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ABSTRACT. The purpose of this paper is to provide a complete probabilistic analysis of a large class
of stochastic differential games for which the interaction between the players is of mean-field type.
We implement the Mean-Field Games strategy developed analytically by Lasry and Lions in a purely
probabilistic framework, relying on tailor-made forms of the stochastic maximum principle. While
we assume that the state dynamics are affine in the states and the controls, our assumptions on the
nature of the costs are rather weak, and surprisingly, the dependence of all the coefficients upon the
statistical distribution of the states remains of a rather general nature. Our probabilistic approach calls
for the solution of systems of forward-backward stochastic differential equations of a McKean-Vlasov
type for which no existence result is known, and for which we prove existence and regularity of the
corresponding value function. Finally, we prove that solutions of the mean-field game as formulated by
Lasry and Lions do indeed provide approximate Nash equilibriums for games with a large number of
players, and we quantify the nature of the approximation.

1. INTRODUCTION

In a trailblazing contribution, Lasry and Lions [19, 20, 21] proposed a methodology to produce
approximate Nash equilibriums for stochastic differential games with symmetric interactions and
a large number of players. In their model, the costs to a given player feel the presence and the
behavior of the other players through the empirical distribution of their private states. This type of
interaction was introduced and studied in statistical physics under the name of mean-field interaction,
allowing for the derivation of effective equations in the limit of asymptotically large systems. Using
intuition and mathematical results from propagation of chaos, Lasry and Lions propose to assign to
each player, independently of what other players may do, a distributed closed loop strategy given by
the solution of the limiting problem, arguing that such a resulting game should be in an approximate
Nash equilibrium. This streamlined approach is very attractive as large stochastic differential games
are notoriously nontractable. They formulated the limiting problem as a system of two highly coupled
nonlinear partial differential equations (PDE for short): the first one, of the Hamilton-Jacobi-Bellman
type, takes care of the optimization part, while the second one, of Kolmogorov type, guarantees the
time consistency of the statistical distributions of the private states of the individual players. The
issue of existence and uniqueness of solutions for such a system is a very delicate problem, as the
solution of the former equation should propagate backward in time from a terminal condition while
the solution of the latter should evolve forward in time from an initial condition. More than the
nonlinearities, the conflicting directions of time compound the difficulties.

Date: June 10, 2011.
2000 Mathematics Subject Classification. Primary .
Partially supported by NSF: DMS-0806591.

1

ar
X

iv
:1

21
0.

57
80

v1
  [

m
at

h.
PR

] 
 2

1 
O

ct
 2

01
2
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In a subsequent series of works [9, 11, 10, 17, 18] with PhD students and postdoctoral fellows,
Lasry and Lions considered applications to domains as diverse as the management of exhaustible
resources like oil, house insulation, and the analysis of pedestrian crowds. Motivated by problems in
large communication networks, Caines, Huang and Malhamé introduced, essentially at the same time
[14], a similar strategy which they call the Nash Certainty Equivalence. They also studied practical
applications to large populations behavior [13].

The goal of the present paper is to study the effective Mean-Field Game equations proposed by
Lasry and Lions, from a probabilistic point of view. To this end, we recast the challenge as a fixed
point problem in a space of flows of probability measures, show that these fixed points do exist and
provide approximate Nash equilibriums for large games, and quantify the accuracy of the approxima-
tion.

We tackle the limiting stochastic optimization problems using the probabilistic approach of the
stochastic maximum principle, thus reducing the problems to the solutions of Forward Backward
Stochastic Differential Equations (FBSDEs for short). The search for a fixed flow of probability
measures turns the system of forward-backward stochastic differential equations into equations of
the McKean-Vlasov type where the distribution of the solution appears in the coefficients. In this
way, both the optimization and interaction components of the problem are captured by a single FB-
SDE, avoiding the twofold reference to Hamilton-Jacobi-Bellman equations on the one hand, and
Kolmogorov equations on the other hand. As a by-product of this approach, the stochastic dynamics
of the states could be degenerate. We give a general overview of this strategy in Section 2 below.
Motivated in part by the works of Lasry, Lions and collaborators, Backward Stochastic Differential
Equations (BSDEs) of the mean field type have recently been studied. See for example [3, 4]. How-
ever, existence and uniqueness results for BSDEs are much easier to come by than for FBSDEs, and
here, we have to develop existence results from scratch.

Our first existence result is proven for bounded coefficients by means of a fixed point argument
based on Schauder’s theorem pretty much in the same spirit as Cardaliaguet’s notes [5]. Unfor-
tunately, such a result does not apply to some of the linear-quadratic (LQ) games already studied
[15, 1, 2, 7], and some of the most technical proofs of the papers are devoted to the extension of this
existence result to coefficients with linear growth. See Section 3. Our approximation and conver-
gence arguments are based on probabilistic a priori estimates obtained from tailor-made versions of
the stochastic maximum principle which we derive in Section 2. The reader is referred to the book
of Ma and Yong [22] for background material on adjoint equations, FBSDEs and the stochastic max-
imum principle approach to stochastic optimization problems. As we rely on this approach, we find
it natural to derive the compactness properties needed in our proofs from convexity properties of the
coefficients of the game. The reader is also referred to the papers by Hu and Peng [12] and Peng
and Wu [23] for general solvability properties of standard FBSDEs within the same framework of
stochastic optimization.

The thrust of our analysis is not limited to existence of a solution to a rather general class of
McKean-Vlasov FBSDEs, but also to the extension to this non-Markovian set-up of the construction
of the FBSDE value function expressing the solution of the backward equation in terms of the solution
of the forward dynamics. The existence of this value function is crucial for the formulation and the
proofs of the results of the last part of the paper. In Section 4, we indeed prove that the solutions
of the fixed point FBSDE (which include a function α̂ minimizing the Hamiltonian of the system,
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three stochastic processes (Xt, Yt, Zt)0≤t≤T solving the FBSDE, and the FBSDE value function u)
provide a set of distributed strategies which, when used by the players of a N -player game, form an
εN -approximate Nash equilibrium, and we quantify the speed at which εN tends to 0 whenN → +∞.
This type of argument has been used for simpler models in [2] or [5]. Here, we use convergence
estimates which are part of the standard theory of propagation of chaos (see for example [26, 16]) and
the Lipschitz continuity and linear growth the FBSDE value function u which we prove earlier in the
paper.

2. GENERAL NOTATION AND ASSUMPTIONS

Here, we introduce the notation and the basic tools from stochastic analysis which we use through-
out the paper.

2.1. The N Player Game. We consider a stochastic differential game with N players, each player
i ∈ {1, · · · , N} controlling his own private state U it ∈ Rd at time t ∈ [0, T ] by taking an action βit in
a set A ⊂ Rk. We assume that the dynamics of the private states of the individual players are given
by Itô’s stochastic differential equations of the form

(1) dU it = bi(t, U it , ν̄
N
t , β

i
t)dt+ σi(t, U it , ν̄

N
t , β

i
t)dW

i
t , 0 ≤ t ≤ T, i = 1, · · · , N,

where the W i = (W i
t )0≤t≤T are m-dimensional independent Wiener processes, (bi, σi) : [0, T ] ×

Rd×P(Rd)×A ↪→ Rd×Rd×m are deterministic measurable functions satisfying a set of assumptions
spelled out below, and ν̄Nt denotes the empirical distribution of Ut = (U1

t , · · · , UNt ) defined as

ν̄Nt (dx′) =
1

N

N∑
i=1

δU it (dx
′).

Here and in the following, we use the notation δx for the Dirac measure (unit point mass) at x, and
P(E) for the space of probability measures on E whenever E is a topological space equipped with
its Borel σ-field. In this framework, P(E) itself is endowed with the Borel σ-field generated by the
topology of weak convergence of measures.

Each player chooses a strategy in the space A = H2,k of progressively measurable A-valued
stochastic processes β = (βt)0≤t≤T satisfying the admissibility condition:

(2) E
[∫ T

0
|βt|2dt

]
< +∞.

The choice of a strategy is driven by the desire to minimize an expected cost over the period [0, T ],
each individual cost being a combination of running and terminal costs. For each i ∈ {1, · · · , N},
the running cost to player i is given by a measurable function f i : [0, T ] × Rd × P(Rd) × A ↪→ R
and the terminal cost by a measurable function gi : Rd × P(Rd) ↪→ R in such a way that if the N
players use the strategy β = (β1, · · · , βN ) ∈ AN , the expected total cost to player i is

(3) J i(β) = E
[
gi(U iT , ν̄

N
T ) +

∫ T

0
f i
(
t, U it , ν̄

N
t , β

i
t

)
dt

]
.

Here AN denotes the product ofN copies of A. Later in the paper, we letN →∞ and use the notation
JN,i in order to emphasize the dependence upon N . Notice that even though only βit appears in the
formula giving the cost to player i, this cost depends upon the strategies used by the other players
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indirectly, as these strategies affect not only the private state U it , but also the empirical distribution
ν̄Nt of all the private states. As explained in the introduction, our model requires that the behaviors
of the players be statistically identical, imposing that the coefficients bi, σi, f i and gi do not depend
upon i. We denote them by b, σ, f and g.

In solving the game, we are interested in the notion of optimality given by the concept of Nash
equilibrium. Recall that a set of admissible strategies α∗ = (α∗1, · · · , α∗N ) ∈ AN is said to be a
Nash equilibrium for the game if

∀i ∈ {1, · · · , N}, ∀αi ∈ A, J i(α∗) ≤ J i(α∗−i, αi).
where we use the standard notation (α∗−i, αi) for the set of strategies (α∗1, · · · , α∗N ) where α∗i has
been replaced by αi.

2.2. The Mean-Field Problem. In the case of large symmetric games, some form of averaging is
expected when the number of players tends to infinity. The Mean-Field Game (MFG) philosophy
of Lasry and Lions is to search for approximate Nash equilibriums through the solution of effective
equations appearing in the limiting regime N → ∞, and assigning to each player the strategy α
provided by the solution of the effective system of equations they derive. In the present context, the
implementation of this idea involves the solution of the following fixed point problem which we break
down in three steps for pedagogical reasons:

(i) Fix a deterministic function [0, T ] 3 t ↪→ µt ∈ P(Rd);
(ii) Solve the standard stochastic control problem

inf
α∈A

E
[∫ T

0
f(t,Xt, µt, αt)dt+ g(XT , µT )

]
subject to dXt = b(t,Xt, µt, αt)dt+ σ(t,Xt, µt, αt)dWt; X0 = x0.

(4)

(iii) Determine the function [0, T ] 3 t ↪→ µt ∈ P(Rd) so that ∀t ∈ [0, T ], PXt = µt.

Once these three steps have been taken successfully, if the fixed-point optimal control α identified in
step (ii) is in feedback form, i.e. of the form αt = α̂(t,Xt,PXt) for some function α̂ on [0, T ] ×
Rd × P(Rd), denoting by µ̂t = PXt the fixed-point marginal distributions, the prescription α̂i∗t =
α̂(t,Xi

t , µ̂t), if used by the players i = 1, · · · , N of a large game, should form an approximate Nash
equilibrium. We prove this fact rigorously in Section 4 below, and we quantify the accuracy of the
approximation.

2.3. The Hamiltonian. For the sake of simplicity, we assume that A = Rk, and in order to lighten
the notation and to avoid many technicalities, that the volatility is an uncontrolled constant matrix
σ ∈ Rd×m. The fact that the volatility is uncontrolled allows us to use the simplified version for the
Hamiltonian:

(5) H(t, x, µ, y, α) = 〈b(t, x, µ, α), y〉+ f(t, x, µ, α),

for t ∈ [0, T ], x, y ∈ Rd, α ∈ Rk, and µ ∈ P(Rd). Our first task will be to minimize the Hamil-
tonian with respect to the control parameter, and understand how minimizers depend upon the other
variables. We shall use the following standing assumptions.
(A.1) The drift b is an affine function of α in the sense that it is of the form

(6) b(t, x, µ, α) = b1(t, x, µ) + b2(t)α,
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where the mapping [0, T ] 3 t ↪→ b2(t) ∈ Rd×k is measurable and bounded, and the mapping [0, T ] 3
(t, x, µ) ↪→ b1(t, x, µ) ∈ Rd is measurable and bounded on bounded subsets of [0, T ]×Rd×P2(Rd).

Here and in the following, whenever E is a separable Banach space and p is an integer greater
than 1, Pp(E) stands for the subspace of P(E) of probability measures of order p, i.e. having a finite
moment of order p so that µ ∈ Pp(E) if µ ∈ P(E) and

(7) Mp,E(µ) =

(∫
E
‖x‖pEdµ(x)

)1/p

< +∞.

We writeMp forMp,Rd . Below, bounded subsets of Pp(E) are defined as sets of probability measures
with uniformly bounded moments of order p.
(A.2) There exist two positive constants λ and cL such that for any t ∈ [0, T ] and µ ∈ P2(Rd), the
function Rd × Rk 3 (x, α) ↪→ f(t, x, µ, α) ∈ R is once continuously differentiable with Lipschitz-
continuous derivatives (so that f(t, ·, µ, ·) is C1,1), the Lipschitz constant in x and α being bounded
by cL (so that it is uniform in t and µ). Moreover, it satisfies the convexity assumption

(8) f(t, x′, µ, α′)− f(t, x, µ, α)− 〈(x′ − x, α′ − α), ∂(x,α)f(t, x, µ, α)〉 ≥ λ|α′ − α|2.

The notation ∂(x,α)f stands for the gradient in the joint variables (x, α). Finally, f , ∂xf and ∂αf are
locally bouded over [0, T ]× Rd × P2(Rd)× Rk.

The minimization of the Hamiltonian is taken care of by the following result.

Lemma 1. If we assume that assumptions (A.1–2) are in force, then, for all (t, x, µ, y) ∈ [0, T ]×Rd×
P2(Rd)×Rk, there exists a unique minimizer α̂(t, x, µ, y) ofH . Moreover, the function [0, T ]×Rd×
P2(Rd)×Rd 3 (t, x, µ, y) ↪→ α̂(t, x, µ, y) is measurable, locally bounded and Lipschitz-continuous
with respect to (x, y), uniformly in (t, µ) ∈ [0, T ] × P2(Rd), the Lipschitz constant depending only
upon λ, the supremum norm of b2 and the Lipschitz constant of ∂αf in x.

Proof. For any given (t, x, µ, y), the function Rk 3 α ↪→ H(t, x, µ, y, α) is once continuously dif-
ferentiable and strictly convex so that α̂(t, x, µ, y) appears as the unique solution of the equation
∂αH(t, x, µ, y, α̂(t, x, µ, y)) = 0. By strict convexity, measurability of the minimizer α̂(t, x, µ, y)
is a consequence of the gradient descent algorithm. Local boundedness of α̂(t, x, µ, y) also follows
from strict convexity since by (8),

H(t, x, µ, y, 0) ≥ H(t, x, µ, y, α̂(t, x, µ, y)
)

≥ H(t, x, µ, y, 0) + 〈α̂(t, x, µ, y), ∂αH(t, x, µ, y, 0)〉+ λ
∣∣α̂(t, x, µ, y)

∣∣2,
so that

(9)
∣∣α̂(t, x, µ, y)

∣∣ ≤ λ−1
(
|∂αf(t, x, µ, 0)|+ |b2(t)| |y|

)
.

Inequality (9) will be used repeatedly. Moreover, by the implicit function theorem, α̂ is Lipschitz-
continuous with respect to (x, y), the Lipschitz-constant being controlled by the uniform bound on b2
and by the Lipschitz-constant of ∂(x,α)f . �
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2.4. Stochastic Maximum Principle. Going back to the program (i)–(iii) outlined in Subsection 2.2,
the first two steps therein consist in solving a standard minimization problem when the distributions
(µt)0≤t≤T are frozen, and one could express the value function of the optimization problem (4) as
the solution of the corresponding Hamilton-Jacobi-Bellman (HJB for short) equation. This is the
keystone of the analytic approach to the MFG theory, the matching problem (iii) being resolved by
coupling the HJB equation with a Kolmogorov equation intended to identify the (µt)0≤t≤T with the
marginal distributions of the optimal state of the problem.

Instead, the strategy we have in mind relies on a probabilistic description of the optimal states of
the optimization problem (4) as provided by the so-called stochastic maximum principle. Indeed,
the latter provides a necessary condition for the optimal states of the problem (4): under suitable
conditions, the optimally controlled diffusion processes satisfy the forward dynamics in a character-
istic FBSDE, referred to as the adjoint system of the stochastic optimization problem. Moreover, the
stochastic maximum principle provides a sufficient condition since, under additional convexity con-
ditions, the forward dynamics of any solution to the adjoint system are optimal. In what follows, we
use the sufficiency condition for proving the existence of solutions to the limit problem (i)–(iii) stated
in Subsection 2.2. In addition to (A.1–2) we will also assume:
(A.3) The function [0, T ] 3 t ↪→ b1(t, x, µ) is affine in x, i.e. it has the form [0, T ] 3 t ↪→ b0(t, µ) +
b1(t)x, where b0 and b1 are Rd and Rd×d valued respectively, and are bounded on bounded subsets of
their respective domains. In particular, b reads

(10) b(t, x, µ, α) = b0(t, µ) + b1(t)x+ b2(t)α.

(A.4) The function Rd × P2(Rd) 3 (x, µ) ↪→ g(x, µ) is locally bounded. Moreover, for any µ ∈
P2(Rd), the function Rd 3 x ↪→ g(x, µ) is once continuously differentiable and convex and has a
cL-Lipschitz-continuous first order derivative.

In order to make the paper self-contained, we state and briefly prove the form of the sufficiency
part of the stochastic maximum principle as it applies to (ii) when the flow of measures (µt)0≤t≤T
are frozen. Instead of the standard version given for example in Chapter IV of the textbook by Yong
and Zhou [27], we shall use:

Theorem 1. Under assumptions (A.1–4), if the mapping [0, T ] 3 t ↪→ µt ∈ P2(Rd) is measurable
and bounded, and the cost functional J is defined by

(11) J
(
β;µ

)
= E

[
g(UT , µT ) +

∫ T

0
f(t, Ut, µt, βt)dt

]
,

for any progressively measurable process β = (βt)0≤t≤T satisfying the admissibility condition (2)
where U = (Ut)0≤t≤T is the corresponding controlled diffusion process

Ut = x0 +

∫ t

0
b(s, Us, µs, βs)ds+ σWt, t ∈ [0, T ],

for x0 ∈ Rd, and if the forward-backward system

dXt = b
(
t,Xt, µt, α̂(t,Xt, µt, Yt)

)
dt+ σdWt, X0 = x0

dYt = −∂xH(t,Xt, µt, Yt, α̂(t,Xt, µt, Yt)
)

+ ZtdWt, YT = ∂xg(XT , µT )
(12)
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has a solution (Xt, Yt, Zt)0≤t≤T such that

(13) E
[

sup
0≤t≤T

(
|Xt|2 + |Yt|2

)
+

∫ T

0
|Zt|2dt

]
< +∞,

if we set α̂t = α̂(t,Xt, µt, Yt), then for any β = (βt)0≤t≤T satisfying (2), it holds

J
(
α̂;µ

)
+ λE

∫ T

0
|βt − α̂t|2dt ≤ J

(
β;µ

)
.

Proof. By Lemma 1, α̂ = (α̂t)0≤t≤T satisfies (2), and the standard proof of the stochastic maximum
principle, see for example Theorem 6.4.6 in Pham [24] gives

J
(
β;µ

)
≥ J

(
α̂;µ

)
+ E

∫ T

0

[
H(t, Ut, µt, Yt, βt)−H(t,Xt, µt, Yt, α̂t)

− 〈Ut −Xt, ∂xH(t,Xt, µt, Yt, α̂t)〉 − 〈βt − α̂t, ∂αH(t,Xt, µt, Yt, α̂t)〉
]
dt.

By linearity of b and assumption (A.2) on b, the Hessian of H satisfies (8), so that the required
convexity assumption is satisfied. The result easily follows. �

Remark 1. As the proof shows, the result of Theorem 1 above still holds if the control β = (βt)0≤t≤T
is merely adapted to a larger filtration as long as the Wiener process W = (Wt)0≤t≤T remains a
Brownian motion for this filtration.

Remark 2. Theorem 1 has interesting consequences. First, it says that the optimal control, if it exists,
must be unique. Second, it also implies that, given two solutions (X,Y, Z) and (X ′, Y ′, Z ′) to (12),
dP⊗ dt a.e. it holds

α̂(t,Xt, µt, Yt) = α̂(t,X ′t, µt, Y
′
t ),

so that X and X ′ coincide by the Lipschitz property of the coefficients of the forward equation. As a
consequence, (Y,Z) and (Y ′, Z ′) coincide as well.

It should be noticed that in some sense, the bound provided by Theorem 1 is sharp within the realm
of convex models as shown for example by the following slight variation on the same theme. We shall
use this form repeatedly in the proof of our main result.

Proposition 1. Under the same assumptions and notation as in Theorem 1 above, if we consider in
addition another measurable and bounded mapping [0, T ] 3 t ↪→ µ′t ∈ P2(Rd) and the controlled
diffusion process U ′ = (U ′t)0≤t≤T defined by

U ′t = x′0 +

∫ t

0
b(s, U ′s, µ

′
s, βs)ds+ σWt, t ∈ [0, T ],

for an initial condition x′0 ∈ Rd possibly different from x0, then,

J
(
α̂;µ

)
+ 〈x′0 − x0, Y0〉+ λE

∫ T

0
|βt − α̂t|2dt

≤ J
([
β, µ′

]
;µ
)

+ E
[∫ T

0
〈b0(t, µ′t)− b0(t, µt), Yt〉dt

]
,

(14)
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where

(15) J
([
β, µ′

]
;µ
)

= E
[
g(U ′T , µT ) +

∫ T

0
f(t, U ′t , µt, βt)dt

]
.

The parameter [β, µ′] in the cost J([β, µ′];µ) indicates that the flow of measures in the drift of U ′

is (µ′t)0≤t≤T whereas the flow of measures in the cost functions is (µt)0≤t≤T . In fact, we should
also indicate that the initial condition x′0 might be different from x0, but we prefer not to do so since
there is no risk of confusion in the sequel. Also, when x′0 = x0 and µ′t = µt for any t ∈ [0, T ],
J([β, µ′];µ) = J(β;µ).

Proof. The idea is to go back to the original proof of the stochastic maximum principle and using
Itô’s formula, expand(

〈U ′t −Xt, Yt〉+

∫ t

0

[
f(s, U ′s, µs, βs)− f(s,Xs, µs, α̂s)

]
ds

)
0≤t≤T

.

Since the initial conditions x0 and x′0 are possibly different, we get the additional term 〈x′0−x0, Y0〉 in
the left hand side of (14). Similarly, since the drift of U ′ is driven by (µ′t)0≤t≤T , we get the additional
difference of the drifts in order to account for the fact that the drifts are driven by the different flows
of probability measures. �

3. THE MEAN-FIELD FBSDE

In order to solve the standard stochastic control problem (4) using the Pontryagin maximum prin-
ciple, we minimize the HamiltonianH with respect to the control variable α, and inject the minimizer
α̂ into the forward equation of the state as well as the adjoint backward equation. Since the minimizer
α̂ depends upon both the forward state Xt and the adjoint process Yt, this creates a strong coupling
between the forward and backward equations leading to the FBSDE (12). The MFG matching condi-
tion (iii) of Subsection 2.2 then reads: seek a family of probability distributions (µt)0≤t≤T of order
2 such that the process X solving the forward equation of (12) admits (µt)0≤t≤T as flow of marginal
distributions.

In a nutshell, the probabilistic approach to the solution of the mean-field game problem results in
the solution of a FBSDE of the McKean-Vlasov type

dXt = b
(
t,Xt,PXt , α̂(t,Xt,PXt , Yt)

)
dt+ σdWt,

dYt = −∂xH
(
t,Xt,PXt , Yt, α̂(t,Xt,PXt , Yt)

)
dt+ ZtdWt,

(16)

with the initial condition X0 = x0 ∈ Rd, and terminal condition YT = ∂xg(XT ,PXT ). To the best of
our knowledge, this type of FBSDE has not been considered in the existing literature. However, our
experience with the classical theory of FBSDEs tells us that existence and uniqueness are expected
to hold in short time when the coefficients driving (16) are Lipschitz-continuous in the variables x,
α and µ from standard contraction arguments. This strategy can also be followed in the McKean-
Vlasov setting, taking advantage of the Lipschitz regularity of the coefficients upon the parameter
µ for the 2–Wasserstein distance, exactly as in the theory of McKean-Vlasov (forward) SDEs. See
Sznitman [26]. However, the short time restriction is not really satisfactory for many reasons, and in
particular for practical applications. Throughout the paper, all the regularity properties with respect to



PROBABILISTIC ANALYSIS OF MEAN-FIELD GAMES 9

µ are understood in the sense of the 2–Wasserstein’s distance W2. Whenever E is a separable Banach
space, for any p ≥ 1, µ, µ′ ∈ Pp(E), the distance Wp(µ, µ

′) is defined by:

Wp(µ, µ
′)

= inf

{[∫
E×E

|x− y|pE π(dx, dy)

]1/p

; π ∈ Pp(E × E) with marginals µ and µ′
}
.

Below, we develop an alternative approach and prove existence of a solution over arbitrarily pre-
scribed time duration T . The crux of the proof is to take advantage of the convexity of the coeffi-
cients. Indeed, in optimization theory, convexity often leads to compactness. Our objective is then
to take advantage of this compactness in order to solve the matching problem (iii) in (4) by applying
Schauder’s fixed point theorem in an appropriate space of finite measures on C([0, T ];Rd).

For the sake of convenience, we restate the general FBSDE (16) of McKean-Vlasov type in the
special set-up of the present paper. It reads:

dXt =
[
b0(t,PXt) + b1(t)Xt + b2(t)α̂(t,Xt,PXt , Yt)

]
dt+ σdWt,

dYt = −
[
b†1(t)Yt + ∂xf

(
t,Xt,PXt , α̂(t,Xt,PXt , Yt)

)]
dt+ ZtdWt,

(17)

where a† denotes the transpose of the matrix a.

3.1. Standing Assumptions and Main Result. In addition to (A.1–4), we shall rely on the following
assumptions.
(A.5) The functions [0, T ] 3 t ↪→ f(t, 0, δ0, 0), [0, T ] 3 t ↪→ ∂xf(t, 0, δ0, 0) and [0, T ] 3 t ↪→
∂αf(t, 0, δ0, 0) are bounded by cL, and, for all t ∈ [0, T ], x, x′ ∈ Rd, α, α′ ∈ Rk and µ, µ′ ∈ P2(Rd),
it holds:∣∣(f, g)(t, x′, µ′, α′)− (f, g)(t, x, µ, α)

∣∣
≤ cL

[
1 + |(x′, α′)|+ |(x, α)|+M2(µ) +M2(µ′)

][
|(x′, α′)− (x, α)|+W2(µ′, µ)

]
.

Moreover, b0, b1 and b2 in (10) are bounded by cL and b0 satisfies for any µ, µ′ ∈ P2(Rd): |b0(t, µ′)−
b0(t, µ)| ≤ cLW2(µ, µ′).
(A.6) For all t ∈ [0, T ], x ∈ Rd and µ ∈ P2(Rd), |∂αf(t, x, µ, 0)| ≤ cL.
(A.7) For all (t, x) ∈ [0, T ]×Rd, 〈x, ∂xf(t, 0, δx, 0)〉 ≥ −cL(1+|x|), 〈x, ∂xg(0, δx)〉 ≥ −cL(1+|x|).

Theorem 2. Under (A.1–7), the forward-backward system (16) has a solution. Moreover, for any
solution (Xt, Yt, Zt)0≤t≤T to (16), there exists a function u : [0, T ] × Rd ↪→ Rd (referred to as the
FBSDE value function), satisfying the growth and Lipschitz properties

(18) ∀t ∈ [0, T ], ∀x, x′ ∈ Rd,
{
|u(t, x| ≤ c(1 + |x|),
|u(t, x)− u(t, x′)| ≤ c|x− x′|,

for some constant c ≥ 0, and such that, P-a.s., for all t ∈ [0, T ], Yt = u(t,Xt). In particular, for any
` ≥ 1, E[sup0≤t≤T |Xt|`] < +∞.

(A.5) provides Lipschitz continuity while condition (A.6) controls the smoothness of the running
cost f with respect to α uniformly in the other variables. The most unusual assumption is certainly
condition (A.7). We refer to it as a weak mean-reverting condition as it looks like a standard mean-
reverting condition for recurrent diffusion processes. Moreover, as shown by the proof of Theorem 2,
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Its role is to control the expectation of the forward equation in (16) and to establish an a priori bound
for it. This is of crucial importance in order to make the compactness strategy effective. We use the
terminology weak as it is not expected to converge with time.

Remark 3. An interesting example which we should keep in mind is the so-called linear-quadratic
model in which b0, f and g have the form:

b0(t, µ) = b0(t)µ, g(x, µ) =
1

2

∣∣qx+ q̄µ
∣∣2, f(t, x, µ, α) =

1

2

∣∣m(t)x+ m̄(t)µ
∣∣2 +

1

2
|n(t)α|2,

where q, q̄, m(t) and m̄(t) are elements of Rd×d, n(t) is an element of Rk×k and µ stands for the
mean of µ. In this framework, (A.7) says that q̄†q ≥ 0 and m̄(t)†m(t) ≥ 0 in the sense of quadratic
forms. In the one-dimensional case d = 1, (A.7) says that qq̄ and m(t)m̄(t) must be non-negative.
As shown in [7], this condition is not optimal for existence, as the conditions q(q + q̄) ≥ 0 and
m(t)(m(t) + m̄(t)) ≥ 0 are sufficient to guarantee the solvability of (16). Obviously, the gap
between these conditions is the price to pay for treating general systems within a single framework.

3.2. Rigorous Definition of the Matching Problem. The proof of Theorem 2 is split into four main
steps. The first one consists in making the statement of the matching problem (iii) in (4) rigorous. To
this end, we need the following

Lemma 2. Given µ ∈ P2(C([0, T ];Rd)) with marginal distributions (µt)0≤t≤T , the FBSDE (12) is
uniquely solvable. If we denote its solution by (Xx0;µ

t , Y x0;µ
t , Zx0;µ

t )0≤t≤T , then there exist a constant
c > 0, only depending upon the parameters of (A.1–7), and a locally bounded measurable function
uµ : [0, T ]× Rd ↪→ Rd such that

∀x, x′ ∈ Rd, |uµ(t, x′)− uµ(t, x)| ≤ c|x′ − x|,
and P-a.s., for all t ∈ [0, T ], Y x0;µ

t = uµ(t,Xx0;µ
t ).

Proof. We know that ∂xH reads ∂xH(t, x, µ, y, α) = b†1(t)y + ∂xf(t, x, µ, α), so that, by Lemma
1, the driver [0, T ] × Rd × Rd 3 (t, x, y) ↪→ ∂xH(t, x, µt, α̂(t, x, µt, y)) of the backward equation
in (12) is Lipschitz continuous in the variables (x, y), uniformly in t. Therefore, by standard results
in FBSDE theory, existence and uniqueness hold when T is small enough. Equivalently, when T is
arbitrary, there exists δ > 0, depending on the Lipschitz constant of the coefficients in the variables
x and y such that unique solvability holds on [T − δ, T ], that is when the initial condition x0 of
the forward process is prescribed at some time t0 ∈ [T − δ, T ]. The solution is then denoted by
(Xt0,x0

t , Y t0,x0
t , Zt0,x0t )t0≤t≤T . Following Delarue [8], existence and uniqueness hold on the whole

[0, T ], provided

(19) ∀x0, x
′
0 ∈ Rd,

∣∣Y t0,x0
t0

− Y t0,x′0
t0

∣∣2 ≤ c|x0 − x′0|2,
for some constant c independent of t0 and δ. Notice that, by Blumenthal’s Zero-One Law, the random
variables Y t0,x0

t0
and Y t0,x′0

t0
are deterministic. By (14), we have

(20) Ĵ t0,x0 + 〈x′0 − x0, Y
t0,x0
t0
〉+ λE

∫ T

t0

|α̂t0,x0t − α̂t0,x
′
0

t |2dt ≤ Ĵ t0,x′0 ,

where Ĵ t0,x0 = J((α̂t0,x0t )t0≤t≤T ;µ) and α̂t0,x0t = α̂(t,Xt0,x0
t , µt, Y

t0,x0
t ) (with similar definitions

for Ĵ t0,x
′
0 and α̂t0,x

′
0

t by replacing x0 by x′0). Exchanging the roles of x0 and x′0 and adding the
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resulting inequality with (20), we deduce that

(21) 2λE
∫ T

t0

|α̂t0,x0t − α̂t0,x
′
0

t |2dt ≤ 〈x′0 − x0, Y
t0,x′0
t0

− Y t0,x0
t0
〉.

Moreover, by standard SDE estimates first and then by standard BSDE estimates, there exists a con-
stant c (the value of which may vary from line to line), independent of t0 and δ, such that

E
[

sup
t0≤t≤T

|Xt0,x0
t −Xt0,x′0

t |2
]

+ E
[

sup
t0≤t≤T

|Y t0,x0
t − Y t0,x′0

t |2
]
≤ cE

∫ T

t0

|α̂t0,x0t − α̂t0,x
′
0

t |2dt.

Plugging (21) into the above inequality completes the proof of (19).
The function uµ is then defined as uµ : [0, T ]× Rd 3 (t, x) ↪→ Y t,x

t . The representation property
of Y in terms of X directly follows from [8]. Local boundedness of uµ follows from the Lipschitz
continuity in the variable x together with the obvious inequality:

sup0≤t≤T |uµ(t, 0)| ≤ sup0≤t≤T

[
E
[
|uµ(t,X0,0

t )− uµ(t, 0)|
]

+ E
[
|Y 0,0
t |
]]
< +∞. �

We now set

Definition 1. To each µ ∈ P2(C([0, T ];Rd)) with marginal distributions (µt)0≤t≤T , we associate the
measure PXx0;µ where Xx0;µ is the solution of (12) with initial condition x0. The resulting mapping
P2

(
C([0, T ];Rd)

)
3 µ ↪→ PXx0;µ ∈ P2

(
C([0, T ];Rd)

)
is denoted by Φ and we call solution of the

matching problem (iii) in (4) any fixed point µ of Φ. For such a fixed point µ, Xx0;µ satisfies (16).

Definition 1 captures the essence of the approach of Lasry and Lions who freeze the probability
measure at the optimal value when optimizing the cost. This is not the case in the study of the control
of McKean-Vlasov dynamics, as investigated in [6]: in this different setting, optimization is also
performed with respect to the measure argument. See also [7] and [2] for the linear quadratic case.

3.3. Existence under Additional Boundedness Conditions. We first prove existence under an extra
boundedness assumption.

Proposition 2. The system (16) is solvable if, in addition to (A.1–7), we also assume that ∂xf and
∂xg are uniformly bounded, i.e. for some constant cB > 0

(22) ∀t ∈ [0, T ], x ∈ Rd, µ ∈ P2(Rd), α ∈ Rk, |∂xg(x, µ)|, |∂xf(t, x, µ, α)| ≤ cB.

Notice that (22) implies (A.7).

Proof. We apply Schauder’s fixed point theorem in the space M1(C([0, T ];Rd)) of finite signed
measure ν of order 1 on C([0, T ];Rd) endowed with the Kantorovich-Rubinstein norm:

‖ν‖KR = sup

{∣∣∣∣∫
C([0,T ];Rd)

F (w)dν(w)

∣∣∣∣ ; F ∈ Lip1

(
C([0, T ];Rd)

)}
,

for ν ∈M1(C([0, T ];Rd)), which is known to coincide with the Wasserstein distanceW1 onP1(C([0, T ];Rd)).
In what follows, we prove existence by proving that there exists a closed convex subset E ⊂ P2(C([0, T ];Rd)) ⊂
M1(C([0, T ];Rd)) which is stable for Φ, with a relatively compact range, Φ being continuous on E .
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First Step. We first establish several a priori estimates for the solution of (12). The coefficients
∂xf and ∂xg being bounded, the terminal condition in (12) is bounded and the growth of the driver is
of the form:

|∂xH
(
t, x, µt, y, α̂(t, x, µt, y)

)
| ≤ cB + cL|y|.

By standard BSDE estimates relying on Gronwall’s lemma, this implies that there exists a constant c,
only depending upon cB , cL and T , such that, for any µ ∈ P2(C([0, T ];Rd)),

(23) ∀t ∈ [0, T ], |Y x0;µ
t | ≤ c

holds P-almost surely. By (9) in the proof of Lemma 1 and by (A.6), we deduce that (the value of c
possibly varying from line to line)

(24) ∀t ∈ [0, T ], α̂
(
t,Xx0;µ

t , µt, Y
x0;µ
t

)
≤ c.

Plugging this bound into the forward part of (12), standard Lp estimates for SDEs imply that there
exists a constant c′, only depending upon cB , cL and T , such that

(25) E
[

sup
0≤t≤T

|Xx0;µ
t |4

]
≤ c′.

We consider the restriction of Φ to the subset E of probability measures of order 4 whose fourth
moment is not greater than c′, i.e.

E =
{
µ ∈ P4

(
C([0, T ],Rd)

)
: M4,C([0,T ],Rd)(µ) ≤ c′

}
,

E is convex and closed for the 1-Wasserstein distance and Φ maps E into itself.
Second Step. The family of processes ((Xx0;µ

t )0≤t≤T )µ∈E is tight in C([0, T ];Rd), as a conse-
quence of (24) and (25). By (25) again, Φ(E) is actually relatively compact for the 1-Wasserstein
distance on C([0, T ];Rd). Indeed, tightness says that it is relatively compact for the topology of weak
convergence of measures and (25) says that any weakly convergent sequence (PXx0;µn )n≥1, with
µn ∈ E for any n ≥ 1, is convergent for the 1-Wasserstein distance.

Third Step. We finally check that Φ is continuous on E . Given another measure µ′ ∈ E , we deduce
from (14) in Proposition 1 that:

(26) J
(
α̂;µ

)
+ λE

∫ T

0
|α̂′t − α̂t|2dt ≤ J

([
α̂′, µ′

]
;µ
)

+ E
∫ T

0
〈b0(t, µ′t)− b0(t, µt), Yt〉dt,

where α̂t = α̂(t,Xx0;µ
t , µt, Y

x0;µ
t ), for t ∈ [0, T ], with a similar definition for α̂′t by replacing µ by

µ′. By optimality of α̂′ for the cost functional J(·;µ′), we claim:

J
([
α̂′, µ′

]
;µ
)
≤ J

(
α̂;µ′

)
+ J

([
α̂′, µ′

]
;µ
)
− J

(
α̂′;µ′

)
,

so that (26) yields

λE
∫ T

0
|α̂′t − α̂t|2dt ≤ J

(
α̂;µ′

)
− J

(
α̂;µ

)
+ J

([
α̂′, µ′

]
;µ
)
− J

(
α̂′;µ′

)
+ E

∫ T

0
〈b0(t, µ′t)− b0(t, µt), Yt〉dt.

(27)

We now compare J(α̂;µ′) with J(α̂;µ) (and similarly J(α̂′;µ′) with J([α̂′, µ′];µ)). We notice that
J(α̂;µ) is the cost associated with the flow of measures (µt)0≤t≤T and the diffusion process Xx0,µ
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whereas J(α̂;µ) is the cost associated with the flow of measures (µ′t)0≤t≤T and the controlled diffu-
sion process U satisfying

dUt =
[
b0(t, µ′t) + b1(t)Ut + b2(t)α̂t

]
dt+ σdWt, t ∈ [0, T ]; U0 = x0.

By Gronwall’s lemma, there exists a constant c such that

E
[

sup
0≤t≤T

|Xx0,µ
t − Ut|2

]
≤ c

∫ T

0
W 2

2 (µt, µ
′
t)dt.

Since µ and µ′ are in E , we deduce from (A.5), (24) and (25) that

J
(
α̂;µ′

)
− J

(
α̂;µ

)
≤ c
(∫ T

0
W 2

2 (µt, µ
′
t)dt

)1/2

,

with a similar bound for J([α̂′, µ′];µ)−J(α̂′;µ′) (the argument is even simpler as the costs are driven
by the same processes), so that, from (27) and (23) again, together with Gronwall’s lemma to go back
to the controlled SDEs,

E
∫ T

0
|α̂′t − α̂t|2dt+ E

[
sup

0≤t≤T
|Xx0;µ

t −Xx0;µ′

t |2
]
≤ c
(∫ T

0
W 2

2 (µt, µ
′
t)dt

)1/2

.

As probability measures in E have bounded moments of order 4, Cauchy-Schwartz inequality yields
(keep in mind that W1(Φ(µ),Φ(µ′)) ≤ E[sup0≤t≤T |X

x0;µ
t −Xx0;µ′

t |]):

W1(Φ(µ),Φ(µ′)) ≤ c
(∫ T

0
W 2

2 (µt, µ
′
t)dt

)1/4

≤ c
(∫ T

0
W

1/2
1 (µt, µ

′
t)dt

)1/4

,

which shows that Φ is continuous on E with respect to the 1-Wasserstein distanceW1 onP1(C([0, T ];Rd)).
�

3.4. Approximation Procedure. Examples of functions f and g which are convex in x and such that
∂xf and ∂xg are bounded are rather limited in number and scope. For instance, boundedness of ∂xf
and ∂xg fails in the typical case when f and g are quadratic with respect to x. In order to overcome
this limitation, we propose to approximate the cost functions f and g by two sequences (fn)n≥1

and (gn)n≥1, referred to as approximated cost functions, satisfying (A.1–7) uniformly with respect
to n ≥ 1, and such that, for any n ≥ 1, equation (16), with (∂xf, ∂xg) replaced by (∂xf

n, ∂xg
n),

has a solution (Xn, Y n, Zn). In this framework, Proposition 2 says that such approximated FBSDEs
are indeed solvable when ∂xfn and ∂xgn are bounded for any n ≥ 1. Our approximation procedure
relies on the following:

Lemma 3. If there exist two sequences (fn)n≥1 and (gn)n≥1 such that
(i) there exist two parameters c′L and λ′ > 0 such that, for any n ≥ 1, fn and gn satisfy (A.1–7)

with respect to λ′ and c′L;
(ii) fn (resp. gn) converges towards f (resp. g) uniformly on any bounded subset of [0, T ]×Rd×

P2(Rd)× Rk (resp. Rd × P2(Rd));
(iii) for any n ≥ 1, equation (16), with (∂xf, ∂xg) replaced by (∂xf

n, ∂xg
n), has a solution which

we denote by (Xn, Y n, Zn).
Then, equation (16) is solvable.
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Proof. We establish tightness of the processes (Xn)n≥1 in order to extract a convergent subsequence.
For any n ≥ 1, we consider the approximated Hamiltonian

Hn(t, x, µ, y, α) = 〈b(t, x, µ, α), y〉+ fn(t, x, µ, α),

together with its minimizer α̂n(t, x, µ, y) = argminαH
n(t, x, µ, y, α). Setting α̂nt = α̂n(t,Xn

t ,PXn
t
, Y n

t )
for any t ∈ [0, T ] and n ≥ 1, our first step will be to prove that

(28) sup
n≥1

E
[∫ T

0
|α̂ns |2ds

]
< +∞.

SinceXn is the diffusion process controlled by (α̂nt )0≤t≤T , we use Theorem 1 to compare its behavior
to the behavior of a reference controlled process Un whose dynamics are driven by a specific control
βn. We shall consider two different versions for Un corresponding to the following choices for βn:

(29) (i) βns = E(α̂ns ) for 0 ≤ s ≤ T ; (ii) βn ≡ 0.

For each of these controls, we compare the cost to the optimal cost by using the version of the
stochastic maximum principle which we proved earlier, and subsequently, derive useful information
on the optimal control (α̂ns )0≤s≤T .

First Step. We first consider (i) in (29). In this case

(30) Unt = x0 +

∫ t

0

[
b0(s,PXn

s
) + b1(s)Uns + b2(s)E(α̂ns )

]
ds+ σWt, t ∈ [0, T ].

Notice that taking expectations on both sides of (30) shows that E(Uns ) = E(Xn
s ), for 0 ≤ s ≤ T ,

and that [
Unt − E(Unt )

]
=

∫ t

0
b1(s)

[
Uns − E(Uns )

]
ds+ σWt, t ∈ [0, T ],

from which it easily follows that supn≥1 sup0≤s≤T Var(Uns ) < +∞.
By Theorem 1, with gn(·,PXn

T
) as terminal cost and (fn(t, ·,PXn

t
, ·))0≤t≤T as running cost, we

get

E
[
gn
(
Xn
T ,PXn

T

)]
+ E

∫ T

0

[
λ′|α̂ns − βns |2 + fn

(
s,Xn

s ,PXn
s
, α̂ns

)]
ds

≤ E
[
gn
(
UnT ,PXn

T

)
+

∫ T

0
fn
(
s, Uns ,PXn

s
, βns
)
ds

]
.

(31)

Using the fact that βns = E(α̂ns ), the convexity condition in (A.2,4) and Jensen’s inequality, we obtain:

gn
(
E(Xn

T ),PXn
T

)
+

∫ T

0

[
λ′Var(α̂ns ) + fn

(
s,E(Xn

s ),PXn
s
,E(α̂ns )

)]
ds

≤ E
[
gn
(
UnT ,PXn

T

)
+

∫ T

0
fn
(
s, Uns ,PXn

s
,E(α̂ns )

)
ds

]
.

(32)
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By (A.5), we deduce that there exists a constant c, depending only on λ, cL, x0 and T , such that (the
actual value of c possibly varying from line to line)∫ T

0
Var(α̂ns )ds ≤ c

(
1 + E

[
|UnT |2

]1/2
+ E

[
|Xn

T |2
]1/2)E[|UnT − E(Xn

T )|2
]1/2

+ c

∫ T

0

(
1 + E

[
|Uns |2

]1/2
+ E

[
|Xn

s |2
]1/2

+ E
[
|α̂ns |2

]1/2)E[|Uns − E(Xn
s )|2

]1/2
ds.

Since E(Xn
t ) = E(Unt ) for any t ∈ [0, T ], we deduce from the uniform boundedness of the variance

of (Uns )0≤s≤T that

(33)
∫ T

0
Var(α̂ns )ds ≤ c

[
1 + sup

0≤s≤T
E[|Xn

s |2]1/2 +

(
E
∫ T

0
|α̂ns |2ds

)1/2]
.

From this, the linearity of the dynamics of Xn and Gronwall’s inequality, we deduce:

(34) sup
0≤s≤T

Var(Xn
s ) ≤ c

[
1 +

(
E
∫ T

0
|α̂ns |2ds

)1/2]
,

since

(35) sup
0≤s≤T

E
[
|Xn

s |2
]
≤ c
[
1 + E

∫ T

0
|α̂ns |2ds

]
.

Bounds like (34) allow us to control for any 0 ≤ s ≤ T , the Wasserstein distance between the
distribution of Xn

s and the Dirac mass at the point E(Xn
s ).

Second Step. We now compare Xn to the process controlled by the null control. So we consider
case (ii) in (29), and now

Unt = x0 +

∫ t

0

[
b0(s,PXn

s
) + b1(s)Uns

]
ds+ σWt, t ∈ [0, T ].

Since no confusion is possible, we still denote the solution by Un although it is different form the
one in the first step. By the boundedness of b0 in (A.5), it holds supn≥1 E[sup0≤s≤T |Uns |2] < +∞.
Using Theorem 1 as before in the derivation of (31) and (32), we get

gn
(
E(Xn

T ),PXn
T

)
+

∫ T

0

[
λ′E(|α̂ns |2) + fn

(
s,E(Xn

s ),PXn
s
,E(α̂ns )

)]
ds

≤ E
[
gn
(
UnT ,PXn

T

)
+

∫ T

0
fn
(
s, Uns ,PXn

s
, 0
)
ds

]
.

By convexity of fn with respect to α (see (A.2)) together with (A.6), we have

gn
(
E(Xn

T ), δE(Xn
T )

)
+

∫ T

0

[
λ′E
(
|α̂ns |2

)
+ fn

(
s,E(Xn

s ),PXn
s
, 0
)]
ds

≤ E
[
gn
(
UnT ,PXn

T

)
+

∫ T

0
fn
(
s, Uns ,PXn

s
, 0
)
ds

]
+ cE

∫ T

0
|α̂ns |ds,
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for some constant c, independent of n. Using (A.5) again, we obtain:

gn
(
E(Xn

T ), δE(Xn
T )

)
+

∫ T

0

[
λ′E
(
|α̂ns |2

)
+ fn

(
s,E(Xn

s ), δE(Xn
s ), 0

)]
ds

≤ gn
(
0, δE(Xn

T )

)
+

∫ T

0
fn
(
s, 0, δE(Xn

s ), 0
)
ds+ cE

∫ T

0
|α̂ns |ds

+ c
(
1 + sup

0≤s≤T

[
E
[
|Xn

s |2
]1/2])(

1 + sup
0≤s≤T

[
Var(Xn

s )
]1/2)

,

the value of c possibly varying from line to line. From (35), Young’s inequality yields

gn
(
E(Xn

T ), δE(Xn
T )

)
+

∫ T

0

[λ′
2
E
(
|α̂ns |2

)
+ fn

(
s,E(Xn

s ), δE(Xn
s ), 0

)]
ds

≤ gn
(
0, δE(Xn

T )

)
+

∫ T

0
fn
(
s, 0, δE(Xn

s ), 0
)
ds+ c

(
1 + sup

0≤s≤T

[
Var(Xn

s )
])
.

By (34), we obtain

gn
(
E(Xn

T ), δE(Xn
T )

)
+

∫ T

0

[λ′
2
E
(
|α̂ns |2

)
+ fn

(
s,E(Xn

s ), δE(Xn
s ), 0

)]
ds

≤ gn
(
0, δE(Xn

T )

)
+

∫ T

0
fn
(
s, 0, δE(Xn

s ), 0
)
ds+ c

(
1 +

[∫ T

0
E
(
|α̂ns |2

)
ds

]1/2)
.

Young’s inequality and the convexity in x of gn and fn from (A.2,4) give:〈
E(Xn

T ), ∂xg
n
(
0, δE(Xn

T )

)〉
+

∫ T

0

[λ′
4
E
(
|α̂ns |2

)
+
〈
E(Xn

s ), ∂xf
n
(
s, 0, δE(Xn

s ), 0
)〉]

ds ≤ c.

By (A.7), we have E
∫ T

0 |α̂
n
s |2ds ≤ c

(
1 + sup0≤s≤T E

[
|Xn

s |2
]1/2), and the bound (28) now follows

from (35), and as a consequence

(36) E[ sup
0≤s≤T

|Xn
s |2] ≤ c.

Using (28) and (36), it is plain to prove that the processes (Xn)n≥1 are tight.

Third Step. Let µ be the limit of a convergent subsequence (PXnp )p≥1. By (36),M2,C([0,T ],Rd)(µ) <

+∞. Therefore, by Lemma 2, FBSDE (12) has a unique solution (Xt, Yt, Zt)0≤t≤T . Moreover, there
exists u : [0, T ] × Rd ↪→ Rd, which is c-Lipschitz in the variable x for the same constant c as in the
statement of the lemma, such that Yt = u(t,Xt) for any t ∈ [0, T ]. In particular,

(37) sup
0≤t≤T

|u(t, 0)| ≤ sup
0≤t≤T

[
E
[
|u(t,Xt)− u(t, 0)|

]
+ E

[
|Yt|
]]
< +∞.

We deduce that there exists a constant c′ such that |u(t, x)| ≤ c′(1 + |x|), for t ∈ [0, T ] and x ∈ Rd.
By (9) and (A.6), we deduce that (for a possibly new value of c′) |α̂(t, x, µt, u(t, x))| ≤ c′(1 + |x|).
Plugging this bound into the forward SDE satisfied by X in (12), we deduce that

(38) ∀` ≥ 1, E
[

sup
0≤t≤T

|Xt|`
]
< +∞,
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and, thus,

(39) E
∫ T

0
|α̂t|2dt < +∞,

with α̂t = α̂(t,Xt, µt, Yt), for t ∈ [0, T ]. We can now apply the same argument to any (Xn
t )0≤t≤T ,

for any n ≥ 1. We claim

(40) ∀` ≥ 1, sup
n≥1

E
[

sup
0≤t≤T

|Xn
t |`
]
< +∞.

Indeed, the constant c in the statement of Lemma 2 does depend on n. Moreover, the second-order
moments of sup0≤t≤T |Xn

t | are bounded, uniformly in n ≥ 1 by (36). By (A.5), the driver in the back-
ward component in (12) is at most of linear growth in (x, y, α), so that by (28) and standard L2 esti-
mates for BSDEs, the second-order moments of sup0≤t≤T |Y n

t | are uniformly bounded as well. This
shows (40) by repeating the proof of (38). By (38) and (40), we get that sup0≤t≤T W2(µ

np
t , µt)→ 0

as n tends to +∞, with µnp = PXnp .
Repeating the proof of (27), we have

λ′E
∫ T

0
|α̂nt − α̂t|2dt ≤ Jn

(
α̂;µn

)
− J

(
α̂;µ

)
+ J

([
α̂n, µn

]
;µ
)
− Jn

(
α̂n;µn

)
+ E

∫ T

0
〈b0(t, µnt )− b0(t, µt), Yt〉dt,

(41)

where J(·;µ) is given by (11) and Jn(·;µn) is defined in a similar way, but with (f, g) and (µt)0≤t≤T
replaced by (fn, gn) and (µnt )0≤t≤T ; J([α̂n, µn];µ) is defined as in (15). With these definitions at
hand, we notice that

Jn
(
α̂;µn

)
− J

(
α̂;µ

)
= E

[
gn(UnT , µ

n
T )− g(XT , µT )

]
+ E

∫ T

0

[
fn
(
t, Unt , µ

n
t , α̂t

)
− f

(
t,Xt, µt, α̂t

)]
dt,

where Un is the controlled diffusion process:

dUnt =
[
b0(t, µnt ) + b1(t)Unt + b2(t)α̂t

]
dt+ σdWt, t ∈ [0, T ]; Un0 = x0.

By Gronwall’s lemma and by convergence of µnp towards µ for the 2–Wasserstein distance, we claim
that Unp → X as p → +∞, for the norm E[sup0≤s≤T | ·s |2]1/2. Using on one hand the uniform
convergence of fn and gn towards f and g on bounded subsets of their respective domains, and on
the other hand the convergence of µnp towards µ together with the bounds (38–39), we deduce that
Jnp(α̂;µnp) → J(α̂;µ) as p → +∞. Similarly, using the bounds (28–38–40), the other differences
in the right-hand side in (41) tend to 0 along the subsequence (np)p≥1 so that α̂np → α̂ as p→ +∞
in L2([0, T ] × Ω, dt ⊗ dP). We deduce that X is the limit of the sequence (Xnp)p≥1 for the norm
E[sup0≤s≤T | ·s |2]1/2. Therefore, µ matches the law of X exactly, proving that equation (16) is
solvable. �

3.5. Choice of the Approximating Sequence. In order to complete the proof of Theorem 2, we must
specify the choice of the approximating sequence in Lemma 3. Actually, the choice is performed in
two steps. We first consider the case when the cost functions f and g are strongly convex in the
variables x:
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Lemma 4. Assume that, in addition to (A.1–7), there exists a constant γ > 0 such that the functions
f and g satisfy (compare with (8)):

f(t, x′, µ, α′)− f(t, x, µ, α)

− 〈(x′ − x, α′ − α), ∂(x,α)f(t, x, µ, α)〉 ≥ γ|x′ − x|2 + λ|α′ − α|2,
g(x′, µ)− g(x, µ)− 〈x′ − x, ∂xg(x, µ)〉 ≥ γ|x′ − x|2.

(42)

Then, there exist two positive constants λ′ and c′L, depending only upon λ, cL and γ, and two se-
quences of functions (fn)n≥1 and (gn)n≥1 such that

(i) for any n ≥ 1, fn and gn satisfy (A.1–7) with respect to the parameters λ′ and c′L and ∂xfn

and ∂xgn are bounded,
(ii) for any bounded subsets of [0, T ]× Rd × P2(Rd)× Rk, there exists an integer n0, such that,

for any n ≥ n0, fn and gn coincide with f and g respectively.

The proof of Lemma 4 is a pure technical exercise in convex analysis, and for this reason, we
postpone its proof to an appendix at the end of the paper.

3.6. Proof of Theorem 2. Equation (16) is solvable when, in addition to (A.1–7), f and g satisfy the
convexity condition (42). Indeed, by Lemma 4, there exists an approximating sequence (fn, gn)n≥1

satisfying (i) and (ii) in the statement of Lemma 3, and also (iii) by Proposition 2. When f and
g satisfy (A.1–7) only, the assumptions of Lemma 3 are satisfied with the following approximating
sequence:

fn(t, x, µ, α) = f(t, x, µ, α) +
1

n
|x|2; gn(x, µ) = g(x, µ) +

1

n
|x|2,

for (t, x, µ, α) ∈ [0, T ] × Rd × P(Rd) × Rk and n ≥ 1. Therefore, (16) is solvable under (A.1–7).
Moreover, given an arbitrary solution to (16), the existence of a function u, as in the statement of
Theorem 2, follows from Lemma 2 and (37). Boundedness of the moments of the forward process is
then proven as in (38). �

4. PROPAGATION OF CHAOS AND APPROXIMATE NASH EQUILIBRIUMS

While the rationale for the mean-field strategy proposed by Lasry-Lions is clear given the nature
of Nash equilibriums (as opposed to other forms of optimization suggesting the optimal control of
stochastic dynamics of the McKean-Vlasov type as studied in [6]), it may not be obvious how the
solution of the FBSDE introduced and solved in the previous sections provides approximate Nash
equilibrium for large games. In this section, we prove just that. The proof relies on the fact that
the FBSDE value function is Lipschitz continuous, standard arguments in the propagation of chaos
theory, and the following specific result due to Horowitz et al. (see for example Section 10 in [25])
which we state as a lemma for future reference:

Lemma 5. Given µ ∈ Pd+5(Rd), there exists a constant c depending only upon d and Md+5(µ) (see
the notation (7)), such that

E
[
W 2

2 (µ̄N , µ)
]
≤ CN−2/(d+4),

where µ̄N denotes the empirical measure of any sample of size N from µ.
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Throughout this section, assumptions (A.1–7) are in force. We let (Xt, Yt, Zt)0≤t≤T be a solution
of (16) and u be the associated FBSDE value function. We denote by (µt)0≤t≤T the flow of marginal
probability measures µt = PXt , for 0 ≤ t ≤ T . We also denote by J the optimal cost of the limiting
Mean-Field problem

(43) J = E
[
g(XT , µT ) +

∫ T

0
f
(
t,Xt, µt, α̂(t,Xt, µt, Yt)

)
dt

]
,

where as before, α̂ is the minimizer function constructed in Lemma 1. For convenience, we fix a
sequence ((W i

t )0≤t≤T )i≥1 of independent m-dimensional Brownian motions, and for each integer
N , we consider the solution (X1

t , . . . , X
N
t )0≤t≤T of the system ofN stochastic differential equations

(44) dXi
t = b

(
t,Xi

t , µ̄
N
t , α̂

(
t,Xi

t , µt, u(t,Xi
t)
))
dt+ σdW i

t , µ̄Nt =
1

N

N∑
j=1

δ
Xj
t
,

with t ∈ [0, T ] andXi
0 = x0. Equation (44) is well posed since u satisfies the regularity property (18)

and the minimizer α̂(t, x, µt, y) was proven, in Lemma 1, to be Lipschitz continuous and at most of
linear growth in the variables x and y, uniformly in t ∈ [0, T ]. The processes (Xi)1≤i≤N give the
dynamics of the private states of the N players in the stochastic differential game of interest when the
players use the strategies

(45) ᾱN,it = α̂(t,Xi
t , µt, u(t,Xi

t)), 0 ≤ t ≤ T, i ∈ {1, · · · , N}.

These strategies are in closed loop form. They are even distributed since at each time t ∈ [0, T ],
a player only needs to know the state of his own private state in order to compute the value of the
control to apply at that time. By boundedness of b0 and by (9) and (18), it holds

(46) sup
N≥1

max
1≤i≤N

[
E
[

sup
0≤t≤T

|Xi
t |2
]

+ E
∫ T

0
|ᾱN,it |2dt

]
< +∞.

For the purpose of comparison, we introduce the notation we use when the players choose a generic
set of strategies, say ((βit)0≤t≤T )1≤i≤N . In this case, the dynamics of the private state U i of player
i ∈ {1, · · · , N} are given by:

(47) dU it = b
(
t, U it , ν̄

N
t , β

i
t

)
dt+ σdW i

t , ν̄Nt =
1

N

N∑
j=1

δ
Ujt
,

with t ∈ [0, T ] and U i0 = x0, and where ((βit)0≤t≤T )1≤i≤N are N square-integrable Rk-valued
processes that are progressively measurable with respect to the filtration generated by (W 1, . . . ,WN ).
For each 1 ≤ i ≤ N , we denote by

(48) J̄N,i(β1, . . . , βN ) = E
[
g
(
U iT , ν̄

N
T

)
+

∫ T

0
f(t, U it , ν̄

N
t , β

i
t)dt

]
,

the cost to the ith player. Our goal is to construct approximate Nash equilibriums for the N -player
game from a solution of (16). We follow the approach used by Bensoussan et al. [2] in the linear-
quadratic case. See also [5].
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Theorem 3. Under assumptions (A.1–7), the strategies (ᾱN,it )0≤t≤T, 1≤i≤N defined in (45) form an
approximate Nash equilibrium of the N -player game (47–48). More precisely, there exists a constant
c > 0 and a sequence of positive numbers (εN )N≥1 such that, for each N ≥ 1,

(i) εN ≤ cN−1/(d+4) ;
(ii) for any player i ∈ {1, · · · , N} and any progressively measurable strategy βi = (βit)0≤t≤T ,

such that E
∫ T

0 |β
i
t|2dt < +∞, one has

(49) J̄N,i(ᾱ1,N , . . . , ᾱi−1,N , βi, ᾱi+1,N , . . . , ᾱN,N ) ≥ J̄N,i(ᾱ1,N , · · · , ᾱN,N )− εN .

Proof. By symmetry (invariance under permutation) of the coefficients of the private states dynamics
and costs, we only need to prove (49) for i = 1. Given a progressively measurable process β1 =

(β1
t )0≤t≤T satisfying E

∫ T
0 |β

1
t |2dt < +∞, let us use the quantities defined in (47) and (48) with

βit = ᾱN,it for i ∈ {2, · · · , N} and t ∈ [0, T ]. By boundedness of b0, b1 and b2 and by Gronwall’s
inequality, we get:

(50) E
[

sup
0≤t≤T

|U1
t |2
]
≤ c
(

1 + E
∫ T

0
|β1
t |2dt

)
.

Using the fact that the strategies (ᾱN,it )0≤t≤T satisfy the square integrability condition of admissibil-
ity, the same argument gives:

(51) E
[

sup
0≤t≤T

|U is|2
]
≤ c,

for 2 ≤ i ≤ N , which clearly implies after summation:

(52)
1

N

N∑
j=1

E
[

sup
0≤t≤T

|U jt |2
]
≤ c
(

1 +
1

N
E
∫ T

0
|β1
t |2dt

)
.

For the next step of the proof we introduce the system of decoupled independent and identically
distributed states

dX̄i
t = b

(
t, X̄i

t , µt, α̂(t, X̄i
t , µt, u(t, X̄i

t))
)
dt+ σdW i

t , 0 ≤ t ≤ T.

Notice that the stochastic processes X̄i are independent copies of X and, in particular, PX̄i
t

= µt for
any t ∈ [0, T ] and i ∈ {1, · · · , N}. We shall use the notation:

α̂it = α̂
(
t, X̄i

t , µt, u(t, X̄i
t)
)
, t ∈ [0, T ], i ∈ {1, . . . , N}.

Using the regularity of the FBSDE value function u and the uniform boundedness of the family
(Md+5(µt))0≤t≤T derived in Theorem 2 together with the estimate recalled in Lemma 5, we can
follow Sznitman’s proof [26] (see also Theorem 1.3 of [16]) and get

(53) max
1≤i≤N

E
[

sup
0≤t≤T

|Xi
t − X̄i

t |2
]
≤ cN−2/(d+4),

(recall that (X1, . . . , XN ) solves (44)), and this implies:

(54) sup
0≤t≤T

E
[
W 2

2 (µ̄Nt , µt)
]
≤ cN−2/(d+4).
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Indeed, for each t ∈ [0, T ],

(55) W 2
2 (µ̄Nt , µt) ≤

2

N

N∑
i=1

|Xi
t − X̄i

t |2 + 2W 2
2

(
1

N

N∑
i=1

δX̄i
t
, µt

)
,

so that, taking expectations on both sides and using (53) and Lemma 5, we get the desired estimate
(54). Using the local-Lipschitz regularity of the coefficients g and f together with Cauchy-Schwarz
inequality, we get, for each i ∈ {1, · · · , N},∣∣J − J̄N,i(ᾱN,1, . . . , ᾱN,N )

∣∣
=

∣∣∣∣E[g(X̄i
T , µT ) +

∫ T

0
f
(
t, X̄i

t , µt, α̂
i
t

)
dt− g(Xi

T , µ̄
N
T )−

∫ T

0
f
(
t,Xi

t , µ̄
N
t , ᾱ

N,i
t

)
dt

]∣∣∣∣
≤ cE

[(
1 + |X̄i

T |2 + |Xi
T |2 +

1

N

N∑
j=1

|Xj
T |

2

)]1/2

E
[
|X̄i

T −Xi
T |2 +W 2

2 (µT , µ̄
N
T )
]1/2

+ c

∫ T

0

{
E
[(

1 + |X̄i
t |2 + |Xi

t |2 + |α̂it|2 + |ᾱN,it |2 +
1

N

N∑
j=1

|Xj
t |2
)]1/2

× E
[
|X̄i

t −Xi
t |2 + |α̂it − ᾱ

N,i
t |2 +W 2

2 (µt, µ̄
N
t )
]1/2}

dt,

for some constant c > 0 which can change from line to line. By (46), we deduce∣∣J − J̄N,i(ᾱN,1, . . . , ᾱN,N )
∣∣ ≤ cE[|X̄i

T −Xi
T |2 +W 2

2 (µT , µ̄
N
T )
]1/2

+ c

(∫ T

0
E
[
|X̄i

t −Xi
t |2 + |α̂it − ᾱ

N,i
t |2 +W 2

2 (µt, µ̄
N
t )
]
dt

)1/2

.

Now, by the Lipschitz property of the minimizer α̂ proven in Lemma 1 and by the Lipschitz property
of u in (18), we notice that

|α̂it − ᾱ
N,i
t | =

∣∣α̂(t, X̄i
t , µt, u(t, X̄i

t)
)
− α̂

(
t,Xi

t , µt, u(t,Xi
t)
)∣∣ ≤ c|X̄i

t −Xi
t |.

Using (53) and (54), this proves that, for any 1 ≤ i ≤ N ,

(56) J̄N,i(ᾱ1,N , . . . , ᾱN,N ) = J +O(N−1/(d+4)).

This suggests that, in order to prove inequality (49) for i = 1, we could restrict ourselves to compare
J̄N,1(β1, ᾱ2,N , . . . , ᾱN,N ) to J . Using the argument which led to (50), (51) and (52), together with
the definitions of U j and Xj for j = 1, · · · , N , we get, for any t ∈ [0, T ]:

E
[

sup
0≤s≤t

|U1
t −X1

t |2
]
≤ c

N

∫ t

0

N∑
j=1

E
[

sup
0≤r≤s

|U jr −Xj
r |2
]
ds+ cE

∫ T

0
|β1
t − ᾱ

N,1
t |2dt,

E
[

sup
0≤s≤t

|U it −Xi
t |2
]
≤ c

N

∫ t

0

N∑
j=1

E
[

sup
0≤r≤s

|U jr −Xj
r |2
]
ds, 2 ≤ i ≤ N.
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Therefore, using Gronwall’s inequality, we get:

(57)
1

N

N∑
j=1

E
[

sup
0≤t≤T

|U jt −X
j
t |2
]
≤ c

N
E
∫ T

0
|β1
t − ᾱ

N,1
t |2dt,

so that

(58) sup
0≤t≤T

E
[
|U it −Xi

t |2
]
≤ c

N
E
∫ T

0
|β1
t − ᾱ

N,1
t |2dt, 2 ≤ i ≤ N.

Putting together (46), (53) and (58), we see that, for any A > 0, there exists a constant cA depending
on A such that

(59) E
∫ T

0
|β1
t |2dt ≤ A =⇒ max

2≤i≤N
sup

0≤t≤T
E
[
|U it − X̄i

t |2
]
≤ cAN−2/(d+4).

Let us fix A > 0 (to be determined later) and assume that E
∫ T

0 |β
1
t |2dt ≤ A. Using (59) we see that

(60)
1

N − 1

N∑
j=2

E
[
|U jt − X̄

j
t |2
]
≤ cAN−2/(d+4),

for a constant cA depending upon A, and whose value can change from line to line. Now by the
triangle inequality for the Wasserstein distance:

E
[
W 2

2 (ν̄Nt , µt)
]
≤ c
{
E
[
W 2

2

(
1

N

N∑
j=1

δ
Ujt
,

1

N − 1

N∑
j=2

δ
Ujt

)]

+
1

N − 1

N∑
j=2

E
[
|U jt − X̄

j
t |2
]

+ E
[
W 2

2

(
1

N − 1

N∑
j=2

δ
X̄j
t
, µt

)]}
.

(61)

Noticing that

E
[
W 2

2

(
1

N

N∑
j=1

δ
Ujt
,

1

N − 1

N∑
j=2

δ
Ujt

)]
≤ 1

N(N − 1)

N∑
j=2

E
[
|U1
t − U

j
t |2
]
,

which is O(N−1) because of (50) and (52). Plugging this inequality into (61), and using (60) to
control the second term and Lemma 5 to estimate the third term therein, we conclude that

(62) E
[
W 2

2 (ν̄Nt , µt)
]
≤ cAN−2/(d+4).

For the final step of the proof we define (Ū1
t )0≤t≤T as the solution of the SDE

dŪ1
t = b(t, Ū1

t , µt, β
1
t )dt+ σdW 1

t , 0 ≤ t ≤ T, Ū1
0 = x,

so that, from the definition (47) of U1 we get:

U1
t − Ū1

t =

∫ t

0
[b0(s, µs)− b0(s, ν̄Ns )]ds+

∫ t

0
b1(s)[U1

s − Ū1
s ]ds.
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Using the Lipschitz property of b0, (62) and the boundedness of b1 and applying Gronwall’s inequal-
ity, we get

(63) sup
0≤t≤T

E
[
|U1
t − Ū1

t |2
]
≤ cAN−2/(d+4),

so that, going over the computation leading to (56) once more and using (62), (50), (51) and (52):

J̄N,1(β1, ᾱN,2, . . . , ᾱN,N ) ≥ J(β1)− cAN−1/(d+4),

where J(β1) stands for the mean-field cost of β1:

(64) J(β1) = E
[
g(Ū1

T , µT ) +

∫ T

0
f
(
t, Ū1

t , µt, β
1
t

)
dt

]
.

Since J ≤ J(β1) (notice that, even though β1 is adapted to a larger filtration than the filtration of
W 1, the stochastic maximum principle still applies as pointed out in Remark 1), we get in the end

(65) J̄N,1(β1, ᾱN,2, . . . , ᾱN,N ) ≥ J − cAN−1/(d+4),

and from (56) and (65), we easily derive the desired inequality (49). Actually, the combination of (56)
and (65) shows that (ᾱN,1, . . . , ᾱN,N ) is an ε-Nash equilibrium for N large enough, with a precise
quantification (though not optimal) of the relationship between N and ε. But for the proof to be
complete in full generality, we need to explain how we choose A, and discuss what happens when
E
∫ T

0 |β
1
t |2dt > A.

Using the convexity in x of g around x = 0 and the convexity of f in (x, α) around x = 0 and
α = 0, see (8), we get:

J̄N,1(β1, ᾱN,2, . . . , ᾱN,N )

≥ E
[
g(0, ν̄NT ) +

∫ T

0
f(t, 0, ν̄Nt , 0)dt

]
+ λE

∫ T

0
|β1
t |2dt

+ E
[
〈U1

T , ∂xg(0, ν̄NT )〉+

∫ T

0

(
〈U1

t , ∂xf(t, 0, ν̄Nt , 0)〉+ 〈β1
t , ∂αf(t, 0, ν̄Nt , 0)〉

)
dt

]
.

The local-Lipschitz assumption with respect to the Wasserstein distance and the definition of the latter
imply the existence of a constant c > 0 such that for any t ∈ [0, T ],

E
[
|f(t, 0, ν̄Nt , 0)− f(t, 0, δ0, 0)|

]
≤ cE

[
1 +M2

2 (ν̄Nt )
]

= c

[
1 +

(
1

N

N∑
i=1

E
[
|U it |2

])]
.

with a similar inequality for g. From this, we deduce

J̄N,1(β1, ᾱN,2, . . . , ᾱN,N ) ≥ g(0, δ0) +

∫ T

0
f(t, 0, δ0, 0)dt

+ E
[
〈U1

T , ∂xg(0, ν̄NT )〉+

∫ T

0

(
〈U1

t , ∂xf(t, 0, ν̄Nt , 0)〉+ 〈β1
t , ∂αf(t, 0, ν̄Nt , 0)〉

)
dt

]
+ λE

∫ T

0
|β1
t |2dt− c

[
1 +

(
1

N

N∑
i=1

sup
0≤t≤T

E
[
|U it |2

])]
.
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By (A.5), we know that ∂xg, ∂xf and ∂αf are at most of linear growth in the measure parameter (for
the L2-norm), so that, for any δ > 0, there exists a constant cδ such that

J̄N,1(β1, ᾱN,2, . . . , ᾱN,N ) ≥ g(0, δ0) +

∫ T

0
f(t, 0, δ0, 0)dt+

λ

2
E
∫ T

0
|β1
t |2dt

− δ sup
0≤t≤T

E
[
|U1
t |2
]
− cδ

(
1 +

1

N

N∑
i=1

sup
0≤t≤T

E
[
|U it |2

])
.

(66)

Estimates (50) and (51) show that one can choose δ small enough in (66) and c so that

J̄N,1(β1, ᾱN,2, . . . , ᾱN,N ) ≥ −c+
(λ

4
− c

N

)
E
∫ T

0
|β1
t |2dt.

This proves that there exists an integer N0 such that, for any integer N ≥ N0 and constant Ā > 0,
one can choose A > 0 such that

(67) E
∫ T

0
|β1
t |2dt ≥ A =⇒ J̄N,1(β1, ᾱN,2, . . . , ᾱN,N ) ≥ J + Ā,

which provides us with the appropriate tool to choose A and avoid having to consider (β1
t )0≤t≤T

whose expected square integral is too large. �

A simple inspection of the last part of the above proof shows that a stronger result actually holds
when E

∫ T
0 |β

1
t |2dt ≤ A. Indeed, the estimates (50), (59) and (62) can be used as in (56) to deduce

(up to a modification of cA)

(68) J̄N,i(β1, ᾱN,2, . . . , ᾱN,N ) ≥ J − cAN−1/(d+4), 2 ≤ i ≤ N.

Corollary 1. Under assumptions (A.1–7), not only does(
ᾱN,it = α̂(t,Xi

t , µt, u(t,Xi
t)))1≤i≤N

)
0≤t≤T

form an approximate Nash equilibrium of the N -player game (47–48) but:
(i) there exists an integer N0 such that, for any N ≥ N0 and Ā > 0, there exists a constant A > 0

such that, for any player i ∈ {1, · · · , N} and any admissible strategy βi = (βit)0≤t≤T ,

(69) E
∫ T

0
|βit|2dt ≥ A =⇒ J̄N,i(ᾱ1,N , . . . , ᾱi−1,N , βi, ᾱi+1,N , . . . , ᾱN,N ) ≥ J + Ā.

(ii) Moreover, for anyA > 0, there exists a sequence of positive real numbers (εN )N≥1 converging
toward 0, such that for any admissible strategy β1 = (β1

t )0≤t≤T for the first player

(70) E
∫ T

0
|β1
t |2dt ≤ A =⇒ min

1≤i≤N
J̄N,i(β1, ᾱ2,N , . . . , ᾱN,N ) ≥ J − εN .
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5. APPENDIX: PROOF OF LEMMA 4

We focus on the approximation of the running cost f (the case of the terminal cost g is similar) and
we ignore the dependence of f upon t to simplify the notation. For any n ≥ 1, we define fn as the
truncated Legendre transform:

(71) fn(x, µ, α) = sup
|y|≤n

inf
z∈Rd

[
〈y, x− z〉+ f(z, µ, α)

]
,

for (x, α) ∈ Rd × Rk and µ ∈ P2(Rd). By standard properties of the Legendre transform of convex
functions,

(72) fn(x, µ, α) ≤ sup
y∈Rd

inf
z∈Rd

[
〈y, x− z〉+ f(z, µ, α)

]
= f(x, µ, α).

Moreover, by strict convexity of f in x,

fn(x, µ, α) ≥ inf
z∈Rd

[
f(z, µ, α)

]
≥ inf

z∈Rd

[
γ|z|2 + 〈∂xf(0, µ, α), z〉

]
+ f(0, µ, α)

≥ − 1

4γ
|∂xf(0, µ, α)|2 + f(0, µ, α),

(73)

so that fn has finite real values. Clearly, it is also n-Lipschitz continuous in x.

First Step. We first check that the sequence (fn)n≥1 converges towards f , uniformly on bounded
subsets of Rd×P2(Rd)×Rk. So for any given R > 0, we restrict ourselves to |x| ≤ R and |α| ≤ R,
and µ ∈ P2(Rd), such that M2(µ) ≤ R. By (A.5), there exists a constant c > 0, independent of R,
such that

(74) sup
z∈Rd

[
〈y, z〉 − f(z, µ, α)

]
≥ sup

z∈Rd

[
〈y, z〉 − c|z|2

]
− c(1 +R2) =

|y|2

4c
− c(1 +R2).

Therefore,

(75) inf
z∈Rd

[
〈y, x− z〉+ f(z, µ, α)

]
≤ R|y| − |y|

2

4c
+ c(1 +R2).

By (73) and (A.5), fn(t, x, µ, α) ≥ −c(1 + R2), c depending possibly on γ, so that optimization in
the variable y can be done over points y? satisfying

(76) − c(1 +R2) ≤ R|y?| − |y
?|2

4c
+ c(1 +R2), that is |y?| ≤ c(1 +R),

In particular, for n large enough (depending on R),

fn(x, µ, α) = sup
y∈Rd

inf
z∈Rd

[
〈y, x− z〉+ f(z, µ, α)

]
= f(x, µ, α).

So on bounded subsets of Rd × P2(Rd) × Rk, fn and f coincide for n large enough. In particular,
for n large enough, fn(0, δ0, 0), ∂xfn(0, δ0, 0) and ∂αfn(0, δ0, 0) exist, coincide with f(0, δ0, 0),
∂xf(0, δ0, 0) and ∂αf(0, δ0, 0) respectively, and are bounded by cL as in (A.5). Moreover, still for
|x| ≤ R, |α| ≤ R and M2(µ) ≤ R, we see from (72) and (76) that optimization in z can be reduced
to z? satisfying

〈y?, x− z?〉+ f(z?, µ, α) ≤ f(x, µ, α) ≤ c(1 +R2),
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the second inequality following from (A.5). By strict convexity of f in x, we obtain

−c(1 +R)|z?|+ γ|z?|2 + 〈∂xf(0, µ, α), z?〉+ f(0, µ, α) ≤ c(1 +R2),

so that, by (A.5), γ|z?|2 − c(1 +R)|z?| ≤ c(1 +R2), that is

(77) |z?| ≤ c(1 +R).

Second Step. We now investigate the convexity property of fn(·, µ, ·), for a given µ ∈ P2(Rd). For
any h ∈ R, x, e, y, z1, z2 ∈ Rd and α, β ∈ Rk, with |y| ≤ n and |e|, |β| ≤ 1, we deduce from the
convexity of f(·, µ, ·):

2 inf
z∈Rd

[
〈y, x− z〉+ f(z, µ, α)

]
≤
〈
y, (x+ he− z1) + (x− he− z2)

〉
+ 2f

(
z1 + z2

2
, µ,

(α+ hβ) + (α− hβ)

2

)
≤ 〈y, x+ he− z1〉+ f(z1, µ, α+ hβ) + 〈y, x− he− z2〉+ f(z2, µ, α− hβ)− 2λh2.

Taking infimum with respect to z1, z2 and supremum with respect to y, we obtain

(78) fn(x, µ, α) ≤ 1

2
fn(x+ he, µ, α+ hβ) +

1

2
fn(x− he, µ, α− hβ)− λh2.

In particular, the function Rd×Rk 3 (x, α) ↪→ fn(x, µ, α)−λ|α|2 is convex. We prove later on that
it is also continuously differentiable so that (8) holds.

In a similar way, we can investigate the semi-concavity property of fn(·, µ, ·). For any h ∈ R,
x, e, y1, y2 ∈ Rd, α, β ∈ Rk, with |y1|, |y2| ≤ n and |e|, |β| ≤ 1,

inf
z∈Rd

[
〈y1, x+ he− z〉+ f(z, µ, α+ hβ)

]
+ inf
z∈Rd

[
〈y2, x− he− z〉+ f(z, µ, α− hβ)

]
= inf

z∈Rd

[
〈y1, x− z〉+ f(z + he, µ, α+ hβ)

]
+ inf
z∈Rd

[
〈y2, x− z〉+ f(z − he, µ, α− hβ)

]
.

By expanding f(·, µ, ·) up to the second order, we see that

inf
z∈Rd

[
〈y1, x+ he− z〉+ f(z, µ, α+ hβ)

]
+ inf
z∈Rd

[
〈y2, x− he− z〉+ f(z, µ, α− hβ)

]
≤ inf

z∈Rd

[
〈y1 + y2, x− z〉+ 2f(z, µ, α)

]
+ c|h|2,

for some constant c. Taking the supremum over y1, y2, we deduce that

fn(x+ he, µ, α+ hβ) + fn(x− he, µ, α− hβ)− 2fn(x, µ, α) ≤ c|h|2.

So for any µ ∈ P2(Rd), the function Rd×Rk 3 (x, α) ↪→ fn(x, µ, α)− c[|x|2 + |α|2] is concave and
fn(·, µ, ·) is C1,1, the Lipschitz constant of the derivatives being uniform in n ≥ 1 and µ ∈ P2(Rd).
Moreover, by definition, the function fn(·, µ, ·) is n-Lipschitz continuous in the variable x, that is
∂xfn is bounded, as required.

Third Step. We now investigate (A.5). Given δ > 0, R > 0 and n ≥ 1, we consider x ∈ Rd,
α ∈ Rk, µ, µ′ ∈ P2(Rd) such that

(79) max
(
|x|, |α|,M2(µ),M2(µ′)

)
≤ R, W2(µ, µ′) ≤ δ.
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By (A.5) and (77), we can find a constant c′ (possibly depending on γ) such that

fn(x, µ′, α) = sup
|y|≤n

inf
|z|≤c(1+R)

[
〈y, x− z〉+ f(z, µ′, α)

]
≤ sup
|y|≤n

inf
z≤c(1+R)

[
〈y, x− z〉+ f(z, µ, α) + cL(1 +R+ |z|)δ

]
= sup
|y|≤n

inf
z∈Rd

[
〈y, x− z〉+ f(z, µ, α)

]
+ c′(1 +R)δ.

(80)

This proves local Lipschitz-continuity in the measure argument as in (A.5).
In order to prove local Lipschitz-continuity in the variables x and α, we use the C1,1-property.

Indeed, for x, µ and α as in (79), we know that

(81)
∣∣∂xfn(x, µ, α)

∣∣+
∣∣∂αfn(x, µ, α)

∣∣ ≤ ∣∣∂xfn(0, µ, 0)
∣∣+
∣∣∂αfn(0, µ, 0)

∣∣+ cR.

By (72), for any integer p ≥ 1, there exists an integer np, such that, for any n ≥ np, fn(0, µ, 0) and
f(0, µ, 0) coincide for M2(µ) ≤ p. In particular, for n ≥ np,

(82)
∣∣∂xfn(0, µ, 0)

∣∣+
∣∣∂αfn(0, µ, α)

∣∣ ≤ c(1 +M2(µ)
)

whenever M2(µ) ≤ p,

so that (81) implies (A.5) whenever n ≥ np and M2(µ) ≤ p. We get rid of these restrictions by
modifying the definition of fn. Given a probability measure µ ∈ P2(Rd) and an integer p ≥ 1, we
define Φp(µ) as the push-forward of µ by the mapping Rd 3 x ↪→

[
max

(
M2(µ), p

)]−1
px so that

Φp(µ) ∈ P2(Rd) and M2(Φp(µ)) ≤ min(p,M2(µ)). Indeed, if X has µ as distribution, then the
r.v. Xp = pX/max(M2(µ), p) has Φp(µ) as distribution. It is easy to check that Φp is Lipschitz
continuous for the 2-Wasserstein distance, uniformly in n ≥ 1. We then consider the approximating
sequence

f̂p : Rd × P2(Rd)× Rk 3 (x, µ, α) ↪→ fnp
(
x,Φp(µ), α), p ≥ 1,

instead of (fn)n≥1 itself. Clearly, on any bounded subset, f̂p still coincides with f for p large enough.
Moreover, the conclusion of the second step is preserved. In particular, the conclusion of the second
step together with (80), (81) and (82) say that (A.5) holds (for a possible new choice of cL). From
now on, we get rid of the symbol “hat” in (f̂p)p≥1 and keep the notation (fn)n≥1 for (f̂p)p≥1.

Fourth Step. It only remains to check that fn satisfies the bound (A.6) and the sign condition (A.7).
Since |∂αf(x, µ, 0)| ≤ cL, the Lipschitz property of ∂αf implies that there exists a constant c ≥ 0
such that |∂αf(x, µ, α)| ≤ c for all (x, µ, α) ∈ Rd×P2(Rd)×Rk with |α| ≤ 1. In particular, for any
n ≥ 1, it is plain to see that fn(x, µ, α) ≤ fn(x, µ, 0) + c|α|, for any (x, µ, α) ∈ Rd ×P2(Rd)×Rk
with |α| ≤ 1, so that |∂αfn(x, µ, 0)| ≤ c. This proves (A.6).

Finally, we can modify the definition of fn once more to satisfy (A.7). Indeed, for anyR > 0, there
exists an integer nR, such that, for any n ≥ nR, fn(x, µ, α) and f(x, µ, α) coincide for (x, µ, α) ∈
Rd×P2(Rd)×Rk with |x|, |α|,M2(µ) ≤ R so that 〈x, ∂xfn(0, δx, 0)〉 ≥ −cL(1 + |x|), for |x| ≤ R
and n ≥ nR. Next we choose a smooth function ψ : Rd ↪→ Rd, satisfying |ψ(x)| ≤ 1 for any x ∈ Rd,
ψ(x) = x for |x| ≤ 1/2 and ψ(x) = x/|x| for |x| ≥ 1, and we set f̂p(x, µ, α) = fnp

(
x,Ψp(µ), α

)
for any integer p ≥ 1 and (x, µ, α) ∈ Rd × P2(Rd) × Rk where Ψp(µ) is the push-forward of µ by
the mapping Rd 3 x ↪→ x−µ+ pψ(p−1〈µ〉). Recall that µ stands for the mean of µ. In other words,
if X has distribution µ, then X̂p = X − E(X) + pψ(p−1E(X)) has distribution Ψp(µ).
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Ψp is Lipschitz continuous with respect to W2, uniformly in p ≥ 1. Moreover, for any R > 0
and p ≥ 2R, M2(µ) ≤ R implies |

∫
Rd x

′dµ(x′)| ≤ R so that p−1|
∫
Rd x

′dµ(x′)| ≤ 1/2, that is
Ψp(µ) = µ and, for |x|, |α| ≤ R, f̂p(x, µ, α) = fnp(x, µ, α) = f(x, µ, α). Therefore, the sequence
(f̂p)p≥1 is an approximating sequence for f which satisfies the same regularity properties as (fn)n≥1.
In addition,

〈x, ∂xf̂p(0, δx, 0)〉 = 〈x, ∂xfnp(0, δpψ(p−1x), 0)〉 = 〈x, ∂xf(0, δpψ(p−1x), 0)〉

for x ∈ Rd. Finally we choose ψ(x) = [ρ(|x|)/|x|]x (with ψ(0) = 0), where ρ is a smooth non-
decreasing function from [0,+∞) into [0, 1] such that ρ(x) = x on [0, 1/2] and ρ(x) = 1 on [1,+∞).
If x 6= 0, then the above right-hand side is equal to

〈x, ∂xf(0, δpψ(p−1x), 0)〉 =
|p−1x|
ρ(|p−1x|)

〈pψ(p−1x), ∂xf(0, δpψ(p−1x), 0)〉

≥ −cL
|p−1x|
ρ(|p−1x|)

(
1 + |pψ(p−1x)|

)
.

For |x| ≤ p/2, we have ρ(p−1|x|) = |p−1x|, so that the right-hand side coincides with −cL(1 + |x|).
For |x| ≥ p/2, we have ρ(p−1|x|) ≥ 1/2 so that

− |p−1x|
ρ(|p−1x|)

(
1 + |pψ(p−1x)|

)
≥ −2p−1|x|

(
1 + |pψ(p−1x)|

)
≥ −2p−1|x|

(
1 + p

)
≥ −4|x|.

This proves that (A.7) holds with a new constant. �
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[15] M. Huang, P.E. Caines, and R.P. Malhamé. Large population cost coupled LQG problems with nonuniform agents:
individual mass behavior and decentralized ε-Nash equilibria. IEEE Transactions on Automatic Control, 52:1560–
1571, 2007.

[16] B. Jourdain, S. Meleard, and W. Woyczynski. Nonlinear SDEs driven by Lévy processes and related PDEs. ALEA,
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