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A MIXED FORMULATION FOR THE BRINKMAN PROBLEM ∗

PANAYOT S. VASSILEVSKI† AND UMBERTO VILLA ‡

Abstract. The Brinkman model is a unified law governing the flow of a viscous fluid in cavity
(Stokes equations) and in porous media (Darcy equations). In this work, we explore a novel mixed
formulation of the Brinkman problem. Introducing the flow’s vorticity as additional unknown, this
formulation allows for a uniformly stable and conforming discretization by standard finite elements
(Nédélec, Raviart-Thomas, piecewise discontinuous). The theoretical results are illustrated with
numerical experiments. Based on our stability analysis of the problem in the H(curl; Ω)−H(div; Ω)−
L2(Ω) norms, we derive, in a follow-up paper ([34]), a scalable block diagonal preconditioner which
takes advantage of the auxiliary space AMG solvers for H(curl) and H(div) problems available in
the preconditioning library hypre ([19]) developed at LLNL.

Key words. Brinkman problem; Stokes-Darcy coupling; saddle point problems; block precon-
ditioners; algebraic multigrid.

Introduction. The Brinkman equations describe the flow of a viscous fluid in
cavity and porous media. It was initially proposed in [1], [2] as a homogenization
technique for the Navier-Stokes equations. Typical applications of this model are in
underground water hydrology, petroleum industry, automotive industry, biomedical
engineering, and heat pipes modeling.

Mathematically speaking the Brinkman model is a parameter-dependent combi-
nation of the Darcy and Stokes models. Since in real applications the number and
the locations of the Stokes-Darcy interfaces might not be known a priori, the unified
equations in the Brinkman model represent an advantage over the domain decom-
position methods coupling the Darcy and the Stokes equations. However, the high
variability in the PDE coefficients, that may take extremely large or small values,
negatively affects the conditioning of the discrete problem which poses a substantial
challenge for developing efficient preconditioners for this problem.

Another challenging aspect of the Brinkman model is the construction of a sta-
ble finite element discretization ([35]). In [24], it is proved that inf-sup compatible
finite element for Stokes (Taylor-Hood, P2 – P0, Crouzeix-Raviart – P0, mini ele-
ments) will lead to non-convergent discretizations in the limit Darcy case (viscosity
ν → 0 or inverse permeability k → ∞) and that Raviart-Thomas elements for the
discretization of the velocity field fail in the case ν 6= 0, since they are not H1(Ω)-
conforming. Numerous approaches have been proposed in the literature to address
the numerical stability of various discretizations. Among those, in [12] and [13], the
authors introduce jumps penalization on the normal component of the velocity field
or on the pressure field to stabilize the Crouzeix-Raviart – P0 finite elements or P1
– P0 finite elements, respectively. In [15], an augmented Lagrangian approach and a
least squares stabilization is explored in order to use inf-sup compatible Taylor-Hood
elements also in the Darcy case, while in [24] and [18] high order non-conforming
elements are investigated.

In the present paper, we analyze a mixed formulation of the Brinkman problem,
in which we introduce the (scaled) flow vorticity as additional unknown. We prove
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the well-posedness of the mixed formulation in the abstract framework of de Rham
homology and Hilbert complexes, extending to the Brinkman problem the analysis of
the mixed formulation of the Stokes problem in ([8], [4]). The numerical stability of
the method is guaranteed by an appropriate choice of the finite elements spaces. The
particular choice of Nédélec, Raviart-Thomas and piecewise discontinuous elements,
in fact, reproduces the same embedding and mapping properties of the continuous
spaces in the finite elements spaces. The linear system obtained after finite element
discretization has a symmetric saddle point form. In contrast to the penalization
methods for the Brinkman problem ([12], [13]), the proposed approach allows for a
conforming discretization by standard finite elements. We also illustrate our analysis
with numerical examples regarding the behavior of the discretization errors in the
H(curl; Ω)-norm of the vorticity, in the H(div; Ω)-norm of the velocity and in the
L2(Ω)-norm of the pressure. We numerically observe some suboptimal error behavior
of the (scaled) vorticity in the Darcy limit, while velocity and pressure exhibit uniform
error decay rates with respect to the inverse permeability coefficient k(x).

We should point out on one possible disadvantage of the mixed formulation ap-
proach, namely that the Hodge decomposition holds only for particular sets of bound-
ary conditions ([4]). On the other hand, the proven stability of our mixed discretiza-
tion allows us to consider effective preconditioning techniques for the discrete saddle
point problem. Following the approach in [25], we construct in [34] a block diagonal
preconditioner with optimal convergence properties based on the stability analysis
of the continuous problem. Such preconditioner has on its main diagonal the finite
element matrices corresponding to the H(curl; Ω), H(div; Ω), and L2(Ω) norms in-
volved in the stability estimates. To improve the efficiency of the preconditioner, we
resort (in [34]) to the recently developed auxiliary space multigrid preconditioner for
H(div) and H(curl) problems. The resulting (inexact) block-diagonal preconditioner
appears to be robust with respect to constant and smoothly varying coefficient k(x).
The general case of fully robust (with respect to coefficient variation) preconditioning
method is still an open problem. One possible approach is to develop appropriate
adaptive (element-based) algebraic multigrid techniques that respect the entire de
Rham complex on coarse levels. For some progress in that direction, we refer to [30],
[23].

The remainder of the present paper is structured as follows. In Section 1, we
briefly derive the mixed formulation of the Brinkman problem based on the Hodge
Laplacian, and, in Section 2, we provide a stability estimate for the weak formulation.
In Section 3, we address the numerical discretization of the mixed formulation with
Nédélec, Raviart-Thomas and piecewise polynomial discontinuous finite element which
leads to a large sparse saddle point linear system. In Section 4, we briefly outline
our block-diagonal preconditioner. Finally, in Section 5 we present numerical results
illustrating the error behavior of our discretization schemes for the case of constant
coefficient, smoothly varying coefficient, and discontinuous coefficient.

1. Mixed formulation of the Brinkman Problem. We assume that Ω is a
bounded simply connected domain in Rd with a regular (Lipschitz continuous) simply
connected boundary ∂Ω that has well-defined (almost everywhere) unit outward nor-
mal vector n ∈ Rd. In what follows, sometimes we borrow some terminology from the
finite element exterior calculus, e.g. from [8], without explicitly referring to this (or
other) source. However, we keep this to a minimum to ensure that the presentation
is self-contained. We also mostly consider the case d = 3, as the analysis can be
extended to the two-dimensional Brinkman problem with minimal variations.
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The generalized Brinkman problem reads
−ν ∆u + k(x) u +∇p = f(x), ∀ x ∈ Ω
div u = g(x), ∀ x ∈ Ω
u× n = g, on ∂Ω
−p+ ν div u = h, on ∂Ω,

(1.1)

where ν ≥ 0 is the fluid viscosity and k(x) is the inverse permeability of the medium.
The challenge of this problems is when the coefficient k = k(x) takes two extreme
values O(1) and O(1/ε) in different parts of Ω. In the part of the domain with
k = O(1), the PDE behaves like a Stokes problem, whereas in the rest of the domain,
it behaves like the Darcy equations.

In the present work, for simplicity, we assume natural boundary conditions on ∂Ω.
However, other set of boundary conditions, like the essential boundary conditions
(u · n = un, σ × n = στ ), can also be treated in a similar way. For the Hodge
Laplacian, natural boundary conditions are also known in the literature as electric
boundary conditions while the essential ones as magnetic boundary conditions due to
the close relation with Maxwell’s equations. In our work, we do not consider the case
of full Dirichlet boundary condition, as the mixed formulation is harder to analyze; it
leads to suboptimal discretization error behavior ([4]).

To obtain a mixed formulation of the Brinkman problem (1.1), we exploit the
vector calculus identity

∆u = ∇ div u− curl curl u,

and we define the (scaled) vorticity variable

σ = ε curl u, ε =
√
ν.

After some straightforward manipulations, the mixed formulation reads


σ − ε curl u = 0, ∀ x ∈ Ω
ε curl σ − ε2∇ div u + k(x) u +∇p = f(x), ∀ x ∈ Ω
div u = g(x), ∀ x ∈ Ω
u× n = g, on ∂Ω
−p+ ε2div u = h, on ∂Ω.

(1.2)

1.1. Functional spaces and orthogonal decompositions. We now introduce
some notation used throughout the remainder of the paper. For vectorial functions
u,v ∈ L2(Ω) = [L2(Ω)]d and scalar functions p, q ∈ L2(Ω), we define the inner
products (u,v) =

∫
Ω

u ·v dΩ and (p, q) =
∫
Ω
p q dΩ. Similarly, we denote by ‖v‖ and

‖p‖ the norms induced by the above inner products.
To come up with the weak formulation of the system (1.2), we introduce the functional
spaces Q, R and W , defined as

- Q ≡ H(curl; Ω) :=
{
σ ∈ L2(Ω) | curl σ ∈ L2(Ω)

}
, equipped with the norm

‖τ‖2Q = ‖τ‖2 + ‖curl τ‖2;

- R ≡ H(div; Ω) :=
{
u ∈ L2(Ω) | div u ∈ L2(Ω)

}
, equipped with the norm

‖v‖2R = ‖v‖2 + ‖div v‖2;
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- W ≡ L2(Ω), equipped with the norm

‖q‖2W = ‖q‖2.

We denote with Q∗, R∗, and W ∗ the dual spaces of Q, R, and W , respectively.
It is clear that in the case of essential (magnetic) boundary conditions, the respec-
tive spaces Q, R are proper subsets of H(curl; Ω), H(div; Ω); Q, R then consist of
functions with vanishing tangential or normal boundary traces.

We need next the orthogonal decompositions of H(curl; Ω) and H(div; Ω) asso-
ciated with the kernels of the respective differential operators. Such decompositions
are of utmost importance in the stability analysis of the mixed problem, and for the
derivation of the auxiliary space multigrid preconditioners for such spaces ([5], [6]).

The assumption that the domain Ω is simply connected with simply connected
boundary, also called contractible (that is, any cycle in Ω is homologous to a point in
Ω), guarantees that de Rham sequence

0 → H1(Ω)\R ∇−−−→ H(curl; Ω) curl−−−−→ H(div; Ω) div−−−→ L2(Ω) → 0 (1.3)

is exact. In other words, the space of the k-harmonic forms has dimension 0 for all k =
1, 2, 3, or, equivalently, we have that range(∇)⊥ ∩ ker(curl) = {0} and range(curl)⊥ ∩
ker(div) = {0}. Therefore, we have that these nullspaces are defined as X = {τ ∈
H(curl; Ω) | ∃ψ ∈ H1(Ω) : τ = ∇ψ} and Y = {v ∈ H(div; Ω) | ∃ψ ∈ H(curl; Ω) :
v = curl ψ}. The original spaces admit the following orthogonal decompositions:

H(curl; Ω) = X⊕X⊥, H(div; Ω) = Y ⊕Y⊥,

which imply the Poincaré inequalities

‖τ⊥‖H(curl;Ω) ≤ γ‖curl τ⊥‖L2(Ω), ∀ τ⊥ ∈ X⊥,
and ‖v⊥‖H(div;Ω) ≤ β‖div v⊥‖L2(Ω), ∀ v⊥ ∈ Y⊥,

(1.4)

with constants γ and β which depend only on the domain Ω. The orthogonal com-
plement spaces are characterized as

X⊥ = {τ ∈ H(curl; Ω) ∩H(div; Ω) | div τ = 0 in Ω, τ · n = 0 on ∂Ω} ,
and Y⊥ =

{
v ∈ H(div; Ω) | ∃φ ∈ H1

0 (Ω) : v = ∇φ
}
.

For more complete characterization of such spaces and for the orthogonal decompo-
sitions in the case of essential (magnetic) boundary conditions we refer, for example,
to [33, Appendix A] or [26, 31].

1.2. Weak formulation. To obtain the weak formulation, we first multiply
system (1.2) by τ ∈ Q, v ∈ R, q ∈W and integrate over Ω:

∫
Ω

σ · τ dΩ−
∫
Ω

ε (curl u) · τ dΩ = 0, ∀ τ ∈ Q∫
Ω

ε (curl σ) · v dΩ−
∫
Ω

ε2 (∇div u) · v dΩ +
∫
Ω

k(x) u · v dΩ +
∫
Ω

(∇p) · v dΩ =

=
∫
Ω

f · v dΩ, ∀ v ∈ R∫
Ω

(div u) q dΩ =
∫
Ω

g q dΩ, ∀ q ∈W.
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By letting γT (τ ) = (n× τ |∂Ω) × n, γn(v) = n · v|∂Ω and exploiting some basic
integration-by-parts identities ([27, Chapter 3]), the non-conforming terms become

−
∫
Ω

ε (curl u) · τ dΩ = −
∫
Ω

ε u · (curl τ ) dΩ +
∫

∂Ω

ε (u× n) · γT (τ ) dS =

−
∫
Ω

ε u · (curl τ ) dΩ +
∫

∂Ω

ε g · γT (τ ) dS,

and

−
∫
Ω

ε2 (∇div u) · v dΩ +
∫
Ω

(∇ p) · v dΩ =

=
∫
Ω

ε2 (div u) (div v) dΩ−
∫
Ω

p (div v) dΩ +
∫

∂Ω

(p− ε2 div u) γn(v) dS =

=
∫
Ω

ε2 (div u) (div v) dΩ−
∫
Ω

p (div v) dΩ−
∫

∂Ω

h γn(v) dS.

Therefore a weak solution σ ∈ Q, u ∈ R, and p ∈W of (1.2) satisfies the following
variational problem

∫
Ω

σ · τ dΩ−
∫
Ω

ε u · (curl τ ) dΩ = −
∫

∂Ω

ε g · γT (τ ) dS, ∀ τ ∈ Q∫
Ω

ε (curl σ) · v dΩ +
∫
Ω

ε2 (div u) (div v) dΩ +
∫
Ω

k(x) u · v dΩ−
∫
Ω

p (div v) dΩ =

=
∫
Ω

f · v dΩ +
∫

∂Ω

h γn(v) dS, ∀ v ∈ R∫
Ω

(div u) q dΩ =
∫

Ω

g q dΩ, ∀ q ∈W.

(1.5)
The variational problem above can be written as an abstract saddle-point problem

of the form
Problem 1.1. Find (σ,u, p) ∈ Q×R×W such that m(σ, τ ) −c∗(u, τ ) = F (τ ), ∀ τ ∈ Q

−c(σ,v) −a(u,v)− d(u,v) +b∗(p,v) = G(v), ∀ v ∈ R
b(u, q) = H(q), ∀ q ∈W

(1.6)

where

m(σ, τ ) = (σ, τ ), σ, τ ∈ Q
c(σ, v) = ε (Cσ, v), σ ∈ Q, v ∈ R,
a(u, v) = ε2(Bu, Bv), u, v ∈ R,
d(u, v) = (k(x) u, v), u, v ∈ R,
b(u, q) = (Bu, q), u ∈ R, q ∈W.

(1.7)

Here C, B denote some differentiation operators (curl and div), and F ∈ Q∗, G ∈ R∗,
H ∈W ∗ are bounded functionals that take into account volume forces and boundary
conditions.
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2. Well-posedness of the mixed variational formulation. Before studying
the well-posedness of the mixed formulation of the Brinkman problem (1.1), we recall
the following classical result due to Babuška ([9]).

Theorem 2.1. Let B : X ×X → R be a symmetric bounded bilinear form on a
Hilbert space X which satisfies the inf-sup condition

α := inf
0 6=y∈X

sup
0 6=x∈X

B(x, y)
‖x‖X‖y‖X

> 0. (2.1)

Then the problem of finding B(x, y) = F(y) for all y ∈ X is well-posed: it has a
unique solution x for each F ∈ X∗, and the following a priori estimate holds

‖x‖X ≤ 1
α
‖F‖X∗ .

In what follows, we assume that the inverse permeability coefficient k(x) belongs
to L∞(Ω) ∩ L2(Ω), and we let kmax < +∞ be a constant such that

0 ≤ k(x) ≤ kmax almost everywhere in Ω.

Since (by assumption) the inverse permeability k(x) and the viscosity ε2 can not both
vanish at the same time, there exist constants κmin > 0 and κmax < +∞, such that

0 < κmin = kmin + ε2 ≤ k(x) + ε2 ≤ kmax + ε2 = κmax.

For the stability analysis of Problem 1.1, we use the following weighted norms

‖τ‖2Qw
= ‖τ‖2 +

ε2

κmax
‖Cτ‖2,

‖v‖2Rw
= κmin‖v‖2R = κmin‖v‖2 + κmin‖Bv‖2,

‖q‖2Ww
=

1
κmax

‖q‖2.

Remark 2.1. The weighted space Qw can be interpreted as intersection of Hilbert
spaces, that is Qw = L2(Ω)

⋂
ε2

κmax
H(curl; Ω). This space is equal to H(curl; Ω) as a

set, but the corresponding norm approaches the L2(Ω) norm as ε2

κmax
tends to zero. In

other words, the smaller this ratio, the less control we have on the L2(Ω) norm of the
curl of functions in Qw. For a detailed characterization of the intersection of Hilbert
spaces and of their dual spaces we refer, for example, to [11, Chapter 2] and [25].

The stability of the mixed formulation of the Brinkman problem, which is our
central result, is stated below.

Theorem 2.2. If ε ≥ 0 and k(x) ∈ L∞(Ω) ∩ L2(Ω), 0 < κmin ≤ k(x) + ε2 ≤
κmax almost everywhere in Ω, then for given continuous linear functionals F ∈ Q∗w,
G ∈ R∗w, H ∈ W ∗

w the generalized Brinkman problem (1.1) admits a unique solution
and the following a priori estimate holds:

‖σ‖2Qw
+ ‖u‖2Rw

+ ‖p‖2Ww
≤ C(Ω)(‖F‖2Q∗

w
+ ‖G‖2R∗

w
+ ‖H‖2W∗

w
),
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where C(Ω) is a constant depending only on the domain.
Proof. The variational mixed formulation of the Brinkman problem (1.1) can be

written in the form of Theorem 2.1, where X = Qw ×Rw ×Ww and B denotes the
symmetric bilinear form

B(σ,u, p; τ ,v, q) = (σ, τ )− ε(u, Cτ )

− ε(Cσ,v)− (k(x) u,v)− ε2(Bu,Bv) + (p,Bv) + (Bu, q), (2.2)

and F(τ ,v, q) = F (τ ) +G(v) +H(q).

Then, Lemmas 2.3 and 2.4 imply Theorem 2.2, by establishing respectively the
boundedness of B and the inf-sup condition (2.1) required by Babuška’s theorem
(Theorem 2.1).

Lemma 2.3. Under the hypothesis of Theorem 2.2, there exists a constant M
such that for any (σ,u, p), (τ ,v, q) ∈ Qw ×Rw ×Ww

|B(σ,u, p; τ ,v, q)| ≤

M
κmax

κmin

(
‖σ‖2Qw

+ ‖u‖2Rw
+ ‖p‖2Ww

) 1
2

(
‖τ‖2Qw

+ ‖v‖2Rw
+ ‖q‖2Ww

) 1
2 .

Proof. Simple applications of Cauchy–Schwarz inequalities show that the desired
boundedness holds with M = 2. Indeed, we have

|B(σ,u, p; τ ,v, q)| ≤ ‖σ‖‖τ‖+ ε‖u‖‖Cτ‖+ ε‖Cσ‖‖v‖+
+ kmax‖u‖‖v‖+ ε2‖Bu‖‖Bv‖+ ‖p‖‖Bv‖+ ‖Bu‖‖q‖ ≤

≤
(
‖σ‖2 +

ε2

κmax
‖Cσ‖2 + (κmax + kmax)‖u‖2 + (κmax + ε2)‖Bu‖2 +

1
κmax

‖p‖2
) 1

2

(
‖τ‖2 +

ε2

κmax
‖Cτ‖2 + (κmax + kmax)‖v‖2 + (κmax + ε2)‖Bv‖2 +

1
κmax

‖q‖2
) 1

2

. �

Lemma 2.4. Under the hypothesis of Theorem 2.2, there exists a constant α(Ω),
depending only on the Poincaré constants γ and β in (1.4), such that for any (σ,u, p) ∈
Qw ×Rw ×Ww, there exists a triplet (τ ,v, q) ∈ Qw ×Rw ×Ww such that

B(σ,u, p; τ ,v, q) ≥ α(Ω)(‖σ‖2Qw
+ ‖u‖2Rw

+ ‖p‖2Ww
)

1
2 (‖τ‖2Qw

+ ‖v‖2Rw
+ ‖q‖2Ww

)
1
2 .

Proof. By the orthogonal decomposition of H(div), we can write

u = Cϕ⊥ + u⊥, where ϕ⊥ ∈ X⊥ and u⊥ ∈ Y⊥.

Thanks to the orthogonal decompositions and the Poincaré inequalities in (1.4), we
have

‖ϕ⊥‖Q ≤ γ‖Cϕ⊥‖R ≤ γ‖u‖R, ‖u⊥‖R ≤ β‖Bu‖. (2.3)

In a similar way, using also the exactness of (1.3), we can write p = Bw⊥, where
w⊥ ∈ Y⊥ and

‖w⊥‖R ≤ β‖Bw⊥‖ = β‖p‖W . (2.4)



8 P. S. Vassilevski, U. Villa

For some positive real numbers ai, i = 1, 2, 3, 4 (to be specified later on), we choose

τ = σ − a1ϕ
⊥ ∈ Q, v = −u− a2Cσ + a3w⊥ ∈ R, q = p+ a4Bu ∈W. (2.5)

By direct substitution, we obtain

B(σ,u, p; τ ,v, q) = ‖σ‖2 − a1(σ,ϕ⊥)− ε(u, Cσ) + εa1(u, Cϕ⊥)

+ε(Cσ,u)+εa2‖Cσ‖2−εa3(Cσ,w⊥)+‖
√
k(x)u‖2 +a2(k(x)u, Cσ)−a3(k(x)u,w⊥)

+ ε2‖Bu‖2 + ε2a2(Bu,BCσ)− ε2a3(Bu,Bw⊥)− (p,Bu)− a2(p,BCσ) + a3(p,Bw⊥)

+ (Bu, p) + a4‖Bu‖2.

Exploiting orthogonality and obvious simplifications, noticing that (u, Cϕ⊥) = ‖Cϕ⊥‖2,
the above expression reduces to

B(σ,u, p; τ ,v, q) = ‖σ‖2 + εa1‖Cϕ⊥‖2 − a1(σ,ϕ⊥)

+ εa2‖Cσ‖2 + ‖
√
k(x)u‖2 + a2(k(x)u, Cσ)− a3(k(x)u,w⊥)

+ ε2‖Bu‖2 − ε2a3(Bu, p)

+ a3‖p‖2 + a4‖Bu‖2.

Applying Cauchy-Schwarz and Young inequalities, and the Poincaré inequalities
(2.3), (2.4), the remaining inner products are estimated as follows:

|a1(σ,ϕ⊥)| ≤ 1
2
‖σ‖2 +

a2
1

2
‖ϕ⊥‖2 ≤ 1

2
‖σ‖2 +

a2
1

2
γ2‖Cϕ⊥‖2,

|a2(k(x)u, Cσ)| ≤ 1
4
‖
√
k(x)u‖2 + a2

2‖
√
k(x)Cσ‖2 ≤ 1

4
‖
√
k(x)u‖2 + a2

2kmax‖Cσ‖2,

|a3(k(x)u,w⊥)| ≤ 1
4
‖
√
k(x)u‖2 + a2

3‖
√
k(x)w⊥‖2 ≤ 1

4
‖
√
k(x)u‖2 + a2

3kmaxβ
2‖p‖2,

|ε2a3(Bu, p)| ≤ ε2‖Bu‖2 +
ε2

4
a2
3‖p‖2.

Substituting the above inequalities in the expression for B we have

B(σ,u, p; τ ,v, q) ≥ 1
2
‖σ‖2 +

(
εa2 − a2

2kmax

)
‖Cσ‖2

+
kmin

2
‖u‖2 +

(
εa1 −

a2
1

2
γ2

)
‖Cϕ⊥‖2 + a4‖Bu‖2

+
(
a3 − a2

3(kmaxβ
2 +

ε2

4
)
)
‖p‖2.

Then we choose a1 = ε
γ2 = O(ε), a2 = ε

2kmax+ε2 = O( ε
κmax

), a3 = 2
(4kmaxβ2+ε2) =

O( 1
κmax

) and a4 = κmin, so that

B(σ,u, p; τ ,v, q) ≥ 1
2
‖σ‖2 +

ε2

4κmax
‖Cσ‖2

+
kmin

2
‖u‖2 +

ε2

2γ2
‖Cϕ⊥‖2 + κmin‖Bu‖2 +

1
4kmaxβ2 + ε2

‖p‖2.
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Recalling that u = u⊥ + Cϕ⊥ and by using the second inequality in (2.3), we have

kmin
2 ‖u‖2 + ε2

2γ2 ‖Cϕ⊥‖2 + κmin‖Bu‖2

≥ kmin
2

(
‖u⊥‖2 + ‖Cϕ⊥‖2

)
+ ε2

2γ2 ‖Cϕ⊥‖2 + κmin
2β2 ‖u⊥‖2 + κmin

2 ‖Bu‖2

≥
(

kmin
2 + κmin

2β2

)
‖u⊥‖2 +

(
kmin

2 + ε2

2γ2

)
‖Cϕ⊥‖2 + κmin

2 ‖Bu‖2

=
(
( 1
2 + 1

2β2 )kmin + ε2

2β2

)
‖u⊥‖2 +

(
kmin

2 + ε2

2γ2

)
‖Cϕ⊥‖2 + κmin

2 ‖Bu‖2

≥ 1
2 min(1, 1

γ2 ,
1

β2 ) κmin

(
‖u⊥‖2 + ‖Cϕ⊥‖2

)
+ κmin

2 ‖Bu‖2
= 1

2 min(1, 1
γ2 ,

1
β2 ) κmin ‖u‖2 + κmin

2 ‖Bu‖2
≥ 1

2 min(1, 1
γ2 ,

1
β2 ) κmin ‖u‖2R.

Using this estimate in the above estimate for B, implies

B(σ,u, p; τ ,v, q) ≥ c(Ω)
(
‖σ‖2 +

ε2

κmax
‖Cσ‖2 + κmin‖u‖2R +

1
κmax

‖p‖2W
)

= c(Ω)
(
‖σ‖2Qw

+ ‖u‖2Rw
+ ‖p‖2Ww

)
, (2.6)

where c(Ω) is a constant depending only on the Poincaré constants γ and β.
To conclude, we notice that(

‖τ‖2Qw
+ ‖v‖2Rw

+ ‖q‖2Ww

)
≤ [c(Ω)]2

(
‖σ‖2Qw

+ ‖u‖2Rw
+ ‖p‖2Ww

)
, (2.7)

where c(Ω) is a constant depending only on the Poincaré constants γ and β. In fact,
the following inequalities hold:

1
2
‖τ‖2Qw

≤ ‖σ‖2Qw
+ a2

1‖ϕ⊥‖2Qw
≤ ‖σ‖2Qw

+
ε2

γ4
‖u‖2R ≤ ‖σ‖2Qw

+
1
γ4
‖u‖2Rw

,

1
3
‖v‖2Rw

≤ ‖u‖2Rw
+ a2

2κmin‖Cσ‖2 + a2
3κmin‖w⊥‖2R

≤ ‖u‖2Rw
+
κminε

2

κ2
max

‖Cσ‖2 + c(β)
κmin

κ2
max

‖p‖2W

≤ ‖u‖2Rw
+
κmin

κmax
‖σ‖2Qw

+ c(β)
κmin

κmax
‖p‖2Ww

,

1
2
‖q‖2Ww

≤ ‖p‖2Ww
+ a2

4

1
κmax

‖Bu‖2 ≤ ‖p‖2Ww
+
κ2

min

κmax
‖u‖2R ≤ ‖p‖2Ww

+
κmin

κmax
‖u‖2Rw

.

Above, c(β) = 4β2

min2(4β2,1)
. Therefore the inf-sup condition for B follows by taking

α(Ω) = c(Ω)c(Ω). �

3. Discretization. In this section, we discuss the discretization of the complete
de Rham complex, even though the Brinkman problem explicitly involves only the last
three spaces of the sequence. In order to achieve stability of the discretized problem,
the discrete spaces Sh ⊂ H1(Ω), Qh ⊂ Q, Rh ⊂ R, Wh ⊂ W should preserve the de
Rham complex structure of the continuous case (see [7, 8] for more details):

H1(Ω)\R ∇−−−→ Q curl−−−−→ R div−−−→ Wy y y y
Sh\R

∇−−−→ Qh
curl−−−−→ Rh

div−−−→ Wh

.
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A standard choice for numerical discretization of the Hodge Laplacian is the
following. For a given integer r ≥ 0, we let Sh be the continuous piecewise polynomial
of degree at most r + 1, Qh the (r + 1)-th order Nédélec finite elements ([28]), Rh

the r-th order Raviart-Thomas finite elements ([32, 28]), and Wh the discontinuous
piecewise polynomials finite element of degree at most r.

In fact, this choice of finite elements guarantees that the commutativity property

curl ΠQ
h = ΠR

h curl, and div ΠR
h = ΠW

h div

holds ([5], [6]). Here, ΠV
h : V 7→ Vh denotes the canonical interpolation operator

from the continuous space V into the finite element counterpart Vh, V := Q, R, W .
Moreover, the above commutativity property together with the exactness of the

continuous de Rham complex (for simply connected domain Ω with simply connected
boundary) implies the discrete orthogonal decompositions

Rh = curlQh ⊕∇hWh, and Qh = ∇Sh ⊕ curlhRh,

where ∇h : Wh → Rh is the adjoint of the map −div : Rh →Wh, and curlh : Rh →
Qh is the adjoint map of curl : Qh → Rh.

An important result in [7, 8] guarantees that the discrete Poincaré inequalities

‖τ⊥h ‖Q ≤ γh‖curl τ⊥h ‖L2 , ∀ τ⊥h ∈ curlhRh,
and ‖v⊥h ‖R ≤ βh‖div v⊥h ‖L2 , ∀ v⊥h ∈ ∇hWh

(3.1)

hold with constants γh and βh bounded independently of h. Since ∇hWh 6⊂ Y⊥

and curlhRh 6⊂ X⊥, the above results is not trivial, and it requires the construction
of a bounded cochain projector operator πh from the continuous to the discrete de
Rham complex. Such bounded projectors can be derived by composing the canonical
interpolation operators ΠV

h with commutative smoothing operators ([14]). Then γh ≤
γ‖πh‖ and βh ≤ β‖πh‖, where the norm of the cochain projector ‖πh‖ is uniformly
bounded with respect to h. We refer to [7, 8] for the complete proof.

3.1. Analysis of the discrete problem. We now proceed with the analysis of
the finite dimensional approximation of the variational problem, Problem 1.1. The
Galerkin formulation of the problem reads

Problem 3.1. Find (σh,uh, ph) ∈ Qh ×Rh ×Wh such that m(σh, τh) −c∗(uh, τh) = F (τh), ∀ τh ∈ Qh

−c(σh,vh) −a(uh,vh)− d(uh,vh) +b∗(ph,vh) = G(vh), ∀ vh ∈ Rh

b(uh, qh) = H(qh), ∀ qh ∈Wh

Stability of the Galerkin problem, Problem 3.1, is equivalent to the inf-sup con-
dition for B restricted to the finite element space ([10]), which is stated below.

Lemma 3.1. Under the hypothesis of Theorem 2.2, there exists a constant αh,
depending only on the constants γh and βh in the discrete Poincaré inequalities (3.1),
such that for any (σh,uh, ph) ∈ Qh ×Rh ×Wh there is a triplet (τh,vh, qh) ∈ Qh ×
Rh ×Wh for which the following estimate holds:

B(σh,uh, ph; τh,vh, qh) ≥

αh(‖σh‖2Qw
+ ‖uh‖2Rw

+ ‖ph‖2Ww
)

1
2 (‖τh‖2Qw

+ ‖vh‖2Rw
+ ‖qh‖2Ww

)
1
2 .
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Proof. The proof in the discrete case closely follows the proof given before for the
continuous case in Lemma 2.4. Given uh ∈ Rh there exists ϕ⊥h ∈ curlhRh ⊂ Qh and
u⊥h ∈ ∇hWh ⊂ Rh such that

uh = curl ϕ⊥h + u⊥h , ‖ϕ⊥h ‖Q ≤ γh‖curl ϕ⊥‖R, ‖u⊥h ‖R ≤ βh‖div uh‖.

Similarly, given ph ∈ Wh, there exists w⊥h ∈ ∇hWh, such that ph = div w⊥h and
‖w⊥h ‖R ≤ βh‖ph‖W . The result now follows by taking

τh = σh−a1ϕ
⊥
h ∈ Qh, vh = −uh−a2curl σh+a3w⊥h ∈ Rh, qh = ph+a4div u⊥h ∈Wh

instead of (2.5), and by using the discrete Poincaré inequalities (3.1) instead of the
continuous ones (1.4).

The convergence of the discrete solution to the continuous one directly follows
from the stability and consistency of the discrete problem.

Theorem 3.2. Let (σ,u, p) ∈ Q × R × W be the solution of the continuous
Problem 1.1 and let (σh,uh, ph) ∈ Qh × Rh × Wh be the solution of the discrete
Problem 3.1. Then

‖σ − σh‖2Qw
+ ‖u− uh‖2Rw

+ ‖p− ph‖2Ww
≤(

1 +
M

αh

κmax

κmin

)2 (
inf

τh∈Qh

‖σ − τh‖2Qw
+ inf

vh∈Rh

‖u− vh‖2Rw
+ inf

qh∈Wh

‖p− qh‖2Ww

)
.

Proof. The proof of this theorem is a direct application of the Babuška Theorem in
[9], and follows from the discrete inf-sup condition in Lemma 3.1 and the boundedness
of the bilinear form B in Lemma 2.3. �

Assuming certain smoothness of the continuous solutions and some regularity of
the finite element mesh, the above theorem implies the standard error estimate

‖σ − σh‖2Qw
+ ‖u− uh‖2Rw

+ ‖p− ph‖2Ww
= O(hr),

for the choice of (r+1)− th order Nédélec elements, r-th order Raviart-Thomas, and
r-th order piecewise discontinuous elements. We refer to [17, 28, 16, 3] for a detailed
analysis of the approximation properties of the Nédélec and Raviart-Thomas spaces.

In the following and in the numerical experiments, we restrict ourselves to the
case r = 0, i.e., to the first order Nédélec space Qh, the lowest order Raviart-Thomas
space Rh, and the piecewise constant elements, Wh. Such choice, as well known, leads
to discretization error of first order.

4. Preconditioning. The discrete Galerkin problem, Problem 3.1, leads to the
solution of a large sparse linear system

BX = B (4.1)

where the block matrix B and block vectors X and B read:

B =

M −CT 0
−C −A−D BT

0 B 0

 , X =

Σ
U
P

 , B =

F
G
H

 . (4.2)
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Here Σ ∈ Rdim(Qh), U ∈ Rdim(Rh), P ∈ Rdim(Wh) denote the vectors collecting
the finite element degrees of freedom σi

h, i = 1, . . . ,dim(Qh), ui
h, i = 1, . . . ,dim(Rh)

and pi
h, i = 1, . . . ,dim(Wh), and M , C, A, D, B are the finite element matrices whose

entries are given by

Mi,j = m(σj
h, τ

i
h) = (σj

h, τ
i
h), i, j = 1, . . . ,dim(Qh)

Ci,j = c(σj
h, vi

h) = ε (curl σj
h, vi

h), i = 1, . . . ,dim(Rh), j = 1, . . . ,dim(Qh)
Ai,j = a(uj

h, vi
h) = ε2(div uj

h, div vi
h), i, j = 1, . . . ,dim(Rh)

Di,j = d(uj
h, vi

h) = (k(x) uj
h, vi

h), i, j = 1, . . . ,dim(Rh)
Bi,j = b(uj

h, q
i
h) = (div uj

h, q
i
h), i = 1, . . . ,dim(Wh), j = 1, . . . ,dim(Rh).

The discretized linear system (4.1) has the form of a symmetric saddle-point
problem. In fact, if we reorder the unknowns as (Σ, P, U), then B admits the form M 0 −CT

0 0 B
−C BT −(A+D)

 .
It is clear then that B has dim(Qh)+dim(Wh) positive eigenvalues and dim(Rh) neg-
ative eigenvalues. An effective iterative method to solve linear system with symmetric
indefinite matrices is minres ([29]) employing a symmetric positive definite precondi-
tioner P.

To derive the preconditioner, we follow the approach presented in ([25]) to precon-
dition symmetric saddle point problems in a functional space setting. According to the
authors, the mapping properties of the differential operators of the continuous prob-
lem suggest that block diagonal preconditioners are natural choice for saddle point
problems. More specifically, given a stability estimate for the continuous problem in
some functional spaces, the block diagonal matrix, in which the blocks represent the
discretization of the inner products in those spaces, leads to a uniformly bounded (in
terms of h) preconditioner for the saddle point discrete system of interest.

As before, we consider the positive numbers wQ = ε2

κmax
, wR = κmin, wW = 1

κmax
,

and introduce the symmetric positive definite variational forms

q(σh, τh) = (σh, τh) + wQ(curl σh, curl τh), σh, τh ∈ Qh

r(uh,vh) = wR(uh,vh) + wR(div uh,div vh), uh,vh ∈ Rh

w(ph, qh) = wW (ph, qh), ph, qh ∈Wh.
(4.3)

The above forms define weighted inner products in Qw, Rw and Ww.
Therefore Lemma 3.1 and Lemma 2.3, based on [25], imply that a mesh indepen-

dent preconditioner for the saddle point problem (4.1) is given by

P =

Q 0 0
0 R 0
0 0 W

 , (4.4)

where Q, R, W are the matrix representation of the weighted inner products q(σh, τh),
r(uh,vh), and w(ph, qh) in (4.3). Moreover, letting K(P−1B) denote the spectral
condition number of the operator P−1B, the estimate

K(P−1B) ≤ M

αh

κmax

κmin
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holds with M in Lemma 2.3 and αh in Lemma 3.1, independent of h (see [34] for the
details).

In the particular case of constant coefficient k(x) = k0, the condition number is
independent of both the mesh size and k0. However, in the general case of variable
coefficient, the number of minres iterations to solve the preconditioned system will
still depend on the ratio κmax

κmin
.

We remark that, to improve efficiency, it is worth to substitute P−1 with a spec-
trally equivalent operator P̂−1 that is easier to apply. For example, a viable approach
is to let P̂ be an auxiliary space AMG preconditioner of P. In the numerical results
section, we use these preconditioners to solve the discrete systems needed for com-
puting the discretization error. For a more detailed description of the preconditioners
and their parallel performance, we refer to [34].

5. Numerical Results. The numerical results presented in this section are ob-
tained using the finite element library MFEM [http://code.google.com/p/mfem/],
developed at Lawrence Livermore National Laboratory (LLNL). MFEM is a general,
modular, parallel C++ library for finite element methods research and development.
It supports a wide variety of finite element spaces in 2D and 3D, as well as many
bilinear and linear forms defined on them. It includes classes for dealing with various
types of triangular, quadrilateral, tetrahedral and hexahedral meshes and their global
and local refinement. Parallelization in MFEM is based on MPI, and it leads to high
scalability in the finite element assembly procedure. It supports several solvers from
the hypre library (http://www.llnl.gov/CASC/hypre/). In particular, in our tests
we used the auxiliary space algebraic multigrid solvers for H(curl) and H(div) ([21],
[22]).

The initial meshes used in our simulation were generated with the unstructured
mesh generator netgen [http://www.hpfem.jku.at/netgen/].

The numerical results presented in this section were obtained on hera, a high per-
formance computer at LLNL. Hera has a total of 864 nodes connected by InfiniBand
DDR (Mellanox). Each node has 16 AMD Quad-Core Opteron 2.3Ghz CPUs, and
32GB of memory. Hera is running CHAOS 4.4, a linux kernel developed at LLNL,
specific for high performance computing.

Our code was compiled with the Intel mpiicc and mpiicpc compilers version
11.1.046.

The numerical results in this section aim to verify the accuracy of the mixed
formulation. In particular, we analyze three different test cases: the first for a constant
inverse permeability coefficient k(x) = k0, the second one for a variable but smooth
coefficient, and the third one for discontinuous coefficient.

5.1. Discretization error for constant coefficients.. We study the accuracy
of the discretization as function of the ratio k

ε2 in the case of constant inverse perme-
ability k. Obviously if k

ε2 = 0 the Brinkman problem reduces to the Stokes problem,
while if k

ε2 →∞ the Brinkman problem approaches the Darcy limit.
The analytical solution is given by

σex = επ

sin(πx) cos(πy)− cos(πz) sin(πx)
sin(πy) cos(πz)− cos(πx) sin(πy)
sin(πz) cos(πx)− cos(πy) sin(πz)

 , uex =

sin(πy) sin(πz)
sin(πz) sin(πx)
sin(πx) sin(πy)

 ,
pex = 8.0 sin(πx) sin(πy) sin(πz).
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z

x

y

(0,0,0)

(1,1,1)

Fig. 5.1. The unstructured mesh used in our accuracy tests.

The right hand side and the natural boundary conditions on ∂Ω are prescribed ac-
cordingly to the analytical solution. To avoid poorly scaled right hand sides, for a
given ratio k

ε2 we choose k and ε2 such that max(k, ε2) = 1.
The domain Ω = [0, 1]3 is discretized with an unstructured tetrahedral mesh with

474 elements (Figure 5.1). The original mesh is uniformly refined 5 times, and each
element of the mesh is divided in 8 through a bisection algorithm for tetrahedrons.
The total number of degrees of freedom ranges from around 2 thousand unknowns on
the coarsest mesh up to 65 millions on the finest mesh.

In Figure 5.2 we show the relative discretization errors in theH(curl; Ω),H(div; Ω)
and L2(Ω) norms. The systems were solved by using preconditioned minres with a
stopping criterion based on the relative residual norm. As expected from the theory,
uh linearly converges to uex in the H(div; Ω) norm and ph linearly converges to pex

in L2(Ω). Moreover the errors are independent of the ratio k
ε2 . The scaled vorticity

σh, instead, converges linearly to σex for moderate values of k
ε2 , while it shows a

degradation in the error behavior for higher values of such ratio.

5.2. Discretization error for non-constant smooth coefficients.. Now we
consider the case of non-constant coefficient k(x). For Ω = [0, 1]3 and c ≤ 1 being a
positive number, we take

k(x) =
1

sin(πy) sin(πz) + c
∀ x = (x, y, z) ∈ Ω. (5.1)

The number c controls how large are the variations in the coefficient k(x), since k(x)
ranges between kmin ∼ 1 and kmax ∼ 1

c . We let the viscosity ν = ε2 = 1 and we
choose the right hand side and the natural boundary conditions on ∂Ω be such that
the analytical solution is given by

σexact =

 0
π sin(πy) cos(πz)
−π cos(πy) sin(πx)

 , uexact =

sin(πy) sin(πz)
0
0

 , pexact = −x.

In this test we use the same initial mesh and refinement strategy as in the previous
case of constant coefficients.
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Fig. 5.2. Relative discretization error in the case of constant coefficients for different choices
of the ratio k

ε2 .
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Fig. 5.3. Relative discretization error in the non case of constant coefficients for different
choices of the ratio kmax

kmin
.

In Figure 5.3 we report the relative discretization error with respect to the an-
alytical solution. In all cases, we observe a linear error decay in the H(curl; Ω) −
H(div; Ω)− L2(Ω) energy norms of vorticity, velocity, and pressure.

5.3. Discretization error for coefficients with jumps. For this test we con-
sider the analytical solution of the so-called circular preferential flow pathway pro-
posed in [20]. Such solution describes the steady flow of an incompressible fluid
through a circular channel of radius R and length L in an infinite porous medium
in response to a constant pressure gradient ∆p

L in the direction of the channel. In-
side the preferential channel the inverse permeability is 0 (Stokes equations), outside
is constant and equal to k. Using a cylindrical coordinate system, r stands for the
distance from the centerline of the preferential channel, θ is the angle, and x is the
coordinate along the centerline; r̂, θ̂, x̂ are the unit vector in the radial, tangential,
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and centerline directions. The analytical solution of the flow is given by

σ =


∆p
4µL (−2r)θ̂ if r ≤ R

∆p
4µL

(
2R

K′
0(
√

kr)
K1(

√
kR)

)
θ̂ if r > R,

u =


∆p
4µL

(
R2 − r2 + 4

k + 2R√
k

K0(
√

kR)

K1(
√

kR)

)
x̂ if r ≤ R

∆p
4µL

(
4
k + 2R√

k

K0(
√

kr)

K1(
√

kR)

)
x̂ if r > R,

p =
∆p
2L

− ∆p
L
x,

where K0, K1 are the modified Bessel functions of II type.

In Figure 5.4, we show the velocity and vorticity profiles in the radial direction.
The velocity is continuous and differentiable with respect to r for each value of k,
while the vorticity has a jump in the radial derivative at the interface between the
preferential channel and the porous medium (r = R). Moreover for large value of
k, we observe a boundary layer in the porous medium next to the interface with the
preferential channel. In Figure 5.5, we show the three-dimensional solution computed
on the finest mesh.

The geometry for this test is a cylinder of radius 2 and length L = 1. Inside this
cylinder we embed a cylinder of radius R = 1 representing the preferential channel. To
improve accuracy, element faces are oriented as the interface between the preferential
channel and the porous medium so that no element belongs to both regions. The
total number of degrees of freedom ranges from three thousand on the coarser level
up to 10 millions on the finest one.

In Figure 5.6, we show the behavior of the discretization error for different values
of the inverse permeability k in the porous medium surrounding the preferential chan-
nel. We observe that the discretization errors in the H(div; Ω)-norm of the velocity
and L2(Ω)-norm of the pressure are optimal with respect to the choice of finite ele-
ments (O(h)). Similarly to what we already observed in the constant coefficient case,
the H(curl; Ω) norm of the discretization error for the vorticity field admits linear
decay only for moderate values of the inverse permeability k; while for higher values
(k = 105), we do not have convergence to the analytical solution. Indeed, to correctly
capture the steep gradient in the vorticity field, local anisotropic mesh refinement
should be used due to the developed boundary layer.

Conclusions. In this paper, we analyzed a mixed formulation of the Brinkman
problem by introducing the (scaled) vorticity as an additional unknown. The well-
posedness analysis of the mixed formulation was based on the Hodge decomposition,
and the numerical stability of the method was guaranteed by an analogous results
on the discrete level. The particular choice of Nédélec, Raviart-Thomas and piece-
wise discontinuous elements, in fact, reproduces the same embedding and mapping
properties of the continuous spaces in the finite elements spaces. Differently from
penalization methods for the Brinkman problem, our approach provides a conforming
discretization by standard finite elements. Discretization errors in the H(div; Ω) norm
of the velocity and in the L2(Ω) norm of the pressure show uniform linear decay rate
with respect to the inverse permeability coefficient k(x). Only the (scaled) vorticity
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Fig. 5.4. Velocity and vorticity profiles in the radial direction for different values of k.

Fig. 5.5. Numerical solution of the preferential channel on the finest grid (k = 1): velocity on
the left, vorticity in the center, pressure on the right.

is approximated with less accuracy as we approach the Darcy limit.
Despite the increased number of unknowns, the algebraic linear system obtained after
the finite element discretization can be efficiently solved with Krylov iterative methods
using block diagonal AMG preconditioning (demonstrated in [34]). A disadvantage
of the mixed formulation proposed in this paper is that the Hodge decomposition
holds only for particular sets of boundary conditions. As proved in [4], without the
Hilbert complex structure, the numerical method is less accurate. Future develop-
ments of interest include upscaling techniques and construction of a coarse hierarchy
that respects the de Rham complex with good approximation properties, to handle
the non-constant coefficient case with both upscaling and solver (multigrid) purpose.
The latter is feasible based on appropriate element-based algebraic multigrid (AMGe)
technique. For some progress in that direction, we refer to [30], [23]. Finally, in the
presence of stable hierarchy of coarse spaces, for stochastic coefficients, multilevel
Monte-Carlo process can be employed in order to perform numerical simulations for
underground flow of practical interest.
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