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Abstract

A grazing bifurcation corresponds to the collision of a periodic orbit with a switching

manifold in a piecewise-smooth ODE system and often generates complicated dynamics.

The lowest order terms of the induced Poincaré map expanded about a regular grazing

bifurcation constitute a Nordmark map. In this paper we study a normal form of the

Nordmark map in two dimensions with additive Gaussian noise of amplitude, ε. We show

that this particular noise formulation arises in a general setting and consider a harmoni-

cally forced linear oscillator subject to compliant impacts to illustrate the accuracy of the

map. Numerically computed invariant densities of the stochastic Nordmark map can take

highly irregular forms, or, if there exists an attracting period-n solution when ε = 0, be

well approximated by the sum of n Gaussian densities centred about each point of the de-

terministic solution, and scaled by 1
n
, for sufficiently small ε > 0. We explain the irregular

forms and calculate the covariance matrices associated with the Gaussian approximations

in terms of the parameters of the map. Close to the grazing bifurcation the size of the

invariant density may be proportional to
√
ε, as a consequence of a square-root singularity

in the map. Sequences of transitions between different dynamical regimes that occur as the

primary bifurcation parameter is varied have not been described previously.

1 Introduction

Deterministic, piecewise-smooth systems are commonly used as mathematical models of vibro-
impacting systems [1, 2, 3, 4]. Specific examples include atomic force microscopy [5, 6], gear
assemblies [7, 8], metal cutters [9, 10], and vibrating heat-exchanger tubes [11, 12]. Piecewise-
smooth systems are characterized by the presence of codimension-one regions of phase space,
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termed switching manifolds, across which the functional form of the system changes. In the
context of vibro-impacting systems, switching manifolds correspond to an impact or loss of con-
tact. Motion that involves recurring impacts is often born in the collision of an attracting
non-impacting periodic orbit with a switching manifold. This collision is known as a grazing
bifurcation, Fig. 1. Grazing bifurcations have been intensely analyzed and may be the cause of
complex dynamics including chaos, see [13] and references within. In this paper we study the
effect of noise on a common class of grazing bifurcations by analyzing a stochastic version of the
induced return map.

The effect of small noise on a well-understood deterministic system is often intuitive and
qualitatively predictable but in certain situations may produce interesting new dynamics. For
instance there are various mechanisms, such as coherence resonance, by which the addition of
noise to quiescent systems induces relatively regular oscillations [14, 15, 16], as well as more
complicated dynamics such as mixed-mode oscillations [17]. Alternatively noise may suppress
chaos [18]. Studies of stochastic versions of some prototypical models are found in [19, 20, 21,
22, 23].

In [24, 25], Griffin and Hogan study a one-dimensional piecewise-linear map with additive
noise. For uniformly distributed noise they calculate basins of attraction and widths of invariant
densities. With Gaussian noise the map resists such a precise analysis and instead numerical
results are presented revealing that the two types of noise produce qualitatively similar behaviour.
In a period-incrementing scenario, the invariant density of the stochastic map may undergo several
transitions (as distinguished by the number of peaks in the density) as the noise amplitude is
varied [26]. Numerical simulations of a two-dimensional ODE system with additive noise designed
such that the relevant Poincaré map is piecewise-linear, give essentially the same dynamics as the
map. In [27], numerical simulations of a noisy piecewise-smooth map are shown to exhibit many
similarities to the output of a DC/DC converter. Noise-induced stabilization in one-dimensional
discontinuous maps is described in [28].

Impact oscillators subject to noise have been studied from the point of view of characterizing
small-amplitude, noise-induced oscillations. The early work of Dimentberg and Menyailov [29]
concerns an unforced, damped, linear oscillator experiencing noise and instantaneous impacts

µ < 0 µ = 0 µ > 0

Σ Σ Σ

Figure 1: Phase space schematics illustrating a grazing bifurcation. The vertical line, Σ,
represents a switching manifold. The bifurcation occurs when a periodic orbit intersects the
switching manifold as a parameter, µ, is varied. Dynamics shortly after the bifurcation may be
extremely complex and depend on the stability multipliers of the non-impacting periodic orbit
and the precise nature of the grazing scenario [13].
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with either one wall or two symmetrically placed walls. Zhuravlev’s transformation [30, 4] con-
verts the stochastic equation of motion with an impact rule into a single discontinuous stochastic
differential equation. To then determine the invariant density of the position and velocity of the
oscillator, in the case that impacts are slightly inelastic the system may be treated as a perturba-
tion from a Hamiltonian system. Here stochastic averaging [31, 32, 33] leads to a simple stochastic
differential equation for the energy. The work [29] has been extended to compliant impacts [34],
Hertzian contacts [35], and nonlinear oscillators [36]. The presence of forcing adds significant
difficulty to the problem but has recently been investigated numerically and via stochastic av-
eraging [35, 37] and analyzed with series expansions and mean Poincaré maps in the context of
gear rattling [38, 39].

Grazing bifurcations are typically studied by deriving and analyzing a Poincaré map that
is valid in a neighbourhood of the bifurcation. Different grazing scenarios yield fundamentally
different Poincaré maps. In two dimensions, a normal form of the Nordmark map is:

[

x′

y′

]

=















A

[

x

y

]

+

[

0
1

]

µ , x ≤ 0

A

[

x

y − χ
√
x

]

+

[

0
1

]

µ , x ≥ 0
, (1.1)

where

A =

[

τ 1
−δ 0

]

, χ = ±1 , (1.2)

and τ, δ ∈ R. This map applies to both regular grazing in three-dimensional, piecewise-smooth
systems [40], and grazing in vibro-impacting systems for which impacts are modelled as instan-
taneous events with velocity reversal and energy loss [41, 42]. The grazing bifurcation occurs at
the origin when µ = 0. Since (1.1) is a truncated series expansion centred about the bifurcation,
(1.1) is primarily of interest for small values of x, y and µ. The construction of (1.1) is described
in §2.1. Here we note that the fixed point of the left half-map of (1.1) is given by

[

x∗(L)

y∗(L)

]

=
1

1− τ + δ

[

1
1− τ

]

µ , (1.3)

and corresponds to the non-impacting periodic orbit. Assuming this periodic orbit is attracting,
the fixed point, (1.3), is admissible (i.e. x∗(L) ≤ 0) when µ ≤ 0.

Here we describe the basic results and summarize the remainder of the paper. We analyze
(1.1) with small-amplitude, additive Gaussian noise:

[

x′

y′

]

=
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[

x

y

]

+

[

0
1

]

µ , x ≤ 0

A

[

x

y − χ
√
x

]

+

[

0
1

]

µ , x ≥ 0















+ εξ , (1.4)

where 0 < ε ≪ 1, and
ξ ∼ N(0,Θ) , (1.5)

that is, ξ is a two-dimensional Gaussian random variable with zero mean and covariance matrix
Θ. In §2.2 we demonstrate that this noise formulation arises when small-amplitude Brownian
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motion is added to the underlying differential equations and obtain an explicit expression for
Θ. For a model of a linear oscillator experiencing impacts with a compliant support, in §2.3 we
show that (1.4) exhibits quantitatively the same dynamics as the stochastic differential equation
model. Calculations for this section are deferred to Appendix A.

Figs. 2 and 3 show bifurcation diagrams of (1.4) for two different choices of the parameter
values. These were computed numerically by iterating (1.4) over a range of fixed values of µ.
As described in [25], the noise blurs the underlying deterministic bifurcation diagram and causes
impacts to occasionally occur when µ < 0. In §3.1 we analytically compute periodic solutions
of (1.4) with ε = 0. These are indicated by blue curves in Figs. 2 and 3. For the parameter
values of Fig. 2, in the absence of noise the maps exhibits a period-incrementing cascade, [43, 13].
For every n ≥ 1, there exists an interval of positive µ-values for which period-n solutions are
admissible and attracting (periods 3, 4 and 5 are indicated in Fig. 2). These intervals are ordered
by n, disjoint, and separated by small chaotic bands. As n → ∞, the intervals approach µ = 0
from the right.

When ε > 0, dynamics may be roughly periodic (e.g. when µ = 0.01 in Fig. 2), however,
the noise smothers high-period solutions. As with the logistic map [44, 45], the highest period
that is in some sense distinguishable, decreases with an increase in the noise amplitude. Figs. 2

−0.005 0 0.005 0.01 0.015 0.02 0.025
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

µ

x

Figure 2: A bifurcation diagram of the stochastic Nordmark map, (1.4), with (τ, δ, χ) =
(0.5, 0.05, 1), ε = 0.00025, and Θ = I (the 2 × 2 identity matrix). The dots are numerically
computed iterates of (1.4) with transients omitted. The blue curves denote deterministic, admis-
sible, attracting periodic solutions, computed analytically in §3.1. The red curves approximate
one standard deviation of the invariant density from the blue curves, as obtained via linearization,
see §3.2.
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and 3 suggest the existence of a stable invariant density in a neighbourhood of the underlying
attractor, for any µ. Throughout the paper we study this density but do not formally prove its
existence or uniqueness. The invariant density may be approximately Gaussian about each point
of a deterministic periodic solution of relatively low period. In §3.2 we derive the covariance
matrices of these Gaussians. (The Gaussian approximation to the unimodal invariant density
centred about the fixed point, (1.3), for µ < 0, may be computed in the same way.) In §3.3
we derive an approximation to these covariance matrices and in §3.4 investigate the effect of
different Θ, (1.5). The near-Gaussian densities are discussed further in §4.1. The accuracy of the
Gaussian approximation decreases as ε is increased, §4.2. For relatively large ε, the density is
strongly non-Gaussian and may exhibit some interesting novel characteristics, §4.3. Finally, we
note that when ε = 0 attracting solutions may coexist. For instance in Fig. 3, for small µ < 0
the fixed point (1.3) coexists with a period-3 solution, and for a relatively wide range µ-values in
the middle of the figure, this period-3 solution coexists with either a period-2 solution or what
we numerically observe to be a chaotic attractor. When ε > 0, numerics indicate the existence
of a single invariant density with peaks at the deterministic attractors, §4.4. Finally conclusions
are presented in §5.

−0.2 0 0.2 0.4 0.6
−0.4

−0.2

0

0.2
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Figure 3: A bifurcation diagram of (1.4), with (τ, δ, χ) = (0.2, 0.5, 1), ε = 0.01, and Θ = I. The
meaning of various figure elements are explained in the caption of Fig. 2.
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2 Derivation of the stochastic Nordmark map

The purpose of this section is to justify the manner by which we have incorporated noise into
the Nordmark map, (1.4) with (1.5), and derive an explicit expression for Θ in terms of an
underlying stochastic differential equation. Certainly noise may enter a vibro-impacting system
in a variety of different ways. Noise in external forcing may be represented by a deterministic
signal plus a weak random component modelled by white or coloured noise. Model parameters
may be treated stochastically. Also impact events may be modelled randomly (indeed experiments
reveal impacts may induce high frequency oscillations that quickly decay and vanish [46]). The
manner by which randomness is modelled affects the nature of the induced Poincaré map. Below
we consider additive, white Gaussian noise and derive (1.4).

2.1 Construction of the deterministic Nordmark map

To describe the construction of the Nordmark map it is necessary to introduce a general system
that exhibits a regular grazing bifurcation. To achieve this in a general setting requires consider-
able space in order to carefully state assumptions, non-degeneracy conditions and explain their
meaning. For brevity we omit most of these statements – details are given in [13].

Consider an ODE system in R
3, u = (u, v, w), with a single smooth switching manifold,

Σ = {u | u = 0} , (2.1)

that we write as

u̇ =

{

f (L)(u; η) , u < 0
f (R)(u; η) , u > 0

. (2.2)

where f (L) and f (R) are smooth functions extendable beyond their respective half-spaces, and
η is a parameter. Suppose when η = 0 there exists an attracting periodic orbit that intersects
u = 0 but is otherwise contained in {u | u < 0}. To negate the possibility of sliding motion [13],
and specify a direction of flow, suppose

sgn
(

eT1 f
(L)(0, v, w; η)

)

= sgn
(

eT1 f
(R)(0, v, w; η)

)

= sgn(v) , (2.3)

in a neighbourhood of u = 0.
We introduce two Poincaré sections: Π is a generic cross-section transversal to the flow lying

entirely in the left half-space, and
Π′ = {u | v = 0} , (2.4)

see Fig. 4. To analyze oscillatory dynamics one can study the induced return map on Π, or a
return map on Π′ using intersection points that for u > 0 are virtual, as explained below. The
Poincaré map on Π is useful for comparing with numerical simulations. However, we use the
section Π′, because, although some iterates are virtual, the map takes a simpler form and is more
amenable to analysis.

To obtain the return map on Π′, consider the trajectory from a point, u0, on Π, as governed
by (2.2), and suppose that this trajectory intersects Σ at u2 and u3 before returning to Π at some
u5, as shown in Fig. 4. We use the left half-flow, f (L), to follow the trajectory beyond u2 into the
right half-space until intersection with Π′ at u1. Similarly we use f (L) to follow the trajectory
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backwards from u3 to u4. The map from u1 to u4 defined in this manner, call it D, is known as
a discontinuity map and takes the form

[

u4

w4

]

= D(u1, w1; η) =



















[

u1

w1

]

, u1 ≤ 0
[

u1 +O(u
3
2
1 )

w1 − (c+O(|w1, η|1))
√
u1 +O(u1)

]

, u1 ≥ 0
, (2.5)

for some scalar constant c. This concept was originally introduced by Nordmark [41, 42] in
regards to instantaneous impacts and is nowadays a fundamental tool for analyzing a variety of
grazing phenomena [40, 47, 48, 49, 50]. The discontinuity map is nonsmooth and for u1 > 0
corresponds to motion on an O(

√
u1) time scale, where u1 is assumed to be small. In contrast,

the induced Poincaré map from u4 to u6, as governed by the left half-flow, captures the global
dynamics on an O(1) time scale. This global map, which we call G, is smooth and thus may be

u

v

w

Π

Π′

Σ

u0

u1

u2

u3

u4

u5

u6

Figure 4: A schematic for regular grazing in three dimensions. We show intersections of a
trajectory of the system (2.2) with a generic Poincaré section, Π, the alternate Poincaré section,
Π′, (2.4), and the switching manifold, Σ, (2.1). Since the trajectory intersects the switching
manifold at u2, the points u1,u4 ∈ Π′ are found by solving the left half-system, f (L), in the right
half-space. The discontinuity map is u4 = D(u1), (2.5). The global map is u6 = G(u4), (2.6).
The normal form Nordmark map, (1.1), is given by G ◦D, after the coordinate change (2.7) and
truncation.
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written as
[

u6

w6

]

= G(u4, w4; η) = Â

[

u4

w4

]

+ b̂η + O(|u4, w4, η|2) . (2.6)

for some constant matrix Â and vector b̂. The Nordmark map (1.1) is then obtained by: (i)
forming the composition G◦D, (ii) transforming to normal form via the linear change of variables,





x

y

µ



 =
1

â212c
2





1 0 0

−â22 â12 b̂1

0 0 (1− â22)b̂1 + â12b̂2









u1

w1

η



 , (2.7)

where

Â =

[

â11 â12
â21 â22

]

, b̂ =

[

b̂1

b̂2

]

, (2.8)

and (iii) omitting higher order terms in x, y and µ. The Nordmark map ignores linear terms that
are dominated by the square-root term. For a careful consideration of these terms see [51].

2.2 Addition of noise

The stochastic differential equation:

du =

{

f (L)(u; η) , u < 0
f (R)(u; η) , u > 0

}

dt+ εB(u; η) dW (t) , (2.9)

where W (t) is a vector of independent standard Brownian motions, B is matrix with smooth
dependency on u and η, and 0 < ε ≪ 1, represents the system (2.2) in the presence of small-
amplitude, white, Gaussian noise. In this section we extend the construction described in the
previous section to accommodate the noise term and obtain (1.4). We assume ε is small enough
that the basic global structure of the system is not destroyed by the noise and sample paths of (2.9)
likely stay near to the associated deterministic solution, over an O(1) time frame. Theoretical
results on the existence and uniqueness of solutions to stochastic differential equations with
discontinuous drift may be found in [52], and references within.

Our strategy is to obtain stochastic versions of the global map, G, (2.6), and the discontinuity
map, D, (2.5), and compose them to arrive at the stochastic Nordmark map, (1.4). We first
discuss the stochastic global map and consider solely the smooth left half-system of (2.9). Issues
relating to switching are discussed below.

When a sample path of the left half-system of (2.9) passes through Π′, if the noise is not
purely tangent to Π′, with probability 1 the sample path has multiple intersections with Π′,
albeit over an extremely short time frame. We define the stochastic global map by the first
reintersection, u6, of the sample path with Π′ after one large excursion. (An alternative is to use
the mean passage time [53]. For stochastic Poincaré maps for systems with coloured noise, see
[54].) Multiple intersections occur sufficiently quickly that this specification does not affect the
lowest order noise term in the map [55].

For ε > 0, the quantity u6 is stochastic and to calculate the stochastic global map means to
compute the probability density function for u6. We can do this to O(ε) by applying standard
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asymptotic results usually stated in the context of an exit problem. Here we follow the sample
path methodology of Freidlin and Wentzell [55], see also [56, 57].

For the general stochastic differential equation

dv = f(v) dt+ εB(v) dW (t) , v(0) = v0 , (2.10)

where f and B are C2, by Theorem 2.2 of Chapter 2 of [55] we can write

v(t) = v(0)(t) + εv(1)(t) + o(ε) , (2.11)

where v(0) is the deterministic solution to (2.10) with ε = 0, and v(1) is the solution to the
time-dependent Ornstein-Uhlenbeck process:

dv(1) = D
v
f(v(0))v(1) dt+B(v(0)) dW (t) , v(1)(0) = 0 . (2.12)

We then have the following lemma.

Lemma 1 (Theorem 2.3 of Chapter 2 of Freidlin and Wentzell [55]).
Let D be a domain containing v0 and let T (0) be the first passage time of v(0) from D. Suppose

∂D is differentiable at v(0)(T (0)), let p denote the exterior unit normal vector to ∂D at this point,

let q = f
(

v(0)(T (0))
)

, and assume pTq 6= 0. If T denotes the first passage time of v from D, then

T = T (0) − pTv(1)(T (0))

pTq
ε+ o(ε) , (2.13)

v(T ) = v(0)(T (0)) +

(

I − qpT

pTq

)

v(1)(T (0))ε+ o(ε) . (2.14)

The key quantity, v(1)(T (0)), is stochastic, and by (2.12),

v(1)(t) =

∫ t

0

Exp

(
∫ t

s

D
v
f
(

v(0)(r)
)

dr

)

B
(

v(0)(s)
)

dW (s) . (2.15)

Consequently v(1)(t) is a Gaussian random variable with zero mean and covariance matrix, call
it Ω(t), given by

Ω(t) =

∫ t

0

H(s, t)H(s, t)T ds , (2.16)

where

H(s, t) = Exp

(
∫ t

s

D
v
f
(

v(0)(r)
)

dr

)

B
(

v(0)(s)
)

. (2.17)

Therefore, to O(ε), the location of first exit, v(T ) ∈ ∂D, is Gaussian with mean, v(0)(T (0)), and
covariance matrix

(

I − qpT

pTq

)

Ω(T (0))

(

I − qpT

pTq

)T

. (2.18)

In the context of the global map, f = f (L), and ∂D represents Π′. By Lemma 1,
[

u6

w6

]

= G(u4, w4; η) + εξG + o(ε) , (2.19)
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where G is the deterministic global map, (2.6), and ξG is a zero-mean, two-dimensional Gaussian
random variable. Here p = [0,−1, 0]T and q = [0,−γL, ζL]

T+O(|u4, w4, η|1), where f (L)
(

[0, 0, 0]T; 0
)

=
[0,−γL, ζL]

T. Consequently, by (2.18), the covariance matrix for ξG is

[

ω11
ζL
γL
ω12 + ω13

ζL
γL
ω12 + ω13

ζ2
L

γ2
L

ω22 +
2ζL
γL

ω23 + ω33

]

+O(|u4, w4, η|1) , (2.20)

where ωij denotes the (i, j)-element of Ω(T (0)), (2.16), and T (0) denotes the period of the grazing
periodic orbit at η = 0.

A stochastic version of the discontinuity map is not as straightforward. For instance, consider
the motion from u2 to u3, Fig. 4. In the absence of noise, u3 is easily calculated using the right
half-flow. However, with noise acting non-tangentially to Σ, with probability 1, a sample path
from u2 to u3 spends a nonzero amount of time in the left half-space. Thus motion from u2 to
u3 is in part governed by the left half-system, albeit weakly. Moreover, to calculate the motion
from u1 to u2 and from u3 to u4, we must solve the stochastic differential equation backwards
in time.

Here we argue a bound for the noise in the discontinuity map. Intuitively, the noise in the
discontinuity map is greater for larger values of u1 > 0. For fixed ε > 0, consider u1 ≫ ε, but recall
we assume u1 is small. In this case the excursion from u1 to u4 is well-approximated by three exit
problems for which Lemma 1 is applicable, because the weak noise does not significantly disrupt
the three pieces of the excursion. The discontinuity map acts over an O(

√
u1) time-frame, and

note that a consequence of Lemma 1 is that for small t, the standard deviations of components

of the exit point are O(ε
√
t). Therefore we expect deviations in u4 to be at most O

(

εu
1
4
1

)

, and

write
[

u4

w4

]

= D(u1, w1; η) + εξD + o(ε) , (2.21)

where ξD ≤ O
(

u
1
4
1

)

.

When we compose (2.19) and (2.21), assuming u1 is small, ξG dominates ξD because ξG =
O(1). As in §2.1, to this composition we apply the change of variables (2.7), and omit higher

order terms, producing (1.4). Moreover, the noise term in (1.4) is ξ = 1
â212c

2

[

1 0
−â22 â12

]

ξG,

and therefore the covariance matrix for ξ is given by

Θ =
1

â412c
4

[

1 0
−â22 â12

]

[

ω11
ζL
γL
ω12 + ω13

ζL
γL
ω12 + ω13

ζ2
L

γ2
L

ω22 +
2ζL
γL

ω23 + ω33

]

[

1 −â22
0 â12

]

. (2.22)

2.3 A linear oscillator with compliant impacts

As an example, we consider a harmonically forced linear oscillator experiencing compliant impacts
with a massless, prestressed support. The system is depicted in Fig. 5 and we model it with the
non-dimensionalized equation of motion,

ü =

{

−kosc(u+ 1)− boscu̇ , u < 0
−kosc(u+ 1)− (bosc + bsupp)u̇− ksupp(u+ d) , u > 0

}

+ F cos(t) + εν(t) , (2.23)
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where ν(t) is a standard Gaussian white noise process. Here u denotes the position of the mass.
A rigid stop placed at u = 0 prevents the support moving left of this value and prestresses the
support by a distance d > 0. We assume that while the mass is not in contact with the support,
the support is at rest at u = 0. Whenever the mass arrives at u = 0, the mass and support then
move together for u > 0 until a return to u = 0 at which point the stop catches the support
and the mass returns to non-impacting motion. The setup is identical to a scenario given in [58].
Experiments involving compliant impacts are described in [59, 60]. We incorporate randomness
in the model by adding white-noise to the forcing term.

To simplify our discussion we assume, b2osc
4

< kosc < 1, so that, in particular, the system is
sub-resonant. We treat the forcing amplitude, F , as the primary bifurcation parameter. When
ε = 0, for small F the system settles to a stable non-impacting periodic orbit of period 2π. The
periodic orbit undergoes a grazing bifurcation at

Fgraz =
√

b2osc + (1− kosc)2 . (2.24)

A typical bifurcation diagram of (2.23) with ε > 0 is shown in Fig. 6-A. Fig. 6-B is a bifurcation
diagram of the stochastic Nordmark map, (1.4), with parameter values corresponding to the
impact oscillator for panel A. As detailed in Appendix A, the values τ , δ and χ, are given by
the deterministic results of §2.1, and Θ is given by (2.22). As expected, the two bifurcation
diagrams exhibit the same qualitative structure. To quantitatively compare (2.23) and (1.4),
for each we have computed the corresponding bifurcation diagrams on Π′, panels C and D. As
expected these bifurcation diagrams are practically indistinguishable, justifying our use of the
map (1.4). A more precise comparison is beyond the scope of this paper.

3 Approximating invariant densities by a linear analysis

In this section we consider the case where the invariant density can be approximated by a
combination of Gaussians and calculate the related covariance matrices. The calculations reveal
instances of larger variability and situations where the Gaussian approximation may break down.

We consider the case that (1.4) with ε = 0 has an attracting periodic solution, {(xi, yi)}i=0,...,n−1,
with xi 6= 0, for all i. Then with small ε > 0, numerical simulations indicate that (1.4) has a

u = 0u = −du = −1

d

kosc

bosc

ksupp

bsupp

Figure 5: A schematic of the forced vibro-impacting system modelled by (2.23). The equilibrium
positions of the mass and support are u = −1 and u = −d respectively.
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stable invariant density with high peaks near each (xi, yi). For sufficiently small ε > 0, the bulk of
this invariant density is distant from the switching manifold. Consequently in this case the non-
smooth effect of the switching manifold is not seen. About each (xi, yi) the invariant density has
a roughly Gaussian shape that may be computed by linearizing the map about (xi, yi). Therefore
the invariant density of (1.4) is well-approximated by the sum of n Gaussian densities centred at
each (xi, yi), and scaled by 1

n
such that the density is normalized (see Fig. 7 for an example). In

§3.1 we derive an appropriate nth iterate of (1.4) and solve for (xi, yi) when ε = 0. In §3.2 we
calculate the covariance matrices of the Gaussians. Further calculations and approximations are
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Figure 6: Panels A and C show numerically computed bifurcation diagrams of the impact
oscillator model (2.23) with (kosc, bosc, ksupp, bsupp, d) = (5, 0.5, 10, 0, 0.1) and ε = 5 × 10−5. In
panel A, the values are intersections of long-time dynamics with Π = {(u, u̇) | u̇ = 0, u ≈
−2}. Panel C shows intersections with Π′. For u1 > 0 these intersections are virtual and were
obtained by appropriately solving the non-impacting equation of motion for u > 0. Panel B is a
bifurcation diagram of the stochastic Nordmark map, (1.4), using parameter values corresponding
to the system in panel A as calculated by the formulas given in the text. Specifically, (τ, δ) ≈
(0.07264, 0.04321), χ = 1, and (θ11, θ12, θ22) ≈ (662.6,−7.450, 28.29), where θij denotes the (i, j)-
element of Θ. Panel D shows the points of panel B under the inverse of the coordinate change
(2.7).
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described in §3.3 and §3.4.

3.1 Maximal periodic solutions

Stability of a periodic solution, {(xi, yi)}i=0,...,n−1, of (1.4) with ε = 0 may be determined in
a standard manner from the multipliers of the matrix formed from the product of Jacobians
evaluated at each (xi, yi). For each point of the solution for which xi > 0, the product accumulates

a term of order x
− 1

2
i , which is strongly destabilizing since we assume the xi are small. For this

reason we only consider periodic solutions for which exactly one iterate satisfies xi > 0. We
expect no other periodic solutions to have a significant effect on long-term dynamics near the
grazing bifurcation. Indeed this is consistent with numerical results. This observation has been
noted previously and such solutions are known as maximal periodic solutions [43, 61].

Suppose that the next n− 1 iterates of (1.4) from a point (x0, y0) with x0 ≥ 0 satisfy xi ≤ 0.
Then the nth-iterate is given by

[

xn

yn

]

= An

[

x0

y0 − χ
√
x0

]

+ (I + A+ · · ·+ An−1)

[

0
1

]

µ

+ ε
(

ξn−1 + Aξn−2 + · · ·+ An−1ξ0
)

, (3.1)

where the n random vectors, ξi, are independent. The covariance matrix of the sum of n inde-
pendent Gaussian random variables the sum of the covariance matrices of each, therefore

ξn−1 + Aξn−2 + · · ·+ An−1ξ0 ∼ ξ(n) , (3.2)

where ξ(n) is a zero-mean Gaussian random variable with covariance matrix

Θ(n) =
n−1
∑

i=0

AiΘ
(

AT
)i

. (3.3)

Hence we can write (3.1) as
[

xn

yn

]

= An

[

x0

y0 − χ
√
x0

]

+ b(n)µ+ εξ(n) , (3.4)

where

b(n) = (I + A + · · ·+ An−1)

[

0
1

]

. (3.5)

Fixed points, (x∗(n), y∗(n)), of (3.4) with ε = 0, satisfy

y∗(n) =
(a12b2 − a22b1)χ

√
x∗(n) + ((1− a11)b2 + a21b1) x

∗(n)

(1− a22)b1 + a12b2
, (3.6)

µ =
a2χ

√
x∗(n) + ((1− a11)(1− a22)− a12a21) x

∗(n)

(1− a22)b1 + a12b2
, (3.7)

where

An =

[

a11 a12
a21 a22

]

, b(n) =

[

b1
b2

]

. (3.8)
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The stability multipliers associated with (x∗(n), y∗(n)) are the eigenvalues of the matrix

K(x∗(n)) = An

[

1 0
−χ

2
√
x∗(n)

1

]

=

[

a11 − a12χ

2
√
x∗(n)

a12

a21 − a22χ

2
√
x∗(n)

a22

]

=

[

k11 k12
k21 k22

]

. (3.9)

In summary, the point of a maximal periodic solution with x > 0, (x∗(n), y∗(n)), is given im-
plicitly in terms of µ by (3.6) and (3.7). The remaining points are easily obtained by iterating
(1.4) from this point. The periodic solution is stable when both eigenvalues of K(x∗(n)), (3.9),
lie inside the unit circle. The blue curves in Figs. 2 and 3 denote the x-values of stable, admis-
sible, maximal periodic solutions (up to period 5) and were computed by evaluating the above
expressions.

3.2 Calculation of Gaussian invariant densities

Here we determine the covariance matrices for the Gaussian approximations. We first compute
the covariance matrix for the Gaussian centred at (x∗(n), y∗(n)), then give an iterative formula for
the remaining covariance matrices.

The linearization of the nth-iterate, (3.4), about the fixed point, (x∗(n), y∗(n)), is

zj+1 = Kzj + εξ(n) , (3.10)

where K = K(x∗(n)(µ)), (3.9), and

z =

[

x− x∗(n)(µ)
y − y∗(n)(µ)

]

, (3.11)

denotes the displacement from the fixed point. Since (3.10) is linear and ξ(n) has a Gaussian
distribution (with zero mean and covariance matrix Θ(n), (3.3)), (3.10) maps one Gaussian prob-
ability density function of z-values, into another [62, 63]. Specifically, if the jth density under
(3.10) is Gaussian with zero mean and covariance matrix ε2Λj , then

Λj+1 = KΛjK
T +Θ(n) . (3.12)

If both eigenvalues of K lie inside the unit circle, then the fixed point (x∗(n), y∗(n)) of (3.4)
is attracting and (3.10) converges to a unique, zero-mean, Gaussian, invariant density with
covariance matrix, ε2Λ, satisfying

Λ = KΛKT +Θ(n) . (3.13)

Equation (3.13) is a Lyapunov equation that cannot be solved for Λ by elementary matrix
algebra operations [62]. However we can break (3.13) into its constituent scalar equations. We
write (3.13) as

[

λ11 λ12

λ12 λ22

]

=

[

k11 k12
k21 k22

] [

λ11 λ12

λ12 λ22

] [

k11 k21
k12 k22

]

+

[

θ
(n)
11 θ

(n)
12

θ
(n)
12 θ

(n)
22

]

, (3.14)
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which may be broken up and rewritten as





λ11

λ12

λ22



 = M





λ11

λ12

λ22



+







θ
(n)
11

θ
(n)
12

θ
(n)
22






, (3.15)

where

M =





k2
11 2k11k12 k2

12

k11k21 k11k22 + k12k21 k12k22
k2
21 2k21k22 k2

22



 . (3.16)

Then




λ11

λ12

λ22



 = (I −M)−1







θ
(n)
11

θ
(n)
12

θ
(n)
22






. (3.17)

A direct calculation reveals

det(I −M) =
(

det(K)− trace(K) + 1
)(

det(K) + trace(K) + 1
)(

1− det(K)
)

, (3.18)

thus det(I − M) = 0 if and only if K has an eigenvalue on the unit circle. Moreover, if under
parameter change, an eigenvalue of K approaches the unit circle, Λ tends to infinity.

Λ, given by explicitly by (3.17) with (3.16) and (3.9), is the covariance matrix for the Gaussian
approximation to the invariant density about (x∗(n), y∗(n)). The covariance matrix relating to the
ith iterate of (x∗(n), y∗(n)), call it Λ(i), may be calculated via the identity

Λ(i+1) = AΛ(i)AT +Θ , (3.19)

(where Λ(n) = Λ(0) = Λ), which is valid for i = 1, . . . , n− 1. Let λ
(i)
11 denote the (1, 1)-element of

Λ(i). The red curves in Figs. 2 and 3 denote a distance ελ
(i)
11 from the ith iterates of the periodic

solution (the blue curves) and correspond to one standard deviation from the mean. The λ
(i)
11

may differ significantly for different i as in Fig. 6.

3.3 An approximation to the covariance matrices

Recall, the stability multipliers of a maximal periodic solution with a point, (x∗(n), y∗(n)), in the
right half-plane are the eigenvalues of K, (3.9). Near grazing, x∗(n) is small, thus if this periodic
solution is attracting, the elements, a12 and a22, of A

n, must also be small. In view of (3.9), it is

reasonable to suppose |aij | ≤ O
(√

x∗(n)
)

, for each aij . Then from (3.16),

M =







a212
4x∗(n) 0 0
a12a22
4x∗(n) 0 0
a222

4x∗(n) 0 0






+O

(√
x∗(n)

)

, (3.20)

and thus

(I −M)−1 = I +
1

1− a212
4x∗(n)







a212
4x∗(n) 0 0
a12a22
4x∗(n) 0 0
a222

4x∗(n) 0 0






+O

(√
x∗(n)

)

. (3.21)
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Then by (3.17),

Λ = Θ(n) +
θ
(n)
11

4x∗(n) − a212

[

a212 a12a22
a12a22 a222

]

+O
(√

x∗(n)
)

. (3.22)

Equation (3.22) indicates the deviation of Λ (the covariance matrix for the Gaussian invariant

density about (x∗(n), y∗(n))) from Θ(n), (3.3). For large n we often have |aij| ≪
√
x∗(n), in which

case Λ ≈ Θ(n). Alternatively, if the periodic solution is weakly attracting, then by (3.18), the
denominator, 4x∗(n) − a212, is small. By (3.22), in this case Λ deviates significantly from Θ(n), as
seen in Figs. 2 and 3 where the red curves are relatively distant from the associated blue curves.

3.4 Effects of different Θ

Both eigenvalues of A lie inside the unit circle (assuming the grazing periodic orbit is attracting)
and therefore the infinite series,

Θ(∞) ≡
∞
∑

i=0

AiΘ
(

AT
)i

, (3.23)

converges. Thus for large n, by (3.3), Θ(∞) may provide a good approximation to Θ(n). Here we
derive a simple expression for Θ(∞). Equation (3.23) is equivalent to the Lyapunov equation,

Θ = Θ(∞) − AΘ(∞)AT . (3.24)

By expanding the individual elements of this equation and solving we obtain






θ
(∞)
11

θ
(∞)
12

θ
(∞)
22






=

1

∆





1 + δ 2τ 1 + δ

−τδ 1− τ 2 − δ2 −τδ

δ2 + δ3 2τδ2 1 + δ − τ 2 + τ 2δ









θ11
θ12
θ22



 , (3.25)

where
∆ = (δ − τ + 1)(δ + τ + 1)(1− δ) > 0 . (3.26)

We can use (3.25) to investigate the effects of different Θ. In order to keep the noise amplitude
controlled by ε, here we fix trace(Θ) = 2. Substituting θ11 = 2− θ22 into (3.25) yields







θ
(∞)
11

θ
(∞)
12

θ
(∞)
22






=





2
∆
(1 + δ + τθ12)

1
∆
(−2τδ + (1− τ 2 − δ2)θ12)
2δ2

∆
(1 + δ + τθ12) + θ22



 , (3.27)

where θ12 and θ22 are constrained by

θ212 + (θ22 − 1)2 ≤ 1 , 0 ≤ θ22 ≤ 2 . (3.28)

From (3.27) we learn that the marginal variance, θ
(∞)
11 , depends only on τ , δ and the correlation

of Θ. Furthermore, if ∆ is not too small, then if δ is small (as in Fig. 2), θ
(∞)
22 ≈ θ22, and if τ is

small (as in Fig. 3), θ
(∞)
11 may assume only a small range of values.
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Figure 7: The invariant density of the stochastic Nordmark map, (1.4), using the same parameter
values as Fig. 2 with also µ = 0.005. Here the noise amplitude is sufficiently small (ε = 0.00025)
that the density is approximately the sum of four Gaussians, scaled by 1

4
. The value of the

density is indicated by color (dark red – the maximum value of the density; dark blue – zero).
The vertical gray line denotes the switching manifold, x = 0.

4 Invariant densities

4.1 Near Gaussian densities

As described at the beginning of §3, if (1.4) with ε = 0 has a periodic solution, {(xi, yi)}i=0,...,n−1,
satisfying xi 6= 0 for each i, and no other attractor, then for small ε > 0 we observe an invariant
density that is well-approximated by the sum of n Gaussians centred about each (xi, yi), and
scaled by 1

n
. The size of each Gaussian is O(ε). The precise shape of each Gaussian approximation

is given by the results of §3.2. Specifically its mean is (xi, yi), and its covariance matrix, Λ(i), is
given iteratively by (3.19), where Λ(0) is given by (3.17).

An example is shown in Fig. 7. This figure, and others below, shows the invariant probability
density function where the value of the function is indicated by colour (dark red – the maximum
value of the density; dark blue – zero). Following [25], we assumed the system is ergodic and
approximated invariant densities by a two-dimensional histogram computed from 108 consecutive
iterates of a single orbit.

With the parameter values of Fig. 7, iterates of (1.4) follow close to the underlying determin-
istic period-4 solution. Iterates step from the neighbourhood of each point in the order left to
right. While x < 0, iterates approach the deterministic fixed point of the left half-map, (1.3),
which for µ > 0 lies in the right half-plane and is virtual. Near the right-most point of the
periodic solution, for which x > 0, the square-root term takes effect and the next iterate lies
near the left-most point. The left-most Gaussian has the greatest spread because it corresponds
to iterates that have just experienced the strongly expanding square-root term. Moving left to
right, the size of each Gaussian decreases because the left half-map of (1.4) is contracting, and
indeed we have the explicit formula (3.19). Note that since the left-most Gaussian is most widely
spread, the value of the density at its peak is substantially less than at the other three peaks.
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Figure 8: The fraction of points of an orbit (with transients decayed) of (1.4) with x > 0 that
return to the right half-plane in exactly four iterations of (1.4). The parameter values are the
same as in Fig. 2. Each data point was computed numerically from 107 iterations of one orbit.
The invariant density when ε = 0.00025 is shown in Fig. 7, and when ε = 0.00075 in Fig. 9.

4.2 Weakly non-Gaussian densities

As the value of ε is increased, the above approximation to the invariant density worsens because
with increasing probability iterates fall on the “wrong” side of the switching manifold. For an
arbitrary orbit, let Ij denote the number of iterations that the jth-point of the orbit satisfying
x > 0 takes to return to the right half-plane. Fig. 8 is a plot of the fraction of Ij that are
equal to n, where n is the period of the deterministic periodic solution, against ε, using the same
parameter values as Fig. 2, and µ = 0.005.

A key feature of Fig. 8 is that, roughly speaking, this fraction begins to descend rapidly over
a narrow interval of values of ε (around ε = 0.0006). Two main factors influence the location of
this critical interval. If the deterministic periodic solution is weakly attracting, then the matrix,
K, (3.9), has an eigenvalue near the unit circle, and thus by (3.18) the matrix, I −M , is almost
singular. Therefore by (3.17) the invariant density is broad and so the values of ε in the critical
interval are relatively small. Second, the values of ε in the interval are roughly proportional to the
distance of the deterministic periodic solution from the switching manifold. These observations
explain the breakdown of the Gaussian approximation visible in Figs. 2 and 3. Near a saddle-node
or period-doubling bifurcation the strength of attraction of the periodic solution is weak and the
Gaussian fit is poor. Near a border-collision bifurcation the periodic solution is in close proximity
to the switching manifold and again iterations often stray from the Gaussian approximation.

When ε = 0.00025, as in Fig. 7, iterations follow the deterministic period-4 pattern almost
exclusively and the Gaussian approximation is a good fit to the numerically computed invariant
density, as described above. When ε = 0.00075, as in Fig. 8, iterates follow the period-4 pattern
about 96% of the time. In this case the invariant density, shown in Fig. 9, exhibits four clear
peaks near the deterministic solution, but level curves are relatively non-elliptical indicating that
the density is not as well approximated by Gaussians. A relatively high fraction of iterates lie
very near the switching manifold. Due to the square-root singularity, (1.4) maps a small region
just to the right of the switching manifold to a large region that including points relatively distant
from the deterministic periodic solution, say around (x, y) ≈ (−0.02, 0.005). Consequently the
invariant density displays a nonlinear character.
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Figure 9: The invariant density of (1.4) when µ = 0.005, ε = 0.00075 and the remaining
parameter values are as in Fig. 2.
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Figure 10: The invariant density of (1.4) when µ = 0 and the remaining parameter values are
as in Fig. 2. The dashed line is the slow manifold for the fixed point of the left half-map of (1.4).
Since the left half-map is linear, this manifold coincides with the eigenspace for the stability
multiplier of greatest magnitude.

4.3 Strongly non-Gaussian densities

If ε is large relative to the distance of the deterministic attractor from the switching manifold, or
if this distance is zero, the invariant density takes a strongly non-Gaussian form. As an example,
Fig. 10 shows an invariant density of (1.4) at the grazing bifurcation (µ = 0). Since we have a
thorough understanding of the behaviour of map when ε = 0, the shape of the density can be
explained heuristically. Due to the square-root singularity, the map (1.4) flings points with x > 0
(and y < χ

√
x− τx) relatively far into the left half-plane. While x < 0, subsequent iterates are

governed by the left half-map and slowly step towards the fixed point of this map, which, when
µ = 0, is located at the origin. For Fig. 10, the stability multipliers associated with the fixed
point are real and distinct (approximately 0.14 and 0.36). Thus iterates first step quickly to the
eigenspace corresponding to the multiplier of greater magnitude (0.36) (indicated in Fig. 10),
then head into the origin. This explains the angle at which the invariant density protrudes from
x = 0. Since noise is present, iterates eventually pass over the switching manifold, and the
process repeats. Since the noise amplitude is O(ε), iterates with x > 0 are O(ε). Due to the
square-root singularity, the size of the invariant density is therefore O(

√
ε), Fig. 11. In addition,

when µ = 0 the average number of iterations taken for points of an orbit to return to the right
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Figure 11: Standard deviations of the marginal densities of the invariant density (shown in
Fig. 10 for ε = 0.00025) of (1.4) for different values of ε when µ = 0 and the remaining parameter
values are as in Fig. 2. Each data point was computed numerically from 107 iterations of one
orbit with transients decayed.
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Figure 12: The invariant density of (1.4) when µ = 0.15 and the remaining parameter values
are as in Fig. 3.

half-space decreases as ε is increased.

4.4 Densities resulting from coexisting attractors

If, in the absence of noise (1.4) has coexisting attractors, with noise we expect there to be a single
invariant density involving peaks near both deterministic attractors. Such a density is shown in
Fig. 12. The relative weighting of the density about each deterministic attractor depends on
the relative strengths of attraction and the relative sizes of the basins of attraction. Orbits may
remain in the neighbourhood of one attractor for a long period of time before sufficiently extreme
noise pushes the orbit into the neighbourhood of a different attractor. Similar behaviour has been
described for smooth maps [64].
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5 Conclusions

In this paper we studied the Nordmark map with additive, Gaussian noise, (1.4), by analyzing
two-dimensional invariant densities that were computed numerically and in certain situations
approximated by a sum of scaled Gaussian probability density functions.

In §2 we derived (1.4) from a general three-dimensional stochastic differential equation, (2.9),
that, in the absence of noise, exhibits a regular grazing bifurcation. The map (1.4) is the compo-
sition of a smooth map encapsulating global dynamics, (the global map, (2.6)) and a piecewise-
smooth local map (the discontinuity map, (2.5)) that represents the correction to the global
map induced by the dynamics for u > 0. The noise term in (2.6) was calculated using standard
stochastic asymptotics theory, §2.2. Near grazing the discontinuity map corresponds to dynamics
occurring over a much shorter time period than the global map and for this reason the effect
of randomness in the discontinuity map may be neglected. Moreover, with this assumption we
derived the covariance matrix, Θ, for the noise in (1.4) explicitly in terms of the components of
the equations of motion, (2.22).

The map (1.4) cannot be transformed in a manner that puts Θ into a canonical form without
disrupting the deterministic normal form. In §3.3 and §3.4 we showed that with certain reasonable
assumptions, the shape of Θ has little effect on the resulting invariant density.

Numerical simulations of (1.4) revealed invariant densities that roughly conformed to one of
four descriptions. If, in the absence of noise (ε = 0) there exists an attracting period-n solution
with no points on the switching manifold, then for sufficiently small ε > 0 the invariant density is
approximately the sum of n Gaussians scaled by 1

n
, §4.1. The associated covariance matrices were

computed in §3.2. In the same situation with larger values of ε, iterates fall near the switching
manifold with higher probability. Since the square-root singularity in (1.4) induces a strongly
nonlinear stretching of phase-space near the switching manifold, the Gaussian approximation
worsens as ε is increased, §4.2. With still larger ε, the invariant density may be highly irregular
but of a shape amenable to a simple explanation, §4.3. When attractors coexist in the absence
of noise, for ε > 0 the invariant density is comprised of pieces about each deterministic attractor,
§4.4. The rough magnitude of ε for which the effect of the square-root singularity becomes
significant, is influenced by the strength of attraction of the deterministic period-n solution and
the proximity of the solution to the switching manifold.

Given the above descriptions of the numerically computed invariant density at various fixed
values of µ, we can now explain the dominate features of Figs. 2 and 3. We note that transi-
tions in Figs. 2 and 3 are P-bifurcations [65] at which the invariant density changes character
fundamentally. The sequences of transitions have not been described before as the underlying
deterministic system is piecewise-smooth.

In Fig. 2, for µ < −0.001, say, the invariant density is an approximate Gaussian centred at
the fixed point, (1.3). Note that the width of the invariant density about the non-impacting
solution is practically constant leading up to the grazing bifurcation, which is not the typical
case for smooth maps [44, 66]. For µ ≤ 0, with |µ| ≤ O(ε), the fixed point is close enough to the
switching manifold that iterates repeatedly lie in the right half-plane. Due to the square-root
singularity, the invariant density is non-Gaussian and O(

√
ε) in size.

For small µ > 0, there is an irregular invariant density of size O(
√
ε); roughly periodic

behaviour at high periods is not seen. Over a wide interval of intermediate values of µ the
invariant density is well approximated by four Gaussians. As µ increases across this interval,
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the approximation improves because the strength of attraction of the deterministic period-4
solution increases with µ. The four-piece invariant density transforms to a widely spread density
as the deterministic period-4 solution collides with the switching manifold in a border-collision
bifurcation at µ ≈ 0.014. In the absence of noise, just beyond this bifurcation, there is a chaotic
attractor. With noise the invariant density has a complicated wide-spread structure. For larger
µ the invariant density is well-approximated by three Gaussians.

Fig. 3 displays much the same behaviour, but in addition iterates traverse neighbourhoods
of coexisting deterministic attractors. Note that in some cases iterates only appear to surround
a single attractor (e.g. for µ = 0.2). This occurs when the attractor is strongly attracting and
its basin of attraction is large, relative to the noise amplitude, and the number of iterates of the
numerical simulation is relatively small.

It remains to investigate grazing bifurcations of vibro-impacting systems by studying a model
with noise applied only to impact events. The formulation (1.4) does not allow for an investigation
into rapidly occurring, noise-induced multiple impacts. Many other bifurcation scenarios in
piecewise-smooth systems await a detailed investigation in the presence of noise, such as sliding
bifurcations.

A The stochastic Nordmark map for the linear oscillator

Here we derive the parameters, τ , δ, χ, and Θ, of the stochastic Nordmark map, (1.4), for the
impact oscillator described in §2.3. We first let

u =





u

v

w



 =





u

u̇

(t− tgraz) mod 2π



 , η = F − Fgraz , (A.1)

where

tgraz = tan−1

(

bosc

kosc − 1

)

, (A.2)

is the time in
(

π
2
, π

)

at which the impact occurs for the grazing periodic orbit, so that the system
takes the general form (2.9) and satisfies the related assumptions (except phase space is R2 × S

1

instead of R3, but this is inconsequential). From the deterministic solution to (2.23), we find
that the global map, G, is given by (2.6) with

Â = e2πJ , b̂ =
1

Fgraz

[

1− â11
−â21

]

, (A.3)

where

J =

[

0 1
−kosc −bosc

]

. (A.4)

Also

c =
2
√
2ksuppd

1 + ksuppd
, (A.5)

in the discontinuity map, D, (2.5). From the coordinate change (2.7), we obtain

τ = 2e2πα cos(2πβ) , δ = e4πα , χ = sgn(â12c) , (A.6)
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where α± iβ are the eigenvalues of J , and specifically,

α = −bosc

2
, β =

√

kosc −
b2osc
4

. (A.7)

It remains to use (2.22) to compute the covariance matrix, Θ, of the noise, ξ. Here we evaluate
all terms of (2.22), for (2.23). In the form (2.9), we have

f (L)(u; η) =





v

−kosc(u+ 1)− boscv + (η + Fgraz) cos(w + tgraz)
1



 , (A.8)

B(u; η) =





0 0 0
0 1 0
0 0 0



 , (A.9)

so by (2.24) and (A.2), f (L)
(

[0, 0, 0]T; 0
)

= [0,−γL, ζL]
T = [0,−1, 1]T. Then (2.17) yields

H(s, t) =





0 e
J(t−s)
12 0

0 e
J(t−s)
22 0

0 0 0



 , (A.10)

where e
J(t−s)
ij denotes the (i, j)-element of eJ(t−s). Finally, the evaluation of (2.16) at T (0) = 2π,

using (A.4) and (A.10), gives

ω11 =
1

4αβ2
(e2αt − 1)− α

4koscβ2
(e2αt cos(2βt)− 1)− 1

4koscβ
e2αt sin(2βt) , (A.11)

ω12 = − 1

4β2
e2αt(cos(2βt)− 1) , (A.12)

ω22 =
kosc

4αβ2
(e2αt − 1)− α

4β2
(e2αt cos(2βt)− 1) +

1

4β
e2αt sin(2βt) , (A.13)

and ω13 = ω23 = ω33 = 0.
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