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Abstract

The approach o8l AM J. Matrix Anal. Appl., 26(4):1083-1099 for solving structured total least sgqsgrob-
lems is generalized to weighted structured low-rank appration with missing data. The method proposed is
based on elimination of the correction matrix and solutibthe resulting nonlinear least squares problem by local
optimization methods. The elimination step is a singulegdir least-norm problem, which admits an analytic solu-
tion. Two approaches are proposed for the nonlinear lepstres minimization: minimization subject to equality
constraints and unconstrained minimization with regakicost function. The method is generalized to weighted
low-rank approximation with singular weight matrix andllastrated on matrix completion, system identification,
and data-driven simulation problems. An extended versiahe paper is a literate program, implementing the
method and reproducing the presented results.

Keywords: low-rank approximation, structured total least squarasgable projections, missing data, system iden-
tification.

1 Introduction and notation

The paper describes a solution method for matrix structlowerank approximationi.e., approximation of a given
matrix by another matrix whose elements satisfy certaidgfined relations (matrix structure) and whose rank is less
than or equal to a predefined value. The combination of matmk low-rank structure makes structured low-rank
approximation a tool for data modeling. Low-rank properfyaamatrix is equivalent to existence of an exact low-
complexity linear model for the data. Moreover, the rankhaf matrix is related to the complexity of the model.
The structure, imposed on the approximation, is relatedapegrties of the model. For example, Hankel structure
corresponds to time-invariance of a linear dynamical méafethe data.

Structured low-rank approximation has been studied in itkeature from different viewpoints: numerical al-
gorithm for computing locally optimal or suboptimal sotuis, statistical properties of the resulting estimatonsl, a
applications. The subjectis closely related to the stnecttotal least squares method. The similarities and éiffess
between the low-rank approximation and total least squaaeedigms are well documented in the literature [12, 6, 8]
and will not be repeated here.

A novel feature of the low-rank approximation problem, ddased in this paper, is that elements of the data
matrix can be missing (not specified). Missing data may oircpractical applications due to malfunctioning of mea-
surement device, communication channel, or storing deVitsuch cases, the best strategy is to collect a complete
data record by repeating the data collection experimenathar applications, however, the missing data problem is
intrinsic and can not be avoided by repeated experimentexample of such an application is the prediction of the
user ratings of products (recommendation systems), wheusexs rate some, but rarely all, products and the task
is to predict the missing ratings. Methods for solving unstinred low-rank approximation problems with missing
data have been proposed in the literature [4, 5, 16, 1, 7]elew to the best of the authors knowledge none of
these methods can deal with matrix structure. In this papeigeneralize the method of [13] to structured low-rank
approximation with missing data.



Problem formulation

We denote missing data values by the symii®N (“not anumber”). The considered low-rank approximation prob-
lem is

minimize overp € R™ S (pi- pi)?
{i | pAvan} (SLRA)
subjectto rank.#(p)) <r,
where .
p
SR — R™N defined by . (p) =S+ ZS@, ()
i=
is the matrix structure—an affine function from the struetparameter spad’ to the set of matriceR™<". With ¢

denoting the vector of indices of the given valyes p; # NaN } (in decreasing order) arl; denoting the subvector
of p with indices in&, the approximation criterion can be written as

S (b — B)?=llps — o3
ic¥

Using the kernel representation of the rank constraint

rank(#(p)) <r <= thereisRe R™M"*M such thaR¥(p) = 0 andR has full row rank

the following equivalent problem to (SLRA) is obtained

minimize overp € R™ andRe R(M")xM —psll5
_ P 1Py — P2 (SLRAR)
subjectto R¥(p)=0 and Rhas full row rank
Problem (SLRA) is a double minimization over the parametBrand p
minimize overRe R™M)*M M(R) subjectto Rhas full row rank (SLRAY)
where
M(R) :=min| py — P~||3 subjectto RZ(p)=0. (INNER)
p

The evaluation of the cost functidy, i.e., solving (INNER) for a given value dR, is refered to as thaner mini-
mization problem. This problem is solved analytically in Section 2. The remrag problem of minimizingM overR

is refered to as theuter minimization problem. It is a nonlinear least-squares problem, which, in gepadthits no
analytic solution. General purpose local optimizationtmes are used in Section 4 for its numerical solution. In Sec-
tion 3, the approach is generalized to weighted 2-norm aqpiation criteria with singular weight matrix. Numerical
examples of solving approximation problems with missintadsy the proposed methods are shown in Section 5.
Notation

In the rest of the paper, we use the following notation.

e Ay g isthe submatrix oA with rows in.# and columns in#. The row/column index can be replaces by the
symbol “:”, in which case all rows/columns are selected.

o ./ |9 is the vector of indices op (in decreasing order) that are missing / given.
e AT is the pseudo inverse éfandA* is a matrix which rows form a basis for the left null spacedof
e For given.” andR e R(M)*M we define the matrix
G:=[veqRS)) - vedRS,)] € RIM MM, (G)

where ve¢:) is the column-wise vectorization operator.



2 Analytical solution of the inner minimization problem

In this section, we consider the inner minimization probl@NNER).

Problem 1. Given linear structure”, structure parameter vectpre R™ UNaN, and a kernel parametBre R(M-")xm
find the cost functiotM (R), defined in (INNER), and a value @fthat attains the minimum.

Theorem 2. Under the following assumptions:
1. G, isfull column rank,
2. 1< (m—r)n—nm < np—nm, and
3 G:= G}J,G;g isfull row rank,

Problem 1 has a unique minimum

M(R)=s'(GG')'s,  where s:=(Gpy -G ,VvedRS)), (M)
attained by o
Ps=ps—G (GG")'s and p,=-G',G.yby. )
Proof. Defining
Apy = Py — Py

and using the identity

we have
R7(p)= vedRS) <  [Gy G./] [p‘f - AW] — vedRS).

Therefore, (INNER) is equivalent to

MR, min [apy13 sublectio [Guy ] [_ABA — Gy Py — vedRS)
which is a generalized linear least norm problem. The swmiuidllows from Lemma 3. O
Generalized least norm problem
Lemma 3. Consider the generalized linear least norm problem
f= nxnyn [x||3 subjectto Ax+By=c, (GLN)

withAe R™"™ B e R™M™, and c € R™. Under the following assumptions:
1. Bisfull column rank,
2. 1<m-ny<nyand
3. A:=BlAisfull rowrank,

problem (GLN) has a unique solution

1o e (SoL)
B-c and y=B"(c— Ax).



Proof. Under assumption B has a nontrivial left kernel of dimension— ny. Therefore for the nonsingular matrix

T= [gj] e R™m
B T'B (1
_ _ _ |y
o-[g.]e-[r.q - (5]

Pre-multiplying both sides of the constraint of (GLN) Bywe have the following equivalent constraint
BTAX LY Bfc]
BYAx| ' |0 ~ |B'c|”

y=B"(c-Ax)

The first equation

uniquely determineg, givenx. The second equation
BLAx=B'c (%)

defines a linear constraint faronly. By assumption 2, it is an underdetermined system eglirequations. Therefore,
(GLN) is equivalent to the following standard least normiypeon

f =min X5 subjectto B-Ax=B"c. (GLN’)

By assumption 3 the solution is unique and is given by (SOL). O

Note 4 (About assumptions 1-3Assumption 1 is a necessary condition for uniqueness ofdhgien. Relaxing
assumptions 1 implies that any vector in the affine space

% =B"(c—Ax)+null(B)

is a solution to (GLN). Assumption 2 ensures that the prokkemleast norm problem and has a nontrivial solution.
In the casem = ny, the problem has a trivial solutioh = 0. In the casan—ny > ny, the problem generically has
no solution because the constrair} {s an overdetermined system of equations. Assumption Bdsraquired for
uniqueness of the solution. It can also be relaxed, makimgnunique.

Note 5 (Link to weigted least norm problems with singular weighatrix). Consider the weighted least norm problem

min z'Wz subjectto Dz=c,
z

with singular positive semidefinite weight matiit. Using a change of variables=T ~'z, whereT is an nonsingular
matrix, we obtain the equivalent problem

min Z T'TWTZ subjectto DTz=c.
There exists an nonsingular matifiix such that
TWT = {'”X o}
PartitioningzandD := DT ! conformably as
7= m and D=[A B]

we obtained problem (GLN).



3 Weighted approximation

Problem (SLRA) is generalized in this section to the weidtgieuctured low-rank approximation problem

minimize overpe R"™ (py — Py) 'Wy(py — Pv)

. N (WSLRA)
subjectto rank.(p)) <r,
whereV\ is a positive definite matrix. The change of variables

pég =/ ngg and fj/g, = /\Ngﬁg (p— p/)

reduces Problem (WSLRA) to an equivalent unweighted prol{eLRA). We have
Z(Pp)=S+vec (SP),  where S:=[veqS) -+ vedS,)] € R™ ™. ©
The structure?” of the equivalent problem is defined by the matrifgandS = [veo(Sl) veo(Shp)} , Where
Sy= S«\/Wy!  and S /=S« (S — .

We showed that problem (WSLRA) is solved by:
1. preprocessing the dapeand the structure, as in p— p') and (¥ — %),

2. solving the equivalent unweighted problem with struetparameter vectqy, structure specificatiorv’”’, and
rank specificatiom, and

3. postprocessing the soluti@ obtained in step 2, in order to obtain the solutfan= Wg‘lb”g of the original
problem.

Using the transformationp(— p'), (¥ — .#’) and the solution (M) of (SLRA), we obtain the following eiqil
expression for the cost function of (WSLRA)
M(R) = (Gpy — G- , vedRS)) "W, *G" (Gw;, 'G") 'Gw, *(Gpy — G , vedRS)), (Mw)
whereG = G- ,G. 4 andG is defined in ).
Note 6 (Weighted structured low-rank approximation with a slagaveight matrix) A more general formulation of
problem (WSLRA) is
minimize overpe R™ (p—p)'W(p—p)
subjectto rank.”(p)) <r,

with positive semidefinite weight matri%/. Problem (WSLRA') can be reduced to an equivalent unwedijlte-rank
approximation problem with missing data (SLRA). There ex@&nonsingular matriX, such that

(WSLRA)

T _ | lng
TWT—[ ol

Defining structures”, specified by the matrice® andS = ST, and changing the variablgg =T 1p, o = T~1p,

we obtain an equivalent problem in the form (SLRA) with lagt- rank(\W) values missing.

Note 7 (Solving (SLRA) as weighted unstructured probler@pnsider an instance of problem (SLRA), refer to as
problem P1, with structure = .#1 and an instance of problem (WSLRA), refer to as problem P@y wistructured

correction and weight matrix
W=sS". (7 — W)

It can be verified by inspection that the cost functions (MJ &vl\y) of problems P1 and P2, respectively, coincide.
The weight matrixvV € R™*™ defined in ( — W), however is singular (rarfV) is equal to the number of structure
parameters of problem P1, which is less tinam). In the derivation of the cost function (V) it is assumed thaty

is positive definite, so that minimization of () is not equivalent to problem P2. Using pseudo-inversesatsof
inverse in p — p') and (¢ — ') and observing thaV )" =W, minimization of (My) for problem P2 yields and
equivalent problem to problem P1.



4 Outer minimization problem

The outer minimization problem (SLR\is a nonlinear least-squares problem, which we solve begdépurpose
local optimization methods. In order to apply standardrojatation methods, however, we need first to replace the
rank constraint with equivalent equality or inequality straints.
The full row rank constraint oR is equivalent to and can be enforced in the parameter ogtiaiz method by
the equality constraint
RR" = In_r. (f.rr. R)

Then the outer minimization problem becomes a constraioetinear least squares problems
minimize overRe RM )M M(R) subjectto RR' — Iy, =0, (SLRAY)

which can be solved by general purpose constrained optiimizenethods [14]. Another approach of solving the
outer minimization problem is to reformulate it as a regakdl unconstrained nonlinear least squares problem by
adding the regularization tergj|RR" — Ip,_+||2 to the cost functioni.e.,

minimize overRe RM XM M(R) + y||RR" — I ||2. (SLRAY)

The parametey should be chosen “large enough” in order to enforce the cainst(f.r.r. R). A corollary of the
following theorem shows that= || p||3 is sufficiently large.

Theorem 8. Let M : R(M1)*M _, R, be a homogeneous function, i.e, M(R) = M(TR), for any Rand a nonsingular
mx mmatrix T. The optimal solutions of problem (SLRAY) with y = maxgM(R) coincide with the optimal solutions
of (SLRAR).

Proof. Let Rbe an solution to (SLRA). We will show that
|IRR" —Im (|2 = m—r —rankR). (%)
There exists an orthogonal mattixdiagonalizingRR'. We have

HRRT - |m—rH% = RR'UT - |m—rH|2:

= ||diag(ay, .., 8ankR),0s---,0) — Imr[|[2, ~ wherea; >0
rank(R)

— Zi (@ —1)2+m—r—rankR).
=
Suppose thad; # 1 for some. The matrix

R =diag(1,...,1,1/\/a&,1,...,1)R
has the same kernel and rankRso that by the homogeneity propertyMf M(R) = M(R'). However, we have

IRR" — I [|E > [IRR" — I ||,

so thatR' achieves smaller value of the cost function of (SLfR#hanR. This is a contradiction. Therefore, = 1
for all i. This concludes the proof of).
So far we showed that the cost function of (SLRAs

M(R)+ y(m—r —rankR)). (M”)

Denote byM; the optimal value of (SLRA) (the index in the subscript is the upper bound for the ranki reote that
the optimal value of (SLRA) is equal toM; provided that the solutioR of (SLRAY) is full row rank. Therefore, in
order to prove the theorem it is sufficient to show that the fiosction of (SLRAg) achieves its minimum for a full
rankR, i.e.,

. 1 .
Mf<M_i+yi = y> i—(M;*—M;Li), fori=212....m—r. (%%)

SinceM; > 0, y = maxgM(R) is a sufficient condition fors(x). O
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Note 9 (Initial approximation) Solving the outer minimization problem by either constegiror requilarized lo-
cal minimization requires an initial approximation for tharameteR, i.e., a suboptimal solution of the structured
low-rank approximation problem. Such a solution can be adaetg from a heuristic that ignores the data matrix
structure.” and fills in zeros for the missing values. The resulting wastired low-rank approximation problem can
then be solved analytically in terms of the singular valueodeposition.

Note 10 (Efficient computation and software implementatioBjficient evaluation of the cost function and its deriva-

tives in the special case of mosaic-Hankel matrix structsineresented in a companion paper [17]. The method,
presented in this paper (general linear structure) andftioégeat methods of [17] are implemented in Matlab (using

Optimization Toolbox) and C++, respectively. Descriptimithe software and overview of its applications is given

in [10].

5 Applications

As an illustration of how the developed methods can be usedactice and as a verification of their effectiveness,
we present in this section three sample applications:

e unstructured noisy matrix completion,
e scalar autonomous system identification with missing date,
e data-driven simulation.

Numerical examples comparing the methods developed inaperpwith alternative methods, specifically developed
for these applications, are shown. All simulations are donglatlab and are reproducible in the sense of [2]. An
extended version [11] of this paper is a literate programn@iweb format [15]), implementing the methods in the
paper and generating the presented numerical results. élidessary m-files can be downloaded from

http://eprints.soton. ac. uk/ 340718.

5.1 Unstructured matrix with missing data

In the case of unstructured data matrix, the results olddigghe methods in the paper are compared with the results
of alternative methods

e the alternating projections method of [7] and
e the singular value thresholding method of [3].

The alternating projections method for weighted low-rapkraximation uses an image representaffln where
Pismxr andL isr x n, of themx n rank+ matrix . (p). The algorithm iteratively minimizes the cost function
over P with fixed L from the previous iteration step and o\tewith fixed P to its previously computed values. Both
problems—minimization ovelP and minimization oveL—are weighted linear least-squares problems, so that they
can be solved globally and reliably. The cost function vadumonotonically non-increasing over the iterations of the
alternating projections method. The method is adapted]ito[the case of missing data and is effective in solving
large scale noisy matrix completion problems. A Matlab iempéntation is available fromt t p: // epri nt s.
ecs. soton. ac. uk/ 18296/ .

Singular value thresholding is a method for low-rank matompletion,i.e., a low-rank approximation with
missing and exact values only. Although singular valuedhoiding is initially designed for the exact data case, it
is shown to handle noisy data as well. Therefore, it solvedamk approximation problems with missing data. The
method is based on convex relaxation of the rank constramhidaes not require an initial approximation. A Matlab
implementation is available frommt t p: // svt . cal t ech. edu/

The results of a numerical example with a data matrix withftlewing pattern of missing values

NaN X X NaN X X NaN X X X
X NaN X X NaN X X NaN X X
X X NaN X X NaN X X NaN X



and rank one specification are shown in Tables 1 and 2. Tab#®ws the approximation erroMd; = ||p., —
p.«| achieved by the algorithms upon convergence and Tableswvsstie number of iterations performed by the
algorithms.

# of missing values | 1 2 3 4 5 6 7 8 9
(SLRAR) 0.8859 0.8642 0.8598 0.7900 0.7570 0.7568 0.6659 0.6031022.6
(SLRAY) 0.8859 0.8639 0.8593 0.7900 0.7570 0.7568 0.6658 0.6031022.6

alternating projections 0.8859 0.8639 0.8593 0.7900 0.7570 0.7568 0.6658 0.603102D.6
singular value thresholding 0.8892 0.8668 1.0539 1.0393 1.0467 1.0468 1.0310 0.9890633.8

Table 1: Approximation erroi; x 103 for the compared methods on problems with. 1,9 missing values.

#of missingvalues |1 2 3 4 5 6 7 8 9
(SLRAR) 4 3 4 3 4 4 4 3 10
(SLRAY) 345 3555 6 14
alternating projections 3 3 4 4 4 4 4 4 7

Table 2: Number of iterations for convergence of the congbanethods on the problems in Table 1.

The results show that the proposed methods based on qeadepidlity constraint (SLRA) and regulariza-
tion (SLRAY) achieve the same approximation error as the alternativjggirons method and require similar number
of iterations (starting from the same suboptimal initighagximation, see Note 9). The approximation error achieved
by the singular value thresholding method increases wéhrtbrease of the number of missing values.

5.2 System identification with missing data

Identification of a linear time-invariant system from a ryoigajectory of the system is a mosaic-Hankel structured
low-rank approximation problem [17]. In the simplest cafa scalar autonomous system, the structure is Hankel

pr P2 Pz - Pn

P2 ps - Pn+1
Hinn(P) = | pg .- D | ER™T

LPm  Pmr1 - Pm+n—1

and the identification problem is

minimize oveycR" |[lyg—9l3
subjectto rank. 7z 11 (9)) <Y,

where/ is the system’s lag (assumed known) and

ya = (Ya(1),....ya(T)) €RT

is the given trajectory. As an application of the algorithdeseloped in the paper, we consider autonomous system
identification when samples gf are missing at arbitrary locations.
Figure 1 shows the results of a simulation example with tistesy defined by the difference equation

y(t) = 1.456y(t — 1) — 0.81y(t — 2).

The data is a trajectory of the system perturbed by additiiserwithT = 50 samples. (For details on the simulation
setup, see [11]) The missing values are distributed pexadigli with a period of 3 samples, so that standard system
identification methods are not applicable. In this experitibe default initial approximation results in convergenc
to a poor local minimum and is replaced 8 —1.5 1].
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Figure 1: System identification with periodically missiratal (crosses on thieaxis). Noisy samples (circles), optimal
approximation (dashed blue), and true trajectory (solit}.re

5.3 Data-driven simulation

Data-driven simulation problems [9] are special cases sbimg data low-rank approximation. The to-be-simulated
system is assumed to be linear time-invariant with a knowgeupound of the lag. The system is implicitly specified
by a trajectorywél) = (u((jz),yff)) € (R)™, The to-be-simulated trajectowyé,2> = (usz), éz)) € (RN ™ is specified by
the initial conditionswin; = (wff)(l), . ,w((f) (¢)) and the inpu(uff) (+1),..., uff) (T2)). The data-driven simulation
problem is a mosaic-Hankel structured low-rank approxiomgproblem

minimize overw |jwy — W||5

(L) (2
subject to ranL( [‘%ﬂ”l(u?l ) '%“(uf’z))] ) <20+1,

with missing data being the to-be-simulated respc(lyézé(@r 1),... ,yf) (Tz)).
Consider a simulation example with the second order simglet single-output system, defined by the difference
equation
y(t) = 1.456y(t — 1) — 0.81y(t — 2) + u(t) —u(t —1).

The datawfjl) is a trajectory of the system generated from random inputaaftitive noise. The to-be-simulated
trajectorywéz) is the impulse respongeof the systemi.e., the response under zero initial conditions and pulse input

u;’ =(0,...,0,1,0,...,0 and =(0,...,0,h(0),h(1),...,h(To — £ —1)).
d ( 5 s My Ly Yy ’ )7 yd ( ) 3y ( )a ( )7 ) ( 2 ))
l pulse input l impulse response

Figure 2 shows the true and estimated by the proposed lokagproximation method impulse responses.

6 Conclusions

A variable-projection-like approach for structured loank approximation with missing data was developed. The ap-
proach was furthermore generalized to weighted structioredank approximation with singular weight matrix. Two
optimization strategies were proposed for the nonlineastisquares optimization: optimization subject to quiddra
equality constraints and regularized unconstrained opdition. The problem and solution methods developed have
applications in matrix completion (unstructured problgnsystem identification with missing data, and data-driven
simulation and control (mosaic-Hankel structured proldemrhe performance of the methods was illustrated on
simulation examples from these applications and was caedpaith the performance of problem specific methods.
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Figure 2: Data-driven simulation of impulse response: {rad solid line), optimal approximation (dashed blue).
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