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MULTISCALE TIME AVERAGING, RELOADED

SHMUEL FISHMAN AND AVY SOFFER

Abstract. We develop a rigorously controlled multi-time scale averaging
technique; the averaging is done on a finite time interval, properly chosen,
and then, via iterations and normal form transformations, the time intervals
are scaled to arbitrary order. Here, we consider as an example the problem
of a finite dimensional conservative dynamical system, which is quasiperiodic
and dominated by slow frequencies, leading to small divisor problems in per-
turbative schemes. Our estimates hold for arbitrary long time intervals similar
to the Nekhoroshev type results.

1. Introduction

The aim of this work is to initiate the multiscale time-averaging analysis of
repeated normal form finite time interval averages. That is we study the problem
of general dynamical system type, written in the form

(1.1) i
∂

∂t
~c = βA(t)~c

where β is a small parameter and ~c is restricted to finite dimension. We choose
A(t) to be a hermitian matrix, for each time t, that is we restrict ourselves to
conservative systems , i.e.,

(1.2) ‖~c(t)‖2 =

N∑

i=1

|ci(t)|2 = ‖~c(0)‖2 .

where N is the dimension of space. The models we consider here are directly
related to the problem of solving nonlinear dynamical systems they are modeled by
various types of equations (ODE and PDE) [see an example in section 4]. Standard
perturbation expansion results in three difficulties in general : the secular terms, the
small divisor problem and the entropy problem. The secular terms are divergent
terms . These terms are removed by an almost identity transformation of the
original variables . This approach was introduced by Poincaré, and the transforms
are called normal form transformations.

It was shown in [1, 2, 3] that the transformation group method of Oono [4] can
be applied to ODE’s and results in a similar normal form transformation. In [5, 6] a
new approach was developed to normal form transformations which applies equally
well to PDE’s. It relies on the averaging and it is particularly suitable for the
analysis of the present paper [See proof of theorems 1-2].

The normal form analysis does not solve the small divisor problem ; these are
perturbative terms which are not infinite but with arbitrary small denominators.

The way to deal with those terms is usually based on KAM theory [7], where
one requires the numerators to be exponentially small and by imposing diophantine
conditions on the initial data.This leads to a polynomial lower bound on the small
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divisors . This approach can not be used in general for explicitly given systems and
initial data.

Another approach is the method of Nekhoroshev [see [8] and the references therin]

in this approach one proves estimates to times of order e−
c

βα with β small, and
without much restrictions on the system.

Here we develop a new approach based on partial time averaging repeated on
larger and larger scales, to deal with the small divisor problem, without resorting to
diophantine conditions and to get Nekhoroshev type results. The key observation
is that when the denominator is very small compared with the inverse time scale of
averaging, it can be approximated by zero(!), and then one removes this term by a
normal form transformation just as secular terms.

The entropy problem is encountered when approximating PDE’s. In this case
the number of terms after few iterations is astronomically large[ See [9, 10, 11, 12]].

Our approach extends the time averaging to arbitrary time intervals , in contrast
to standard time averaging analysis as presented in [13, 14].

We construct finite time interval averages of A(t)

(1.3) Ā
(n)
0 =

1

T0

ˆ (n+1)T0

nT0

A(s)ds

as approximation of the dynamics on a finite time interval depending on T0. The
equation is solved for the piecewise constant evolution and we peel off the approx-
imate solution from the exact one and derive an equation for the "leftover".
Then, we introduce a normal form transformation, based on the method of [5, 6];
this is an almost identity transformation of the "leftover". We then show, following
(properly modified) arguments of [5, 6], that the resulting equation for the new
quantity satisfies the same equation as (1.1), but with the replacement

(1.4) β → β3/2

(1.5) A(t) → Ã(t),

with Ã(t) containing only "low frequency" terms. By repeating the above iteration
we get, to any order, an operator Vn(t), which solves the original equation for the
evolution operator to order β3n/2, namely, the almost constant leftover, ~cM satisfies,

(1.6) ~c(t) = V1V2 · · · · · VM−1~cM (t),

with

(1.7) Vn = U1,nU2,nŨ
−1
n ,

where U1,n and U2,n are unitary “peel off” transformations while Ũ−1
n is a nor-

mal form transformation. The normal form transformation is an almost identity
transformation,

(1.8) Ũn = I +O
(
β3n/2

)
.

The ~cM (t) satisfy the equation similar to (1.1)

(1.9) i
∂

∂t
~cM (t) = β3M/2AM (t)~cM (t) .

For ensuring that the new AM are hermitian after each iteration, we need to modify
the normal form structure used in [5, 6], and apply the following :
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Proposition 1. Let, for each t ≥ 0 the vector family ~c(t) ∈ CN satisfy the follow-
ing:

(1.10) ‖~c(t)‖ = 1 for any ~c (0) ∈ C
N

(1.11) ~c(t) = U(t)~c(0),

therefore we have

(1.12) U(t)† = U(t)−1,

with U linear. Furthermore assume

(1.13)

∥∥∥∥
d~c

dt

∥∥∥∥ < ∞.

Then,

(1.14) i
dU(t)

dt
= A(t)U(t),

with

(1.15) A† = A.

Proof. From

(1.16) i
d~c

dt
= i

dU

dt
~c (0) = A(t)~c(t),

and the conjugate equation, we get that for arbitrary c1 and c2 satisfying (1.16),
the following identity
(1.17)

0 = i
d

dt
~c1

∗ ·~c2 = ~c1 ·A(t)~c2−A(t)~c1 ·~c2 = (~c1, A~c2)− (A~c1,~c2) =
(
~c1,
(
A−A†)~c2

)
.

�

Remark 1. The generalization to an infinite dimensional space requires a different
approach.

The method of the present work involves an infinite hierarchy of averaging ap-
proximations resulting in the effective reduction of β via (1.4), allowing the validity
of the approximation over increasingly longer time-scales, T0. This is a substantial
improvement compared to known methods where averaging in one stage is used
as described in [13] (see p.379, App. E 2.2 and p. 390) and [14]. The present
work is an important step in this direction proposed in [13]. Finally, in sec 4, we
demonstrate how the method works for the case of almost periodic matrix A(t):

(1.18) A(t) =

∞∑

j=1

Aje
iωjt + h.c.

with

(1.19) ‖Aj‖ ≤ c 〈j〉−σ
, for some, σ > 1

and the interesting case ωj → 0, as j → ∞. Here h.c stands for hermitian conju-
gate. Notice that no assumptions are made on the ωj, as they approach zero thus
removing the small divisor problem. Here Aj are constant N × N matrices. The
interest in these kind of systems stems from the fact that many dynamical systems
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can be modeled and/or approximated by such equations. A related, but different
example is the nonlinear system derived from the Nonlinear Schrödinger Equation
(NLSE) with a random potential term [10, 15]. It leads naturally to a system with

(1.20) An,m (t) =
∑

i,j

V mjk
n eiωmnjkt + h.c,

where the regime

(1.21) 0 < β ≪ 1,

is of great interest [12]. More generally, Hamiltonian dynamical systems with Hamil-
tonians of the form

(1.22) H = H0 + βH1

can be studied by solving exactly for the dynamics generated by H0 and (1.22) is
reduced to a system similar to (1.1) using the interaction picture.

Another class of examples are slowly changing (in time) interactions H1 =
H1 (βt).

2. Averaging

In this section an averaging of the matrix A (t) will be introduced. This averaging
can be performed successively. Equation (1.1) is replaced to a hierarchical set of
equations where A (t) and ~c (t) are replaced by An and ~cn. The starting point of
the hierarchy is A0 ≡ A and ~c0 ≡ ~c satisfying the basic equation

(2.1) i
∂

∂t
~c = βA(t)~c

where ~c = (c(1)...c(N)) is a vector and A (t) is a matrix. We assume the following:

Assumption 1. A(t) is, for each t, a hermitian N ×N matrix, satisfying,

(2.2) sup
t

‖A(t)‖ < M < ∞.

Under Assumption 1, the solution of (1.1) exists and is bounded uniformly in
the usual vector norm on CN in time, since, due to the hermitian property of A(t),

(2.3) ~c(t) = T e−iβ
´

t

0
A(s)ds~c(0).

Recall that

~c (t) ≡ U (t)~c (0) = ~c (0)+

∞∑

n=1

(−i)
n
ˆ t

0

ˆ t1

0

· · ·
ˆ tn−1

0

A (t1) · · ·A (tn)~c (0)dtn · · · dt1

has a constant norm. T stands for the time ordering (see [16] section 2) . Moreover,
by taking derivatives, we get:

(2.4) sup
t

‖~c′(t)‖ = sup
t

∥∥∥∥
β

i
A(t)~c(t)

∥∥∥∥ ≤ β sup
t

‖A(t)~c(t)‖ ≤ βM

where ′ denote the derivative with respect to t. β is a small positive number
0 < β ≪ 1.
We introduce now averaging over intervals of size T0. Define the average matrix

(2.5) Ā
(n)
0 =

1

T0

ˆ (n+1)T0

nT0

A(s)ds.
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At a latter stage the relation between T0 and β will be defined. The global averaged
matrix is defined by

(2.6) Āg
0(t) = Ā

(n)
0 for nT0 ≤ t < T0(n+ 1).

Now one defines the propagator related to the averaged A,

(2.7) U0(t) = e−iβĀ
(n)
0 (t−nT0) · · · e−iβĀ

(0)
0 T0 for nT0 ≤ t ≤ (n+ 1)T0,

and its inverse

(2.8) U−1
0 (t) = e+iβĀ

(0)
0 T0e+iβĀ

(1)
0 T0 · · · eiβĀ

(n)
0 (t−nT0).

It is easily verified that:

(2.9) U0(t)U
−1
0 (t) = 1 U−1

0 (t)U0(t) = 1.

By direct differentiation one finds:

(2.10) i
∂

∂t
U0(t) = βĀ

(n)
0 U0(t) = βĀg

0(t)U0(t),

while the inverse satisfies

(2.11) i
∂

∂t
U−1
0 (t) = U−1

0

(
−βĀ

(n)
0

)
= −βU−1

0 Āg
0(t).

Therefore, U0 is the propagator of the partially averaged motion generated by Āg
0 (t).

The corresponding solution of the averaged equation is,

(2.12) ~c1 (t) = U−1
0 (t)~c(t),

as we demonstrate in what follows. It satisfies

i
∂

∂t
~c1 =

[
i
∂

∂t
U−1
0 (t)

]
c(t) + U−1

0 (t)

[
i
∂

∂t
~c(t)

]
(2.13)

=
[
−βU−1

0 Āg
0(t)

]
c(t) + U−1

0 [βA(t)~c(t)] ,

where (2.10) and (2.11) were used. Using (2.12) one gets

(2.14) i
∂

∂t
~c1(t) = −βU−1

0 Āg
0(t)U0(t)~c1(t) + βU−1

0 A(t)U0(t)~c1(t).

Hence,

(2.15) i
∂

∂t
~c1(t) = βU−1

0

[
A(t) − Āg

0(t)
]
U0(t)~c1(t).

This equation is analogous to (1.1), if written in the form

(2.16) i
∂

∂t
~c1(t) = βA1(t)~c1(t),

with

(2.17) A1(t) = U−1
0

[
A(t)− Āg

0(t)
]
U0(t).

Performing on (2.16) operations, similar to the ones performed on (2.1), leads to
the next stage of the hierarchy. Before doing that we analyze the meaning of the
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transformation to (2.16). The dynamics generated by A1(t), is the peeling of A(t)
by the average dynamics

(2.18) Āg
0(t) = Ā

(n)
0 (n = [t/T0]) =

1

T0

ˆ (n+1)T0

nT0

A(s)ds,

where

(2.19) n = [t/T0]

is the integer part of t/T0. We turn to estimate the quantity
ˆ t

0

(
A(t′)− Āg

0(t
′)
)
dt′ =

ˆ T0

0

dt′
[
A(t′)− Ā

(0)
0

]
+

ˆ 2T0

T0

dt′
[
A(t′)− Ā

(1)
0

]

+ · · ·+
ˆ t

t−nT0

dt′
[
A(t′)− Ā

(n)
0

]
(2.20)

Due to (2.5) and (2.6),

(2.21)

ˆ (k+1)T0

kT0

dt′
(
A(t′)− Āg

0(t
′)
)
) = 0.

Therefore,
∣∣∣∣
ˆ t

0

dt′
(
A(t′)− Āg

0(t
′)
)∣∣∣∣ ≤ maxt′

∣∣∣A(t′)− Ā
(n)
0 (t′)

∣∣∣ (t− nT0)

≤ max
t′

∣∣∣A(t′)− Ā
(n)
0 (t′)

∣∣∣T0(2.22)

where nT0 ≤ t′ ≤ (n+ 1)T0. This result can be summarized as:

Lemma 1.

(2.23)

∥∥∥∥
ˆ t

0

(
A(t′)− Āg

0(t
′)
)
dt′
∥∥∥∥ ≤ 2|||A|||tT0.

Here |||A|||t = sup0≤t′≤t ‖A(t′)‖. We used the fact that |||Ā(n)
0 (t)|||t ≤ |||A(t)|||t.

In what follows we choose

(2.24) T0 =
1√
β
.

In order to estimate the variation of A1 it is useful to estimate the quantity:

(2.25) I1 =

ˆ t

0

dt′A1(t
′)

or explicitly

(2.26) I1 =

ˆ t

0

U−1
0 (t′)

[
A(t′)− Āg

0(t
′)
]
U0(t

′)dt′

Lemma 2. I1 satisfies :

(2.27) I1 = O

(
1√
β

)
+O

(√
βt
)
.
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Proof. For this purpose we note that integration by parts for matrices Mi is:
ˆ t

0

M1(t
′)M2(t

′)M3(t
′)dt′ = M1(t)

[
ˆ t

0

M2(t
′)dt′

]
M3(t)

−
ˆ t

0

dt′
(

d

dt′
M1(t

′)

)[
ˆ t′

0

M2(s)ds

]
M3(t

′)

−
ˆ t

0

dt′M1(t
′)

[
ˆ t

0

M2(s)ds

] [
dM3(t

′)

dt′

]
(2.28)

Therefore, using (2.26), (2.10) and (2.11),

I1 = U−1
0 (t)

(
ˆ t

0

[
A(t′)− Āg

0(t
′)
]
dt′
)
U0(t)(2.29)

−
ˆ t

0

(
βU−1

0 Āg
0 (t

′)
)
(
ˆ t′

0

[
A(s)− Āg

0(s)
]
ds

)
U0(t

′)dt′

−
ˆ t

0

U−1
0 (t′)

(
ˆ t′

0

[
A(s)− Āg

0(s)
]
d′t

)
(
−iβĀg

0(t
′)
)
U0(t

′)dt′.

Using (2.23) and (2.24) one finds that the first term is of order,

(2.30)
1√
β

while the other two terms are of order,

(2.31) β
1√
β
t =

√
βt.

the result (2.27) follows, using the fact that Āg
0 = O (1). �

We are now ready to state the first main theorem

Theorem 1. (Time Averaging for one step )

Let ~c (t) ∈ CN , N < ∞ satisfy

(2.32) i
∂

∂t
~c (t) = βA (t)~c (t)

where A (t) are hermitian N ×N matrices , for each t and 0 < β ≪ 1.
Assume moreover that

(2.33) sup
t

‖A (t)‖ < M < ∞.

Then, for a partially time averaged unitary flow U0 (t):

(2.34) ~c (t) = U0 (t)~c1 (t)

and c1 (t) satisfies the following estimate on any time interval Ti ≤ t < Tf :

(2.35) sup
Ti≤t<Tf

‖~c1 (t)− ~c1 (Ti)‖ ≤ C
(√

β + β
3
2 |Tf − Ti|+ β

5
2 |Tf − Ti|2

)
.

In particular for |Tf − Ti| < 1
β :

(2.36) sup
Ti≤t<Tf

‖~c1 (t)− ~c1 (Ti)‖ ≤ Cβ
1
2 .
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Proof. From Eq. 2.16 , we have that

(2.37) i [~c1 (Tf )− ~c1 (Ti)] =

ˆ Tf

Ti

i∂t~c1 (t) dt = β

ˆ Tf

Ti

A1 (t)~c1 (t) dt.

Integration by parts gives

(2.38) ~c1 (Tf)− ~c1 (Ti) = ~b1 +~b2,

where

b1 =
β

i

(
ˆ s

Ti

A1 (s
′) ds′

)
~c1 (s)

∣∣∣∣
Tf

s=Ti

And

~b2 = −β

i

ˆ Tf

Ti

(
ˆ s

Ti

A1 (s
′) ds′

)
∂~c1 (s)

∂s
ds.

By our estimates on A1,
(2.39)
∥∥∥~b1
∥∥∥ =

∥∥∥∥∥β
ˆ Tf

Ti

A1 (s
′) ds′~c1 (s)

∥∥∥∥∥ ≤ Cβ ‖~c1 (Tf )‖
∥∥∥∥∥

ˆ Tf

Ti

A1 (s
′) ds′

∥∥∥∥∥ ≤ Cβ

(
1√
β
+
√
β |Tf − Ti|

)
,

by lemma 2. Similarly

∥∥∥~b2
∥∥∥ ≤ Cβ

ˆ Tf

Ti

ds

(
1√
β
+
√
βs

)
β ‖A (s)‖

≤Cβ2 |Tf − Ti|
(

1√
β
+
√
β |Tf − Ti|

)

=Cβ
3
2

(
|Tf − Ti|+ β |Tf − Ti|2

)
.(2.40)

From these bounds the statement of the theorem follows �

Remark 2. As seen from the proof , integration by parts shows that there are two
contributions to ~c1 (t) that are of different type. The first contribution is from the

boundary term and is of order β
1
2 for all times, while the second term is smaller

for times less than 1
β .

Furthermore the first term only depends on ~c1 (Tf ) and not on intermediate
times.

Remark 3. The above observation about the structure of the first term allows one
to redefine ~c1 (t) by absorbing the first term into its definition. This almost identity
transformation of ~c1 (t) is a normal form transformation. It is the way the normal
form method of [5, 6] works : integration by parts , and change of variables to absorb
the boundary term. This approach gives an equivalent normal form transformation
to other methods [7, 1, 2, 3].

We will use this method, adapted to our case to handle the multiple iteration.
The above remark implies:

Theorem 2.

Under conditions of theorem 1 above ,

(2.41) ~c (t) ≡ U0 (t) Ũ
−1c̃1 (t) = U0 (t)~c1 (t)
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where

(2.42) Ũf ≡
(
I + iβ

ˆ t

Ti

A1 (s) ds

)
f (t) .

Then ~c1 satisfies

(2.43) sup
Ti≤t≤Tf

‖c̃1 (t)− c̃1 (Ti)‖ ≤ C
(
|Tf − Ti|+ β |Tf − Ti|2

)
β

3
2 .

Proof.

i
∂

∂t
c̃1 (t) = i

∂

∂t

(
Ũ (t) ~c1 (t)

)
= −βA1 (t) ~c1 (t) + Ũ (t)βA1 (t) ~c1 (t)

=− βA1 (t)~c1 (t) + βA1 (t) ~c1 (t) + iβ2

(
ˆ t

Ti

A1 (s) ds

)
A1 (t)~c1 (t)

=iβ2

(
ˆ t

Ti

A1 (s) ds

)
A1 (t)~c1 (t) = β2

(
ˆ t

Ti

A1 (s) ds

)
A1 (t) Ũ

−1c̃1 (t) .

(2.44)

This equation can be obtained also from (2.38) replacing Tf by t, differentiating

with respect to t and using the definition (2.42). Since Ũ is continuous, the result
(2.43) is found using the definition of c̃1 (t), namely (2.41) . This is detailed in
section 3. �

We turn now to the higher levels of the hierarchy. First, we introduce the global
average of A1 (as we did for A = A0) and the transformation U1 corresponding to
U0. Let us define:

(2.45) Ā
(n)
1 =

1

T0

ˆ (n+1)T0

nT0

A1(t)dt

Where A1(t) is given by (2.17). In analogy with (2.6) we define

(2.46) Āg
1(t) = Ā

(n)
1 for nT0 ≤ t ≤ (n+ 1)T0.

To estimate this quantity we apply the integration by parts (2.28) to (2.17), result-
ing in

Ā
(n)
1 =

1

T0

ˆ (n+1)T0

nT0

U−1
0 (t)

[
A(t)− Āg

0(t)
]
U0(t)dt

=
1

T0

[
U−1
0 (t)

(
ˆ t

0

[
A(t′)− Āg

0(t
′)
]
dt′
)
U0(t)

]
(n+1)T0

t=nT0
(2.47)

− 1

T0

ˆ (n+1)T0

nT0

dt′
(

d

dt′
U−1
0 (t′)

)[
ˆ t′

0

(A(s)− Āg
0(s))ds

]
U0(t

′)

− 1

T0

ˆ (n+1)T0

nT0

U−1
0 (t′)

[
ˆ t′

0

(A(s)− Āg
0(s))ds

]
d

dt
U0(t

′)dt′.

The first term is zero since at time that is an integer multiple of T0,
´ t

0

[
A(t)− Āg

0(t)
]

vanishes (see definition (2.38)). From (2.23) and (2.24) we conclude that

(2.48)

∣∣∣∣
ˆ t

0

A(s)− Āg
0(s)

∣∣∣∣ <
2 ‖A‖√

β
,
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The derivatives dU−1
0 /dt and dU0(t)/dt are of order β due to (2.10) and (2.11),

therefore the second and third terms are of order
√
β. In conclusion,

(2.49)
∣∣Āg

1(t)
∣∣ = O

(√
β
)
.

Define in analogy to (2.7) and (2.8),

(2.50) U1(t) = e−iβĀ
(n)
1 (t−nT0) · · · e−iβĀ

(0)
1 T0

and

(2.51) U−1
1 (t) = eiβĀ

(0)
1 T0 · · · eiβĀ

(n)
1 (t−nT0).

In analogy to (2.10) and (2.11) one finds

(2.52) i
∂

∂t
U1(t) = βĀg

1(t)U1(t)

and

(2.53) i
∂

∂t
U−1
1 (t) = −βU−1

1 (t)Āg
1(t).

In analogy to (2.12) define now

(2.54) ~c2(t) = U−1
1 (t)~c1(t)

and develop an equation analogous to (2.16), namely :

(2.55) i
∂

∂t
~c1(t) = βA1(t)~c1(t).

For this purpose we follow the steps (2.13)-(2.16), and obtain

i
∂

∂t
~c2(t) =

[
i
∂

∂t
U−1
1 (t)

]
~c1(t) + U−1

1 (t)

[
i
∂

∂t
~c1(t)

]
=(2.56)

− βU−1
1 Āg

1(t)U1~c2(t) + βU−1
1 Āg

1(t)U1(t)~c2(t),

reducing to

(2.57) i
∂

∂t
~c2(t) = βU−1

1 (t)
[
A1(t)− Āg

1(t)
]
U1(t)~c2(t).

Define

(2.58) A2(t) = U−1
1

[
A1(t)− Āg

1(t)
]
U1(t),

leading to

(2.59) i
∂

∂t
~c2 = βA2(t)~c2(t).

Equation (2.59) is similar in nature to (2.16) and is the following equation in the
hierarchy. Estimates of A2 can be performed in the same way as the estimates of
A1. The integral

(2.60) I2 =

ˆ t

0

dt′ A2 (t
′)
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can be estimated in the same way as I1 in (2.29), namely,

I2 = U−1
1 (t)

(
ˆ t

0

[
A1(t

′)− Āg
1(t

′)
]
dt′
)
U0(t)(2.61)

−
ˆ t

0

(
βU−1

1 Āg
1 (t

′)
)
(
ˆ t′

0

[
A1(s)− Āg

1(s)
]
ds

)
U1(t

′)dt′

−
ˆ t

0

U−1
1 (t′)

(
ˆ t′

0

[
A1(s)− Āg

1(s)
]
d′t

)
(
−iβĀg

1(t
′)
)
U1(t

′)dt′.

Due to (2.43), (2.49) holds.

(2.62)
∣∣Āg

1

∣∣ = O
(√

β
)
,

By reasoning similar to (2.22)

(2.63)

∣∣∣∣
ˆ t

0

(
A1 (t

′)− Āg
1 (t

′)
)
dt′
∣∣∣∣ = O

(
1√
β

)
,

and

(2.64) I2 = O

(
1√
β

)
+O (βt) .

The difference between I1and I2 results of the fact that Āg
1 is of the order

√
β while

Āg
0 is of order 1.

To estimate the magnitude of Ā
(g)
2 defined (in analogy to (2.38)) as we note that

(2.65) Ā
(g)
2 = Ā

(n)
2 for nT0 ≤ t ≤ (n+ 1)T0,

where

(2.66) Ā
(n)
2 =

1

T0

ˆ (n+1)T0

nT0

A2 (t
′) dt′.

We now repeat the calculation of (2.47), and use (2.62) (2.53) and (2.54) combined
with (2.43) to estimate dU1/dt and dU−1

1 /dt. These derivatives are of order β3/2.
Consequently,

(2.67)
∣∣∣Ā(g)

2

∣∣∣ = O (β) .

We have constructed explicitly the first two stages of the hierarchy:

(2.68) ~c = U0~c1

and

(2.69) ~c1 = U1~c2.

The process can be continued further repeating (2.17) and (2.58), defining

(2.70) An+1(t) = U−1
n (t)

[
An(t)− Āg

n(t)
]
Un(t).

The equations similar to (2.16) and (2.59) are

(2.71) i
∂

∂t
~cn (t) = βAn (t)~cn (t) .

The results of the present section can be summarized in

Proposition 2.
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(1)

i
∂

∂t
~cn = βAn(t)~cn

(2)
~c = U0U1 · · ·Un−1~cn

(3) ∣∣∣∣
ˆ t

0

An(s)− Āg
n(s)ds

∣∣∣∣ ≤
const√

β
,

since |A| is bounded.
(4) ∣∣An(s)− Āg

n(s)
∣∣ = O(1)

leading to
(5)

Āg
n = O

(
βn/2

)

and
(6)

In+1 =

∣∣∣∣
ˆ t

0

U−1
n (s)

[
An(s)− Āg

n(s)
]
Un(s)

∣∣∣∣ ≤ O

(
1√
β

)
+O

(
βn/2t

)
.

Note that :

(1) is a generalization of (2.16) and (2.59).
(2) results of a repeated application of the transformation like (2.68) and (2.69).
(3) is a generalization of (2.23) and (2.63).
(4) is a generalization of (2.21).
(5) is a generalization of (2.43) and (2.67).
(6) is a generalization of (2.27) and (2.64).

Remark 4. From (2.70) we conclude that if the limiting operator exists, it solves
the following self-averaging equation:

(2.72)
1

T0

ˆ T0

0

U−1
∞ (s) [A∞(s)−Q(s)]U∞(s)ds = Q,

where

(2.73) U∞ = lim
n→∞

Un A∞ = lim
n→∞

An Q = lim
n→∞

Āg
n.

3. Normal form transformation

In this section a normal form transformation will be applied to ~c2 (t) resulting
in a new vector ~cU2 (t). This vector satisfies an equation similar to (1.1) but with β
replaced by β3/2.

Theorem 3.

Under the conditions of Theorem 1 on A (t), we have :

(3.1) ~c (t) = U0U1Ũ2
−1

~c U
2 (t)

satisfies

(3.2) i
∂

∂t
cU2 (t) = β

3
2 Ã (t)~c U

2 (t) ,
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where U0 is the evolution operator of the partially averaged dynamics (on time scales

of order 1√
β
), and Ũ2 is a unitary (normal form) almost identity transformation

while Ã (t) satisfies the same conditions as A (t) of Theorem 1.

Proof. We start from (2.57)

(3.3) i
∂

∂t
~c2 = βU−1

1 (t)
[
A1(t)− Āg

1(t)
]
U1(t)~c2(t).

Integrating by parts, we get:

~c2(t)− ~c2(0) = −iβ

ˆ t

0

U−1
1 (t′)

[
A1 − Āg

1(t
′)
]
U1(t

′)~c2(t
′)dt′

= −iβU−1
1 (t)

(
ˆ t

0

[
A1(t

′)− Āg
1(t

′)
]
dt′
)
U1(t)~c2(t)(3.4)

+ iβ

ˆ t

0

dt′
dU−1

1 (t′)

dt′

(
ˆ t′

0

[
A1(s)− Āg

1(s)
]
ds

)
U1(t)~c2(t)

+ iβ

ˆ t

0

dt′U−1
1 (t′)

(
ˆ t′

0

[
A1(s)− Āg

1(s)
]
ds

)
dU1

dt′
(t′)~c2(t

′)

+ iβ

ˆ t

0

dt′U−1
1 (t′)

(
ˆ t′

0

[
A1(s)− Āg

1(s)
]
ds

)
U1(t

′)
d

dt′
~c2(t

′).

Using (2.52), (2.53) and (2.59) one finds

~c2(t)− ~c2(0) + iβU−1
1 (t)

(
ˆ t

0

[
A1(t

′)− Āg
1(t

′)
]
dt′
)
U1(t)~c2(t)(3.5)

= iβ

ˆ t

0

dt′
(
+iβU−1

1 (t)
)
Āg

1(t)

(
ˆ t′

0

[
A1(s)− Āg

1(s)
]
ds

)
U1(t

′)~c2(t
′)

+ iβ

ˆ t

0

dt′U−1
1 (t′)

(
ˆ t′

0

[
A1(s)− Āg

1(s)
]
ds

)
(−iβ)Āg

1(t
′)U1(t

′)~c2(t
′)

+ iβ

ˆ t

0

dt′U−1
1 (t′)

(
ˆ t′

0

[
A1(s)− Āg

1(s)
]
ds

)
U1(t

′)(−iβ)A2(t
′)~c2(t

′)

= −β2

ˆ t

0

dt′U−1
1 (t′)Āg

1(t
′)

ˆ t′

0

[
A1(s)− Āg

1(s)
]
U1(t

′)~c2(t
′)

+ β2

ˆ t

0

dt′U−1
1 (t′)

(
ˆ t′

0

[
A1(s)− Āg

1(s)
]
ds

)
Āg

1(t
′)U1(t

′)~c2(t
′)

+ β2

ˆ t

0

dt′U−1
1 (t′)

(
ˆ t′

0

[
A1(s)− Āg

1(s)
]
ds

)
U1(t

′)A2(t
′)~c2(t

′).

By (2.63) and Proposition 2,

(3.6)

∣∣∣∣
ˆ t

0

(A1(s)− Āg
1(s)ds

∣∣∣∣ < O

(
1√
β

)
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and by 2.43

(3.7) |A2| ∼ O(1) and Āg
1 ∼ O(

√
β),

while Āg
2 = O (β) by (2.67). The first two terms on the RHS of (3.5) are of order

β2 and the last is term of order β3/2. We turn now to perform the normal form
transformation. For this purpose we rewrite (3.5) in the form

(3.8) ~c2(t) + iβU−1
1 (t)

(
ˆ t

0

[
A1(t

′)− Āg
1(t

′)
]
dt′
)
U1 (t)~c2(t)− ~c2 (0) = RHS.

Then we define,

(3.9) ~cU2 ≡ Ũ~c2

where

(3.10) Ũ = 1 + iβU−1
1 (t)

(
ˆ t

0

[
A1(t

′)− Āg
1(t

′)
]
dt′
)
U1(t).

With this definition (3.8) takes the form

(3.11) ~cU2 (t) = Ũ~c2 (t)− ~c2 (0) = RHS,

and differentiation of this equation with respect to time yields,

(3.12) i
∂

∂t
~cU2 = β3/2Ã(t)~cU2

where

Ã(t) = β1/2

[(
−U−1

1 (t)Āg
1(t)

) (ˆ t

0

[
A1(s)− Āg

1(s)
]
ds

)
U1(t)

+ U−1
1 (t)

(
ˆ t

0

[
A1(s)− Āg

1(s)
]
ds

)
Āg

1(t)U1(t)

+ U−1
1 (t)

ˆ t

0

[
A1(s)− Āg

1(s)
]
U1(t)A2(t)

]
Ũ−1(t).(3.13)

By (3.6) and (3.7) and
∥∥∥Ã(t)

∥∥∥ = O (1). From the definition of (3.10), it is clear

that Ũ is also of order O (1). It should be noted, however, that the normal form
transformation above, is not unitary. Therefore, there is more than one way, to
make it a unitary operator, by adding a correction to Ã, of higher order in β. We
do that by redefining Ũ :

Ũ = 1 + iβU−1
1 B(t)U1 → T eiβ

´

t

0
U−1

1 (s)B(s)U1(s)ds

Where B(t) =
´ t

0

[
A1(t

′)− Āg
1(t

′)
]
dt′ is self-adjoint. By choosing a unitary Ũ

to generate the normal form transformation, we ensure that the L2 norm does
not change in time. Therefore, by Proposition 1, the overall flow, generated by a
product of unitary flows, is given in terms of a time dependent self-adjoint generator.

�

Equation (3.12) is similar to (1.1) with the replacement,

~c → ~cU2

A → Ã

β → β3/2.(3.14)
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This reduces β effectively and increases the averaging time T0.

Corollary 1.

We can continue the process and find ~cn (t), such that

(3.15) ~c = V1 · · ·Vn−1~cn.

Using (2.68) and (2.69)

(3.16) ~c = U1U2~c2,

and using (3.9)

~c2 = Ũ−1~cU2 .(3.17)

If one defines,

V1 = U1U2Ũ
−1,(3.18)

then

(3.19) ~c = V1~c
U
2

Repeating these steps results in a process given in (3.12) after an appropriate renum-
bering of the ~cn. The n−th step of this process (1.7), results in the replacement

V1 → Vn(3.20)

U1 → U1,n

U2 → U2,n

Ũ → Ũn.

4. Quasiperiodic System

A crucial difficulty with perturbative schemes, is that these often produce terms
with arbitrarily slow frequencies. Such terms lead, upon integration to small di-
visors. Here, we will treat such a problem, and show, how to get the large time
behavior of the system, to any order, via multi-scale time averaging. Our main
example is the following:

Example 4.1. Let Mj be N ×N matrices with norm bounded by ‖Mj‖ ≤ j−1−δ,
for all j > 0. Assume,

(4.1) A =

∞∑

j=1

(Mje
iωjt + h.c)

where h.c stands for hermitian conjugate. Note that norm convergence of the sum
is assured by our assumption on the norms of Mj . The case of interest is when
ωj → 0 as j → ∞.

To see how such systems arise , consider the problem of solving a system of the
type

i
d~c

dt
= A0~c+ βF (~c)~c , ~c ∈ C

N(4.2)

~c (t = 0) = ~c0(4.3)

where A0 is a time Independent and hermitian matrix with eigenvalues E1, E2.....EN ;
F (~c) is an (N ×N) matrix (depending on ~c ) which we assume is also hermitian
for all ~c.
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Then we try to solve this problem by iterations : solving the first order system
gives

(4.4) ~c0 (t) = e−iA0t ~c0

which is a sum of oscillations with frequencies E1, ...., EN , Iterating once we get
after defining

(4.5) ~c1 (t) = e+iA0t ~c0

that ~c1 (t)satisfies an equation of the form

i
d

dt
~c1 (t) = βeiA0tF (~c) e−iA0t~c1 (t)(4.6)

=βeiA0tF (~c1) e
−iA0t~c1 (t) + .....(4.7)

In general the frequencies of eiA0t combine with the frequencies of ~F (~c1 (t)) and
generate many new frequencies .

For ~F depending polynomially on ~c (t), they are of the general form

(4.8) ωM =
M∑

i=1

niEi, ni integers.

Such sums can add to zero (secular terms ) or add to a very small number .Formally
integrating the equation with such a term leads to expression of the type

(4.9) ∼ eiωM t − 1

ωM

which is the small divisor problem , when ωM is zero or small.
It is clear that in these kind of iterations scheme , each linear approximation is

of the type (4.1).
In order to apply our method to the linear system we have to split A (t) of (4.1)

as

(4.10) A = A> +A<,

and to treat separately the two parts. For this purpose we introduce the following
two Lemmas.

Lemma 3. Let

(4.11) A> =

∞∑

j=j0

(Mje
iωjt + h.c)

with j0 sufficiently large, so that

(4.12) ωjT0 ≪ 1,

with T0 = β−1/2 and β small, and

(4.13) ‖Mj‖T0 ≤
1

j1+δ
, δ > 0,

for all j ≥ j0. Then,

(4.14)

∣∣∣∣
ˆ t

0

(A>(t′)− Ā>g
0 (t′))dt′

∣∣∣∣ ≤ O(1)
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Proof. Start from ,

(4.15) A> =

∞∑

j=j0

Mje
iωjt + h.c,

and choose a term and denote it

(4.16) B(t) = Mje
iωjt

(4.17) B̄
(0)
0 =

1

T0

ˆ T0

0

B(t)dt =
eiωjT0 − 1

iωjT0
Mj

and

B̄
(n)
0 =

Mj

T0

ˆ (n+1)T0

nT0

eiωjtdt = Mj
ei(n+1)T0ωj − einT0ωj

iωjT0

= Mje
inT0ωj

(
eiT0ωj − 1

iωjT0

)
.(4.18)

Define

(4.19) B̄g(t) = B̄
(n)
0

for

(4.20) nT0 ≤ t < (n+ 1)T0.

Then,
ˆ t

0

dt′
[
B(t′)− B̄g

0 (t
′)
]

=

ˆ T0

0

[
B(t′)− B̄

(0)
0 (t′)

]
dt′ + · · ·+

ˆ (j+1)T0

jT0

[
B(t′)− B̄(j)(t′)

]
dt′

+ · · ·+
ˆ t

nT0

[
B(t′)− B̄(n) (t′)

]
dt′ =

ˆ t

nT0

[
B(t′)− B̄g

0 (t
′)
]
dt′

(4.21)

where

(4.22) nT0 ≤ t < (n+ 1)T0.

Since,

(4.23)
1

T0

ˆ (j+1)T0

jT0

B(t′)dt′ = B̄
(j)
0 .

one finds,

(4.24)

ˆ (j+1)T0

jT0

[
B(t′)− B̄g

0 (t
′)
]
dt′ = 0.

Using (4.18) and (4.13) one finds,
ˆ t

0

dt′
[
B(t′)− B̄g

0 (t
′)
]

= Mj
eiωjt − eiωjnT0

iωj
−Mj

(t− nT0) e
inT0ωj

(
eiωjT0 − 1

)

iωjT0

=
Mj

iωj
eiωjnT0

[(
eiωj(t−nT0) − 1

)
− (t− nT0)

(
eiωjT0 − 1

T0

)]
.(4.25)
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For,

(4.26) ωjT0 ≪ 1,

where T0 = β−1/2. Using the fact that |t− nT0| < T0 we get:

(4.27)

∣∣∣∣
ˆ t

0

[
B(t′)− B̄g

0 (t
′)
]
dt′
∣∣∣∣ ≤ ||Mj|| · 2T0.

Assuming (4.13) ,

(4.28) ‖Mj‖T0 ≤ 1

ji+δ
,

and summing the various contributions in the sum for A>, one finds,
∣∣∣∣
ˆ t

0

[
A>(t′)− Ā>g

0 (t′)
]
dt′)

∣∣∣∣ ≤
∞∑

j=j0

2||Mj||T0 ≤ const < ∞(4.29)

or

(4.30)

∣∣∣∣
ˆ t

0

dt′
(
A>(t′)− Ā>g

0 (t′)
)∣∣∣∣ ≤ O(1).

�

Remark 5. Note the difference between (4.30) and (2.63). This is due to the fact
that we can use the special form of A (t), to separate the low frequency terms from
the “order 1” frequency terms.

Lemma 4. Let

(4.31) A< =

j0−1∑

j=1

Mje
iωjt + c.c

and let

(4.32)
‖Mj‖
ωj

≤ const

j1+δ
, 1 ≤ j < j0

and T0 = β−1/2. Then,

(4.33)

∥∥∥∥
1

T0

ˆ t

0

A<(s)ds

∥∥∥∥ ≤ constβ1/2.

Proof.

(4.34) A< =

j0−1∑

j=1

Mje
iωjt,

we note that,

(4.35)

ˆ t

0

eiωjt =
1

iωj

(
eiωjt − 1

)

therefore,

(4.36)

∣∣∣∣
ˆ t

0

eiωjt

∣∣∣∣ ≤
2

ωj
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Therefore, the relevant sum is bounded as,

(4.37)

∣∣∣∣
ˆ t

0

A> (t′) dt′
∣∣∣∣ ≤

j0−1∑

j=1

2 ‖Mj‖
ωj

≤ const.

Therefore,

(4.38)
1

T0

∣∣∣∣
ˆ t

0

A> (t′) dt′
∣∣∣∣ < constβ1/2.

�

Remark 6. The partition (4.10) is always possible since if (4.12) is not satisfied
then ωjT0 larger then some constant that is much smaller than unity. Therefore,
all terms that do not belong to A> belong to A< with the appropriate choice of
the constant. This decomposition depends on the choice of T0.

Theorem 4. The global average Āg
2 defined by (2.67) is bounded by

(4.39)
∣∣Āg

2

∣∣ ≤ O
(
β2
)
.

Proof. First we estimate Āg
1. For this we define

Ā
(0)
1 =

1

T0

ˆ T0

0

U−1
0

[
A− Āg

0

]
U0(4.40)

=
1

T0

[
U−1
0 (t)

(
ˆ t

0

[
A(s)− Āg

1(s)
]
ds

)
U0(t)

]t=T0

t=0

− 1

T0

ˆ T0

0

dU−1
0 (t)

dt

(
ˆ t

0

[
A(s) − Ā

(0)
0

]
dsU0(t)

)
dt

− 1

T0

ˆ T0

0

ˆ

U−1
0

(
ˆ t

0

[
A(s)− Ā

(0)
0

]
ds

)
dU0

dt
dt

From the definition of Ā
(0)
0 (s),

(4.41)

ˆ T0

0

ds
(
A(s)− Ā

(0)
0

)
= 0,

The contribution from the regime where Lemma 3 holds is,

(4.42)

∣∣∣∣
ˆ t

0

ds
[
A(s)− Āg

0(s)
]∣∣∣∣ ≤ O(1)

by (4.30). The contribution from the region where Lemma 4 is relevant, is
(4.43)
j0−1∑

j=0

‖Mj‖
ωj

[
eiωj(t−nT0) − einT0 − (t− nT0)

T0

(
ei(n+1)T0ωj − einT0ωj

)]
≤ 4

j0−1∑

j=0

‖Mj‖
ωj

,

and an equality similar to (4.42) holds. From the general theory (2.10) and (2.11),

(4.44)

∣∣∣∣
dU0

dt

∣∣∣∣ ≤ O(β),

∣∣∣∣
dU−1

0

dt

∣∣∣∣ ≤ O(β)

Therefore, combined with (2.43)

(4.45) |Āg
1| ≤ O(β)
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by (2.58) and (2.66)

Ā
(0)
2 =

1

T0

ˆ T0

0

U ′−1
1 (t′)

[
A1(t

′)− Āg
1(t

′)
]
U1(t

′)dt′

=
1

T0
U−1
1 (t)

(
ˆ T0

0

[
A1(s)− Āg

1

]
ds

)
U1(t)

− 1

T0

ˆ T0

0

dU−1
1

ds

(
ˆ s

0

[
A1(s

′)− Āg
1(s

′)
]
ds′
)
U1(s)ds

− 1

T0

ˆ T0

0

U−1
1

(
ˆ s

0

[
A1(s

′)− Āg
1(s

′)
]
ds′
)

d

ds
U1(s)ds.(4.46)

By (2.63) of the general theory,

(4.47)
1

T0

∣∣∣∣∣

ˆ T0

0

[
A1(s)− Āg

1(s)
]
ds

∣∣∣∣∣ ≤ O (1) .

From the definition of Āg
1 one finds

´ T0

0
(A1 (s)−Ag

1 (s)) ds = 0. Using (4.46)
combined with (2.52) and (2.53) we find

(4.48)

∣∣∣∣
dU1

dt

∣∣∣∣ ≤ O
(
β2
) ∣∣∣∣

dU−1
1

dt

∣∣∣∣ ≤ O
(
β2
)
,

then (4.46) combined with (4.47) and (2.53) leads to the bound,

(4.49)
∣∣∣Ā(0)

2

∣∣∣ ≤ O
(
β2
)
.

The same bound holds for all Ā2
(n)

. But Āg
2 in each interval of length T0 is equal

to one of the Ā
(n)
2 , each satisfying (4.49), therefore it also satisfies (4.49), therefore

(4.50)
∣∣Āg

2

∣∣ ≤ O
(
β2
)
.

�

Remark 7. This bound is better than the one of the general theory (2.67).
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