in addition to (5.2) – a local production of molecules:

∅ kp−→ A in [xs, 1] , (5.6)

where xs defines the size of the creation zone. As before we consider all parameters
to be dimensionless: kp is defined as the rate of production per unit length. For
this system we use no flux boundary conditions on both ends. The combination
of localized production (5.6) and degradation (5.2) ensures that the system settles
into a non-trivial steady-state which we will compute with the PBD algorithm (B1)–
(B5). The exact solution (which the PBD algorithm (B1)–(B5) approximates) can be
described by

∂n

∂t
= D

∂2n

∂x2
− k1n+ k2χ[xs,1] ,

∂n

∂x
(−1, t) = 0 ,

∂n

∂x
(1, t) = 0 , (5.7)

where χ[xs,1] is the characteristic function for the interval [xs, 1] that takes the value
1 inside and 0 outside of the interval. The production reaction (5.6) was implemented
in BD simulations in an event-driven way, such that particles can get created at any
time in-between time steps and the number of particles created in one time step is
not limited. We used kp = 1, kd = 2000 and xs = 0.5. For the PBD simulations
we use the same parameters as in Section 4. In particular, we have ΩP = (−1, 0),
O = (−0.1, 0) and ΩB = (−0.1, 1).

A single realisation of this process is plotted in Figure 5.2(a). We plot the PDE
solution in ΩP \ O as a black line. The concentration of molecules in ΩB \ O is
visualized as a (gray) histogram. In the overlap region O, we plot NO(Tfinal) given by
(5.5). The concentration gradient is now reversed, as the creation of particles happens
near the right-hand boundary. Again, one can clearly see the stochastic fluctuations
in this plot which also have effects on the value of p(x, t) far from the overlap region
O. However, as we draw an ensemble average over 100 simulations in Figure 5.2(b),
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(b) Average over 100 simulations

Fig. 5.2. Simulation results for Example 2. Dashed (red) line: exact solution given by (5.7);
solid line: p(x, Tfinal) in ΩP \ O; (gray) bars: spatial concentration of particles at t = Tfinal in
ΩB \O; (green) bar: NO(Tfinal) given by (5.5). Parameters as described in the text.

the results converge towards the exact solution which is obtained by solving the PDE
(5.7). It is plotted as a (red) dashed line in Figure 5.2.

5.3. Example 3: chemisorption. Our last example is the polymer coating of a
virus surface [14, 11]. We will describe it as irreversible adsorption (chemisorption) of
polymers to a two-dimensional surface as was introduced in [9]. This example presents
a typical application area of PBD algorithms. A detailed model is used close to the
reactive boundary where positions of individual molecules influence the dynamics of
diffusion-driven adsorption. On the other hand, a less detailed model can be used far
away from the adsorbing surface. In the bulk the behaviour of reactive polymers can
be described by the macroscopic reaction-diffusion PDE (2.1) in the form

∂p

∂t
= D

∂2p

∂z2
− kd p . (5.8)

in the semi-infinite domain Ω = (0,∞) (here, z is the distance from the reactive
surface which is at z = 0). This equation takes into account two processes which
mainly influence chemisorption dynamics [9]: diffusion of polymer molecules and the
hydrolysis of reactive groups in the solution. Both processes can be implemented in
the BD context as we saw in the previous examples. However, this level of detail is
only needed close to the virus surface.

Whenever a polymer molecule interacts with the surface, it is either reflected
or (irreversibly) adsorbed. The chemisorption is modelled by a random sequential
adsorption (RSA) algorithm [7]: we check whether the corresponding binding site
on the surface is free and then the reaction occurs with a certain probability. This
probability is related to the reaction rate constant of the binding reaction as given in
[8]. The reader can find more details about the model in [9]. In this paper, we show
that the PBD algorithms can be used to compute the results from [9]. We will use the
same parameters, namely D = 5×10−5 mm2 s−1, kd = 1.3×10−4 s−1 and ∆t = 0.01 s.
Then the mean displacement per time step according to (2.4) is

√
2D∆t = 10−3 mm

and we therefore choose the size of the overlap region of the PBD algorithm (B1)–(B5)
as |O| = 10−2 mm. From the results in [9], we estimate that a maximum length of
L = 2 mm is enough to simulate the binding process and use the Dirichlet boundary
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Fig. 5.3. Example 3 (chemisorption to virus surface). (Gray) histograms: concentration profile
in molecules/mm at two given times computed by the PBD algorithm (B1)–(B5); solid line: results
of the RSA-PDE model presented in [9]. Parameters as shown in the text.

condition

n(L, t) = c0 exp(−kdt) ,

where c0 = 1.2 × 104 molecules/mm is the initial concentration of molecules (i.e.
n(z, 0) ≡ c0 for z ∈ Ω). To apply the PBD algorithm (B1)–(B5), we choose ΩB =
[0, 1.01) mm, O = (1, 1.01) mm and ΩP = (1, 2) mm. The RSA algorithm was per-
formed using a nearest neighbour exclusion on a 100 × 100 grid of receptor binding
positions on the surface [7].

In Figure 5.3 we plot the concentration profile inside ΩB of a single simulation at
two different times (gray histograms). We compare the results of the PBD algorithm
(B1)–(B5) with the results of the RSA-PDE model presented in [9] (black lines). As
shown in [9], the RSA-PDE model also compares well with the full BD simulation.
The number of molecules which are attached to the surface as a function of time is
plotted in Figure 5.4 (six realisations of the PBD algorithm (B1)–(B5) are plotted as
green solid lines). Again, we see an excellent agreement with the result from [9] which
is plotted as the black dashed line.

6. Discussion. In this paper we have presented two PBD algorithms that com-
bine Brownian dynamics with mean-field reaction-diffusion PDEs. This method pro-
duces exact Brownian dynamics simulations in one part of the domain and couples
them with mean field approximations in another part of the domain. An algorithm of
this type is useful for various application areas in computational biology and beyond,
for example, when a detailed description of individual molecules is required near a
receptor or ion channel, but becomes impractical in the bulk of a cell [5, 16]; or when
a detailed stochastic simulation of actin dynamics is required inside filopodia, but be-
comes impractical in the bulk of a cell [33]. Another application area, chemisorption,
was discussed in Section 5.3. By using our approach it would also be possible to use
finite-sized particles in the BD simulation and couple these with the corresponding
mean field results presented in [3].

In the literature several hybrid models have been developed in the context of fluid
dynamics, but they do not discuss issues that arise from the incorporation of chemical
reactions. Alexander et al [1] presents a hybrid model that uses virtual particles at



21

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

3500

4000

time [min]

n
u

m
b

e
r 

o
f 

a
d

s
o

rb
e

d
 m

o
le

c
u

le
s

 

 

hybrid model

RSA−PDE model

Fig. 5.4. Example 3 (chemisorption to virus surface). Number of polymer molecules which are
bound to the virus surface as a function of time. (Green) solid lines: six realisations computed by
the PBD algorithm (B1)–(B5); (black) dashed line: results of the RSA-PDE model presented in [9].
Parameters as shown in the text.

the grid point nearest to the interface to calculate fluxes across the boundary and
to generate accurate density fluctuations inside the particle region. Reference [31]
extends this approach by the introduction of an overlap region similar to O introduced
in Section 4. An identical flux exchange with particles confined to a grid is presented
in [17]. Chemical reactions in the solution were considered in [9]. This model was
discussed in Section 5.3. It couples Brownian dynamics of molecules in the solution
with a more detailed description of the adsorbing boundary. In [9] a hybrid (RSA-
PDE) model has been developed which replaces BD in the solution by solving the
PDE (5.8) with a suitable stochastic boundary condition. The PBD algorithms are
able to replace the stochastic boundary condition by a (small) BD region close to the
surface. Although the hybrid RSA-PDE model introduced in [9] was sufficient in the
case of (irreversible) adsorption, the situation is becoming more challenging whenever
the binding reaction is reversible [21]. In this case, a molecule which is released by
the surface will initially stay close to the surface and can rebind to the same receptor
(binding site). This geminate recombination can be captured by the PBD approach.
Reversible reactions are common in biological applications [21, 16].

Hybrid approaches for reaction-diffusion processes which couple different mod-
elling approaches have also been introduced in the literature [23, 15, 6, 13]. A
mesoscopic lattice-based description coupled with macroscopic Fisher-Kolmogorov-
Petrovsky-Piscounov PDE was used in [23] to study front propagation in a lattice-
based reaction-diffusion model. A hybrid model for reaction-diffusion systems in
porous media that combines pore-scale models with Darcy-scale models is presented
in [27]. Flegg et al [15] introduced the so-called Two Regime Method which couples
a lattice-based (compartment-based) reaction-diffusion model with BD simulations.
One advantage of the PBD algorithms over the Two Regime Method is that there
are more efficient tools for PDE simulations than for compartment-based reaction-
diffusion models. On the other hand, compartment-based models provide more de-
tails (including fluctuations) and hybrid models which couple BD simulations with
compartment-based models do not require the overlap region [15, 13]. Since it is
possible to couple the macroscopic PDE description with (mesoscopic) compartment-
based models [6] and compartment-based models with (microscopic) BD simulations
[15], then an alternative approach to PBD algorithms would be to use compartment-
based models in the overlap region. That is, the computational domain would be
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divided into three regions where the PDE, compartment-based and BD descriptions
would be used. These three regimes would be coupled using the results from the
literature [6, 15]. Compartment-based models and macroscopic PDEs can also be
coupled through another intermediate regime using a tau-leap method [13]. In this
paper, we showed that PDE models and BD simulations can be coupled without using
intermediate compartment-based models.

The PBD algorithms presented in this paper should be seen as a first step to-
wards a more general setting. Some parts of the algorithm (B1)–(B5) extend easily
(at least theoretically) into higher dimensions, but in practice additionally difficulties
are posed. One example is the necessity to sample from a multidimensional proba-
bility distribution to find the position of newly created molecules. Additionally, in
higher dimensions one can also expect to deal with higher order reactions, including
bimolecular reactions. For a discussion of how to implement bimolecular reactions
for BD simulations, we refer to [10], but the real problem occurs inside the overlap
region O = ΩB ∩ ΩP , where a molecule could react with another molecule, or with
the continuum. Since the reaction-diffusion PDEs are solved numerically using a suit-
able mesh, it is important to study methods for coupling individual molecules with
the numerical discretization of macroscopic PDEs [18]. For the ion channel applica-
tion mentioned before, one also needs to think about how to incorporate electrical
charges and resulting forces into the system. One can imagine that these forces act
as a boundary condition on the continuum model and as an effective force on the
particles.
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