
PFFT - An Extension of FFTW
to Massively Parallel Architectures

Michael Pippig
Departement of Mathematics

Chemnitz University of Technology
09107 Chemnitz, Germany

Email: michael.pippig@mathematik.tu-chemnitz.de

Abstract—We present a MPI based software library for com-
puting the fast Fourier transforms on massively parallel, dis-
tributed memory architectures. Similar to established transpose
FFT algorithms, we propose a parallel FFT framework that is
based on a combination of local FFTs, local data permutations
and global data transpositions. This framework can be gener-
alized to arbitrary multi-dimensional data and process meshes.
All performance relevant building blocks can be implemented
with the help of the FFTW software library. Therefore, our
library offers great flexibility and portable performance. Likewise
FFTW, we are able to compute FFTs of complex data, real data
and even- or odd-symmetric real data. All the transforms can be
performed completely in place. Furthermore, we propose an al-
gorithm to calculate pruned FFTs more efficiently on distributed
memory architectures. For example, we provide performance
measurements of FFTs of size 5123 and 10243 up to 262144
cores on a BlueGene/P architecture.

I. INTRODUCTION

Without doubt, the fast Fourier transform (FFT) is one
of the most important algorithms in scientific computing. It
provides the basis of many algorithms and a tremendous
number of applications can be listed. Since the famous divide
and conquer algorithm by J. W. Cooley and J. Tukey [1] has
been published in 1965, a lot of algorithms were derived for
computing the discrete Fourier transform in O(n log n). This
variety of algorithms and the continuously change of hardware
architectures made it practically impossible to find one FFT
algorithm, that is best suitable for all circumstances. Instead,
the developers of the FFTW software library proposed another
approach. Under the hood, FFTW compares a wide variety of
different FFT algorithms and measures their runtimes to find
the best appropriate one for the current hardware architecture.
The sophisticated implementation is hidden behind an easy
interface structure. Therefore, users of FFTW are able to apply
highly optimized FFT algorithms without knowing all the
details about them. These algorithms have been continuously
improved by the developers of FFTW and other collaborators
to support new hardware trends, such as SSE, SSE2, graphic
processors and shared memory parallelization. The current
release 3.3.1 of FFTW also includes a very flexible distributed
memory parallelization based on MPI. However, the under-
lying parallel algorithm is not suitable for current massive
parallel architectures. To give a better understanding, we
start with a short introduction to parallel distributed memory

FFT implementations and explain the problem for the three-
dimensional FFT.

There are two main approaches for parallelizing multi-
dimensional FFTs, first binary exchange algorithms and sec-
ond transpose algorithms. An introduction and theoretical
comparison can be found in [2]. We want to concentrate on
transpose algorithms, i.e., we perform a sequence of local one-
dimensional FFTs and two-dimensional data transpositions.
For convenience we consider the three-dimensional input array
to be of size n0 × n1 × n2 with n0 ≥ n1 ≥ n2.

First parallel transpose FFT algorithms were based on
so-called slab decomposition, which means that the three-
dimensional input array is split along n0 to distribute it
on a given number P ≤ n0 of MPI processes. At the
first step, n0 two-dimensional FFTs of size n1 × n2 can
be computed, since all required data reside locally on the
processes. Only n1n2 one-dimensional FFTs of size n0 remain
to complete the three-dimensional FFT but the required data is
distributed among all processes. Therefore, a data transposition
is performed first that corresponds to a call of MPI Alltoall.
Implementations of the one-dimensional decomposed parallel
FFT are for example included in the IBM PESSL library [3],
the Intel Math Kernel Library [4] and the FFTW [5] software
package. Unfortunately, all of these FFT libraries lack high
scalability on massively parallel architectures because their
data distribution approach limits the number of efficiently
usable MPI processes by n1. Fig. 1 shows an illustration of
the one-dimensional distributed FFT and an example of its
scalability limitation.

P

n1
n0

n2
T P

n1

n0

n2

Fig. 1. Decomposition of a three-dimensional array of size n0×n1×n2 =
8 × 4 × 4 on a one-dimensional process grid of size P = 8. After the
transposition (T) half of the processes remain idle.



P1
P0

n1
n0

n2

T

P1

P0

n1
n0

n2

T
P0

P1
n1

n0

n2

Fig. 2. Distribution of a three-dimensional array of size n0 × n1 × n2 = 8× 4× 4 on a two-dimensional process grid of size P0 × P1 = 4× 2. None of
the processes remains idle in any calculation step.

The main idea of overcome this scalability bottleneck is
to use a two-dimensional data decomposition. It was first
proposed by Ding et al. [6] in 1995. Eleftheriou et al. [7] intro-
duced a volumetric domain decomposition and implemented a
software library [8] for power of two FFTs customized to the
BlueGene/L architecture. However, it turns out that the under-
lying parallel FFT algorithm still uses a two-dimensional data
decomposition. Two-dimensional data decomposition (also
called rod or pencil decomposition) means that the three-
dimensional input array is split along the first two dimensions
n0 and n1 and therefore allows to increase the number of
MPI processes to at most n1n2. The three-dimensional FFT is
performed via three successive one-dimensional FFTs. Since
only one dimension of the data array remains local, two data
transpositions must be performed between. Fig. 2 shows an
illustration of the two-dimensional distributed FFT and its
improved scalability in comparison to the example above.

Public available implementations of the two-dimensional
decomposition approach are the FFT package [9] by Plimpton
from Sandia National Laboratories, the P3DFFT [10] library
by Pekurovsky and more recently the 2DECOMP&FFT library
[11], [12] by Li. Furthermore, performance evaluations of two-
dimensional decomposed parallel FFTs have been published
by Fang et al. [13] and Takahashi [14].

All these implementations offer a different set of features
and introduce their own interface. By our knowledge, there is
no public available FFT library, that supports process meshes
with more then two dimensions. Our parallel FFT framework
aims to close this gap and offer one library for all the above
mentioned use cases with an FFTW-like interface. In fact we
sort of extended the distributed memory parallel FFTW to
multi-dimensional data decompositions. To our knowledge,
PFFT is the first public available parallel FFT library that
supports two-dimensional decomposition for arbitrary multi-
dimensional FFTs. Last but not least, apart from PFFT we
do not know any public available FFT library that is able to
compute parallel sine and cosine transforms based on a multi-
dimensional data decomposition.

This paper is structured as follows. First, we introduce
the notation that is used throughout the remainder of this
paper. In Section III we describe the building blocks that
will be plugged together in Section IV to form a flexible

parallel FFT framework. Section V provides an overview of
our public available, parallel FFT implementation. Runtime
measurements are presented in Section VI. Finally, we close
with a conclusion.

II. DEFINITIONS AND ASSUMPTIONS

In this section, we define the supported one-dimensional
transforms of our framework. These can be serial FFTs with
either real or complex input. Our aim is to formulate a unique
parallel FFT framework that is independent of the underlying
one-dimensional transform. But this implies that we have to
keep in my mind, that depending on the transform type, the
input array will consist of real or complex data. Whenever
it is important to distinguish the array type, we mention it
explicitly.

A. One-dimensional FFT of complex data

Consider n complex numbers fk ∈ C, k = 0, . . . , n−1. The
one-dimensional forward discrete Fourier transform of size n
is defined as

f̂l :=

n−1∑
k=0

fk e
−2πilk/n ∈ C, l = 0, . . . , n− 1 .

Evaluating all f̂l by direct summation requires O(n2) arith-
metic operations. In 1965 J. W. Cooley and J. Tukey published
an algorithm called Fast Fourier Transform (FFT) [1] that
reduces the arithmetic complexity to O(n log n). Furthermore,
we define the backward discrete Fourier transform of size n
by

gk :=

n−1∑
l=0

f̂l e
+2πilk/n ∈ C, k = 0, . . . , n− 1 .

Note, that with these two definitions the backward transform
inverts the forward transform only up to the scaling factor n,
e.g., gk = nfk for k = 0, . . . , n−1. We refer to fast algorithms
for computing the discrete Fourier transform of complex data
by the abbreviation c2c-FFT, since they transform complex
inputs into complex outputs.



B. One-dimensional FFT of real data

Consider n real numbers gk ∈ R, k = 0, . . . , n − 1. The
one-dimensional forward discrete Fourier transform (DFT) of
real data is given by

f̂l :=

n−1∑
k=0

fk e
−2πilk/n ∈ C, l = 0, . . . , n− 1 .

Since the outputs satisfy the Hermitian symmetry

f̂n−l = f̂∗l , l = 0, . . . , n/2− 1 ,

it is sufficient to store the first n/2 + 1 complex outputs
(division rounded down for odd n). We define the backward
discrete Fourier transform of Hermitian symmetric data of size
n by

gk :=

n−1∑
l=0

f̂l e
+2πilk/n ∈ R, k = 0, . . . , n− 1 .

Corresponding to their input and output data types, we ab-
breviate fast O(n log n) algorithms for computing the forward
discrete Fourier transform of real data with r2c-FFT and the
backward transform with c2r-FFT.

C. One-dimensional FFT of even- or odd-symmetric real data

Depending on the symmetry of the input data, there exist
16 different definitions of discrete Fourier transforms of even-
or odd-symmetric real data. At this point, we only give the
definition of the most commonly used discrete cosine trans-
form of second kind. The definitions of the other transforms
can be found for example in the FFTW manual [15].

Consider n real numbers fk ∈ R, k = 0, . . . , n−1. The one-
dimensional discrete cosine transform of second kind (DCT-II)
is given by

f̂l = 2

n−1∑
k=0

fk cos (π(l + 1/2)k/n) ∈ R, l = 0, . . . , n− 1 .

Again, the DCT-II can be computed in O(n log n). We sum-
marize all fast algorithms to compute the discrete Fourier
transform of even- or odd-symmetric real data under the
acronym r2r-FFT.

D. Pruned FFTs

Let N ≤ n and N̂ ≤ n. For N complex numbers hk ∈
C, k = 0, . . . , N − 1, we define the one-dimensional pruned
forward DFT by

ĥl =

N∑
k=0

hke
−2πikl/n, l = 0, . . . , N̂ − 1.

This means, that we are only interested in the first N̂ outputs of
an oversampled FFT. Obviously, we can calculate the pruned
DFT with complexity O(n log n) in the following three steps.
First, pad the input vector with zeros to the given DFT size
n, i.e.,

fk =

{
hk : k = 0, . . . , N − 1
0 : k = N, . . . , n− 1

Second, calculate the sums

f̂l :=

n−1∑
k=0

fk e
−2πilk/n ∈ C, l = 0, . . . , n− 1 ,

with a c2c-FFT on size n in O(n log n). Afterward, truncate
the output vector of length n to the needed length N̂ , i.e.,

ĥl = f̂l, l = 0, . . . , N̂ − 1 .

We use a similar three-step algorithm to compute the pruned
r2c-FFT and pruned r2r-FFT. In the r2c-case the truncation
slightly changes to

ĥl = f̂l, l = 0, . . . , N̂/2 + 1 ,

in order to respect the Hermitian symmetry of the output array.

E. Multi-dimensional FFTs

Assume an multi-dimensional input array of n0×. . .×nd−1

real or complex numbers. We define the multi-dimensional
FFT as the consecutive calculation of the one-dimensional
FFTs along the dimensions of the input array.

Again, we have to pay special attention on r2c-transforms.
Here, we first compute the one-dimensional r2c-FFTs along
the last dimension of the multi-dimensional array. Because
of Hermitian symmetry the output array consist of n0 ×
. . .× nd−2 × (nd−1/2 + 1) complex numbers. Afterward, we
calculate the separable one-dimensional c2c-FFTs along the
first d−1 dimensions. For c2r-transforms we do it the other
way around.

F. Parallel data decomposition

Assume a multi-dimensional array of size N0× . . .×Nd−1.
Furthermore, for r < d assume a r-dimensional Cartesian
communicator, which includes a mesh of P0× . . .×Pr−1 MPI
processes. Our parallel algorithms are based on a simple block
structured domain decomposition, i.e., every process owns a
block of N0/P0× . . .×Nr−1/Pr−1×Nr × . . .×Nd−1 local
data elements. The data elements may be real or complex
numbers depending on the FFT we want to compute. For the
sake of clarity, we claim that the dimensions of the data set
should be divisible by the dimensions of the process grid, i.e.,
Pi|Nj for all i = 0, . . . , r − 1 and j = 0, . . . , d − 1. This
ensures that the data will be distributed equally among the
processes in every step of our algorithm. In order to make the
following algorithms more flexible we can easily overcome
these requirements. Note that also our implementation does
not depend on this restriction. Nevertheless, unequal blocks
lead to load imbalances of the parallel algorithm and should
be avoided whenever possible. Since we claimed that the rank
r of the process mesh is less than the rank d of the data
array, at least one dimension of the data array is local to the
processes.

Depending on the context we interpret the notation Ni/Pj
either as a simple division or as a splitting of the data array
along dimension Ni on Pj processes in equal blocks of size
Ni/Pj , for all i = 0, . . . , d − 1 and j = 0, . . . , r − 1.



This notation allows us to compactly represent the main
characteristics of parallel block data distribution, namely the
local transposition of dimensions and the global array decom-
position into blocks. For example, in the case d = 3, r = 2
we would interpret the notation N2/P1 × N0/P0 × N1 as
an array of size N0 × N1 × N2 that is distributed on P0

processes along the first dimension and on P1 processes along
the last dimension. Additionally, the local array blocks are
transposed such that the last array dimension comes first. We
assume such multi-dimensional arrays to be stored in C typical
row major order, i.e., the last dimension lies consecutively in
memory. Therefore, cutting the occupied memory of a multi-
dimensional array into equal pieces corresponds to a splitting
of the array along the first dimension.

III. THE MODULES OF OUR PARALLEL FFT FRAMEWORK

The three major ingredients of a parallel transpose FFT
algorithm are serial FFTs, serial array transposition and global
array transpositions. All of them are somehow already imple-
mented in the current release 3.3.1 of the FFTW software
library. Our parallel FFT framework builds upon several mod-
ules that are more or less wrappers to these FFTW routines.
We now describe the modules from bottom to top. In the
next section we combine the modules into our parallel FFT
framework.

A. The serial FFT module

The guru interface of FFTW offers a very general way to
compute multi-dimensional vector loops of multi-dimensional
FFTs [5]. However, we do not need the full generality and
therefore wrote a wrapper that enables us to compute multi-
dimensional FFTs of the following form. Assume a three-
dimensional array of h0×n×h1 real or complex numbers. Our
wrapper allows us to compute the separable one-dimensional
FFTs along the second dimension, i.e.,

h0 × n× h1
FFT→ h0 × n̂× h1 . (1)

Thereby, we denote Fourier transformed dimensions by hats.
Note, that we do not compute the one-dimensional FFTs along
the first dimension h0. Later on, we will use this dimension
to store the parallel distributed dimensions. The additional
dimension h1 at the end of the array allows us to compute
a set of h1 serial FFTs at once. The serial FFT can be any of
the serial FFTs that we introduced in Section II, e.g., c2c-FFT,
r2c-FFT, c2r-FFT or r2r-FFT.

In addition, our wrapper allows the input array to be
transposed in the first two dimensions

n× h0 × h1
FFT→
TI
h0 × n̂× h1

and the output array to be transposed in the first two dimen-
sions

h0 × n× h1
FFT→
TO

n̂× h0 × h1 .

This is a crucial feature, since the local data blocks must be
locally transposed before the global communication step can
be performed. Experienced FFTW users may have noticed,

that the FFTW guru interface allows us to calculate local array
transpositions and serial FFTs in one step. Computation of a
local array transposition is indeed a non-trivial task because
one has to think of many details about the memory hierarchy
of current computer architectures. FFTW implemented cache
oblivious array transpositions [16], which aim to minimize the
asymptotic number of cache misses independent of the cache
size. Unfortunately, we experienced that the performance of an
FFT combined with the local transposition is sometimes quiet
poor. Under some circumstances it is even better to do the
transposition and the FFT in two separate steps. In addition,
it is not possible to combine the transposition with a multi-
dimensional r2c FFT. Therefore, we decided to implement
an additional planning step into the wrapper. Our serial FFT
plan now consists of two FFTW plans. The planner decides
whether the first FFTW plan performs a transposition, a serial
FFT or both of them. The second FFTW plan performs the
outstanding task to complete the serial transposed FFT. In
contrast to the FFTW planner, our additional planner is very
time consuming, since it has to plan and execute several serial
FFTs and data transpositions. The user can decide whether it
is worth the effort when he calls the PFFT planning interface.
Additionally, we can switch of the serial FFT to performe the
local transpositions

n× h0 × h1 →
TI
h0 × n× h1

and
h0 × n× h1 →

TO
n× h0 × h1

solely.
Remark 1: Beside the sequence of transposition and serial

FFT our planner also decides which plan should be executed
in place or out of place to reach the minimal runtime.

Remark 2: All of these steps can be performed in place.
This is one of the great benefits we get from using FFTW.

B. The serial pruned FFT module

The serial FFTs can be easily generalized to pruned FFTs
with the three-step algorithm from Section II-D. The padding
with zeros and the truncation step have been implemented
as modules in PFFT. To keep notation simple, we do not
introduce further symbols to mark a serial FFT as pruned FFT.
Instead, we declare that every one-dimensional FFT of size n
can be pruned to N inputs and N̂ outputs. This means

h0 ×N × h1
FFT→ h0 × N̂ × h1 (2)

abbreviates the three-step pruning algorithm

h0 ×N × h1 → h0 × n× h1
FFT→ h0 × n̂× h1 → h0 × N̂ × h1 .

This hold analogously if the first two dimensions of the FFT
input or output are transposed, e.g.,

N × h0 × h1
FFT→
TI
h0 × N̂ × h1 , (3)

h0 ×N × h1
FFT→
TO

N̂ × h0 × h1 . (4)



C. The global data transposition module

Suppose a three-dimensional array of size N0 ×N1 × h is
mapped on P processes, such that every process holds a block
of size N0/P × N1 × h. The MPI interface of FFTW3.3.1
includes a parallel matrix transposition (T) to remap the
array into blocks of size N1/P × N0 × h. This algorithm
is also used for FFTWs one-dimensional decomposed parallel
FFT implementations. In addition, FFTWs global transposition
algorithm supports the local transposition of the first two
dimensions of the input array (TI) or the output array (TO).
This allows us to handle the following global transpositions

N0/P ×N1 × h
T→ N1/P ×N0 × h ,

N1 ×N0/P × h
T→
TI

N1/P ×N0 × h ,

N0/P ×N1 × h
T→

TO
N0 ×N1/P × h .

(5)

There are great advantages of using FFTWs parallel trans-
position algorithms instead of direct calls to corresponding
MPI functions. FFTW does not only use one algorithm to
perform a array transposition. Instead different transposition
algorithms are compared in the planning step to get the
fastest one. This provides us with portable hardware adaptive
communication functions. Furthermore, all transpositions can
be performed in place, which is impossible by calls to MPIs
standard Alltoall functions and hard to program in an efficient
way with point to point communications. However, we need
a slightly generalization of FFTWs transpositions to make it
suitable to our parallel FFT framework. If we set

N0 = L1 × h1, N1 = L0 × h0, h = h2,

the Transpositions (5) turn into

L1/P × h1 × L0 × h0 × h2
T→L0/P × h0 × L1 × h1 × h2 , (6)

L0 × h0 × L1/P × h1 × h2
T→
TI
L0/P × h0 × L1 × h1 × h2 , (7)

L1/P × h1 × L0 × h0 × h2
T→

TO
L1 × h1 × L0/P × h0 × h2 . (8)

Remark 1: Although this substitution looks straightforward,
we must choose the block sizes carefully. Whenever P does
not divide L0 or L1, we can not use FFTWs default block
sizes (L0×h0)/P and (L1×h1)/P . Instead we must assure,
that only L0 and L1 are distributed on P processes. This
corresponds to the block sizes L0/P × h0 and L1/P × h1.

Remark 2: Similar to FFTW, our global data transpositions
operate on real numbers only. However, complex arrays that
store real and imaginary part in the typical interleaved way
can be seen as arrays of real pairs. Therefore, we only need to
double h2 to initiate the communication for complex arrays.

IV. THE PARALLEL FFT FRAMEWORK

Now, we have collected all the ingredients to formulate the
parallel FFT framework that allows us to calculate h pruned
multi-dimensional FFTs of size

N0 × . . .×Nd−1
FFT→ N̂0 × . . .× N̂d−1

on a process mesh of size P0×. . .×Pr−1, r < d. Our forward
FFT framework starts with the r-dimensional decomposition
given by

N0/P0 × . . .×Nr−1/Pr−1 ×Nr × . . .×Nd−1 × h .

For convenience, we introduce the notation
u×
s=l

Ns :=

{
Nl × . . .×Nu : u ≤ l
1 : l > u .

Fig. 3 lists the pseudo code of the parallel forward FFT
framework.

1: for t← 0, . . . , d− r − 2 do
2: h0 ←×r−1

s=0 Ns/Ps ××d−2−t
s=r Ns

3: N ← Nd−1−t
4: h1 ←×d−1

s=d−t N̂s × h
5: h0 ×N × h1

FFT→ h0 × N̂ × h1
6: end for
7: for t← 0, . . . , r − 1 do
8: h0 ←×r−1

s=r−t N̂s+1/Ps ××r−t−1
s=0 Ns/Ps

9: N ← Nr−t
10: h1 ←×d−1

s=r+1 N̂s × h
11: h0 ×N × h1

FFT→
TO

N̂ × h0 × h1
12:
13: L0 ← N̂r−t
14: h0 ←×r−1

s=r−t N̂s+1/Ps ××r−t−2
s=0 Ns/Ps

15: L1 ← Nr−t−1

16: h1 ← 1
17: h2 ←×d−1

s=r+1 N̂s × h
18: P ← Pr−t−1

19: L0×h0×L1/P×h1×h2
T→
TI
L0/P×h0×L1×h1×h2

20: end for
21: h0 ←×r−1

s=0 N̂s+1/Ps
22: N ← N0

23: h1 ←×d−1
s=r+1 N̂s × h

24: h0 ×N × h1
FFT→ h0 × N̂ × h1

Fig. 3. Parallel Forward FFT Framework

Within the first loop we use the serial FFT module (2) to
calculate the one-dimensional (pruned) FFTs along the last
d− r− 1 array dimensions. In the second loop we calculate r
one-dimensional pruned FFTs with transposed output (4) inter-
leaved by global data transpositions with transposed input (7).
Finally, a single non-transposed FFT (2) must be computed to
finish the full d-dimensional FFT. The data decomposition of
the output is then given by

N̂1/P0 × . . .× N̂r−2/Pr−1 × N̂r × . . .× N̂d−1 × h .



Note, that the dimensions of the output array are slightly
transposed.

Now, the parallel backward FFT framework can be derived
very easy since we only need to revert all the steps of the
forward framework. The backward framework starts with the
output decomposition of the forward framework

N̂1/P0 × . . .× N̂r−2/Pr−1 × N̂r × . . .× N̂d−1 × h

and ends with the initial data decomposition

N0/P0 × . . .×Nr−1/Pr−1 ×Nr × . . .×Nd−1 × h .

Fig. 4 lists the parallel backward FFT framework in pseudo
code.

1: h0 ←×r−1
s=0 N̂s+1/Ps

2: N ← N̂0

3: h1 ←×d−1
s=r+1 N̂s × h

4: h0 × N̂ × h1
FFT→ h0 ×N × h1

5: for t← r − 1, . . . , 0 do
6: L1 ← N̂r−t
7: h1 ←×r−1

s=r−t N̂s+1/Ps ××r−t−2
s=0 Ns/Ps

8: L0 ← Nr−t−1

9: h0 ← 1
10: h2 ←×d−1

s=r+1 N̂s × h
11: P ← Pr−t−1

12: L1/P×h1×L0×h0×h2
T→

TO
L1×h1×L0/P×h0×h2

13:
14: h0 ←×r−1

s=r−t N̂s+1/Ps ××r−t−1
s=0 Ns/Ps

15: N ← N̂r−t
16: h1 ←×d−1

s=r+1 N̂s × h
17: N̂ × h0 × h1

FFT→
TI
h0 ×N × h1

18: end for
19: for t← d− r − 2, . . . , 0 do
20: h0 ←×r−1

s=0 Ns/Ps ××d−2−t
s=r Ns

21: N ← N̂d−1−t
22: h1 ←×d−1

s=d−t N̂s × h
23: h0 × N̂ × h1

FFT→ h0 ×N × h1
24: end for

Fig. 4. Parallel Backward FFT Framework

Remark: For some applications it might be unacceptable to
work with transposed output after the forward FFT. As we
have already seen, the backward framework reverts all trans-
positions of the forward framework. Therefore, execution of
the forward framework followed by the backward framework,
where we switch off the calculation of all one-dimensional
FFTs, gives a FFT framework with non-transposed output.
However, this comes at the cost of extra communication and
local data transpositions.

The structure of our parallel frameworks can be easily
overlooked by the flow of data distribution. Therefore, we
repeat the algorithm for the important special cases of a three-
dimensional FFT with one-dimensional and two-dimensional
process meshes.

A. Example: Three-dimensional FFT with one-dimensional
data decomposition

Assume a three-dimensional array of size N0×N1×N2 that
is distributed on a one-dimensional process mesh of size P0.
For this setting the parallel forward FFT framework becomes

N0/P0 ×N1 ×N2
FFT→ N0/P0 ×N1 × N̂2

FFT→
TO

(N̂1 ×N0/P0)× N̂2
T→
TI

(N̂1/P0 ×N0)× N̂2

FFT→ N̂1/P0 × N̂0 × N̂2 .

The parallel backward FFT framework starts with the trans-
posed input data and returns to the initial data distribution

N̂1/P0 × N̂0 × N̂2
FFT→ (N̂1/P0 ×N0)× N̂2

T→
TO

(N̂1 ×N0/P0)× N̂2
FFT→
TI

N0/P0 ×N1 × N̂2

FFT→ N0/P0 ×N1 ×N2 .

B. Example: Three-dimensional FFT with two-dimensional
data decomposition

Assume a three-dimensional array of size N0 × N1 × N2

that is distributed on a two-dimensional process mesh of size
P0 ×P1. For this setting the parallel forward FFT framework
becomes

N0/P0 ×N1/P1 ×N2
FFT→
TO

(N̂2 ×N0/P0)×N1/P1

T→
TI

(N̂2/P1 ×N0/P0)×N1
FFT→
TO

(N̂1 × N̂2/P1)×N0/P0

T→
TI

(N̂1/P0 × N̂2/P1)×N0
FFT→ N̂1/P0 × N̂2/P1 × N̂0 .

The parallel backward FFT framework starts with the trans-
posed input data and returns to the initial data distribution

N̂1/P0 × N̂2/P1 × N̂0
FFT→ (N̂1/P0 × N̂2/P1)×N0

T→
TO

(N̂1 × N̂2/P1)×N0/P0
FFT→
TI

(N̂2/P1 ×N0/P0)×N1

T→
TO

(N̂2 ×N0/P0)×N1/P1
FFT→
TI

N0/P0 ×N1/P1 ×N2 .

V. THE PFFT SOFTWARE LIBRARY

We implemented the parallel FFT frameworks given by
Fig. 3 and Fig. 4 in a public available software library
called PFFT. The source code is distributed under the GNU
GPL at [17]. PFFT follows the philosophy of FFTW. In fact
it can be understood as an extension of FFTW to multi-
dimensional process grids. Similar to the parallel distributed
memory interface of FFTW the user interface of PFFT splits
into two layers. The basic interface depends only on the
essential parameters of parallel FFT and is intended to provide
an easy start with PFFT. More sophisticated adjustments of the
algorithm are possible with the advanced user interface. This
includes block size adjustment, automatic ghost cell creation,
pruned FFTs, and the calculation of multiple FFTs with one
plan. Most features of FFTW are directly inherited to our
PFFT library. This includes the following.



• We employ FFTWs fast O(N logN) algorithms to com-
pute arbitrary size discrete Fourier transforms of complex
data, real data and even- or odd-symmetric real data.

• The dimension of the FFT can be arbitrary.
• PFFT offers portable performance, e.g., it will perform

good on most platforms.
• The application of PFFT is split into a time consuming

planning and a high performance execution step.
• Installing the library is easy. It is based on the common

sequence of configure, make, make install.
• The interface of PFFT is very close to the MPI interface

of FFTW. In fact, we tried to add as little extra parameters
as possible.

• PFFT is written in C but also offers a Fortran interface.
• FFTW includes shared memory parallelism for all serial

transforms. This enables us to benefit from hybrid paral-
lelism.

• All steps of our parallel FFT can be performed completely
in place. This is especially remarkable for the global
transposition routines.

• Confirming to good MPI programming practice, all PFFT
transforms can be performed on user defined communi-
cators. In other words, PFFT does not enforce the user
to work with MPI_COMM_WORLD.

• PFFT uses the same algorithm to compute the size of
the local array blocks as FFTW. This implies, that the
FFT size does not need to be divisible by the number of
processes.

Furthermore, we added some special features to support re-
peated tasks that often occur in practical application of parallel
FFTs.

• PFFT includes a very flexible ghost cell exchange mod-
ule. A detailed description of this module is given in
Section V-A.

• PFFT accepts three-dimensional data decomposition even
for three-dimensional FFTs. However, the underlying
parallel FFT framework is still based on two-dimensional
decomposition. A more detailed description can be found
in Section V-B.

• As we already described in Section II-D, PFFT explicitly
supports the parallel calculation of pruned FFTs. In
Section VI-C we present some performance results of
PFFTs pruned FFTs.

A. The ghost cell module

In algorithms with block based domain decomposition it
is a often necessary that processes need to operate on data
elements, which are not locally available on the current process
but on one of the next nearest neighbors. PFFT assist the
creation of ghost cells with a flexible module. The number
of ghost cells can be chosen arbitrary and different in every
dimension of the multi-dimensional array. In contrast to many
other libraries, PFFT also handles the case where the number
of ghost cells exceeds the block size of the next neighboring
process. This is especially important for unequal block sizes,
where some processes get less data then others. PFFT uses

the information about the block decomposition to determine
all owner processes of the requested ghost cells. Furthermore,
we implemented a module for the adjoint ghost cell send. The
adjoint ghost cell send does a reduces of all ghost images
to their original owner and sums them up. This feature is
especially useful in the case where different processes are
expected to update their ghost cells.

B. Remap of three-dimensional into two-dimensional decom-
position

Many applications that use three-dimensional FFTs are
based on a three-dimensional data decomposition throughout
the rest of their implementation. Therefore, the application
of our two-dimensional decomposed parallel FFT framework
requires non-trivial data movement before and after every FFT.
To simplify this task, we used the same ideas as in Section IV
to derive a framework for the data reordering. Assume a three-
dimensional array of size N0×N1×N2×h to be distributed
on a three-dimensional process mesh of size of size P0×P1×
(Q0×Q1) with block size N0/P0×N1/P1×N2/(Q0×Q1)×h.
We do not want to calculate a serial FFT along h. Therefore,
is does not account as fourth dimension of the input array.
Note, that the number of processes along the last dimension
of the process mesh is assumed to be of size Q0 × Q1. The
main idea is to distribute the processes of the last dimension
equally on the first two dimensions. The short notation of our
data reordering framework is given by

N0/P0 ×N1/P1 ×N2/(Q0 ×Q1)× h

→
TO

N2/(Q0 ×Q1)×N0/P0 ×N1/P1 × h
T→

TO
N2/Q0 ×N0/P0 ×N1/(P1 ×Q1)× h

T→
TO

N2 ×N0/(P0 ×Q0)×N1/(P1 ×Q1)× h

→
TI

N0/(P0 ×Q0)×N1/(P1 ×Q1)×N2 × h

and the more expressive pseudo code is listed in Fig. 5. Since
this framework is based on the modules that we proposed
in Section III, we again benefit of FFTWs cache oblivious
transpositions. Furthermore, this framework can be performed
completely in place. To derive a framework for reordering data
from two-dimensional decomposition to three-dimensional
decomposition, we just need to revert all the steps of the
framework from Fig. 5. We relinquish to list the pseudo code
for this framework.

VI. NUMERICAL RESULTS/RUNTIME MEASUREMENTS

In this section we show the runtime behavior or our PFFT
software library in comparison to the FFTW and P3DFFT
software libraries. In addition, we give some performance
measurement of the pruned FFTs.

A. Strong scaling behavior of PFFT on BlueGene/L

In [18] the strong scaling behavior of PFFT [17] and
P3DFFT [10] up to the full BlueGene/P machine in Reasearch
Center Jülich has been investigated. Complex to complex FFTs



1: h0 ← N0/P0 ×N1/P1

2: N ← N2/(Q0 ×Q1)
3: h1 ← h
4: h0 ×N × h1 →

TO
N × h0 × h1

5:
6: L0 ← N1/P1

7: h0 ← 1
8: L1 ← N2/Q0

9: h1 ← N0/P0

10: h2 ← h
11: P ← Q1

12: L1/P ×h1×L0×h0×h2
T→

TO
L1×h1×L0/P ×h0×h2

13:
14: L0 ← N0/P0

15: h0 ← N1/(P1 ×Q1)
16: L1 ← N2

17: h1 ← 1
18: h2 ← h
19: P ← Q0

20: L1/P ×h1×L0×h0×h2
T→

TO
L1×h1×L0/P ×h0×h2

21:
22: h0 ← N0/(P0 ×Q0)×N1/(P1 ×Q1)
23: N ← N2

24: h1 ← h
25: N × h0 × h1 →

TI
h0 ×N × h1

Fig. 5. Parallel framework for remapping three-dimensional data decompo-
sition to two-dimensional data decomposition

of size 5133 and 10243 have been performed on up to 64 of
the available 72 racks, i.e., 262144 cores. It turned out, that
both libraries are comparable in speed. However, from our
point of view the flexibility of PFFT is a great advantage over
P3DFFT.

B. Performance measurements on JuRoPA

We also performed our PFFT library on the Jülich Research
on Petaflop Architectures (JuRoPA) and compared the scal-
ing behavior with the one-dimensional decomposed parallel
FFTW. The runtimes of a three-dimensional FFT of size 2563

given in Fig. 6 and Fig. 7 show a good scaling behavior of our
two-dimensional decomposed PFFT up to 2048 cores, while
the one-dimensional data decomposition of FFTW can not
make use of more than 256 cores.

C. Parallel pruned FFT

As already mentioned, our parallel FFT algorithm includes
the calculation of pruned multi-dimensional FFTs. Most of
the time serial FFT libraries do not support the calculation
of pruned FFTs, since the user can easily pad the input array
with zero and calculate the full FFT with the library. However,
it is not that easy in the parallel case since data needs to
redistributed on all processes. In addition, the computation
of zero padded multi-dimensional FFTs leads to serious load
imbalance as some processes calculate one-dimensional FFTs

20 21 22 23 24 25 26 27 28 29 210 211

101

100

10−1

10−2

10−3

10−4

number of cores

w
al

l
cl

oc
k

tim
e

in
s

Perfect
PFFT forw
PFFT back
FFTW forw
FFTW back

Fig. 6. Walltime for FFT of size 2563 up to 2048 cores on JuRoPA

20 21 22 23 24 25 26 27 28 29 210 211

20
21
22
23
24
25
26
27
28
29
210
211

number of cores

sp
ee

du
p

Perfect
PFFT forw
PFFT back
FFTW forw
FFTW back

Fig. 7. Speedup for FFT of size 2563 up to 2048 cores on JuRoPA

on vectors that are full of zeros. This phenomena is getting
even worse for higher-dimensional FFTs. PFFT avoid this
data reordering, since it applies the one-dimensional pruned
FFT algorithm 2 row wise, whenever the corresponding data
dimension is locally available on the processes.

We want to illustrate the possible performance gain with an
example. Therefore, we computed a three-dimensional pruned
FFT of size n×n×n, n = 256, on 256 cores of a BlueGene/P
architecture. The data decomposition scheme was based on a
two-dimensional process mesh of size 16×16. We altered the
pruned input size N × N × N and the pruned output size
N̂ × N̂ × N̂ between 32 and 256. Fig. 8 shows the runtime of
pruned PFFT for different values of N and N̂ . We can observe
an increasing performance benefit for decreasing input array
size N and also for decreasing output array size N̂ . Without



32 64 96 128 160 192 224 256

0

1

2

3

4

5

·10−2

pruned input size N

w
al

l
cl

oc
k

tim
e

in
s

N̂ = 256

N̂ = 128

N̂ = 64

N̂ = 32

Fig. 8. Pruned FFT with underlying FFT size 2563 on 162 cores of
BlueGene/P

the pruned FFT support, we would have to pad the input array
of size N × N × N with zeros to the full three-dimensional
FFT size n×n×n and calculate this FFT in parallel. The time
for computing a FFT of size 2563 corresponds to the time in
Fig. 8 for N = N̂ = 256.

VII. CONCLUSION

We developed a parallel framework for computing arbitrary
multi-dimensional FFTs on multi-dimensional process meshes.
This framework has been implemented on top of the FFTW
software library within a parallel FFT software library called
PFFT. Our algorithms can be computed completely in place
and use the hardware adaptivity of FFTW in order to achieve
high performance on a wide variety of different architectures.
Runtime tests up to 262144 cores of the BlueGene/P su-
percomputer proved PFFT to be as fast as the well known
P3DFFT software package. Therefore, PFFT is a very flexible,
high performance library for computing multi-dimensional
FFTs on massively parallel architectures.

ACKNOWLEDGMENT

This work was supported by the BMBF grant 01IH08001B.
We are grateful to the Jülich Supercomputing Center for
providing the computational resources on Jülich BlueGene/P
(JuGene) and Jülich Research on Petaflop Architectures (Ju-
RoPA). We wish to thank Sebastian Banert, who did some of
the runtime measurements on JuRoPA and Jugene. Further-
more, we gratefully acknowledge the help of Ralf Wildenhues
and Michael Hofmann on the PFFT build system.

REFERENCES

[1] J. W. Cooley and J. W. Tukey, “An algorithm for machine calculation of
complex Fourier series,” Math. Comput., vol. 19, pp. 297 – 301, 1965.

[2] A. Gupta and V. Kumar, “The scalability of FFT on parallel computers,”
IEEE Transactions on Parallel and Distributed Systems, vol. 4, pp. 922
– 932, 1993.

[3] S. Filippone, “The IBM parallel engineering and scientific subroutine
library,” in PARA, ser. Lecture Notes in Computer Science, J. Dongarra,
K. Madsen, and J. Wasniewski, Eds., vol. 1041. Springer, 1995, pp.
199 – 206.

[4] Intel Corporation, “Intel math kernel library.” [Online]. Available:
http://software.intel.com/en-us/intel-mkl/

[5] M. Frigo and S. G. Johnson, “The design and implementation of
FFTW3,” Proceedings of the IEEE, vol. 93, pp. 216 – 231, 2005.

[6] H. Q. Ding, R. D. Ferraro, and D. B. Gennery, “A portable 3d FFT
package for distributed-memory parallel architectures,” in PPSC, 1995,
pp. 70 – 71.

[7] M. Eleftheriou, J. E. Moreira, B. G. Fitch, and R. S. Germain, “A
volumetric FFT for BlueGene/L,” in HiPC, ser. Lecture Notes in
Computer Science, T. M. Pinkston and V. K. Prasanna, Eds., vol. 2913.
Springer, 2003, pp. 194 – 203.

[8] ——, “Parallel FFT subroutine library.” [Online]. Available: http:
//www.alphaworks.ibm.com/tech/bgl3dfft

[9] S. Plimpton, “Parallel FFT subroutine library.” [Online]. Available:
http://www.sandia.gov/∼sjplimp/docs/fft/README.html

[10] D. Pekurovsky, “P3DFFT, Parallel FFT subroutine library.” [Online].
Available: http://www.sdsc.edu/us/resources/p3dfft

[11] N. Li and S. Laizet, “2DECOMP & FFT - A Highly Scalable 2D
Decomposition Library and FFT Interface,” in Cray User Group 2010
conference, Edinburgh, 2010, pp. 1–13.

[12] N. Li, “2DECOMP&FFT, Parallel FFT subroutine library.” [Online].
Available: http://www.2decomp.org

[13] B. Fang, Y. Deng, and G. Martyna, “Performance of the 3D
FFT on the 6D network torus QCDOC parallel supercomputer,”
Computer Physics Communications, vol. 176, no. 8, pp. 531–538,
apr 2007. [Online]. Available: http://linkinghub.elsevier.com/retrieve/
pii/S0010465507000276

[14] D. Takahashi, “An Implementation of Parallel 3-D FFT with 2-
D Decomposition on a Massively Parallel Cluster of Multi-core
Processors,” in Parallel Processing and Applied Mathematics, ser.
Lecture Notes in Computer Science, R. Wyrzykowski, J. Dongarra,
K. Karczewski, and J. Wasniewski, Eds. Springer Berlin / Heidelberg,
2010, vol. 6067, pp. 606–614. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-14390-8 63

[15] M. Frigo and S. G. Johnson, “FFTW, C subroutine library,”
http://www.fftw.org, 2009. [Online]. Available: http://www.
fftw.org

[16] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-
oblivious algorithms,” in Proc. 40th Ann. Symp. on Foundations of
Comp. Sci. (FOCS). IEEE Comput. Soc., 1999, pp. 285 – 297.

[17] M. Pippig, “PFFT, Parallel FFT subroutine library.” [Online]. Available:
http://www.tu-chemnitz.de/∼mpip

[18] ——, “An Efficient and Flexible Parallel FFT Implementation Based on
FFTW,” in Competence in High Performance Computing, C. Bischof,
H.-G. Hegering, W. E. Nagel, and G. Wittum, Eds. Schwetzingen,
Germany: Springer, Jun. 2010, pp. 125 – 134. [Online]. Available:
http://www.springerlink.com/content/978-3-642-24025-6

http://software.intel.com/en-us/intel-mkl/
http://www.alphaworks.ibm.com/tech/bgl3dfft
http://www.alphaworks.ibm.com/tech/bgl3dfft
http://www.sandia.gov/~sjplimp/docs/fft/README.html
http://www.sdsc.edu/us/resources/p3dfft
http://www.2decomp.org
http://linkinghub.elsevier.com/retrieve/pii/S0010465507000276
http://linkinghub.elsevier.com/retrieve/pii/S0010465507000276
http://dx.doi.org/10.1007/978-3-642-14390-8_63
http://dx.doi.org/10.1007/978-3-642-14390-8_63
http://www.fftw.org
http://www.fftw.org
http://www.tu-chemnitz.de/~mpip
http://www.springerlink.com/content/978-3-642-24025-6

	Introduction
	Definitions and assumptions
	One-dimensional FFT of complex data
	One-dimensional FFT of real data
	One-dimensional FFT of even- or odd-symmetric real data
	Pruned FFTs
	Multi-dimensional FFTs
	Parallel data decomposition

	The modules of our parallel FFT framework
	The serial FFT module
	The serial pruned FFT module
	The global data transposition module

	The parallel FFT framework
	Example: Three-dimensional FFT with one-dimensional data decomposition
	Example: Three-dimensional FFT with two-dimensional data decomposition

	The PFFT software library
	The ghost cell module
	Remap of three-dimensional into two-dimensional decomposition

	Numerical results/Runtime measurements
	Strong scaling behavior of PFFT on BlueGene/L
	Performance measurements on JuRoPA
	Parallel pruned FFT

	Conclusion
	References

