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NUMERICAL RECOVERY OF SOURCE SINGULARITIES VIA THE

RADIATIVE TRANSFER EQUATION WITH PARTIAL DATA ∗

MARK HUBENTHAL†

Abstract. The inverse source problem for the radiative transfer equation is considered, with
partial data. Here we demonstrate numerical computation of the normal operator X∗

V
XV where XV

is the partial data solution operator to the radiative transfer equation. The numerical scheme is
based in part on a forward solver designed by F. Monard and G. Bal. We will see that one can detect
quite well the visible singularities of an internal optical source f for generic anisotropic k and σ, with
or without noise added to the accessible data XV f . In particular, we use a truncated Neumann series
to estimate XV and X∗

V
, which provides a good approximation of X∗

V
XV with an error of higher

Sobolev regularity. This paper provides a visual demonstration of the authors’ previous work in
recovering the microlocally visible singularities of an unknown source from partial data. We also give
the theoretical analysis necessary to justify the smoothness of the remainder when approximating
the normal operator.

Key words. radiative transfer equation, microlocal analysis, optical molecular imaging, inverse
problems, partial data
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1. Introduction. The Radiative Transfer Equation (also sometimes referred to
as the linear transport or linear Boltzmann equation) is often used to model the
propagation of particles that exhibit absorption and scattering in various contexts,
including the behavior of photons within biological tissues or of neutrons in a reac-
tor. In this paper, we will consider an inverse problem relevant to optical molecular
imaging (OMI), which is a physically safe imaging modality that has seen some recent
advances in research. In this application, biochemical markers can be used to detect
the presence of specific molecules or genes, and suitably designed markers could po-
tentially identify diseases before phenotypical symptoms even appear. Such markers
are typically light-emitting molecules, such as fluorophores or luminophores, which
bind to the desired molecule to be detected. In contrast to Single Positron Emis-
sion Computed Tomography (SPECT), Positron Emission Tomography (PET), or
Magnetic Resonance Imaging (MRI), optical markers emit low-energy near-infrared
photons that are relatively harmless to human tissue. Because of their low-energy
level, the photons scatter before they are measured. Further specifics can be found in
the bioengineering literature such as [6, 9, 16, 32, 33, 21].

The inverse problem we consider consists of reconstructing the spatial distribution
of a radiative light source from measurements of outgoing photon intensities at the
boundary of the medium. In many applications, the propagation of photons emitted
can be modeled as inverse source problems of time-independent radiative transfer
equations. We will assume that the optical parameters of the underlying medium are
known, so that the problem of determining the source is feasible. In practice, such
optical parameters do not vary too much in biological tissue, and not knowning their
true values does not significantly effect one’s ability to detect edges in the image.
It is shown in [30] that under mild assumptions on the scattering and absorption
parameters of the medium this is possible. Other work on the inverse source problem
for the RTE under varying assumptions can be found in [4, 3, 27, 22, 17], and further
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2 M. HUBENTHAL

background on optical tomography can be found in [29, 1]. In the case of partial data,
[15] shows that one can recover the visible singularities of the source f , which is a
particular subset of WF(f). As such, the primary focus of this paper is to provide
a numerical scheme by which to detect such singularities. We now describe more
precisely the mathematical problem.

We assume Ω to be a bounded domain in Rn with smooth boundary and outer
unit normal vector ν(x). As in [30, 15], we also assume that the data is given on the
boundary of a larger strictly convex domain Ω1 ⋑ Ω. The radiative transfer equation
on the domain Ω with internal source f and zero incoming illuminations is given by

θ · ∇xu(x, θ) + σ(x, θ)u(x, θ) −
∫

Sn−1

k(x, θ, θ′)u(x, θ′) dθ′ = f(x),

u|∂−SΩ = 0, (1.1)

where the absorption σ and the collision kernel k are functions with regularity specified
later, the solution u(x, θ) gives the intensity of photons at x moving in the direction
θ, and ∂±SΩ is the set of points (x, θ) ∈ ∂Ω × Sn−1 such that ±ν(x) · θ > 0. That
is, ∂±SΩ is the set of points (x, θ) ∈ ∂Ω × Sn−1 such that θ is pointing outward or
inward, respectively. The source term f will be assumed to depend on x only for
our purposes. We also recall, given the physical model, that equation (1.1) is only
applicable at a single frequency, as the parameters σ and k typically vary widely with
different frequencies. It is also important that the photons’ energy be relatively low,
since for high energy photons each scattering event is often accompanied by an energy
change. This is discussed briefly in [15], and we mention it primarily to point out the
limitations imposed by the assumptions of the model.

In the case of full data, we have boundary measurements

Xf(x, θ) = u|∂+SΩ. (1.2)

In [30], it is shown that for an open, dense set of absorption and scattering coefficients
(σ, k) ∈ C2(Ω × Sn−1) × C2(Ω × Sn−1 × Sn−1), one can recover f ∈ L2(Ω) uniquely
from boundary measurements Xf on all of ∂+SΩ. To set up the case of partial data,

first let V ⊂ ∂+SΩ be open and let Ṽ ⋐ V . Let χV ∈ C∞
0 (∂+SΩ) be a smooth cutoff

function such that χV (x, θ) ≡ 1 for (x, θ) ∈ Ṽ and χV (x, θ) ≡ 0 for (x, θ) /∈ V . The
boundary measurements are then given by

XV f(x, θ) = χV (x, θ)u|∂+SΩ. (1.3)

To make notation a bit simpler, if V = ∂+SΩ (complete data) we will just write X ,
since in this case XV = X .

We now consider the complementary problem of numerical computation of solu-
tions to (1.1) and using the accessible part of the synthethized data to visualize the
results of [15]. To this end, we employ a technique from [19] that uses rotations ap-
plied to the parameters in the spectral domain to help eliminate the ray effect, which
is a byproduct of the discrete ordinates method. It should be noted that in principle
such a method could be applied in any dimension, but for the actual computations
we will restrict ourselves to the two dimensional case. We also refer the reader to
[12] for another approach to solving the direct transport equation using finite element
methods, which we do not use here.

Our main goal is to approximate the operators X∗Xf and X∗
VXV f in the two-

dimensional case. Ignoring the technical details for the moment, the idea is to utilize a
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Neumann series to approximate the forward solution operatorXV and its adjoint X∗
V .

As such, one must truncate the series to a finite number of terms when computing
X∗

VXV , and the difference of the approximation from the true function X∗
VXV f will

have some (higher) Sobolev regularity. The only theoretical result herein is Lemma
2.4, which essentially asserts that, ifm1 terms are computed in the approximation ofX
andm2 terms are computed in the approximation ofX∗, then [X∗X ]approxf−X∗Xf ∈
H l+m+1(Ω), where m = min{m1,m2} and f ∈ H l(Ω).

In §2, we review the background related to recovering the visible singularities
of a source f given partial data of its outgoing intensity on the boundary. This is
summarized by Theorem 2.2 and Corollary 6.4 of [15]. In §3 we describe the algorithm
used to compute the forward solution u to (1.1). Following, in §4 we detail the similar
approach used to approximate X∗

V . Finally, we present some numerical computations
for a few different types of sources with and without noise added to XV f in §6.
Section 5 proves the main technical estimate of this work, and Appendix A provides
some necessary results for iterated weakly singular-type integral operators.

Acknowledgements. The author wishes to thank François Monard for some
enlightening conversations related to the computational aspects of this work, and to
thank the referees for their valuable comments and suggestions. This research was
primarily done while at the University of Washington. However, much of the work in
Appendix A was completed during a visit to Finland under the advisement of Mikko
Salo, with whom it was very informative to talk about this and related problems.

2. Background and Statement of Main Lemma . Let us establish some
standard notation. We set

T0 = θ · ∇x, T1 = T0 + σ, T = T0 + σ −K, (2.1)

where σ denotes the operation of multiplication by σ(x, θ), and K is defined by

Kf(x, θ) =

∫

Sn−1

k(x, θ, θ′)f(x, θ′) dθ′. (2.2)

We also recall from [30] that a particular left inverse for T1 is given by

[T−1
1 f ](x, θ) :=

∫ 0

−∞

exp

(
−
∫ 0

s

σ(x+ τθ, θ) dτ

)
f(x+ sθ, θ) ds, (2.3)

which can be verified by noting that E(x, θ) = exp
(
−
∫
R+ σ(x + sθ, θ) ds

)
is an inte-

grating factor for T1.
In order to compute the normal operator X∗

VXV f , we first need to generate the
solution to the radiative transport equation (1.1). For the purposes of the numerical
implementation, we will assume that the Neumann series expansion of (Id−KT−1

1 )−1

converges, which is the case when ‖KT−1
1 ‖L2→L2 < 1. In this case we have

u = T−1
1 (Id−KT−1

1 )−1Jf

= T−1
1

∞∑

m=0

(KT−1
1 )mJf.

If we set u0(x, θ) := [T−1
1 f ](x, θ) and set ul := T−1

1 Kul−1 for l ≥ 1, then u =
∑

l≥0 ul.
In practice, it is quite simple to compute the scattering term Kul−1 at each iteration.
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In order to compute T−1
1 we will use a simple first order Euler method to solve the

associated differential equation to which T−1
1 is the solution operator:

θ · ∇xu(x, θ) + σ(x, θ)u(x, θ) = g(x, θ), (x, θ) ∈ Ω× Sn−1

u|∂−SΩ ≡ 0.

For a given source f ∈ L2(Ω), recall the microlocally visible set corresponding to
partial measurements on ∂+SΩ1, given by

M′ := {(x, ξ) ∈ T ∗Ω | ∃θ ∈ Sn−1 such that θ · ξ = 0 and χ#
V (x, θ) 6= 0}. (2.4)

Here χ#
V (x, θ) is the extension of χV : ∂+SΩ1 → R to Ω1×Sn−1 defined by χ#

V (x, θ) =
χV (x+ τ+(x, θ)θ, θ).

It will be useful to define the so-called Sobolev wavefront sets of a given order s
(see [24]).

Definition 2.1. Let f ∈ D′(Rn). Then f is in Hs microlocally near (x0, ξ0) if
and only if there is a cut-off function ψ ∈ D(Rn) with ψ(x0) 6= 0 and a function u(ξ)
homogeneous of degree zero and smooth on Rn \ 0 and with u(ξ0) 6= 0 such that the

product u(ξ)(̂ψf)(ξ) ∈ L2(Rn, (1 + |ξ|2)s). The Hs wavefront set of f , WFs(f), is
the complement of the set of (x0, ξ0) near which f is microlocally in Hs.

With this notation, the standard C∞ wavefront set can be written as WF∞(f).
We now restate the main result of [15] for recovering singularities of a source from
partial data, albeit in a slightly more compact way using the Hs wavefront sets defined
above.

Theorem 2.2 ([15], Theorem 2.2). Suppose f ∈ L2(Ω) and let l be a positive
integer. There exists an open dense set Ol of pairs (σ, k) ∈ C∞(Ω×Sn−1)×C∞(Ωx×
Sn−1
θ′ × Sn−1

θ ) depending on l such that given (σ, k) ∈ Ol, (1.1) has a unique solution
u ∈ L2, and

(z, ξ) /∈WF∞(X∗
VXV f) =⇒ (z, ξ) /∈WFl(f), ∀(z, ξ) ∈M′. (2.5)

Remark 1. In [15] Theorem 2.2 is stated with the conclusion that (z, ξ) /∈
WF∞(f + v), where the remainder v is an H l function with an explicit formula in
terms of the measurement operator.

When ‖KT−1
1 ‖ has small enough norm as an operator from L2(Ω × Sn−1) →

L2(Ω× Sn−1), it turns out that the dependence on l in the Theorem 2.2 goes away.
Corollary 2.3 ([15], Corollary 6.4). Suppose that ‖KT−1

1 ‖ < 1. Then there is
a dense open set O of pairs (σ, k) ∈ C∞ × C∞ for which (1.1) has a unique solution
u ∈ L2 for all f ∈ L2(Ω), and

(z, ξ) /∈WF∞(X∗
VXV f) =⇒ (z, ξ) /∈WF∞(f), ∀(z, ξ) ∈ M′.

With this in mind, we can state the main theoretical estimate of this work, which
justifies our approach in the numerical computations. The proof is given in §5.

Lemma 2.4. Suppose f ∈ H l(Ω) and σ, k ∈ C∞. Let m1,m2 ≥ 0. Then

X∗
VXV f −

m2∑

j=0

m1∑

i=0

[χVR+T
−1
1 (KT−1

1 )jJ ]∗χVR+T
−1
1 (KT−1

1 )iJf ∈ H l+m+1(Ω1)
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where m = min{m1,m2}.
Remark 2. Note that the partial Neumann series expansion in Lemma 2.4 might

not converge to X∗
VXV f as min{m1,m2} → ∞, even if (σ, k) are such that (1.1) is

well-posed. In such cases, the error above still has the stated smoothness but possibly
becomes unbounded as m1,m2 →∞.

It is important to realize that although X∗
VXV f contains information of the sin-

gularities of f , its smoothing properties change the order of such singularities. Recall
from [15] that X∗

VXV f = I∗σ,V Iσ,V f + LV f where

Iσ,V f(x, θ) := χV (x, θ)Iσf(x, θ)

= χV (x, θ)

∫ 0

τ−(x,θ)

E(x+ tθ, θ)f(x + tθ) dt, (x, θ) ∈ ∂+SΩ1

is the partial data attenuated X-ray transform, and LV is a Ψ-DO of order −2 plus an
integral operator R : L2(Ω) → H l(Ω1) with l ≥ 1 arbitrary (R = 0 if ‖KT−1

1 ‖ < 1).
Moreover, from [11] I∗σ,V Iσ,V is a Ψ-DO of order −1, elliptic onM′, and its principal
symbol is explicitly given by

ρ(x, ξ) = 2π

∫

θ·ξ=0

|E(x, θ)|2|χ#
V (x, θ)|2 dS(θ). (2.6)

Thus, in order to obtain the singularities of f inM′ with the correct order, one could
attempt to compute explicitly a parametrix Q of I∗σ,V Iσ,V by defining

Qg = F−1(ϕ(x, ξ)ρ(x, ξ)−1 ĝ),

where ϕ(x, ξ) ≡ 1 on some compact subset of M′ and vanishes outside of M′ (F
denotes the Fourier transform). Applying the Q from above to X∗

VXV f will yield
f plus some error term Sf which is order 1 more smooth than f . In this paper we
do not go farther than computing X∗

VXV , and thus the results herein are primarily
a qualitative realization of the theory from [15]. However, it may be of interest to
consider the computation of such parametrices in the future.

3. Numerical Method for the Direct Problem . We now present a detailed
summary of the method used to solve (1.1) for n = 2. Note that at this stage it is
not important that the source f be isotropic, but such an assumption will be used
when computing the normal operator later on. As in [19] we use the source iteration
method, which requires one to solve problems of the form

θ · ∇xu+ σ(x, θ)u = g(x, θ)

u|∂−SΩ = 0. (3.1)

Without loss of generality, we may take Ω = D ⊂ R2 where D is the unit disk, and
assume that σ, k and f are all supported compactly in D×S1 or D as appropriate. Such
an assumption can be justified by finding a ball B(0, R) large enough and rescaling
the coordinates accordingly. The main advantage here from a numerical standpoint
is that Ω remains invariant under rotations. Now, for actually computing T−1

1 , it
will be easier to have boundary conditions on a cartesian domain. To that end,
for each η ∈ (0, 2π) denote θ = θ(η) = (cos(η), sin(η)) and let θ⊥ = θ(η)⊥ be the
counterclockwise rotation of θ by π/2. That is θ(η)⊥ = (− sin η, cos η). For each
η ∈ (0, 2π) define the η-dependent square

Cη = {x ∈ R2 such that |x · θ| < 1 and |x · θ⊥| < 1}.
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In short, Cη is the square of side length 2 rotated by an angle η. The corresponding
incoming and outgoing sets (analogous to ∂±SΩ are given by

Γ±,η = {x ∈ ∂Cη such that x · θ = ±1 and |x · θ⊥| < 1}.

At the heart of the rotational method, we perform a rotational change coordinates so
that the derivative in the direction θ becomes ∂x. Fix an angle η and for x = (x,y) ∈
[−1, 1]2 define

uη(x,y) = [u]η(x,y) := u(x cos η − y sin η,x sin η + y cos η, η) (3.2)

vη(x,y) = [v]η(x,y) := v(x cos η − y sin η,x sin η + y cos η) (3.3)

where u, v are functions on R2 and R2×S1, respectively. The bracket notation will only
be used for functions which already have a subscript. With this change of variables,
we can rewrite (3.1) as

∂

∂x1
uη(x,y) + ση(x,y)uη(x,y) = gη(x,y), (3.4)

uη(−1,y) = 0 on Γ−,η

We remark that for a general (possibly non-zero) function h ∈ L1(∂−SD), we would

have the boundary condition h̃η on Γ−,η, obtained by projecting h onto Γ−,η via the

relation h̃η(x1, x2) = h(P−1
− (x1, x2, η)), where

P± : ∂±SD ∋ (x, η) 7→ P±(x, η) = ±θ(η)− det(x, θ(η))θ(η)⊥ ∈ Γ±,η.

Since the measurements are necessarily discrete, we introduce the fixed parame-
tersNx, Nd andNscat to represent the number of grid points in each spatial dimension,
the number of directions measured, and the number of scattering terms computed in
the series T−1

1

∑∞
m=0(KT

−1
1 )mJ , respectively. Typically, we will take each such pa-

rameter to be a power of 2, since FFT algorithms are used to rotate the grids. Then
the basic idea for computing T−1

1 is to solve equations of the type (3.4) by first com-
puting gη and ση by rotating the images of σ(·, η) and g(·, η) clockwise by the angle
η in the x variable. Then we solve (3.4) for uη, which can be done, for example,
by using a simple first order Euler method along each column of the cartesian grid.
Specifically, denote sx := 2

Nx
, we set uη(x1, :) = 0 and consider the cartesian grid

{x1, . . . ,xNx} ⊗ {y1, . . . ,yNx} where xi,yi = −1 + (i − 1
2 )sx for 1 ≤ i ≤ Nx. Then

the Euler method would give the update

uη(xj ,y) = uη(xj−1,y) + sx (gη(xj−1,y)− ση(xj−1,y)uη(xj−1,y)) , 2 ≤ j ≤ Nx.

In order to compute K, we define the angular step size δ := 2π
Nd

and sum over the

set of angles {η1, . . . , ηNd
} where ηi =

(
1− 1

2

)
δ. We can then approximate K by the

discrete operator Kδ which has the formula

Kδg(x, ηi) = δ

Nd∑

j=1

g(x, ηj)k(x, ηj , ηi), 1 ≤ i ≤ Nd. (3.5)
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Algorithm 1 Computing XV f

1: Let u0 solve θ · ∇u+ σu = f
2: for i = 1 to Nd do

3: compute σηi and fηi

4: solve ∂x1
[u0]ηi + σηi [u0]ηi = fηi for [u0]ηi

5: u0(x,y, ηi)← [[u0]ηi ]−ηi
(x,y)

6: end for

7: for j = 1 to Nscat do

8: fj ← Kδuj−1

9: for i = 1 to Nd do

10: compute [fj]ηi

11: solve ∂x1
[uj]ηi + σηi [uj ]ηi = [fj ]ηi for [uj]ηi

12: uj(x,y, ηi)← [[uj ]ηi ]−ηi
(x,y)

13: end for

14: end for

15: u←∑Nscat

j=0 uj

16: compute χV u
∣∣∣
∂+SD

3.1. Computing XV . We describe in Algorithm 1 the iterative scheme to
numerically solve (1.1) and simulate the partial data XV f with respect to some subset
V ⊂ ∂+SΩ.

What we have not yet described in much detail is the method used to compute
the rotations of each function, which we discuss briefly within the remaining portion
of this section. For more details however, we refer the reader to [19]. The general
idea is to write the rotation map rη(x,y) = (x cos η + y cos η,−x sin η + y cos η) as a
composition of dilations and shearing/slant operations in each variable separately. In
particular, we can write

rη = d
x, 1

cos η
◦ sx,− sin η ◦ dy,cos η ◦ sy,tan η,

sy,α(x,y) = (x,y − αx), sx,β(x,y) = (x− βy,y), α, β ∈ R

dx,t(x,y) = (tx,y), dy,t(x,y) = (x, ty), t ∈ R.

The shearing/slant operations sx,β and sy,α are implemented in phase space using
a periodic interpolation function together with some identities utilizing the discrete
forward and inverse Fourier transform. Specifically, we first embed the Nx×Nx image
into a 2Nx×Nx image, padding the top and bottom of the image with Nx

2 ×Nx arrays
of zeros. We then perform the vertical shearing operation sy,α, which independently
shifts each column of the image by an amount that depends linearly on the column
index with factor −α.

The operation of shifting a vector x = [x1, . . . , xm]T by an amount s is done in
phase space. First we define the 2m-periodic function

Dm(y) =
sin(πy)

m sin
(
πy
m

) , y ∈ R. (3.6)

We then define the spectral interpolant

x̃(y) :=
m∑

l=1

xlDm(y − l), (3.7)
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Fig. 3.1. The values of a random 16-vector x are plotted while overlayed with the spectral
interpolant x̃(y) =

∑
m

l=1 xlDm(y − l) for y ∈ [0, 16].

which coincides with xj when y = j and interpolates between those values sinusoidally
(see Figure 3.1). The spectrally shifted vector xs is given by

xs = [x̃(1 + s), x̃(2 + s), . . . , x̃(m+ s)]T .

Note that xs is not a priori defined for s ∈ Z, but it can be extended continuously to
such points due to the structure of the singularities of Dm.

Now, in practice we have first padded the image above and below with zeros, so
we have m = 2Nx which is even. It is then straightforward to verify that

D2Nx(t) =
sin(πt)

2Nx sin
πt
2Nx

=
1

2Nx

Nx−1∑

l=−Nx

ei
π

Nx
(l+ 1

2
)t, t ∈ [0, 2Nx].

Recall the N -point discrete Fourier and inverse Fourier transforms, given by

X(k) = FN
j 7→k [x(j)] =

N∑

j=1

x(j)e−
2πi
N (j−1)(k−1), k = 1, . . . , N,

x(j) = F−1,N
k 7→j [X(k)] =

1

N

N∑

k=1

X(k)e2πiN(j − 1)(k − 1), j = 1, . . . , N.

It is then possible to write x̃(l − s) for l = 1, . . . , 2Nx as a composition of discrete
Fourier transforms and inverse transforms and multiplication by complex exponen-
tials. In particular,

x̃(l − s) (3.8)

= ei
π

Nx
(−Nx+

1
2
)(l−1)F−1,2Nx

k 7→l

[
e−i π

Nx
(k−1−Nx+

1
2
)sF 2Nx

j 7→k

[
x(j)e−i π

Nx
(−Nx+

1
2
)(j−1)

]]
.

The dilation operations dx,t and dy,t are computed via a resampling done in the
Fourier domain. In particular, we must resample a vector x of size 2Nx down to a
vector x of size Nx but with a different step size. We can do this by using the N -point
fractional Fourier transform with coefficient α, defined by

X(l) = GN,α
k 7→l[x] =

N∑

k=1

x(k)e−2πiα(k−1)(l−1). (3.9)
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Angularly Averaged Internal Transport Solution
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Fig. 3.2. On the left is the angularly averaged solution to (1.1) corresponding to the internal
source given in Figure 6.1. The other two images show the complete and partial data Xf and XV f ,
respectively, where V is the outgoing conic set above the arc of ∂D defined by arg η ∈ [0, π/3]. The
axes are labeled such that θ is the transport direction and η is the position along the boundary ∂D,
with arg η = 0 corresponding to the point (1, 0).

For example, if we start with a vector x sampled at the gridpoints {j − 1}2mj=1 and

we want to shift x by s (i.e. sample at {j − 1 + s}2mj=1) and then resample back to a
vector x taking values at the m points yl = s+ h(l − 1) for l = 1, . . . ,m, then

x(yl) =
1

2m
ei

π
m (−m+ 1

2
)h(l−1)G

2m,−h
2m

k 7→l

[
ei

π
m (k−m−1+ 1

2
)sF 2m

j 7→k

[
x(j)e−i π

m (−m+ 1
2
)(j−1)

]]
.

(3.10)
This corresponds to a vertical dilation composed wth a vertical shift (see [2, 19]).

4. Approximating the Normal Operator X∗
VXV . After approximating the

solution to the forward problem and restricting to ∂+SΩ to obtain the simulated data
Xf , we can then proceed with computing X∗Xf , and similarly, X∗

VXV f . Recall that
for any N ∈ N

XV f = χVR+T
−1
1 (Id−KT−1

1 )−1Jf

= χVR+T
−1
1

N∑

m=0

(KT−1
1 )mJf + χVR+T

−1
1 (KT−1

1 )N+1(I−KT−1
1 )−1Jf.

Under the condition that ‖KT−1
1 ‖L2→L2 < 1, we then have

X∗
V = J∗

(
∞∑

m=0

([T−1
1 ]∗K∗)m

)
[χVR+T

−1
1 ]∗ (4.1)

To numerically compute X∗
V , we separately compute the three types of terms appear-

ing in (4.1).
Given that J : L2(Ω)→ L2(Ω× Sn−1), it is straightforward to verify that

J∗g(x) =

∫

Sn−1

g(x, θ) dθ. (4.2)

We also compute

K∗g(x, θ) =

∫

Sn−1

k(x, θ′, θ)g(x, θ′) dθ′. (4.3)
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In the isotropic scattering case, this gives

K∗g(x, θ) = k(x)

∫

Sn−1

g(x, θ′) dθ′. (4.4)

We will need the discretized version of (4.3) in the same vain as (3.5), which is given
by

K∗
δ g(x, ηi) = δ

Nd∑

j=1

k(x, ηj , ηi)g(x, ηj), 1 ≤ i ≤ Nd (4.5)

One can also verify that T−1
1 : L2(Ω× Sn−1)→ L2(Ω× Sn−1) has adjoint

[T−1
1 ]∗g(x, θ) =

∫ ∞

0

exp

(
−
∫ s

0

σ(x+ τθ, θ) dτ

)
g(x+ sθ, θ) ds. (4.6)

However, in order to apply [T−1
1 ]∗ numerically, it is easier to use the associated first

order differential equation for which it is the solution operator. We already know that
T−1
1 is a left inverse for θ · ∇+ σ with the boundary condition in (1.1). So naturally
−θ · ∇+ σ is the associated differential operator for [T−1

1 ]∗.

Thus we can use a first order Euler method to compute [T−1
1 ]∗ just as with T−1

1 .
Finally, we make note of a formula for [χVR+T

−1
1 ]∗ : L2(∂+SΩ, dΣ)→ L2(Ω×Sn−1),

which is easily verified to be

[χVR+T
−1
1 ]∗g(x, θ) = g#(x, θ)χ#

V (x, θ)E(x, θ). (4.7)

Recall the truncation parameter Nscat ∈ N corresponding to how many terms in
the Neumann series

∑∞
m=0([T

−1
1 ]∗K∗)m to use. We proceed as in Algorithm 2.

Algorithm 2 Computing X∗
VXV f

1: v0(x, η)← [χVR+T
−1
1 ]∗XV f(x, η) = (XV f)

#(x, η)E(x, η)
2: for j = 1 to Nscat do

3: vj ← K∗
δ vj−1 ⊲ Apply K∗

4: for i = 1 to Nd do

5: wηi(xNx ,y) = 0 ⊲ Apply [T−1]∗

6: solve −∂x1
wηi + σηiwηi = [vj ]ηi for wηi .

7: vj(x,y, ηi)← w = [wηi ]−ηi
(x,y)

8: end for

9: end for

10: v(x,y)← δ
∑Nd

i=1

∑Nscat

j=1 vj(x,y, ηi) ⊲ Apply J∗

11: ⊲ v is an approximation to X∗
VXV f

5. Smoothness Analysis . When trying to recover microlocally the most sin-
gular part of the source via X∗

VXV as analyzed in [15], it turns out that in theory
only the first term of the Neumann series is needed. This is stated in Lemma 2.4,
for which we now provide the proof, utilizing the weakly singular integral results in
Appendix A.
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Proof. [Proof of Lemma 2.4] Observe that

X∗
V = [χVR+T

−1
1 (I−KT−1

1 )−1J ]∗

=

m2∑

j=0

[χVR+T
−1
1 (KT−1

1 )jJ ]∗ + [χVR+T
−1
1 (KT−1

1 )m2+1(I−KT−1
1 )−1J ]∗

XV = χVR+T
−1
1 (I−KT−1

1 )−1J

=

m1∑

i=0

χVR+T
−1
1 (KT−1

1 )iJ + χVR+T
−1
1 (KT−1

1 )m1+1(I−KT−1
1 )−1J.

Thus

X∗
VXV f −

m2∑

j=0

m1∑

i=0

[χVR+T
−1
1 (KT−1

1 )jJ ]∗χVR+T
−1
1 (KT−1

1 )iJf

=

m1∑

i=0

[χVR+T
−1
1 (I−KT−1

1 )−1(KT−1
1 )m2+1J ]∗χVR+T

−1
1 (KT−1

1 )iJf

+

m2∑

j=0

[χVR+T
−1
1 (KT−1

1 )jJ ]∗χVR+T
−1
1 (KT−1

1 )m1+1(I−KT−1
1 )−1Jf

+ [χVR+T
−1
1 (I−KT−1

1 )−1(KT−1
1 )m2+1J ]∗χVR+T

−1
1 (KT−1

1 )m1+1(I−KT−1
1 )−1Jf

=: A1 +A2 +A3.

First note that

[χVR+T
−1
1 ]∗χVR+T

−1
1 f(x, θ)

= |χV (x, θ)|2
∫

exp

(
−
∫ ∞

s

σ(x+ τθ, θ) dτ

)
f(x+ sθ, θ) ds.

In particular, [χVR+T
−1
1 ]∗χVR+T

−1
1 is bounded on Hj(Ω×Sn−1) for all j. Moreover,

from the proof of Proposition 6.1 of [15] we have that [(Id−KT−1
1 )−1]∗ can be taken

to be bounded on Hj(Ω×Sn−1) whenever (Id−KT−1
1 )−1 is, which we can assume is

the case for j ≤ l +max{m1,m2} + 1. From the discussion in Appendix A, we have
that

[(KT−1
1 )m2+1J ]∗g(x) =

∫∫
βm2+1(y, x, |y − x|, ŷ − x, θ)

|y − x|n−m
g(y, θ) dy dθ.

Using a similar argument as in Lemma 2 of [30] and applying Proposition A.2, we
have that [(KT−1

1 )m2+1J ]∗ is bounded from H l(Ω× Sn−1)→ H l+m2+1(Ω× Sn−1).
Now, to analyze A1 we write

A1 = [(KT−1
1 )m2+1J ]∗[(Id−KT−1

1 )−1]∗[χVR+T
−1
1 ]∗χVR+T

−1
1

m1∑

i=0

(KT−1
1 )iJ,

and from the arguments of the previous paragraph it is clear that A1 maps H l(Ω) to
H l+m2+1(Ω1). Likewise,

A2 =

m2∑

j=0

[KT−1
1 )jJ ]∗[χVR+T

−1
1 ]∗χVR+T

−1
1 (I−KT−1

1 )−1(KT−1
1 )m1+1J

and so A2 maps H l(Ω) to H l+m1+1(Ω1). A similar argument shows that A3 maps
H l(Ω) to H l+m1+m2+2(Ω1).
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6. Numerical Computations . For our numerical computations, the goal is
to provide visual verification of Theorem 2.2, and more specifically, of the related
result of Lemma 2.4. In all examples, we use a cartesian grid of 256 by 256 with
128 directions θ. We’ll use the notation (x, y) to denote a point in R2. In order to
incorporate anisotropy in k, we use the Henyey-Greenstein (H-G) phase function [14],
which is very commonly used in optical imaging:

p(θ, θ′) =

{
1
2π

1−g2

1+g2−2gθ·θ′
n = 2,

1
4π

1−g2

(1+g2−2gθ·θ′)3/2
n = 3.

(6.1)

To set g = 0 corresponds to the isotropic case, while g = 1 and g = −1 correspond
to forward scattering and backscattering, respectively. In typical applications g is
around 0.80 to 0.95 ([12]), which is characteristic of highly forward-peaked scattering.

We also incorporate noise into the boundary data in the following way. The
noiseless data Xf is an m× 128 matrix, with the rows corresponding to the position
along the unit circle and the columns corresponding to the particles’ direction. Given a

parameter µ > 0, for the jth column vj ofXf (i.e. [Xf ]j) we compute ‖vj‖2 =
√
vTj vj

and generate a vector w of length m with values chosen randomly according to the
standard normal distribution (variance 1 and mean 0). We then define the jth column
of the noisy data by

[Xfnoise]j := [Xf ]j + µ
√
[Xf ]Tj [Xf ]j

w√
wTw

= vj + µ‖vj‖2
w

‖w‖2
. (6.2)

Thus µ represents the fraction of ‖vj‖2 to which we would like to rescale the variance
of the noise.

With these details in mind, for all computed examples we have taken

k(x, y, θ, θ′) =
1

2π
χ{x2+y2<1}(x, y)

(
0.05 + sin2 xy

) 1− 0.852

1 + 0.852 − 2 · 0.85 · θ · θ′

and

σ(x, y, θ) = 0.5χ{x2+y2<1}(x, y)[0.05 + cos2 xy] sin2 θ.

Moreover, using the notation of Lemma 2.4, we take m1 = 8 and m2 = 2. This
corresponds to computing the first 9 terms of the Neumann series expansion for Xf
and only 3 terms in the series representation of X∗. Finally, in all computations we
take

V = Vexamples = {(η, θ) ∈ ∂+SΩ = ∂D× S1 | arg η ∈ [0, π/3] and η · θ > 0}. (6.3)

7. Conclusions. We have presented a numerical method to solve the direct
problem for the Radiative Transfer Equation (1.1) based on the work of [19], which
utilizes the discrete Fourier transform and fractional discrete Fourier transform to
implement a rotation-based method for computing the necessary line integrals. More-
over, we have computed the normal operator X∗

VXV in a similar manner, where XV is
the partial data operator. Ultimately, this has given us some nice visual examples in
the presence of anisotropic (σ, k) with or without added noise, where the anisotropic
parts of the parameters have physically meaningful structure as given in [12, 14]. Such
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Source, max = 1 Normal Operator from Complete Data Normal Operator from Partial Data

Fig. 6.1. A source consisting of circular bump functions with height 1. The partial data is
measured without noise on the set V = Vexamples.

Source, max = 1 Normal Operator from Complete Data Normal Operator from Partial Data

Fig. 6.2. Same as Figure 6.1 except with a noise coefficient µ = 0.50.

examples visually demonstrate the ability to detect the singularities of an unknown
source with only partial data of the transport solution u at the boundary.

Most importantly, the results of Figures 6.1 through 6.6 show the detection of
edges resulting from singularities in the respective chosen sources f , and this is con-
sistent with what is theoretically predicted in Theorem 2.2 and with the microlocally
visible set M′ given in (2.4). Moreover, it provides a nice generalization of similar
well-known results regarding the detectable singularities in the context of limited data
computed X-ray tomography, see [23].

Appendix. Smoothing Properties of Compositions of Weakly Singular-

type Integral Operators . Let’s consider an operator of type

[Af ](x, θ) =

∫
α(x, y, |x− y|, x̂− y, θ)

|x− y|n−1
f
(
y, x̂− y

)
dy (A.1)

where α(x, y, r, η, θ) ∈ C∞
c (Rn × Rn × R+ × Sn−1 × Sn−1). We would like to analyze

compositions of the form [AmJf ](x, θ) where J : L2(Rn) → L2(Rn × Sn−1) is the
extension operator Jf(x, θ) = f(x) as used previously.
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Source, max = 1 Normal Operator from Complete Data Normal Operator from Partial Data

Fig. 6.3. A source consisting of rectangular bump functions with height 1. The partial data is
measured without added noise on the same set V as given in Figure 6.1.

Source, max = 1 Normal Operator from Complete Data Normal Operator from Partial Data

Fig. 6.4. Same as Figure 6.3 except with a noise coefficient µ = 0.5.

Source, max = 0.99993 Normal Operator from Complete Data Normal Operator from Partial Data

Fig. 6.5. A spiral pattern of continuous circular bump functions of the form g(x, y) =

A
√

1− 1

r2
(x− x0)2 − 1

r2
0

(y − y0)2, where A is the maximum height and r is the radius. In this

example, starting from the widest bump and moving counterclockwise, we have the set of heights
and radii A = {0.5, 1, 0.3, 0.3, 0.4, 0.3} and r = {0.2, 0.15, 0.1, 0.1, 0.07, 0.03}, respectively. The par-
tial data is measured with no added noise on the set V given in Figure 6.1.
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Source, max = 0.99993 Normal Operator from Complete Data Normal Operator from Partial Data

Fig. 6.6. Same as Figure 6.5, but with an added noise coefficient µ = 0.50.

For m = 2, we compute

[A2Jf ](x, θ)

=

∫
α(x, y1, |x− y1|, x̂− y1, θ)

|x− y1|n−1
[AJf ]

(
y1,

x− y1
|x− y1|

)
dy1

=

∫
α(x, y1, |x− y1|, x̂− y1, θ)

|x− y1|n−1

∫ α
(
y1, y2, |y1 − y2|, ŷ1 − y2, x̂− y1

)

|y1 − y2|n−1
f(y2) dy2 dy1

=

∫ 

∫ α(x, y1, |x− y1|, x̂− y1, θ)α

(
y1, y2, |y1 − y2|, ŷ1 − y2, x̂− y1

)

|x− y1|n−1|y1 − y2|n−1
dy1




· f(y2) dy2.

Similarly for m = 3,

[A3Jf ](x, θ)

=

∫ (∫∫ α(x, y1, |x− y1|, x̂− y1, θ)α
(
y1, y2, |y1 − y2|, ŷ1 − y2, x̂− y1

)

|x− y1|n−1|y1 − y2|n−1|y2 − y3|n−1

· α
(
y2, y3, |y2 − y3|, ŷ2 − y3, ŷ1 − y2

)
dy2 dy1

)
f(y3) dy3.

We set α1 := α, and for m ≥ 2 define

αm(x, y1, . . . , ym, |x− y1|, . . . , |ym−1 − ym|, x̂− y1, . . . , ̂ym−1 − ym, θ) (A.2)

:= αm−1(y1, y2, . . . , ym, |y1 − y2|, . . . , |ym−1 − ym|, ŷ1 − y2, . . . , ̂ym−1 − ym, x̂− y1)
· α1(x, y1, |x− y1|, x̂− y1, θ).

For simplicity of notation, define

ym := (y1, . . . , ym−1, y),

rm := (|y1 − y2|, . . . , |ym−1 − y|),
r̂m := (ŷ1 − y2, . . . , ̂ym−1 − y).
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Then set for m ≥ 2

am(x, y, θ) :=

∫
· · ·
∫

αm(x,ym, |x− y1|, rm, x̂− y1, r̂m, θ)
|x− y1|n−1|y1 − y2|n−1 · · · |ym−1 − y|n−1

dy1 · · · dym−1.

Also let

a0 := J [δ(· − y)], a1(x, y, θ) :=
α1(x, y, |x− y|, x̂− y, θ)

|x− y|n−1
.

Then

[AmJf ](x, θ) =

∫
am(x, y, θ)f(y) dy, m ≥ 0.

Now we would like to show that AmJ has a kernel of the form

βm(x, y, |x− y|, x̂− y, θ)
|x− y|n−m

(A.3)

where βm(x, y, r, η, θ) is C∞. Ultimately, our goal is to rigorously show for m ≥ 2 that
AmJ is a pseudodifferential operator of order −m, by adapting the proof of Lemma
2 in [11], which already directly applies to the case m = 1.

A.1. The Case m = 2. For η ∈ Sn−1, define the set

Dη := Rn \
(
B0

(
1

4

)
∪Bη

(
1

4

))
.

Also let Aη be the rotational matrix such that Aηη = e1, the first unit basis vector
of Rn. Let ψ(r) be a smooth, even bump function such that 0 ≤ ψ ≤ 1, ψ ≡ 1 for
|r| ≤ 1

4 , and ψ ≡ 0 for |r| ≥ 1
2 . We will frequently use the notation r = |x − y| and

η = x̂− y. Note that differentiation of Aη with respect to x yields, from the fact that

∂xj x̂− y =
xj−yj

|x−y|2 , that |∂xjAη| ≤ C
|x−y| . Similarly, lth order derivatives of Aη with

respect to x will have bounds of the form C
|x−y|l . Of course, if we treat Aη as a matrix

of functions of η only, and not implicitly dependent on x, then each such coordinate
function is in C∞(Sn−1).

We have

a2(x, y, θ) =

∫
α2(x, y1, y, |x− y1|, |y1 − y|, x̂− y1, ŷ1 − y, θ)

|x− y1|n−1|y1 − y|n−1
dy1.

We may then cut up the above integral, using ψ and suppressing some variables, to
obtain the decomposition

I1 + I2 + I3 :=

∫
ψ

( |x− y1|
|x− y|

)
α2 dy1 +

∫
ψ

( |y1 − y|
|x− y|

)
α2 dy1

+

∫ [
1− ψ

( |x− y1|
|x− y|

)
− ψ

( |y1 − y|
|x− y|

)]
α2 dy1.

Let’s focus on the first term, I1. Substitute w = x−y1

|x−y| so that |x − y|ndw = dy1,

y1 = x − |x − y|w and y1 − y = |x − y|(x̂− y − w). We also note that the region of
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integration is w ∈ B0

(
1
2

)
. We obtain

I1 =

∫ ψ
(

|x−y1|
|x−y|

)
α2(x, y1, y, |x− y1|, |y1 − y|, x̂− y1, ŷ1 − y, θ)

|x− y1|n−1|y1 − y|n−1
dy1

=
1

|x− y|n−2

∫
ψ(|w|)

|w|n−1|x̂− y − w|n−1

· α2

(
x, x− |x− y|w, y, |x− y||w|, |x− y||x̂− y − w|, ŵ, x̂− y − w

|x̂− y − w|
, θ

)
dw

=
1

rn−2

∫

B0( 1
2 )

ψ(|w|)
|w|n−1|η − w|n−1

· α2

(
x, x − |x− y|w, y, |x− y||w|, |x− y||η − w|, ŵ, η̂ − w, θ

)
dw

=
1

rn−2

∫

B0( 1
2 )

ψ(|w|)α2

(
x, x− rA−1

η w, y, r|w|, r|e1 − w|, ŵ, A−1
η ê1 − w, θ

)

|w|n−1|e1 − w|n−1
dw.

(A.4)

Let’s consider the other terms:

I2 =

∫ ψ
(

|y1−y|
|x−y|

)
α2(x, y1, y, |x− y1|, |y1 − y|, x̂− y1, ŷ1 − y, θ)

|x− y1|n−1|y1 − y|n−1
dy1

=
1

rn−2

∫

B0( 1
2 )

ψ(|x̂ − y − w|)
|w|n−1|e1 − w|n−1

(A.5)

· α2

(
x, x− rA−1

η w, y, r|w|, r|e1 − w|, ŵ, A−1
η ê1 − w, θ

)
dw

and

I3 =

∫
(
1− ψ

(
|x−y1|
|x−y|

)
− ψ

(
|y1−y|
|x−y|

))

|x− y1|n−1|y1 − y|n−1

· α2(x, y1, y, |x− y1|, |y1 − y|, x̂− y1, ŷ1 − y, θ) dy1

=
1

rn−2

∫

De1

(1− ψ(|w|) − ψ(|e1 − w|))
|w|n−1|e1 − w|n−1

(A.6)

· α2

(
x, x− rA−1

η w, y, r|w|, r|e1 − w|, ŵ, A−1
η ê1 − w, θ

)
dw.

Notice that after multiplying each term by rn−2, the remaining integrals are smooth
in the variables x, y, r, η and θ.

A.2. The General Case. We seek to record a general formula for the integral
representation of AmJf(x) which resembles a weakly singular integral with integral
singularity 1

|x−y|n−m . Let’s make some new definitions to simplify the notation. Set

y0 = x and ym = ym+1 = y, and given 1 ≤ j ≤ m− 1, define

wj :=
x− yj
|x− yj+1|

, w′
j :=

yj − yj+1

|x− yj+1|
. (A.7)
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Note that η = x̂− y = wm. Also define w0 = 0 for convenience, and then set

ψ1
j (wj , w

′
j) := ψ(|wj |)

ψ2
j (wj , w

′
j) := ψ(|w′

j |)
ψ3
j (wj , w

′
j) := 1− ψ(|wj |)− ψ(|w′

j |). (A.8)

We notice a few useful formulas for 1 ≤ j ≤ m− 1:

w′
j = ŵj+1 − wj ,

yj = x− rwj

m−1∏

l=j+1

|wl|,

yj − yj+1 = |x− yj+1|(ŵj+1 − wj).

Define

y := [y1, . . . , ym−1, y] =






x− rwj

m−1∏

l=j+1

|wl|





m−1

j=1

, y


 ∈ Rm,

|w| :=



m−1∏

l=j

|wl|



m−1

j=1

. (A.9)

We can partition the integrations involved in the definition of am(x, y, θ) as

∫ ∑

γ∈{1,2,3}m−1



m−1∏

j=1

ψ
γj

j (wj , ŵj+1 − wj)




·
αm

(
x,y, r|w|, ŵ1 ,

ŵ2−w1

|ŵ2−w1|
, . . . , η−wm−1

|η−wm−1|
, θ
)

rn−m|η − wm−1|n−1
∏m−1

l=1 |wl|n−l−1
∏m−2

k=1 |ŵk+1 − wk|n−1
dw1 . . . dwm−1.

For 0 ≤ j ≤ m− 1 define

D1
j := B0

(
1

2

)

D2
j := Bŵj+1

(
1

2

)

D3
j := Rn \

(
B0

(
1

4

)
∪Bŵj+1

(
1

4

))
. (A.10)

For each γ ∈ {1, 2, 3}m−1
j=1 , set Dγ :=

∏m−1
j=1 D

γj

j . Then we have the integral

Im(x, y, r, η, θ) :=
∑

γ∈{1,2,3}m−1

∫

Dγ



m−1∏

j=1

ψ
γj

j (wj , ŵj+1 − wj)




·
αm

(
x,y, r|w|, ŵ1 ,

ŵ2−w1

|ŵ2−w1|
, . . . , η−wm−1

|η−wm−1|
, θ
)

rn−m|η − wm−1|n−1
∏m−1

l=1 |wl|n−l−1
∏m−2

k=1 |ŵk+1 − wk|n−1
dw1 . . . dwm−1.

(A.11)
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Note that Im(x, y, r, η, θ)|
r=|x−y|,η=x̂−y

= am(x, y, θ). Assuming that Im is a well-

defined, convergent iterated integral, since αm depends smoothly on r, it follows that
Im is smooth in r upon multiplication by rn−m. Also note that since x and y both
appear separately in the evaluation of αm, αm is compactly supported in x, and
we will ultimately be applying the given integral operator to functions f supported
in a compact set, it follows that multiplying the integral kernel by a smooth cutoff
function of r will not change its behavior. Thus we may assume that Im is compactly
supported in r. Smoothness in x, y and θ is also clear, though we delay consideration
of smoothness in η until later. We define

βm(x, y, r, η, θ) := rn−mIm(x, y, r, η, θ), (A.12)

so that

AmJf(x) =

∫
βm(x, y, |x− y|, x̂− y, θ)

|x− y|n−m
f(y) dy.

In order to justify the convergence of the iterated integral in (A.11), consider
a specific integral summand corresponding to a choice of multi-index γ. We first
note that x and y are restricted to Ω by assumption. Secondly, the singularities in
each variable wj are all locally integrable since near such singularities we have local
behavior like 1

|wj|n−j−1 or 1
|ŵj+1−wj |n−1 . It remains to show bounds on the terms in

the sum which involve integrations over one or more of the domains D3
j . Let j be the

first index where such an integration occurs in a given term. We may integrate out
the variables w1 . . . wj−1 first since the domains of integration are bounded in those

cases. Since yj ∈ Ω, we have x− rwj

∏m−1
l=j+1 |wl| ∈ Ω. Thus

|wj | ≤
diam(Ω)

r
∏m−1

l=j+1 |wl|
=:M. (A.13)

Suppose first that n− j − 1 6= 1. Then using (A.13) we may bound each integral
summand in (A.11) by
∫

D′

γ

C

rn−m|η − wm−1|n−1|ŵm−1 − wm−2|n−1 · · · |ŵj+2 − wj+1|n−1

· 1∏m−1
l=j+1 |wl|n−l−1

∣∣∣∣∣

[
1

un−j−2

]M

1
4

∣∣∣∣∣ dwj+1 · · · dwm−1

≤
∣∣∣∣

1

rj+2−m
− 4n−j−2

∣∣∣∣
∫

D′

γ

C

|η − wm−1|n−1|ŵm−1 − wm−2|n−1 · · · |ŵj+2 − wj+1|n−1

· diam(Ω)2+j−n

∏m−1
l=j+1 |wl|j+1−l

dwj+1 · · · dwm−1,

where D′
γ is the domain obtained from Dγ by removing the domains of integration

with respect to w1 . . . wj . If on the other hand, n − j − 1 = 1, then one obtains an
estimate involving ln(r) and ln |wl|, which also yields a suitable bound on the integral,
since ln(|wl|)|wl|s is locally integrable at 0 for any s > −n. Further integrations over
domains D3

j′ will result in similar estimates, where the bound M in (A.13) will have
the same kind of dependence on r. By Fubini’s theorem Im is well defined as an
iterated integral for r 6= 0.
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It remains to show smoothness of Im with respect to η. Notice that when γm−1 =
1 or 3 (i.e. when wm−1 ∈ B0

(
1
2

)
or wm−1 ∈ Rn \

(
B0

(
1
4

)
∪Bη

(
1
4

))
), then |η−wm−1|

is uniformly positive. Thus, we can differentiate under the integral sign with respect
to η the term 1

|η−wm−1|n−1 infinitely many times. On the other hand, to differentiate

the terms with γm−1 = 2 (i.e. wm−1 ∈ Bη

(
1
2

)
), we make the substitution zm−1 =

η − wm−1 and note that zm−1 ∈ B0

(
1
2

)
. Then the term 1

|wm−1|n−m = 1
|η−zm−1|n−m is

uniformly bounded away from 0, so we may differentiate it arbitrarily many times with
respect to η. The only other potential problem will occur if in addition, γm−2 = 2 or
equivalently, wm−2 ∈ Bŵm−1

(
1
2

)
= B ̂η−zm−1

(
1
2

)
. In this case, we make yet another

change of variables zm−2 = ŵm−1 − wm−2 = ̂η − zm−1 − wm−2, so that zm−2 ∈
B0

(
1
2

)
and the term 1

|ŵm−1−wm−2|n−1 does not depend on η. Similarly, the term
1

|wm−2|n−m+1 = 1

| ̂η−zm−1−zm−2|n−m+1
is uniformly bounded for zm−2 ∈ B0

(
1
2

)
, and so

we can differentiate it arbitrarily many times with respect to η. Continuing in this
way, if at any point γj = 2 we make the change of variables zj = ŵj+1−wj and obtain
similar bounds. The main idea is to transfer the derivative to the numerator function
αm. It is a routine matter to check that under such change of variables, differentiation
of αm with respect to η does not result in any unbounded factors involving η via the
chain rule.

Remark 3. By the same reasoning, if α(x, y, r, η, θ) is in C2
c (R

n × Rn × R+ ×
Sn−1 × Sn−1), then βm ∈ C2

c .
We now consider the following adaptation of Lemma 2 from [11]:
Lemma A.1. Let m ≥ 1 and let A : C0(Ω)→ C(Ω, Sn−1) be the operator

Af(x, θ) =
∫

Sn−1

∫

R

rm−1α(x, r, ω, θ)f(x + rω) dr dω, (A.14)

where α ∈ C∞(Ω×R× Sn−1 × Sn−1). Then A is a classical ΨDO of order −m with
full symbol

a(x, ξ) ∼
∞∑

k=m−1

ak(x, ξ),

where

ak(x, ξ) = 2π
ik

k!

∫

Sn−1

∂krA(x, 0, ω, θ)δ
(k)(ω · ξ) dω.

Proof. The proof directly follows from the proof of the case m = 1 in [11]. Let
A′(x, r, ω, θ) = rm−1A(x, r, ω, θ), and note that if A′ is an odd function of (r, ω), then
Af = 0. So we may replace A′ = rm−1A by

A′
even(r, ω) =

1

2
(A′(r, ω) +A′(−r,−ω))

=
1

2
(rm−1A(r, ω) + (−r)m−1A(−r,−ω))

=
rm−1

2
(A(r, ω) + (−1)m−1A(−r,−ω)).

We can then integrate over r ≥ 0 only and double the result. Thus,

Af(x) = 2

∫

Sn−1

∫ ∞

0

A′
even(x, r, ω, θ)f(x + rω) dr dω.
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Changing to polar coordinates via z = rω and setting y = x+ rω, we obtain

Af(x) = 2

∫
A′

even

(
x, |y − x|, y − x|y − x| , θ

)
f(y)

|y − x|n−1
dy.

We then use a finite Taylor expansion of Aeven(x, r, ω, θ) in r near r = 0 with N > 0
to get

A′
even(x, r, ω, θ) =

N−1∑

k=0

A′
even,k(x, ω, θ)r

k + rNRN (x, r, ω, θ).

One can compute that 2A′
even,k(x, ω, θ) = A′

k(x, ω, θ) + (−1)kA′
k(x,−ω, θ), where

k!A′
k = ∂kr |r=0A

′ = ∂kr |r=0

[
rm−1A

]
. Clearly, A′

k = 0 for all k < m − 1. There-
fore, following the proof of Lemma 2 in [11], we obtain that the terms ak(x, ξ, θ) =
2πik

∫
Sn−1 A

′
k(x, ω, θ)δ

(k)(ω · ξ) dω = 0 for all k < m− 1.
Proposition A.2. Let α ∈ C∞

c (Rn × Rn × R× Sn−1 × Sn−1) and consider the
operator A : L2(Rn × Sn−1)→ L2(Rn;C∞(Sn−1)) defined by

[Af ](x, θ) =

∫
α(x, y, |x − y|, x̂− y, θ)

|x− y|n−1
f(y, x̂− y) dy. (A.15)

Then for m ≥ 1, AmJ is a classical pseudodifferential operator of order −m with
smooth parameter θ, where J : L2(Rn) → L2(Rn × Sn−1) is the extension operator
Jf(x, θ) = f(x).

Proof. Recall that

[AmJf ](x, θ) =

∫
Im(x, y, |x − y|, x̂− y, θ)f(y) dy

=

∫
βm(x, y, |x− y|, x̂− y, θ)

|x− y|n−m
f(y) dy

=

∫

Sn−1

∫ ∞

0

rm−1βm(x, x − rω, r, ω, θ)f(x− rω) dr dω

=

∫

Sn−1

∫ ∞

0

rm−1βm(x, x + rω, r,−ω, θ)f(x+ rω) dr dω.

We can then apply Lemma A.1 to complete proof.
Let us also compute the adjoint of the operator AmJ . Given functions f ∈

L2(Rn × Sn−1) and g ∈ L2(Rn), we have

〈[AmJ ]∗f, g〉L2(Rn)

= 〈f,AmJg〉L2(Rn×Sn−1)

=

∫∫∫
βm(x, y, |x− y|, x̂− y, θ)

|x− y|n−m
g(y)f(x, θ) dy dx dθ

=

∫
g(y)

(∫

Rn

∫

Sn−1

βm(x, y, |x− y|, x̂− y, θ)
|x− y|n−m

f(x, θ) dx dθ

)
dy.

Thus

[AmJ ]∗f(x) =

∫

Rn

∫

Sn−1

βm(y, x, |y − x|, ŷ − x, θ)
|x− y|n−m

f(y, θ) dθ dy. (A.16)
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It is then clear that [AmJ ]∗ : H l(Ω× Sn−1)→ H l+m(Ω) using a similar argument as
in Lemma 2 of [30] together with Proposition A.2.
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