
ar
X

iv
:1

20
8.

35
73

v1
 [

m
at

h.
N

A
]

 1
7

A
ug

 2
01

2

PRECONDITIONING WITH DIRECT APPROXIMATE FACTORING

OF THE INVERSE

MIKKO BYCKLING∗ AND MARKO HUHTANEN†

Abstract. To precondition a large and sparse linear system, two direct methods for approximate
factoring of the inverse are devised. The algorithms are fully parallelizable and appear to be more
robust than the iterative methods suggested for the task. A method to compute one of the matrix
subspaces optimally is derived. Possessing a considerable amount of flexibility, these approaches
extend the approximate inverse preconditioning techniques in several natural ways. Numerical ex-
periments are given to illustrate the performance of the preconditioners on a number of challenging
benchmark linear systems.

Key words. preconditioning, approximate factoring, parallelizable, sparsity pattern, approxi-
mate inverse

AMS subject classifications. 65F05, 65F10

1. Introduction. Approximate factoring of the inverse means parallelizable al-
gebraic techniques for preconditioning a linear system involving a large and sparse
nonsingular matrix A ∈ Cn×n. The idea is to multiply A by a matrix W from the
right (or left) with the aim at having a matrix AW which can be approximated with
an easily invertible matrix.1 As opposed to the usual paradigm of preconditioning,
iterations are not expected to converge rapidly for AW. Instead, the task can be
interpreted as that of solving

inf
W∈W, V ∈V

∣

∣

∣

∣AWV −1 − I
∣

∣

∣

∣

F
(1.1)

approximately by linearizing the problem appropriately [14, 4]. Here W and V are
nonsingular sparse standard matrix subspaces of Cn×n with the property that that
the nonsingular elements of V are assumed to allow a rapid application of the inverse.
Approximate solutions to this problem can be generated with the power method as
suggested in [4]. In this paper, direct methods are devised for approximate factoring
based on solving

min
W∈W, V ∈V

||AW − V ||F (1.2)

when the columns of either W or V being constrained to be of fixed norm. These two
approaches allow, once the matrix subspace W has been fixed, choosing the matrix
subspace V in an optimal way.

The first algorithm solves (1.2) when the columns of V are constrained to be of
fixed norm. Then the matrix subspaces AW and V are compared as such while other
properties of A are largely overlooked. The second algorithm solves the problem when
the columns of W are constrained to be of fixed norm, allowing taking properties of
A more into account. In [4] the approach to this end was based on approximating the

∗ CSC - IT Center for Science, P.O. Box 405, 02101 Espoo, Finland (Mikko.Byckling@csc.fi).
† Mathematics Division, Department of Electrical and Information Engineering, University of

Oulu, P.O. Box 4500, FIN-90401 Oulu, Finland, (Marko.Huhtanen@oulu.fi).
1Direct methods are typically devised in this way, i.e., both the LU and QR factorization can

be interpreted such that the purpose is to multiply A with a matrix from the left so as to have an
upper triangular, i.e., an easily invertible matrix.

1

http://arxiv.org/abs/1208.3573v1

2 M. BYCKLING AND M. HUHTANEN

smallest singular value of the map

W 7−→ (I − PV)AW (1.3)

from W to Cn×n with the power iteration. Here PV denotes the orthogonal projector
on Cn×n onto V . The second algorithm devised in this paper is a direct method for
solving the task.

The algorithms proposed extend the standard approximate inverse computational
techniques in several ways. (For sparse approximate inverse computations, see [1,
Section 5], [12] and [16, Chapter 10.5] and references therein.) Aside from possessing
an abundance of degrees of freedom, we have an increased amount of optimality if
we suppose the matrix subspace W to be given. Then computable conditions can be
formulated for optimally choosing the matrix subspace V . This is achieved without
any significant increase in the computational cost. In particular, only a columnwise
access to the entries of A is required.2

We aim at maximal parallelizability by solving the minimization problem (1.2)
columnwise. The cost of such a high parallelism is the need to have a mechanism
to somehow control the conditioning of the factors. After all, parallelism means
performing computations locally and independently. Also this can be achieved without
any significant increase in the computational cost.

Although the choice of the matrix subspace W is apparently less straightforward,
some ideas are suggested to this end. Here we cannot claim achieving optimality,
except that once done, thereafter V can be generated in an optimal way. In particular,
because there are so many alternatives to generate matrix subspaces, many ideas
outlined in this paper are certainly not fully developed and need to be investigated
more thoroughly.

The paper is organized as follows. In Section 2 two algorithms are devised for
approximate factoring of the inverse. Section 3 is concerned with ways to choose the
matrix subspace V optimally. Related stabilization schemes are suggested. In Section
4 heuristic Al schemes are suggested for constructing the matrix subspace W . In
Section 5 numerical experiments are conducted. The toughest benchmark problems
from [3] are used in the tests.

2. Direct approximate factoring of the inverse. In what follows, two algo-
rithms are devised for computing matrices W and V to have an approximate factor-
ization

A−1 ≈ WV −1 (2.1)

of the inverse of a given sparse nonsingular matrix A ∈ Cn×n. The factors W and V
are assumed to belong to given sparse standard matrix subspaces W and V of Cn×n.
A matrix subspace is said to be standard if it has a basis consisting of standard ba-
sis matrices.3 This allows maximal parallelizability by the fact that then the arising
computational problems can be solved columnwise independently. Of course, paral-
lelizability is imperative to fully exploit the processing power of modern computing
architectures.

2Accessing the entries of the adjoint can be costly in parallel computations.
3Analogously to the standard basis vectors of Cn, a standard basis matrix of Cn×n has exactly

one entry equaling one while its other entries are zeros.

DIRECT APPROXIMATE FACTORING 3

2.1. First basic algorithm. Consider the minimization problem (1.2) under
the assumption that the columns of V are constrained to be unit vectors, i.e., of norm
one. Based on the sparsity structure of W and the corresponding columns of A, the
aim is at first choosing V optimally. Thereafter W is determined optimally.

To describe the method, denote by wj and vj the jth columns of W and V . The
column vj is computed first as follows. Assume there can appear kj ≪ n nonzero
entries in wj at prescribed positions and denote by Aj ∈ Cn×kj the matrix with the
corresponding columns of A extracted. Compute the sparse QR factorization

Aj = QjRj (2.2)

of Aj . (Recall that the sparse QR-factorization is also needed in sparse approximate
inverse computations.) Assume there can appear lj ≪ n nonzero entries in vj at
prescribed positions and denote by Mj ∈ Ckj×lj the matrix with the corresponding
columns of Q∗

j extracted. Then vj , regarded as a vector in C
lj , of unit norm is

computed satisfying

||Mjvj || = ||Mj || , (2.3)

i.e., vj is chosen in such a way that its component in the column space of Aj is as
large as possible. This can be found by computing the singular value decomposition
of Mj . (Its computational cost is completely marginal by the fact that Mj is only a
kj-by-lj matrix.)

Suppose the column vj has been computed as just described for j = 1, . . . , n.
Then solve the least squares problems

min
wj∈C

kj

||Ajwj − vj ||2 (2.4)

to have the column wj of W .
For each pair vj and wj of columns, the computational cost consists of computing

the sparse QR factorization (2.2) and, by using it, solving (2.3) and (2.4). For the
sparse QR factorization there are codes available [8]. (Now Aj has the special property
of being very “tall and skinny”.)

The constraint of requiring the columns of V to be unit vectors is actually not
a genuine constraint. That is, the method is scaling invariant from the right and
thereby any nonzero constraints are acceptable in the sense that the condition (2.3)
could equally well be replaced with ||Mjvj || = rj ||Mj|| . Let us formulate this as
follows.

Theorem 2.1. Assume A ∈ Cn×n is nonsingular. If V and W are standard
matrix subspaces of Cn×n, then the factorization (2.1) computed as described is in-
dependent of the fixed column constraints ||vj ||2 = rj > 0 for j = 1, . . . , n.

Proof. Let W and V be the matrices computed with the unit norm constraint for
the columns of V . Let Ŵ and V̂ be computed with other strict positivity constraints
for the columns of V̂ , i.e., (2.3) is replaced with the condition

||Mjvj || = rj ||Mj || . (2.5)

Then we have V = V̂ D and W = ŴD for a diagonal matrix D with nonzero entries.
Consequently, WV −1 = Ŵ V̂ −1 whenever the factors are invertible.

Corollary 2.2. If a matrix V solving

min
W∈W, V ∈V, ||V ||F=1

||AW − V ||F . (2.6)

4 M. BYCKLING AND M. HUHTANEN

is nonsingular, then the factorization (2.1) coincides with the one computed to satisfy
(2.3) and (2.4).

Proof. Suppose W and V solve (2.6). Since V is invertible, we have ||vj ||2 = rj >

0. Using these constraints, compute Ŵ and V̂ to satisfy (2.5) and (2.4). This means
solving (2.6) columnwise and thereby the corresponding factorizations coincide.

It is instructive to see how the computation of an approximate inverse relates
with this. (For sparse approximate inverses and their historical development, see [1,
Section 5].)

Example 2.1. In approximate inverse computations, the matrix subspace V is as
simple as possible, i.e., the set of diagonal matrices. Regarding the constraints, the
columns are constrained to be unit vectors. Therefore one can replace V with the
identity matrix, as is customary. See also Example 3.2 below.

2.2. Second basic algorithm. Consider the minimization problem (1.2) under
the assumption that the columns of W are constrained to be unit vectors instead.
Based on the sparsity structure ofW and the corresponding columns of A, the aim now
is at first choosing W optimally. Thereafter V is determined optimally. The resulting
scheme yields a direct analogue of the power method suggested in [4]. However, the
method proposed here has at least three advantages. First, being direct, it seems to
be more robust since there is no need to tune parameters used in the power method.
Second, the Hermitian transpose of A is not needed. Third, the computational cost is
readily predictable by the fact that, in essence, we only need to compute sparse QR
factorizations.

To describe the method, denote by wj and vj the jth columns of W and V . The
column wj is computed first as follows. Assume there can appear kj ≪ n nonzero
entries in wj at prescribed positions and denote by Aj ∈ Cn×kj the matrix with the
corresponding columns of A extracted. Assume there can appear lj ≪ n nonzero

nonzero entries in vj at prescribed positions and denote by Âj ∈ C(n−lj)×kj the
matrix with the corresponding rows of Aj removed. Then take wj to be a right

singular vector corresponding to the smallest singular value of Âj .

To have wj inexpensively, compute the sparse QR factorization

Âj = QjRj

of Âj . Then compute the singular value decomposition of Rj . Of course, its compu-
tational cost is completely negligible. (However, do not form the arising product to
have the SVD of Âj explicitly.) Then take wj from the singular value decomposition
of Rj .

Suppose the column wj has been computed as just described for j = 1, . . . , n.
Then, to have the columns of V , set

V = PVA[w1 · · ·wn],

i.e., nonzero entries are accepted only in the allowed sparsity structure of vj .

For an analogue of Corollary 2.2, assume a matrix corresponding to the smallest
singular value of the linear map (1.3) is nonsingular. Since W is a standard matrix
subspace, the computations can be performed columnwise. The resulting W can be
chosen to coincide, once divided by

√
n, with this matrix.

DIRECT APPROXIMATE FACTORING 5

2.3. Some general remarks. In approximate inverse preconditioning, it is well-
known that it can make a difference whether one computes a right or left approximate
inverse [1, pp. 449–450]. As we have generalized this technique, this is the case
with the approximate factoring of the inverse also. Here we have considered only
preconditioning from the right.

The usage of standard matrix subspaces leads to maximal parallelizability. In
view of approximating the inverse, this means that computations are done locally
(columnwise) and independently, i.e., without any global control. To compensate for
this, with an eye to improve the conditioning of the factors, it seems advisable to
impose additional constraints. This is considered in Section 3.

The simultaneous (somehow optimal) choice of the matrix subspaces W and V
is a delicate matter. In [4] we gave a rule thumb according to which the sparsity
structures of the matrix subspaces should differ as much as possible in approximate
factoring of the inverse. (This automatically holds in computing approximate inverses
and ILU factorizations.) Numerical experiments seem to support this. Although we
do not quite understand the reasons for this, it is partially related with the fact that
then there are very few redundancies in the factorizations (2.1) as follows.

Proposition 2.3. Let V and W be standard nonsingular matrix subspaces of
Cn×n containing the identity. If in the complement of the diagonal matrices the
intersection of V and W is empty, then the maximum rank of the map

(V,W) 7−→ WV −1 (2.7)

on V ×W ∩GL(n, C) is dimV + dimW − n.
Proof. Linearize the map (2.7) at (V̂ , Ŵ) for both V̂ and Ŵ invertible. Using the

Neumann series yields the linear term

Ŵ (Ŵ−1W − V̂ −1V)V̂ −1.

At (V̂ , Ŵ) = (I, I) the rank is dimV + dimW − n. It is the maximum by the fact
that for any nonsingular diagonal matrix D we have (V D,WD) 7−→ WV −1, i.e., the
map (2.7) can be regarded as a function of dimV + dimW − n variables.

Aside from this basic principle, more refined techniques are devised for simulta-
neously choosing the matrix subspaces W and V in the sections that follow. Most
notably, optimal ways of choosing V are devised.

3. Optimal construction of the matrix subspace V and imposing con-

straints. For the basic algorithms introduced, a method for optimally choosing the
matrix subspace V is devised under the assumption that the matrix subspace W has
been given. Moreover, mechanisms are introduced into the basic algorithms that allow
stabilizing the scheme for better conditioned factors. (In approximate inverse precon-
ditioning the latter task is accomplished in the simplest possible way: the subspace
V is simply CI, i.e., scalar multiples of the identity.)

3.1. Optimally constructing the matrix subspace V. Suppose the matrix
subspace W has been given. Then the condition (2.3) yields a columnwise criterion
for optimally choosing the sparsity structure of the matrix subspace V . (Recall that
it must be assumed that the nonsingular elements of V allow a rapid application of
the inverse.) Once done, proceed by using one of the basic algorithms to compute the
factors.

Consider (2.3). It is beneficial to choose the sparsity structure of vj in such a way
that the norm of Mj is as large as possible, with the constraint that in the resulting

6 M. BYCKLING AND M. HUHTANEN

V the nonsingular elements are readily invertible. In other words, among admissible
columns of Q∗

j , take lj columns which yields Mj with the maximal norm. This means
that for the optimization problem (1.2), with a fixed matrix subspace W , the matrix
subspace V is constructed in an optimal way.

Certainly, the problem of choosing lj columns to maximize the norm is combina-
torial and thereby rapidly finding a solution does not appear to be straightforward. A
suboptimal choice for the matrix Mj can be readily generated by taking lj admissible
columns of Q∗

j with largest norms. When done with respect to the Euclidean norm,
the Frobenius norm of the submatrix is maximized instead. This can be argued, of
course, by the fact that

1
√

max{kj, ll}
||Mj||F ≤ ||Mj|| ≤ ||Mj ||F

holds.
This approach starts with W and then yields V (sub)optimally. This process can

be used to assess how W was initially chosen. Let us illustrate this with the following
example.

Example 3.1. The choice of upper (lower) triangular matrices for V has the advan-
tage that then we have a warning signal in case W is poorly chosen. Namely, suppose
V has been (sub)optimally constructed as just described. If the factor V computed to
satisfy (1.2) is poorly conditioned, one should consider updating the sparsity structure
of W to have a matrix subspace which better suited for approximate factoring of the
inverse of A.4

In this optimization scheme, let us illustrate how the matrix subspace W actually
could be poorly chosen. Namely, the way the above optimization scheme is set up
means that the sparsity structure of W should be such that no two columns share the
same sparsity structure. (Otherwise V will have equaling columns.) Of course, this
may be too restrictive. In the section that follows, a way to circumvent this problem
is devised by stabilization.

3.2. Optimizing under additional constraints. There are instances which
require imposing additional constraints in computing the factors. Aside from the
problems described above, in tough problems the approximate factors may be poorly
conditioned of even singular.5 Because there holds

∣

∣

∣

∣AWV −1 − I
∣

∣

∣

∣

||V −1|| ≤ ||AW − V || ≤
∣

∣

∣

∣AWV −1 − I
∣

∣

∣

∣ ||V || , (3.1)

this certainly cannot be overlooked. To overcome this, it is advisable to stabilize the
computations by appropriately modifying the optimality conditions in computing the
factors.

For the first basic algorithm this means a refined computation of V . Thereafter
the factor W is computed columnwise as before to satisfy the conditions (2.4). For
a case in which the conditioning is readily controlled, consider a matrix subspace V

4This is actually the case in the (numerically) exact factoring: To recover whether a matrix
A ∈ Cn×n is nonsingular, it is advisable to compute its partially pivoted LU factorization, i.e., use
a numerically reliable algorithm.

5This is a well-known phenomenon in preconditioning. For ILU factorization there are many
ways to stabilize the computations [1]. Stabilization has turned out to be indispensable in practice.

DIRECT APPROXIMATE FACTORING 7

belonging to the set of upper (or lower) triangular matrices. Then, suppose the jth
column vj computed to satisfy (2.3) results in a tiny jth component. To stabilize
the computations for the first basic algorithm, we replace vj by first imposing the jth

component of vj to equal a constant rj > 0. For the remaining components, let M̂j be
a submatrix consisting of the lj−1 largest columns of Q∗

j among its first j−1 columns.
Denote the jth column of Q∗

j by pj. Then consider the optimization problem

max
||v̂j||2=1

∣

∣

∣

∣

∣

∣
rjpj + M̂j v̂j

∣

∣

∣

∣

∣

∣

2
. (3.2)

By invoking the singular value decomposition M̂j = ÛjΣ̂j V̂
∗
j of M̂j , this is equivalent

to solving

max
||v̂j ||2=1

∣

∣

∣

∣

∣

∣
rj p̃j + Σ̂j ṽj

∣

∣

∣

∣

∣

∣

2
, (3.3)

where p̃j = Û∗
j pj and ṽj = V̂ ∗

j v̂j . Consequently, choose ṽj = (eiθ, 0, 0, . . . , 0), where
θ is the argument of the first component of p̃j . (If the first component is zero, then
any θ will do.) Set the column vj to be the sum of rjej and the vector obtained after

putting the entries of V̂j ṽj at the positions where the corresponding lj − 1 largest
columns of Q∗

j appeared. (Here ej denotes the jth standard basis vector of C
n.)

Observe that the solution does not depend on the value of rj > 0. In particular,
it is not clear how large rj should be.

Again it is instructive to contrast this with the approximate inverse computations.

Example 3.2. The sparse approximate inverse computations yield the simplest
case of imposing additional constraints as just described. That is, the sparse approx-
imate inverse computations can be interpreted as having lj = 1 for every column,
combined with imposing rj = 1.

The LU factorization and thereby triangular matrices are extensively used in
preconditioning. Because the LU factorization without pivoting is unstable, some kind
of stabilization is needed. It is clear that the QR factorization also gives reasons to look
at triangular matrices. The approach differs from that of using the LU factorization
in that its computation does not require a stabilization, i.e., nothing like partial
pivoting is needed. Of course, our intention is not to propose computing the full QR
factorization. Understanding the Q factor is critical as follows.

Example 3.3. The QR factorization A∗ = QR of the Hermitian transpose of A can
be used as a starting point to construct matrix subspaces for approximate factoring
of the inverse. Namely, we have AQ = R∗. Therefore V belonging to the set of lower
triangular matrices is a natural choice. ForW one needs to generate an approximation
to the sparsity structure of Q. For this there are many alternatives.

Aside from upper (lower) triangular matrices, the are, of course, completely dif-
ferent alternatives. Consider, for example, choosing V among diagonally dominant
matrices. Since the set of diagonally dominant matrices is not a matrix subspace,
dealing with this structure requires using constraints. It is easy to see that the prob-
lem can be tackled completely analogously, by imposing imposing r > 1 to hold for
every diagonal entry. Thereafter (3.2) solved for having the other components in
the column. The inversion of V can be performed by simple algorithms such as the
Gauss-Seidel method.

8 M. BYCKLING AND M. HUHTANEN

4. Constructing the matrix subspace W. Optimally constructing the matrix
subspace W for approximate factoring of the inverse appears seemingly challenging.
Some ideas are suggested in what follows, although no claims concerning the optimal-
ity are made. We suggest starting the process by taking an initial standard matrix
subspace V0 which precedes the actual V . Once W has been as constructed, then V0

should be replaced with V computed with the techniques introduced in Section 3.

4.1. The Neumann series constructions. For approximate inverse compu-
tations the selection of an a-priori sparsity pattern is a well-known problem [7, 2].
Good sparsity patterns are, at least in some cases, related to the transitive closures
of subsets of the connectivity graph of G(A) of A. This can also be interpreted as
computing level set expansions on the vertices of a sparsified G(A).

In [7] numerical dropping is used to sparsify G(A) or its level set expansions.
Denote by v ∈ Cn a vector with entries vj . To select the relatively large entries of v
numerically, entries are dropped by relative tolerance τ and by count p, i.e., only those
entries of v that are relatively large with the restriction of p largest entries at most are
stored. (Note that the diagonal elements are not subjected to numerical dropping.)
In what follows, these rules are referred to as numerical dropping by tolerance and
count.

The dropping can be performed on an initial matrix or during the intermediate
phases of the level set expansion. Thus we have two sets of parameters (τi, pi) con-
trolling the initial sparsification and (τl, pl) controlling the sparsification during level
set expansion. In addition, we adopt the convention that setting any parameter as
zero implies that the dropping parameter is not used.

With these preparations for approximate factoring of the inverse, take an ini-
tial standard matrix subspace V0 and consider generating a sparsity pattern for W .
Assuming V0 = PV0

A ∈ V0 is invertible, we have

A = V0(I − V −1
0 (I − PV0

)A) = V0(I − S).

Whenever ||S|| < 1, there holds A−1 = (I +
∑∞

j=1 S
j)V −1

0 = WV −1
0 by invoking the

Neumann series. Therefore then

W = I +

∞
∑

j=1

Sj . (4.1)

Although the assumption ||S|| < 1 is generally too strict in practice, we may formally
truncate the series (4.1) to generate a sparsity pattern. To make this economical and
to retain W sparse enough, compute powers of S only approximately by using sparse-
sparse operations combined with numerical dropping and level of fill techniques.

Observe that, to operate with the series (4.1) we need S = V −1
0 (I − PV0

)A. It is
this which requires setting an initial standard matrix subspace V0.

Example 4.1. For S = V −1
0 (I − PV0

)A we need to set an initial standard matrix
subspace. The most inexpensive alternative is to take V0 to be the set of diagonal
matrices. Then V0 = PV0

A is an immediately found.

There are certainly other inexpensive alternatives for V0, such as block diagonal
matrices. Once fixed, thereafter the scheme can be given as Algorithm 1 below.

Note that final step of Algorithm 1 is to keep the intersection of W and V0 empty
apart from the diagonal; see Section 2.3. After the sparsity structure for a matrix
subspace W has been generated, the sparsity structure of V0 can be updated to be V
by using W .

DIRECT APPROXIMATE FACTORING 9

Algorithm 1 Sparsified powers for constructing W
1: Set a truncation parameter k
2: Compute V −1

0

3: Compute S = V −1
0 (I − PV0

)A
4: Apply numerical dropping by tolerance and count to columns of S
5: for columns j in parallel do

6: Set sj = tj = ej
7: for l = 1, . . . , k do

8: Compute tj = Stj
9: Apply numerical dropping by tolerance and count to tj

10: Compute sj = sj + tj
11: end for

12: Set sparsity structure of wj to be the sparsity structure of sj
13: end for

14: Set W = W \ {V0 \ I}

4.2. Algebraic constructions. Next we consider some purely algebraic argu-
ments which might be of use in constructing W . Again start with an initial standard
matrix subspace V0. Take the sparsity structure of the jth column of V0 and consider
the corresponding rows of A ∈ Cn×n. Choose the sparsity structure of the jth column
of W to be the union of the sparsity structures of these rows. This is a necessary (but
not sufficient) condition for AW to have an intersection with V0. This simply means
choosing W to have the sparsity structure of A∗V0.

Most notably, the process is very inexpensive and can be executed in parallel.
One only needs to control that the columns of W remain sufficiently sparse. With
probability one, the following algorithm yields the desired sparsity structure.

Algorithm 2 Computing a sparsity structure for W
Require: A sparse matrix A ∈ Cn×n and a random column vj ∈ V0.
Ensure: Sparsity structure of the column wj .

Compute w = A∗vj
2: if w is not sparse enough then

Sparsify w to have the sparsity structure of wj .
4: end if

Take the sparsity structure of wj to be the sparsity structure of w.

Observe that we do not have A∗V0 = W since the computation is concerned with
sparsity structures.

Approximate inverse preconditioning corresponds to choosing V0 to be the set of
diagonal matrices. Then the sparsity structure of W equals that of A∗. The following
two examples illustrate two extremes cases of this choice.

Example 4.2. Take V0 to be the set of diagonal matrices. Then the first basic
algorithm reduces to the approximate inverse preconditioning. Algorithm 2 yields
now a standard matrix subspace W whose sparsity structure equals that of A∗. This
can yield very good results. If A has orthogonal rows (equivalently, columns) then
and only then this gives exactly a correct matrix subspace W for factoring the inverse

10 M. BYCKLING AND M. HUHTANEN

of A as AWV −1 = I when V is taken to be V0.
6

Having identified an ideal structure for the approximate inverse preconditioning
when W is constructed with Algorithm 2, how about when A is far from being a
scaled unitary matrix? An upper (lower) triangular matrix is a scaled unitary matrix
only when it reduces to a diagonal matrix.

Example 4.3. Take again V0 to be the set of diagonal matrices. Then the basic
algorithm reduces to the approximate inverse preconditioning. Algorithm 2 yields a
standard matrix subspace W whose sparsity structure equals that of A∗. This yields
very poor results if A is an upper (lower) triangular matrix. Namely, then its inverse
is also upper (lower) triangular.

Algorithm 2 is set up in such a way that if V0 ⊂ Ṽ0, then W ⊂ W̃ . Thereby
matrix subspaces can be constructed to handle the two extremes of Examples 4.2 and
4.3 simultaneously.

In practice V0 should be more complex, i.e., the set of diagonal matrices is a too
simple structure. One option is to start with V0 having the sparsity structure of the
Gauss-Seidel preconditioner.

Definition 4.1. A standard matrix subspace V of Cn×n is said to have the spar-
sity structure of the Gauss-Seidel preconditioner of A ∈ Cn×n if the nonzero entries
in V appear on the diagonal and there where the strictly lower (upper) triangular part
of A has nonzero entries.

5. Numerical experiments. The purpose of this final section is to illustrate,
with the help of four numerical experiments, how the preconditioners devised in Sec-
tions 2 and 3 perform in practice. Since there is an abundance of degrees of freedom
to construct matrix subspaces for approximate factoring of the inverse, only a very
incomplete set of experiments can be presented. In particular, we feel that there is a
lot of room for new ideas and improvements.

In choosing the benchmark sparse linear systems, we used the University of
Florida collection [9]. The problems were selected to be the most challenging ones
to precondition among those tested in [3]. For the matrices used and some of their
properties, see Table 5.1. Assuming the reader has an access to [3], the comparison be-
tween the methods proposed here and the diagonal Jacobi preconditioning, ILUT(0),
ILUT(1), ILUT and AINV can be readily made. For a comparision between ILUs and
AINV, see, e.g., [6].

Regarding preprocessing, in each experiment the original matrix has been initially
permuted to have nonzero diagonal entries and scaled with MC64. (See [10] for MC64.)
It is desirable that the matrix subspace V contains hierarchically connected parts of
the graph of the matrix. To this end we use an approach to find the strongly connected
subgraphs of the matrix; see Duff and Kaya [11]. We then obtain a permutation P
such that after the permutations, the resulting linear system can be split as

Ax = (L+D + U)x = b, (5.1)

where LT and U are strictly block upper triangular and D is a block diagonal matrix.
The construction of this permutations consumes at most O(n log (n)) operations.7

6In view of this, it seems like a natural problem to ask, how well A can be approximated with
matrices of the form DU with D diagonal and U unitary.

7Preprocessing is actually a part of the process of constructing the matrix subspaces W and V .
That is, it is insignificant whether one orders correspondingly the entries of the matrix or the matrix
subspaces.

DIRECT APPROXIMATE FACTORING 11

Problem Area n nz(A) k1 = nz(A)/n
west1505 Chemical engineering 1505 5414 3.6
west2021 Chemical engineering 2021 7310 3.62
lhr02 Chemical engineering 2954 36875 12.5

bayer10 Chemical engineering 13436 71594 5.33
sherman2 PDE 1080 23094 21.4
gemat11 Linear programming 4929 33108 6.72
gemat12 Linear programming 4929 33044 6.7
utm5940 PDE 5940 83842 14.1
e20r1000 PDE 4241 131430 31

Table 5.1

Matrices of the experiments, their application area, size, number of nonzeros and density.

In the experiments, the right-hand side b ∈ Cn in (5.1) was chosen in such a way
that the solution of the original linear system was always x = (1, 1, . . . , 1). As in [3],
as a linear solver we used BiCGSTAB [17]. The iteration was considered converged
when the initial residual had been reduced by eight orders of magnitude.

The numerical experiments were carried out with Matlab8.

Example 5.1. We compare the minimization algorithm presented [4] (PAIF) with
the QR factorization based minimization algorithm of Section 2.1 (DIAF-Q). We
construct W with the heuristic Algorithm 1 of Section 4.1. For all test matrices, we
use k = 3 and τi = 1E − 1, pi = 0, τl = 0 and pl = 0, as parameters. For PAIF, 80
refinement iterations were always used which is a somewhat more than what we have
found to be necessary in practice. However, we want to be sure that the comparison
is descriptive in terms of the quality of the preconditioner.

We choose V to be the subspace of block diagonal matrices with block bounds and
sparsity structure chosen according to the block diagonal part of A, i.e., the matrix
D in (5.1). Then in the heuristic construction of W with Algorithm 1, V0 is taken to
be a diagonal matrix.

We denote by |Dj |M the maximum blocksize of V and by #Dj the number of
blocks in V in total. Density of the preconditioner, denoted by ρ, is computed as
ρ = (nz(W) + nz(LV) + nz(UV))/nz(A), where nz(A), nz(W), nz(LV) and nz(UV)
denote the number of nonzeroes in A, W and the LU decomposition of V . For both
PAIF and DIAF-Q, we also compute the condition number estimate κ(V) and norm
of the minimizer ||AW − V ||F , denoted by nrm. Finally, its denotes the number of
BiCGSTAB iterations. By † we denote if no convergence of BiCGSTAB within 1000
iterations. Breakdown of BiCGSTAB is denoted by ‡. Table 5.2 shows the results.

8VersionR2010a.

12 M. BYCKLING AND M. HUHTANEN

PAIF DIAF-Q
Problem |Dj |M #Dj ρ κ(V) nrm its κ(V) nrm its
west1505 50 34 2.75 3.17E+04 3.59 18 1.85E+03 3.49 18
west2021 50 47 2.69 5.53E+03 3.84 23 3.33E+03 3.53 26
lhr02 50 66 1.11 1.65E+03 6.69 24 9.05E+02 7.01 32

bayer10 250 67 2.56 8.00E+05 22.27 56 2.50E+05 14.27 36
sherman2 50 24 1.05 4.32E+02 2.45 5 3.77E+02 1.84 5
gemat11 50 115 1.91 2.28E+05 3.58 109 1.50E+05 2.79 68
gemat12 50 114 1.91 5.96E+06 6.87 77 4.58E+06 5.20 77
utm5940 250 29 1.73 3.91E+06 14.66 295 1.84E+06 12.86 221
e20r1000 200 27 4.23 3.22E+06 13.67 465 4.44E+03 8.82 364

Table 5.2

Comparison of PAIF and DIAF-Q algorithms

Results very similar to those seen in Table 5.2 were also observed in other nu-
merical tests that were conducted. As a general remark, the iteration counts with
BiCGSTAB when preconditioned with DIAF-Q are not dramatically different from
those achieved with PAIF. The main benefits of DIAF-Q are that neither the Her-
mitian transpose of A is required in the computations nor an estimate for the norm
of A. Moreover, DIAF-Q is a direct method, so that its computational cost is easily
estimated, while it is not so clear when to stop the iterations with PAIF.

The computational cost and parallel implementation of DIAF-Q is very similar
to the established preconditioning techniques based on norm minimization for sparse
approximate inverse. (For these issues, see [7].) That is, DIAF-Q scales essentially
accordingly in terms of the computational cost and parallelizability properties.

Example 5.2. Next we compare PAIF with the SVD based algorithm of Section
2.2 (DIAF-S). Again W is constructed with the heuristic Algorithm 1 of Section 4.1.
All the parameters were kept the same as in the previous example, i.e., k = 3 and
τi = 1E − 1, pi = 0, τl = 0 and pl = 0. Also, 80 refinement steps were again used
in the power method, so that the results for PAIF are identical to those presented in
Example 5.1.

Table 5.3 shows the results.

PAIF DIAF-S
Problem |Dj |M #Dj ρ κ(V) nrm its κ(V) nrm its
west1505 50 34 2.75 3.17E+04 3.59 18 4.06E+03 3.04 14
west2021 50 47 2.69 5.53E+03 3.84 23 8.31E+03 3.26 27
lhr02 50 66 1.11 1.65E+03 6.69 24 1.90E+03 5.68 55

bayer10 250 67 2.56 8.00E+05 22.27 56 9.50E+05 11.68 46
sherman2 50 24 1.05 4.32E+02 2.45 5 4.33E+02 1.67 5
gemat11 50 115 1.91 2.28E+05 3.58 109 2.28E+05 2.90 113
gemat12 50 114 1.91 5.96E+06 6.87 77 1.51E+08 3.72 201
utm5940 250 29 1.73 3.91E+06 14.66 295 3.91E+06 7.43 ‡
e20r1000 200 27 4.23 3.22E+06 13.67 465 1.96E+04 10.37 444

Table 5.3

Comparison of PAIF and DIAF-S algorithms

The results of Table 5.3 with DIAF-S are very similar to those in Table 5.2. The
only notable exception is the matrix utm5940, for which no convergence was achieved
with DIAF-S. With the metrics used, we do not quite understand why DIAF-S fails
to produce a good preconditioner for this particular problem. The computed norm
||AW −V ||F is smaller than the one attained with DIAF-Q and the condition number

DIRECT APPROXIMATE FACTORING 13

estimate is only slightly worse. The reason is most likely related with the fact that
the bound (3.1) cannot be expected to be tight enough when κ(V) is large.

The following example illustrates how the matrix subspace V can be optimally
constructed with the techniques of Section 3.

Example 5.3. In this example we consider an optimal construction of V . To
this end, we first construct W with the heuristic Algorithm 1 presented in Section
4.1. Then, to construct V , we apply the techniques presented in Section 3. After
the sparsity structures of the subspaces have been fixed, the resulting minimization
problem is solved with DIAF-Q.

Consider the minimization problem (2.4). If no restrictions on the number of
nonzero entries in a matrix subspace V are imposed, the norm ||AW − V ||F can be
decreased by choosing as many entries as possible from the sparsity structure of AW
to be in the sparsity structure of V .9 To illustrate this, we take V to be a subspace
of block digonal matrices by allowing only certain degree of sparsity kV per column.
The nonzero entries are chosen with the techniques of Section 3.

We again set k = 3 and τi = 1E − 1, pi = 0, τl = 0 and pl = 0, as parameters for
all test matrices. To have the locations for the entries in the diagonal blocks of V , we
then apply the method presented in Section 3. Subspace W is constructed with the
heuristic Algorithm 1 by setting V0 to be a subspace of block diagonal matrices with
full blocks. This is to ensure that intersection of the final V and W is empty.

Table 5.3 shows the results, where at most kV entries in each column of the
sparsity pattern of V have been allowed. For each test problem we have used the
same block structure as in Examples 5.1 and 5.2, only the locations of the nonzero
entries in W and V is varied.

kV = 10 kV = 30 kV = 50
Problem ρ κ(V) nrm its ρ κ(V) nrm its ρ κ(V) nrm its
west1505 2.81 2.24E+03 3.54 20 2.83 4.57E+03 3.36 20 2.83 4.57E+03 3.36 20
west2021 2.75 5.11E+04 3.70 30 2.76 5.67E+04 3.46 31 2.76 5.67E+04 3.46 31
lhr02 1.15 1.07E+04 6.95 47 1.17 1.27E+04 6.92 43 1.17 1.27E+04 6.92 43

bayer10 2.68 6.72E+07 13.83 104 2.75 1.86E+05 13.42 29 2.76 1.86E+05 13.42 31
sherman2 1.01 1.49E+02 1.88 7 1.11 3.77E+02 1.82 5 1.11 3.77E+02 1.82 5
gemat11 2.14 1.50E+05 2.84 81 2.24 1.50E+05 2.75 68 2.24 1.50E+05 2.75 69
gemat12 2.09 4.24E+06 5.21 80 2.17 4.58E+06 5.13 71 2.17 4.58E+06 5.13 70
utm5940 2.11 1.82E+06 13.12 ‡ 2.49 2.09E+06 12.72 209 2.51 2.11E+06 12.71 201
e20r1000 3.77 2.16E+06 20.66 ‡ 4.99 1.01E+05 11.76 ‡ 5.49 6.67E+04 8.77 418

Table 5.4

Adaptive selection of V for different values of kV

As seen in Table 5.4, choosing more entries in V , i.e., increasing kV always im-
proves the norm of the minimizer, which is well supported by the theory. Allowing
more entries in V generally produces a better preconditioner. In a few cases where a
slightly worse convergence can be observed, we also observe a slightly worse condition
number estimate for the computed V .

The final example illustrates the optimal selection of a block upper triangular
subspace V as well as optimization under additional constraints.

Example 5.4. We consider optimal construction V in the case where V is block
upper triangular. As parameters we again use k = 3 and τi = 1E − 1, pi = 0,

9For example, V can never be the full set set of upper triangular matrices since it would require
storing O(n2) complex numbers. The problem is then, how to choose a subspace V of upper triangular
matrices.

14 M. BYCKLING AND M. HUHTANEN

τl = 0 and pl = 0 and use the strongly connected subgraph approach to have a block
structure for the subspace V .

To have locations for the entries in the block upper triangular V , we apply the
method presented in Section 3. As in Example 5.3, we construct W with Algorithm 1
by setting V0 as a subspace of block upper triangular matrices with full blocks. The
resulting W is a lower triangular matrix subspace consisting of a diagonal part and
a strictly block lower triangular part. The resulting minimization problem is solved
with DIAF-Q. Note that by the structure of such a subspace, the conditioning of
W ∈ W can be readily verified.

Table 5.3 shows the results, where at most kV entries in each column in the block
upper triangular part of V0 have been allowed. The used block structure is the same
as in Examples 5.1, 5.2 and 5.3, only the locations and the number of the nonzero
entries is varied in W and V .

kV = 10 kV = 30 kV = 100
Problem ρ κ(V) nrm its ρ κ(V) nrm its ρ κ(V) nrm its
west1505 2.37 4.45E+06 4.79 860 2.68 1.88E+06 2.52 78 2.75 6.95E+04 2.42 24
west2021 2.31 1.66E+11 5.34 † 2.57 8.30E+05 2.53 67 2.66 3.25E+05 2.27 23
lhr02 1.03 2.45E+03 4.22 36 1.40 4.89E+03 3.21 22 1.46 4.93E+03 3.18 21

bayer10 2.09 3.74E+09 11.76 963 2.42 2.90E+06 8.19 390 2.49 3.39E+06 8.10 16
sherman2 0.89 1.61E+02 0.89 6 1.24 4.66E+02 0.63 3 1.24 4.66E+02 0.63 3
gemat11 1.84 1.50E+05 2.37 55 1.96 1.60E+05 1.74 32 1.97 1.60E+05 1.74 32
gemat12 1.82 1.45E+09 3.37 160 1.95 1.99E+09 2.38 39 1.96 2.03E+09 2.37 38
utm5940 1.60 5.29E+07 9.16 653 2.07 1.12E+09 8.17 141 2.18 8.56E+08 8.14 165
e20r1000 1.90 2.00E+11 22.32 † 2.77 6.59E+10 12.48 † 3.85 2.52E+09 6.05 792

Table 5.5

Adaptive selection of V for different values of kV

The results of Table 5.5 are very similar to those of Table 5.4. Again, allowing
more entries in V always improves the norm of the minimizer and usually also produces
a better preconditioner.

Similarly as in Example 5.2, it is again hard to understand why kV = 100 produces
a worse preconditioner than kV = 30 for utm5940. We attribute this behaviour to the
looseness of the bound (3.1), i.e., when κ(V) is large, the minimization of ||AW−V ||F
may not compensate sufficiently for this in these cases.

To improve the conditioning of V ∈ V , we now consider the same problems using
the technique of imposing constraints as described in Section 3. As a constraint we
require that for the diagonal entries vjj of V it holds |vjj | ≥ 1e − 2. In case the
requirement is not met, we impose a constraint with r = 2. Table 5.6 describes the
results for kV = 100, where the number of constrained columns is denoted by stab.

kV = 30
Problem ρ κ(V) nrm stab its
west1505 2.75 6.16E+04 3.06 1 25
west2021 2.66 1.63E+05 2.92 1 21
lhr02 1.46 4.93E+03 3.18 0 21

bayer10 2.49 3.39E+06 8.10 0 16
sherman2 1.24 4.66E+02 0.63 0 3
gemat11 1.97 1.60E+05 1.74 0 32
gemat12 1.96 2.03E+09 2.37 0 38
utm5940 2.18 7.56E+06 8.24 1 113
e20r1000 3.85 8.66E+09 6.27 3 738

Table 5.6

Constrained selection of V for kV = 100

As seen in Table 5.6, if only a small number columns has to be constrained,

DIRECT APPROXIMATE FACTORING 15

the technique is be effective. In other numerical experiments not reported here we
observed that if too many columns have to be constrained, the norm of the minimizer
||AW − V ||F tends to increase. An approach to find a right balance is needed then.

To sum up these experiments, the iteration counts obtained with DIAF-Q and
DIAF-S (which are fully parallelizable) seem to be competitive with the iteration
counts obtained with the standard algebraic (sequential) preconditioning techniques.
Moreover, a good problem specific tuning of matrix subspaces possesses a lot of po-
tential for significantly speeding up the iterations.

REFERENCES

[1] M. Benzi, Preconditioning techniques for large linear systems: a survey, J. Comput. Phys., 182
(2002), no. 2, pp. 418–477.

[2] M. Benzi, L. Giraud and G. Alléon, Sparse approximate inverse preconditioning for dense
linear systems arising in computational electromagnetics, Numerical Algorithms, 16 (1997),
pp. 1–15.

[3] M. Benzi, J. C. Haws and M. Tůma, Preconditioning highly indefinite and nonsymmetric
matrices, SIAM J. Sci. Comput., 22 (4) (2000), pp. 1333–1353.

[4] M. Byckling and M. Huhtanen, Approximate factoring of the inverse, Numer. Math., 117
(2011), pp. 507–528.

[5] M. Byckling and X. Vasseur, Shared memory implementation of the PAIF preconditioner, In
preparation (2012).

[6] M. Bollhöfer amd Y. Saad, On the relations between ILUs and factored approximate inverses,
SIAM J. Matrix Anal. Appl., 24 (2002), pp. 219–237

[7] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners,
SIAM J. Sci. Comput., 21 (2000), pp. 1804–1822.

[8] T. Davis, Direct Methods for Sparse Linear Systems, SIAM, Philadelphia, 2006.
[9] T. A. Davis and Y. Hu, The university of Florida sparse matrix collection, ACM Trans. Math.

Softw., 38 (1) (2011), pp. 1–25.
[10] I. S. Duff and J. Koster, On algorithms for permuting large entries to the diagonal of a

sparse matrix, SIAM J. Matrix Anal. Appl., 22(4) (2001), pp. 973–996.
[11] I. S. Duff and K. Kaya, Preconditioners based on strong components, CERFACS Technical

Report, TR/PA/10/97 (2011).
[12] M. Grote and T. Huckle, Parallel preconditioning with sparse approximate inverses, SIAM

J. Sci. Comput., 18 (1997), pp. 838–853.
[13] N. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., Society for Industrial

and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
[14] M. Huhtanen, Factoring matrices into the product of two matrices, BIT, 47 (2007), pp. 793–

808.
[15] MathWorks, Matlab, http://www.mathworks.com/products/matlab/.
[16] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia 2003.
[17] H. A. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the

solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13(2) (1992), pp.
631–644.

http://www.mathworks.com/products/matlab/

