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BLOCK GAUSS AND ANTI-GAUSS QUADRATURE WITH
APPLICATION TO NETWORKS∗

C. FENU† , D. MARTIN‡ , L. REICHEL‡ , AND G. RODRIGUEZ†

Abstract. Approximations of matrix-valued functions of the form WT f(A)W , where A ∈
Rm×m is symmetric, W ∈ Rm×k , with m large and k � m, has orthonormal columns, and f is a
function, can be computed by applying a few steps of the symmetric block Lanczos method to A with
initial block-vector W ∈ Rm×k . Golub and Meurant have shown that the approximants obtained
in this manner may be considered block Gauss quadrature rules associated with a matrix-valued
measure. This paper generalizes anti-Gauss quadrature rules, introduced by Laurie for real-valued
measures, to matrix-valued measures, and shows that under suitable conditions pairs of block Gauss
and block anti-Gauss rules provide upper and lower bounds for the entries of the desired matrix-valued
function. Extensions to matrix-valued functions of the form WT f(A)V , where A ∈ Rm×m may be
nonsymmetric, and the matrices V,W ∈ Rm×k satisfy V TW = Ik are also discussed. Approximations
of the latter functions are computed by applying a few steps of the nonsymmetric block Lanczos
method to A with initial block-vectors V and W . We describe applications to the evaluation of
functions of a symmetric or nonsymmetric adjacency matrix for a network. Numerical examples
illustrate that a combination of block Gauss and anti-Gauss quadrature rules typically provides upper
and lower bounds for such problems. We introduce some new quantities that describe properties of
nodes in directed or undirected networks, and demonstrate how these and other quantities can be
computed inexpensively with the quadrature rules of the present paper.
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1. Introduction. One of the aims of this paper is to discuss the inexpensive
computation of bounds or estimates of bounds for expressions of the form

(1.1) WT f(A)W,

where A ∈ Rm×m is a large symmetric matrix, f is a function, which we assume to
be analytic in a region in the complex plane that contains the spectrum of A, and
W ∈ Rm×k has orthonormal columns with 1 ≤ k � m. We are also interested in the
computation of estimates of bounds for more general expressions

(1.2) WT f(A)V,

where the large matrix A ∈ Rm×m may be nonsymmetric and W,V ∈ Rm×k satisfy
V TW = Ik. Here and throughout this paper, Ik denotes the k × k identity matrix.

Golub and Meurant [28, 29] discuss how the application of a few steps of the
symmetric block Lanczos method to a symmetric matrix A with initial block vectorW
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yields an approximation of (1.1), and show that this approximation can be interpreted
as a Gauss-type quadrature rule with respect to a discrete matrix-valued measure. In
the special case when the block-size k is one, the symmetric block Lanczos method
simplifies to the standard symmetric Lanczos method. Consider this situation, i.e., let
k = 1 and assume that A is symmetric and the function f has derivatives of constant
sign in the convex hull of the spectrum of A. Then pairs of suitable Gauss, Gauss–
Radau, or Gauss–Lobatto rules yield upper and lower bounds for (1.1). This property
follows from the remainder formulas for Gauss-type quadrature rules; see [28, 29] for
details. Golub and Meurant [28, 29] show that the quadrature rules can be evaluated
by using partial Lanczos decompositions of A. Applications of this technique to many
problems are described in [3, 5, 7, 14, 29, 30, 31, 44]. Unfortunately, these quadrature
rules are not guaranteed to yield upper and lower bounds when pertinent derivatives
of f change sign in the convex hull of the spectrum of A, and neither are block versions
(with block-size k > 1) of the mentioned Gauss-type quadrature rules.

The matrix function (1.2) with a possibly nonsymmetric matrix A can be ap-
proximated by a function of a smaller matrix by application of a few steps of the
nonsymmetric block Lanczos method with initial block vectors V and W . The reduc-
tion can be interpreted as a Gauss-type quadrature rule. However, generally this rule
is not guaranteed to furnish upper or lower bounds for the elements of (1.2).

Consider the computation of an approximation of the integral If =
∫
f(t)dμ(t),

where dμ is a positive measure on a real interval such that all moments
∫
tjdμ(t),

j = 0, 1, 2, . . . , exist. We assume for simplicity that f is real-valued on the support of
dμ. Let Gn denote the n-point Gauss quadrature rule with respect to dμ. Laurie [37]
introduced so-called anti-Gauss quadrature rules for the approximation of If . The
(n + 1)-point anti-Gauss quadrature rule Hn+1 associated with the Gauss rule Gn is
characterized by

(1.3) (I −Hn+1)p = −(I − Gn)p ∀p ∈ P
2n+1,

where P2n+1 denotes the set of all polynomials of degree at most 2n+ 1 (with scalar
coefficients). Thus, when f ∈ P2n+1, the pair of quadrature rules Gnf and Hn+1f
yield upper and lower bounds for If . In fact, Gnf = Hn+1f = If for f ∈ P2n−1.
For more general functions f , the pair of quadrature rules Gnf and Hn+1f provide
upper and lower bounds for If when the coefficients in an expansion of f in terms of
orthonormal polynomials with regard to the measure dμ decay sufficiently rapidly in
magnitude; see [15] and the end of subsection 3.1. This condition is difficult to verify
computationally; however, computed examples in [15] show that pairs of Gauss and
anti-Gauss quadrature rules indeed yield upper and lower bounds for many integrands
that are analytic in a large enough region that contains the interval of integration.

An attraction of the anti-Gauss ruleHn+1 is that the property (1.3) is independent
of a remainder formula for Gauss quadrature. Pairs of Gauss and anti-Gauss rules can
be applied when no useful information with regard to the sign of the quadrature error
can be gleaned from a remainder formula. This is the case when the quadrature rule is
obtained from the symmetric or nonsymmetric block Lanczos methods with block-size
k > 1. It is one of the aims of this paper to derive block anti-Gauss quadrature rules
for the integration of (1.1) and (1.2). The application of pairs of block Gauss and
block anti-Gauss rules to (1.1) or (1.2) yields entrywise upper and lower bounds for
the desired quantities for suitable functions f . Anti-Gauss rules for the approximation
of the expressions (1.1) or (1.2) in the special case of block-size k = 1 are described
in [15]. This paper provides an extension to block quadrature. Our derivation builds
on work by Golub and Meurant [28, 29] and Duran and Lopez–Rodriguez [18].
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We apply the block quadrature rules to the analysis of complex networks. Estrada
and his collaborators have proposed computable quantities that describe interesting
global properties of a complex network; see, e.g., [6, 16, 19, 21, 22, 23, 24]. In this
application A is a large adjacency matrix for a directed or undirected graph, and
f is an analytic function such as the exponential function. The adjacency matrix is
symmetric for an undirected network and nonsymmetric for a directed one. The block
vectors W and V may, for instance, be chosen to be a few columns of the identity
matrix. Other choices will also be discussed.

Most available studies of networks based on analytic functions of adjacency matri-
ces focus on undirected networks; see, e.g., [5, 19, 20, 21, 22]. Discussions on directed
networks can be found in [6, 16, 23, 24]. The definition of quantities that shed light on
properties of networks and the development of efficient numerical methods for their
computation are active areas of research. In addition to reviewing several available
quantities for studying networks, we introduce a few new ones that can be expressed
with the aid of expressions of the forms (1.1) or (1.2), and, therefore, can be ap-
proximated by block quadrature rules. We should add that there are many other
approaches to network analysis; see, e.g., Bini, Del Corso, and Romani [8], Brezinski
and Redivo Zaglia [12], Henson and Sanders [33], and references therein. This paper
focuses on methods that require the evaluation of matrix functions that easily can be
approximated with the aid of quadrature or block quadrature rules.

While this paper discusses network applications of block quadrature rules, we
would like to mention that there also are many other applications of these rules,
including solution methods for certain partial differential equations [36] and Tikhonov
regularization of large linear discrete ill-posed problems with a matrix right-hand side;
see, e.g., [11] for such a problem.

The block quadrature rules discussed in this paper provide efficient and algo-
rithmically simple ways of computing estimates of upper and lower bounds for each
element of either (1.1) or (1.2). Section 8 illustrates that when a k × k submatrix of
f(A) is desired, the application of a block method with block-size k once offers an
efficient alternative to O(k2) applications of a standard method with block-size one in
terms of the required number of matrix-vector product evaluations. Moreover, block
methods are more efficient on computers with a hierarchical memory structure; the
evaluation of the product of A with a block-vector W may for modest block-sizes k
only be insignificantly slower than the evaluation of the product of A with a single
vector. The availability of several processors also can be utilized efficiently; see, e.g.,
[26] for discussions and examples.

A difficulty when applying the nonsymmetric Lanczos or block Lanczos methods
is the occurrence of a particular kind of breakdown, known as serious breakdown.
This type of breakdown implies that the computations cannot be continued; see, e.g.,
[2, 13] for discussions on breakdown. For general nonsymmetric matrices A ∈ R

n×n

and initial vectors v,w ∈ Rn, with many nonvanishing entries, this predicament is
unlikely. However, as explained in section 8, serious breakdown is likely to occur when
the matrix A is large and sparse and the initial vectors are sparse. This is a common
situation when studying large-scale complex networks. Bai, Day, and Ye [2] show
that serious breakdown of the nonsymmetric Lanczos and block Lanczos methods can
be circumvented by augmenting the original starting vector(s) with a dense vector,
thereby increasing the block-size by one. We illustrate this in section 8.

This paper is organized as follows. Section 2 reviews the connection between graph
theory and linear algebra. This connection has been exploited by Estrada and his
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collaborators in their analysis of complex networks. We discuss previously introduced
quantities of interest, in addition to presenting several new ones. Section 3 defines the
block Gauss and block anti-Gauss quadrature rules that we apply to estimate (1.1)
and (1.2), and outlines their computation. In section 4 we discuss the symmetric and
nonsymmetric block Lanczos algorithms used to compute the quadrature rules and
describe the connection of these algorithms to sequences of orthogonal or biorthogonal
matrix polynomials. Section 5 is concerned with the degree of exactness of block Gauss
quadrature rules corresponding to the symmetric and nonsymmetric block Lanczos
methods, and section 6 describes the computation of block anti-Gauss quadrature
rules. A review of how bounds can be computed when the matrix A is symmetric
and the block-size is one can be found in section 7. Numerical examples presented
in section 8 compare this approach to the application of block Gauss and anti-Gauss
rules. The examples focus on network analysis. Section 9 contains concluding remarks.

2. Graph theory and linear algebra. This section reviews some results on
the connection between graph theory and linear algebra. A graph G = {V , E} is
defined by a set of vertices V and a set of edges E . We also will refer to the vertices as
nodes. We assume G to be an unweighted graph with m nodes, containing no loops or
multiple edges. We consider both undirected graphs, in which travel can occur in both
directions along each edge, and directed graphs, in which some or all edges are “one
way streets.” We assume thatG is both large (having a large number,m, of nodes) and
sparse (having much fewer than O(m2) edges between the nodes). Such graphs arise
in numerous scientific and industrial applications, including genetics, epidemiology,
energy distribution, and telecommunication; see, e.g., [21]. The adjacency matrix
associated with G is the matrix A = [Aij ] ∈ Rm×m defined by Aij = 1 if there is
an edge from node j to node i, and Aij = 0 otherwise. The adjacency matrix is
symmetric if and only if G is undirected. We will refer to G either as a graph or a
network. The notions of walk and path in a graph are important. A walk is a sequence
of vertices v1, v2, . . . , vk such that there is an edge from vertex vi to vertex vi+1 for
i = 1, 2, . . . , k − 1. Vertices and edges may be repeated. A path is a walk with all
vertices distinct.

Given a large graph, it can be useful to extract numerical quantities that describe
interesting global properties of the graph, such as the overall importance of a particu-
lar node within the network, or the ease of traveling from one node to another. In an
undirected network, the degree of a node i, which is the number of nodes connected
to that node, provides a rough measure of the importance of the node. However,
this quantity fails to take into consideration the importance of the nodes connected
to node i, e.g., how well-connected they are. Analogously, a rough measure of the
ease of traveling from node i to node j is the length of the shortest path connecting
these nodes. However, this measure fails to take into consideration the possibility
that a somewhat longer path may be useful. For example, during rush hour many
commuters resort to longer routes to reduce their exposure to traffic. Similarly, the
expected time required by a virus to travel from Alice to Bob decreases as the number
of their mutual friends increases, and decreases further as the number of friendships
between mutual friends increases. Even if Alice and Bob are friends, i.e., a path of
length one exists between them, the virus may be transmitted via one or more mutual
friends along a path of length larger than one.

The following observation establishes an important link between graph theory and
linear algebra, a connection that has been exploited by Estrada and his collaborators
in their quest for alternatives to the concepts of degree and shortest path; see, e.g.,
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[19, 20, 21, 22, 23, 24]. It is not hard to see that for � ≥ 1, the entry
[
A�
]
ij

of the

matrix A� is equal to the number of walks of length � starting at node j and ending
at node i. Thus, given a function

(2.1) f(A) =
∞∑
�=0

c�A
�

with nonnegative coefficients c� chosen to guarantee convergence, the quantity [f(A)]ij
can be interpreted as a measure of the overall ease of traveling from node j to node
i within the network. The term c0Im has no specific meaning and is introduced for
convenience. We may think of the coefficients c� as weights. They are chosen to
decrease as � increases in order to penalize the contributions of long walks and to
secure convergence of the sum (2.1). The choice c� = 1/�! yields f(A) = exp(A) and
is discussed by Estrada and Higham [21]. Another popular choice are coefficients that
yield functions of the form

f(A) = (I − cA)−1,

where c is a coefficient small enough so that the representation (2.1) exists; see [10, 21].

Estrada and his collaborators have defined the following quantities, relevant to
both directed and undirected graphs:

• The f -communicability [21] from node j to node i, given by [f(A)]ij , quantifies
the ease of traveling from node j to node i.

• The f -communicability betweenness [22] of node r is given by

(2.2)
1

(m− 1)(m− 2)

∑
i�=r

∑
j �=r
j �=i

[f(A)]ij − [f(Ar)]ij
[f(A)]ij

,

where Ar is the adjacency matrix of the graph obtained by removing from G
all edges involving node r. This is a measure of the amount of communication
passing through node r.

• The average f -communicability from node r is defined by

1

m− 1
cTr f(A)er,

where er = [0, . . . , 0, 1, 0, . . . , 0]T is the rth axis vector, c = [1, 1, . . . , 1]T is
the vector with all entries equal to one, and cr = c − er. This quantity is
defined in [20] for f(A) = exp(A).

The above quantities are applied to symmetric matrices in [20, 21, 22], but they
are of interest for nonsymmetric adjacency matrices, which correspond to directed
graphs, as well. In the case of a directed or undirected graph, the f -communicability
from node i to itself, i.e.,

(2.3) [f(A)]ii = eTi f(A)ei,

is referred to as the f -subgraph centrality of node i; see [21, 23, 24]. Further quantities
relevant for undirected graphs are discussed in [6]. The following quantities also would
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appear to be of interest:
• The f -starting convenience of node i, given by

m
cT f(A)ei
cT f(A)c

,

quantifies the ease of traveling from node i to anywhere in the network. This
is the sum of the communicabilities from node i to all other nodes, scaled so
that the average of the quantity over all nodes is one.

• The f -ending convenience of node i, given by

m
eTi f(A)c

cT f(A)c
,

quantifies the ease of traveling to node i from anywhere in the network. This is
the sum of the communicabilities from all other nodes to node i, scaled so that
the average of the quantity over all nodes is one. The f -ending convenience
agrees with the f -starting convenience when the graph G is undirected.

• The alternative f -communicability betweenness of node r is given by

(2.4)
cTr f(A)cr − cTr f(Ar)cr

cTr f(A)cr
.

This quantity is related to (2.2), but differs from the latter in that it takes into
consideration the effect of removing node r on the diagonal elements of f(A),
i.e., it takes into account the importance of node r as an intermediate step in
closed walks. The scaling is also different from (2.2), as the summation for
the latter quantity includes the relative change in each value [f(A)]ij (with
i �= r, j �= r, i �= j) caused by the removal of all edges involving node r,
whereas all corresponding terms in (2.4) are divided by the same number. A
reason for introducing (2.4) is that, different from (2.2), it can be conveniently
approximated by (block) Gauss-type quadrature rules. By construction, both
quantities (2.2) and (2.4) are between 0 and 1.

We generally suppress the prefix “f -” in the above quantities when the function f is
clear from the context.

When G is large, direct evaluation of f(A) generally is not feasible. Benzi and
Boito [5] compute bounds for quantities of the formwT f(A)w, when A is a symmetric
adjacency matrix and w is a vector, by using the connection between the symmetric
Lanczos method and Gauss-type quadrature rules described in [28, 29]. In section 8
we instead compute approximations of centralities and communicabilities of nodes by
using block Gauss and anti-Gauss quadrature rules evaluated with the symmetric or
nonsymmetric block Lanczos methods.

3. Matrices, orthogonal polynomials, and quadrature. This section pro-
vides an overview of the techniques based on the use of block Gauss and block anti-
Gauss quadrature rules that we will use to approximate expressions of the form (1.1)
and (1.2).

3.1. The symmetric problem W T f(A)W . The matrix A ∈ R
m×m is as-

sumed to be symmetric throughout this subsection. Anticipating the use of quadra-
ture rules, we first show that the expression (1.1) can be written as a Stieltjes integral.
This was first observed by Golub and Meurant [28]. A more recent discussion can be
found in [29].
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Introduce the spectral factorization

(3.1) A = QΛQT ,

where Q ∈ Rm×m is orthogonal and Λ = diag [λ1, . . . , λm]. The eigenvalues are
assumed to be ordered according to λ1 ≤ · · · ≤ λm. Substituting the spectral factor-
ization (3.1) into (1.1) yields

(3.2) WT f(A)W = W̃f(Λ)W̃T =

m∑
i=1

f(λi)αiα
T
i =

∫
f(λ)dα(λ) =: If,

where W̃ = [α1, . . . ,αm] = WTQ ∈ Rk×m and α : R → Rk×k is a discrete matrix-
valued distribution with jumps αiα

T
i at the eigenvalues λi of A.

Following [28, 29], we show in section 4 that there is a sequence of polynomials
pj that are orthonormal with respect to a bilinear form defined by dα and have k× k
matrix coefficients. The polynomials satisfy a three-term recursion relation of the
form

(3.3)
λpj−1(λ) = pj(λ)Γj + pj−1(λ)Ωj + pj−2(λ)Γ

T
j−1, j = 1, 2, . . . ,

p0(λ) := Ik, p−1(λ) := Ok,

where Ok denotes the k× k zero matrix. For each j, the recursion coefficients Γj and
Ωj are k × k matrices with real entries. Moreover, Ωj is symmetric and Γj can be
chosen to be upper triangular; see section 4. The pj are orthonormal with respect
to a matrix-valued bilinear form defined by the measure dα in (3.2); see Theorem 1
below. Defining

(3.4) PN (λ) := [p0(λ), . . . , pN−1(λ)] ∈ R
k×kN ,

it follows that

λPN (λ) = PN (λ)JN + pN(λ)ΓNET
N ,

where

(3.5) JN :=

⎡⎢⎢⎢⎢⎢⎣
Ω1 ΓT

1

Γ1 Ω2 ΓT
2

. . .
. . .

. . .

ΓN−2 ΩN−1 ΓT
N−1

ΓN−1 ΩN

⎤⎥⎥⎥⎥⎥⎦ ∈ R
kN×kN .

Throughout this section, Ei := [e(i−1)k+1, . . . , eik] denotes a “block axis vector” of
appropriate size with k × k blocks. Thus, the ith block of Ei is Ik and all other
blocks vanish. The matrix JN is symmetric, block-tridiagonal, and has bandwidth
2k + 1. It is determined by N steps of the symmetric block Lanczos method with
block-size k described in section 4. We remark that the polynomials pj are considered
for theoretical purposes only; they are not explicitly computed.

Introduce the spectral factorization JN = YNΘNY T
N , where

YN = [y
(N)
1 , . . . ,y

(N)
kN ] ∈ R

kN×kN , ΘN = diag
[
θ
(N)
1 , . . . , θ

(N)
kN

]
∈ R

kN×kN ,
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where the matrix YN is orthogonal and the eigenvalues are ordered according to

θ
(N)
1 ≤ · · · ≤ θ

(N)
kN . Consider the expression

(3.6) GNf :=

kN∑
i=1

f(θ
(N)
i )u

(N)
i

(
u
(N)
i

)T
,

where each vector u
(N)
i ∈ Rk consists of the first k elements of y

(N)
i . It is shown in

[28, 29] that GN is a Gauss quadrature rule with respect to a matrix-valued bilinear
form defined by the measure dα in (3.2), i.e.,

GNf = If ∀f ∈ P
2N−1;

related results are discussed in [45]. An alternative and more concise proof of this
result is provided in section 5. We refer to GN as an N -block Gauss quadrature
rule associated with a bilinear form determined by the matrix measure dα. This
quadrature rule allows the matrix representation

GNf =

kN∑
i=1

f(θ
(N)
i )u

(N)
i

(
u
(N)
i

)T
=
[
u
(N)
1 , . . . ,u

(N)
kN

]
f(ΘN )

[
u
(N)
1 , . . . ,u

(N)
kN

]T
= ET

1 YNf(ΘN )Y T
N E1 = ET

1 f(JN )E1,(3.7)

which shows that for certain functions f , such as f(x) = exp(x) and f(x) = 1/(1−cx),
where c is a suitable constant, the block Gauss rule GN can be evaluated efficiently via
the right-hand side of (3.7) without computing the spectral factorization of JN . For
instance, when f(x) = exp(x), we can compute f(JN ) by using a Padé approximant;
see Higham [34] for discussions on methods for the evaluation of many matrix functions
for matrices of small to moderate size.

We turn to the derivation of block anti-Gauss rules. Proceeding similarly as
Laurie [37] for the case of a real-valued positive measure (cf. (1.3)) we define the
(N + 1)-block anti-Gauss quadrature rule HN+1 to be an (N + 1)-block quadrature
rule such that

(3.8) (I −HN+1) f = − (I − GN ) f, f ∈ P
2N+1.

Since (3.8) implies that

(3.9) HN+1f = (2I − GN ) f, f ∈ P
2N+1,

it follows that HN+1 is the (ordinary) (N + 1)-block Gauss quadrature rule with
respect to the bilinear form determined by the matrix-valued function 2I − GN . We
note that the average rule

(3.10) AN+1 :=
1

2
(HN+1 + GN )

is exact for all polynomials of degree up to and including 2N + 1.
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Similarly as above, there is a sequence of orthonormal polynomials p̃j , with k× k
matrix coefficients, such that

(3.11)
λp̃j−1(λ) = p̃j(λ)Γ̃j + p̃j−1(λ)Ω̃j + p̃j−2(λ)Γ̃

T
j−1, j = 1, 2, . . . ,

p̃0(λ) := Ik, p̃−1(λ) := Ok,

where the orthonormality is, with respect to a bilinear form, defined by the matrix-
valued measure induced by the function 2I − GN .

We show in section 6 how to determine the symmetric block tridiagonal matrix

(3.12) J̃N+1 =

⎡⎢⎢⎢⎢⎢⎣
Ω̃1 Γ̃T

1

Γ̃1 Ω̃2 Γ̃T
2

. . .
. . .

. . .

Γ̃N−1 Ω̃N Γ̃T
N

Γ̃N Ω̃N+1

⎤⎥⎥⎥⎥⎥⎦ ∈ R
k(N+1)×k(N+1)

associated with the anti-Gauss rule HN+1 with almost no work from the matrix JN+1

related to the (N + 1)-block Gauss quadrature rule GN+1 defined by a bilinear form
determined by the matrix measure dα. Analogously to (3.7), the (N + 1)-block anti-
Gauss quadrature rule (3.9) allows the matrix representation

(3.13) HN+1f = ET
1 f(J̃N+1)E1.

Our application to network analysis only requires the evaluation of (1.1) for func-
tions that can be represented by a series with scalar coefficients. However, it will be
convenient to extend I and GN to allow matrix-valued functions f and g that can
be represented by a series with k × k matrix coefficients with real entries. For later
convenience we define the quantities

I(f, g) :=
m∑
i=1

fT (λi)αiα
T
i g(λi),(3.14)

GN (f, g) :=

kN∑
i=1

fT (θ
(N)
i )u

(N)
i

(
u
(N)
i

)T
g(θ

(N)
i ),(3.15)

which will be used to show that, indeed, the mentioned properties of the anti-Gauss
and average quadrature rules hold.

We conclude this section with some comments on why pairs ofN -block Gauss rules
(3.6) and (N + 1)-block anti-Gauss rules (3.13) may provide elementwise upper and
lower bounds for (3.2) when the integrand is analytic in a sufficiently large region in the
complex plane that contains the support of the measure dα. Assume for notational
simplicity that there are infinitely many orthogonal polynomials (3.3) and that f
admits a representation of the form

f(x) =
∞∑
i=0

Cipi(x),
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where the coefficients Ci are k × k matrices. Assuming that I(f, f) is finite, one can
show that the matrices Ci must converge to zero as i increases. Moreover, we have

If = C0,

GNf = C0 +

∞∑
i=2N

CiGNpi = C0 + C2NGNp2N + C2N+1GNp2N+1 +

∞∑
i=2N+2

CiGNpi,

HN+1f = C0 +
∞∑

i=2N

CiHN+1pi

= C0 + C2NHN+1p2N + C2N+1HN+1p2N+1 +

∞∑
i=2N+2

CiHN+1pi

= C0 − C2NGNp2N − C2N+1GNp2N+1 +

∞∑
i=2N+2

CiHN+1pi,

where we have used (3.9). Now, if the coefficient matrices Ci decay in norm sufficiently
rapidly with increasing i, then the approximations

GNf − If ≈ C2NGNp2N + C2N+1GNp2N+1,

HN+1f − If ≈ −C2NGNp2N − C2N+1GNp2N+1

suggest that the componentwise errors of the quadrature rules GNf and HN+1f are
roughly equal in magnitude and of opposite sign. The norm of the matrices Ci decays
quickly to zero when i increases if f is analytic in a large simply connected region in
the complex plane that contains the support of the measure dα and has its boundary
far away from the support.

3.2. The nonsymmetric problem W T f(A)V . We assume that A ∈ Rm×m

is diagonalizable and introduce the spectral factorization A = QΛQ−1, where Q ∈
Cm×m is nonsingular and Λ = diag [λ1, . . . , λm]. When A �= AT , the eigenvalues λi

may be complex-valued. Letting

W̃ = [α1, . . . ,αm] = WTQ ∈ C
k×m, Ṽ = [β1, . . . ,βm] =

(
Q−1V

)H ∈ C
k×m,

we obtain

(3.16) WT f(A)V = W̃f(Λ)Ṽ H =

m∑
i=1

f(λi)αiβ
H
i =: If,

where the superscript H denotes transposition and complex conjugation.

We will show in section 4 that there are two sequences of polynomials pj and
qj , j = 0, 1, . . . , with k × k matrix coefficients, that are biorthogonal with respect
to a bilinear form determined by the matrix-valued function I in (3.16) and satisfy
recursion relations of the form

(3.17)

λpj−1(λ) = pj(λ)Γj + pj−1(λ)Ωj + pj−2(λ)Δ
T
j−1,

λqj−1(λ) = qj(λ)Δj + qj−1(λ)Ω
T
j + qj−2(λ)Γ

T
j−1,

p0(λ) := Ik, q0(λ) := Ik, p−1(λ) := Ok, q−1(λ) := Ok,
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for j = 1, 2, . . . . The matrix recursion coefficients Γj , Ωj , and Δj are real k × k
matrices. Letting

(3.18)
PN (λ) := [p0(λ), . . . , pN−1(λ)] ∈ R

k×kN ,

QN(λ) := [q0(λ), . . . , qN−1(λ)] ∈ R
k×kN ,

the recursion relations (3.17) can be expressed as

(3.19)
λPN (λ) = PN (λ)JN + pN (λ)ΓNET

N ,

λQN (λ) = QN (λ)JT
N + qN (λ)ΔNET

N ,

where

(3.20) JN :=

⎡⎢⎢⎢⎢⎢⎣
Ω1 ΔT

1

Γ1 Ω2 ΔT
2

. . .
. . .

. . .

ΓN−2 ΩN−1 ΔT
N−1

ΓN−1 ΩN

⎤⎥⎥⎥⎥⎥⎦ ∈ R
kN×kN

is a block-tridiagonal matrix determined by N steps of the nonsymmetric block Lanc-
zos method described in [2] and discussed in section 4. We remark that the polyno-
mials pj and qj are considered for theoretical purposes only; they are never explicitly
stored or utilized in the computations.

We assume that JN is diagonalizable and write JN = YNΘNY −1
N , where

YN = [y
(N)
1 , . . . ,y

(N)
kN ] ∈ C

kN×kN , ΘN = diag
[
θ
(N)
1 , . . . , θ

(N)
kN

]
∈ C

kN×kN .

Letting ZN := [z
(N)
1 , . . . , z

(N)
kN ] = Y −H

N , we obtain

JN = YNΘNZH
N , JT

NZN = ZNΘ̄N ,

where the bar denotes complex conjugation. Since the matrices A, V , W have real
entries only, so does JN and, therefore, JT = JH .

Consider the quadrature rule

(3.21) GNf :=

kN∑
i=1

f(θ
(N)
i )u

(N)
i

(
v
(N)
i

)H
with respect to a bilinear form determined by I defined by (3.16). Each vector

u
(N)
i ∈ Ck consists of the first k elements of the (right) eigenvector y

(N)
i of JN , and

each vector v
(N)
i ∈ Ck is made up of the first k elements of the (right) eigenvector

z
(N)
i of JT

N . We will show in section 5 that

GNf = If ∀f ∈ P
2N−1.

For this reason, we refer to GN as an N -block nonsymmetric Gauss quadrature rule
associated with I. As for the symmetric case considered in subsection 3.1, this quadra-
ture rule can be expressed as

(3.22) GNf = ET
1 f(JN )E1,
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where the matrix JN is given by (3.20). In our applications, the matrix JN is small
enough to allow the evaluation of the function f(JN ) by methods designed for small
to medium-sized matrices; see [34] for such methods.

Similarly as in subsection 3.1, we seek to determine a matrix-valued (N+1)-block
anti-Gauss quadrature rule HN+1 such that

(3.23) (I −HN+1) f = − (I − GN ) f, f ∈ P
2N+1.

This relation implies, analogously to the discussion following (3.8), that HN+1 is an
(N + 1)-block Gauss quadrature rule with respect to a bilinear form determined by
the matrix-valued function 2I − GN . The average rule (3.10) with GN and HN+1

defined by (3.21) and (3.23), respectively, is exact for all p ∈ P2N+1.
Analogously to the discussion above, there are sequences of polynomials p̃j and

q̃j , j = 0, 1, . . ., with real k× k matrix coefficients, that are biorthogonal with respect
to a bilinear form determined by the matrix-valued function 2I − GN and satisfy
recursion relations of the form

(3.24)

λp̃j−1(λ) = p̃j(λ)Γ̃j + p̃j−1(λ)Ω̃j + p̃j−2(λ)Δ̃
T
j−1,

λq̃j−1(λ) = q̃j(λ)Δ̃j + q̃j−1(λ)Ω̃
T
j + q̃j−2(λ)Γ̃

T
j−1,

p̃0(λ) := Ik, q̃0(λ) := Ik, p̃−1(λ) := Ok, q̃−1(λ) := Ok,

for j = 1, 2, . . . .
We will show in section 6 how to determine the associated matrix of matrix

recursion coefficients

(3.25) J̃N+1 =

⎡⎢⎢⎢⎢⎢⎣
Ω̃1 Δ̃T

1

Γ̃1 Ω̃2 Δ̃T
2

. . .
. . .

. . .

Γ̃N−1 Ω̃N Δ̃T
N

Γ̃N Ω̃N+1

⎤⎥⎥⎥⎥⎥⎦ ∈ R
k(N+1)×k(N+1),

with almost no work, from the matrix (3.20) with N replaced by N +1. The (N +1)-
block nonsymmetric anti-Gauss rule allows the matrix representation

(3.26) HN+1f = ET
1 f(J̃N+1)E1,

analogous to (3.13).
Similarly as at the end of subsection 3.1, we extend I and GN to allow matrix-

valued functions f and g that can be represented by a series with k × k matrix
coefficients. Thus, we define

I(f, g) :=
m∑
i=1

fH(λ̄i)αiβ
H
i g(λi),(3.27)

GN (f, g) :=

kN∑
i=1

fH(θ̄
(N)
i )u

(N)
i

(
v
(N)
i

)H
g(θ

(N)
i ).(3.28)

An argument similar to the one at the end of subsection 3.1 can be made regarding
the computation of bounds for (3.16) via (3.21) and (3.26). Thus, for integrands for
which an expansion in terms of biorthogonal polynomials converges quickly, pairs
of N -block Gauss and (N + 1)-block anti-Gauss quadrature rules typically provide
entrywise upper and lower bounds.
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4. Block Lanczos methods. In this section we describe the symmetric and
nonsymmetric block Lanczos methods, which are used to compute the block Gauss-
type quadrature rules introduced in the previous section.

4.1. The symmetric block Lanczos method. This subsection follows the
development in [28, 29]. Let the matrix X1 ∈ Rm×k have orthonormal columns.
In our application to approximating the expression (1.1), we let X1 = W . Define
X0 := O ∈ Rm×k. The recursion relations of the symmetric block Lanczos method
are given by

(4.1)

Ωj = XT
j AXj ,

Rj = AXj −XjΩj −Xj−1Γ
T
j−1, j = 1, . . . , N,

Xj+1Γj = Rj ,

and can be expressed in the form

(4.2) A [X1, . . . , XN ] = [X1, . . . , XN ] JN +XN+1ΓNET
N .

Here Xj+1Γj = Rj is a QR factorization such that Xj+1 ∈ Rm×k has orthonormal
columns and Γj ∈ Rk×k is upper triangular. The block tridiagonal matrix JN is the
same as in (3.5). The symmetric block Lanczos method is said to break down at the
jth step if Rj is (numerically) rank deficient. In this case, the computations can be
continued by replacing (numerically) linearly dependent columns ofXj+1 by arbitrary
columns that are orthogonal to the ranges of the matrices Rj and X1, . . . , Xj , and
then computing the QR factorization Xj+1Γj = Rj . The upper triangular matrix
Γj ∈ Rk×k so obtained is necessarily singular. For ease of exposition, we assume that
the block Lanczos method does not break down during the first N steps. These steps
are required to compute the quadrature rules GN and HN+1. We remark that step
N+1 of the recursions (4.1) determines the matrices ΩN+1, RN+1, XN+2, and ΓN+1.
However, of these matrices, we need only ΩN+1 to determine HN+1. Therefore, a
breakdown in step N + 1 does not affect the computation of HN+1.

Assuming that no breakdown occurs in the first N steps of the recursions (4.1),
each upper triangular matrix Γj , for 1 ≤ j ≤ N , is invertible. These matrices may be
chosen to have positive diagonal elements.

By construction, the block-vectors Xi ∈ R
m×k satisfy

XT
i Xj = δijIk,

where δij is the Kronecker δ-function, i.e., δii = 1 for all i and δij = 0 for i �= j.
One can show by induction that

Xi+1 =

i∑
j=0

AjX1C
(i)
j , 0 ≤ i ≤ N,

for suitable matrices C
(i)
j ∈ Rk×k. Similarly as Golub and Meurant [28, 29], we

consider the sequence of matrix polynomials pi defined by

(4.3) pi(λ) =

i∑
j=0

λjC
(i)
j , 0 ≤ i ≤ N.
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The following result from [28, 29] shows that these polynomials are orthonormal with
respect to the bilinear form (3.14).

Theorem 1. Let I be defined by (3.14). Then the polynomials (4.3) satisfy

I(pi, pj) = XT
i+1Xj+1 = δijIk, 0 ≤ i, j ≤ N.

Proof. This result is shown in [28, 29]. A proof of a generalization to the non-
symmetric setting is provided in subsection 4.2 below; see Theorem 3.

One can show that, under the assumptions following (4.2), the matrix polynomials
satisfy the recursion relation (3.3), which is analogous to (4.1).

We now state an important characterization of the eigenvalues and eigenvectors
of the matrix JN in (3.5) and (4.2). This result is part of [18, Theorem 1.1]. It is also
reported in [28, 29].

Theorem 2. The eigenvalues of JN are the zeros of det[pN (λ)]. Furthermore,

defining PN by (3.4), the unit (right) eigenvector y
(N)
r of JN corresponding to the

eigenvalue θ
(N)
r is given by y

(N)
r = PT

N (θ
(N)
r )u

(N)
r , where u

(N)
r consists of the first k

components of y
(N)
r . Moreover, pTN (θ

(N)
r )u

(N)
r = 0.

Proof. A proof of this result can be found in [18]. Theorem 4 below and its proof
provide a generalization to the nonsymmetric setting.

4.2. The nonsymmetric block Lanczos method. Assume that the matrices
V1,W1 ∈ Rm×k satisfy V T

1 W1 = Ik, and let V0Δ
T
0 ,W0Γ

T
0 ∈ Rm×k be zero-matrices.

When seeking to approximate the expression (1.2), we let V1 = V and W1 = W . The
following recursion relations described by Bai, Day, and Ye [2] determine the first N
steps of the nonsymmetric block Lanczos method:

(4.4)

Ωj = WT
j

(
AVj − Vj−1Δ

T
j−1

)
,

Rj = AVj − VjΩj − Vj−1Δ
T
j−1,

Sj = ATWj −WjΩ
T
j −Wj−1Γ

T
j−1,

QRRR = Rj , QSRS = Sj ,

WΣV T = QT
SQR,

Vj+1 = QRV Σ−1/2, Wj+1 = QSWΣ−1/2,

Γj = Σ1/2V TRR, Δj = Σ1/2WTRS .

j = 1, . . . , N,

Here QRRR = Rj and QSRS = Sj are QR factorizations, where QR, QS ∈ Rm×k have
orthonormal columns and RR, RS ∈ Rk×k are upper triangular. The factorization
WΣV T = QT

SQR is a singular value decomposition of the right-hand side matrix.
The recursions (4.4) can be summarized as

(4.5)
A [V1, . . . , VN ] = [V1, . . . , VN ] JN + VN+1ΓNET

N ,

AT [W1, . . . ,WN ] = [W1, . . . ,WN ] JT
N +WN+1ΔNET

N ,

where JN is the matrix (3.20).
The recursion formulas (4.4) provide one of many possible implementations of

the nonsymmetric block Lanczos method; see [2] for a discussion on the advantages
of this particular implementation. We say that the nonsymmetric block Lanczos
method breaks down at step j if ST

j Rj is (numerically) singular. The problem of
breakdown is more complicated for the nonsymmetric block Lanczos method than for
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its symmetric counterpart. While breakdown of the symmetric block Lanczos method
can always be remedied by the introduction of one or several new vectors, this is not
the case for the nonsymmetric block Lanczos method. Instead, the recursions may
have to be terminated. This situation is referred to as serious breakdown. A sufficient
condition for serious breakdown at step j is that the matrix ST

j Rj is singular, and
both matrices Sj and Rj are of full rank. Bai, Day, and Ye [2] provide a thorough
discussion on breakdown of the recursions (4.4) and show that serious breakdown
can be circumvented by restarting the nonsymmetric block Lanczos method after
introducing an appropriate additional vector in the initial block-vectors W1 and V1

(increasing the block-size by 1). As already mentioned, breakdown is an important
practical concern when applying the nonsymmetric Lanczos method to the problem
(1.2) with sparse A, W , and V .

When no breakdown occurs during the recursions (4.4), the matrices Γj and Δj

are nonsingular for 1 ≤ j ≤ N . We may assume that the initial block-vectors W1 and
V1 have been suitably augmented to avoid breakdown. We illustrate augmentation in
section 8.

By construction, the block-vectors Wi and Vi are biorthogonal, i.e., they satisfy

V T
i Wj = δijIk.

One can show by induction that

Vi+1 =

i∑
j=0

AjV1C
(i)
j ,

Wi+1 =
i∑

j=0

(
AT
)j

W1D
(i)
j ,

0 ≤ i ≤ N,

for suitably chosen matrices C
(i)
j , D

(i)
j ∈ Rk×k.

Define the matrix polynomials pi and qi by

(4.6)

pi(λ) :=
i∑

j=0

λjC
(i)
j ,

qi(λ) :=

i∑
j=0

λjD
(i)
j ,

0 ≤ i ≤ N.

We now show that these polynomials are biorthogonal with respect to the bilinear
form (3.27). This is a generalization of [28, Theorem 4.4] and of Theorem 1 from the
previous subsection.

Theorem 3. Let I be defined by (3.27) and let V1 = V and W1 = W , where W
and V are the block vectors in (1.2). Then the polynomials (4.6) satisfy

I(qi, pj) = WT
i+1Vj+1 = δijIk, 0 ≤ i, j ≤ N.
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Proof. We have for 0 ≤ i, j ≤ N that

δijIk = WT
i+1Vj+1 =

(
i∑

s=0

(
AT
)s

W1D
(i)
s

)T ( j∑
t=0

AtV1C
(j)
t

)

=

i∑
s=0

j∑
t=0

(
D(i)

s

)T
WT

1 As+tV1C
(j)
t

=

i∑
s=0

j∑
t=0

(
D(i)

s

)T
I(λs+t)C

(j)
t(4.7)

=

i∑
s=0

j∑
t=0

(
D(i)

s

)T
I (λ̄s, λt

)
C

(j)
t(4.8)

=

i∑
s=0

j∑
t=0

I
(
λ̄sD(i)

s , λtC
(j)
t

)

= I
(

i∑
s=0

λ̄sD(i)
s ,

j∑
t=0

λtC
(j)
t

)
= I(qi, pj),

where I in (4.7) is defined by (3.16), in (4.8) and below by (3.27).

One can show that, under the assumptions following (4.5), the matrix polynomials
pj and qi satisfy the recursion relation (3.17) with the matrix recursion coefficients
Δj , Γj , and Ωj defined by the nonsymmetric Lanczos recursions (4.4).

We are in a position to describe properties of the eigenvalues and eigenvectors of
the block tridiagonal matrix JN in (4.5). This extends Theorem 2 to the nonsymmetric
setting.

Theorem 4. Let the matrix JN be defined by (4.5) and let PN and QN be given
by (3.18) with the polynomials pi and qi from (4.6). Then the following properties
hold:

(1) The eigenvalues of JN are the zeros of both det[pN (λ)] and det[qN (λ)].

(2) The unit right eigenvector y
(N)
r of JN corresponding to the eigenvalue θ

(N)
r

is given by QT
N (θ

(N)
r )u

(N)
r , where u

(N)
r consists of the first k components of

y
(N)
r . Moreover, qTN (θ

(N)
r )u

(N)
r = 0.

(3) The unit right eigenvector z
(N)
r of JT

N corresponding to the eigenvalue θ
(N)
r

is given by PT
N (θ

(N)
r )v

(N)
r , where v

(N)
r consists of the first k components of

z
(N)
r . Further, pTN (θ

(N)
r )v

(N)
r = 0.

Proof. Our proof is inspired by the proof of [18, Theorem 1.1]. We establish the
relation between the zeros of det[qN (λ)] and the eigenvalues of JN in (1), as well as
(2). The remainder of the proof follows similarly and, therefore, is omitted.
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Suppose that JNy = θy for y �= 0, and write yT = [yT
1 , . . . ,y

T
N ], where yi ∈ Ck

for 1 ≤ i ≤ N . Notice that

Ω1y1 +ΔT
1 y2 = θy1,

...

Γi−1yi−1 +Ωiyi +ΔT
i yi+1 = θyi,

...

ΓN−1yN−1 +ΩNyN = θyN .

Since Ωi, Γi, Δi are the matrix recurrence coefficients for the polynomials qi, we
obtain by induction that

yi+1 = qTi (θ)y1, 0 ≤ i ≤ N − 1,

0 = qTN (θ)y1,

where we have used that the matrices Δi are invertible for 1 ≤ i ≤ N . Since y �= 0,
it follows that y1 �= 0 and, therefore, det[qN (θ)] = 0. This also establishes (2).

It remains to show that every zero of det[qN (θ)] is an eigenvalue of JN . Suppose
that det[qN (θ)] = 0. Then there is a vector u ∈ CNk\{0} such that uT qN (θ) = 0.
By (3.19), this implies that

JNQT
N (θ)u = θQT

N (θ)u.

Since q0(θ) ≡ Ik, the vector QT
N(θ)u is nonzero and is, thus, a right eigenvector

of JN associated with the eigenvalue θ. This establishes part (1) regarding
det[qN (θ)].

5. Block Gauss quadrature rules.

5.1. The symmetric problem W T f(A)W . We show that the quadrature
rule GN defined by (3.6) and used to approximate (1.1) when A = AT is exact for
all polynomials in P2N−1. Our proof is formulated entirely in terms of linear algebra
and is shorter than existing proofs. The result was established in [28] and at about
the same time extended in [45] to a more general (not necessarily discrete) class of
matrix measures.

Theorem 5. Let the function I be defined by (3.2) and the associated quadrature
rule GN by (3.6). Then GNf = If for all f ∈ P2N−1.

Proof. We first recall that the polynomials in the sets Pj have scalar coefficients.
For fixed N , one can show by “induction” on the degree of p that

p(A)X1 = X(N)p(JN )E1, p ∈ P
N−1,

where X(N) := [X1, . . . , XN ]. Moreover,(
X(N)

)T
q(A)X1 = q(JN )E1, q ∈ P

N .

Let f ∈ P2N−1. We may factor f = pq, where p ∈ PN−1 and q ∈ PN . Recalling that
X1 = W , we obtain

If = WT f(A)W =
[
XT

1 p(A)
]
q(A)X1

=

[
ET

1 p(JN )
(
X(N)

)T]
q(A)X1 = ET

1 p(JN )

[(
X(N)

)T
q(A)X1

]
= ET

1 p(JN ) [q(JN )E1] = ET
1 f(JN )E1 = GNf.
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We end this section with a generalization of Theorem 5 that will be needed in the
following section. This result is also shown in [45]. We include the proof because it
will be referred to below.

Corollary 6. Let p(λ) and q(λ) be polynomials with k × k matrix coefficients,
and let I and GN be defined by (3.14) and (3.15), respectively. Then GN (p, q) = I(p, q)
when deg p+ deg q ≤ 2N − 1.

Proof. The proof is related to the proof of Theorem 3. Let

p(λ) =

i∑
s=0

λsCs, q(λ) =

j∑
t=0

λtDt,

with i+ j ≤ 2N − 1. By Theorem 5, we have

GN (p, q) = GN

(
i∑

s=0

λsCs,

j∑
t=0

λtDt

)
=

i∑
s=0

j∑
t=0

CT
s GN

(
λs, λt

)
Dm

=

i∑
s=0

j∑
t=0

CT
s GN

(
λs+t

)
Dt =

i∑
s=0

j∑
t=0

CT
s I
(
λs+t

)
Dt

=

i∑
s=0

j∑
t=0

CT
s I
(
λs, λt

)
Dt =

i∑
s=0

j∑
t=0

I (λsCs, λ
tDt

)
= I

(
i∑

s=0

λsCs,

j∑
t=0

λtDt

)
= I (p, q) .

5.2. The nonsymmetric problem W T f(A)V . We establish results related
to functions (1.2) that are analogous to those of the previous subsection.

Theorem 7. Let the function I be defined by (3.16) and the associated quadrature
rule GN by (3.21). Then GNf = If for all f ∈ P2N−1.

Proof. The proof is similar to that of Theorem 5. Thus, we first show by “induc-
tion” on the degree of p that for fixed N ,

p(AT )W1 = W (N)p(JT
N )E1, p ∈ P

N−1,(
W (N)

)T
q(A)V1 = q(JN )E1, q ∈ P

N ,

where W (N) := [W1, . . . ,WN ].

Let f ∈ P2N−1. Factoring f = pq, where p ∈ PN−1 and q ∈ PN , yields similarly
as in the proof of Theorem 5 that

If = WT
1 p(A)q(A)V1 = ET

1 p(JN )q(JN )E1 = ET
1 f(JN )E1 = GNf.

We end this section with a generalization of Theorem 7 which we will apply below.

Corollary 8. Let p(λ) and q(λ) be polynomials with k × k matrix coeffi-
cients, and let I(p, q) and GN (p, q) be defined by (3.27) and (3.28), respectively. Then
GN (p, q) = I(p, q) holds when deg p+ deg q ≤ 2N − 1.

Proof. The proof is similar to that of Corollary 6.
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6. Anti-Gauss quadrature rules.

6.1. The symmetric problem W T f(A)W . In this section, we show how the
matrix J̃N+1, defined by (3.12) and associated with the (N + 1)-block anti-Gauss
quadrature rule (3.9), can be obtained, with almost no work, from the matrix JN+1

defined by (3.5), with N replaced by N +1, associated with the (N + 1)-block Gauss
quadrature rule determined by (3.6) with N replaced by N + 1.

It follows from (3.3) that the coefficient matrices Ωi and Γi associated with the
block Gauss rule (3.6), with N replaced by N + 1, are given by

Ωi = I(pi−1, λpi−1), Γi = I(pi, λpi−1).

Similarly, we obtain from (3.11) that the coefficients Ω̃i and Γ̃i associated with the
block anti-Gauss rule (3.9) satisfy

Ω̃i = (2I − GN ) (p̃i−1, λp̃i−1) , Γ̃i = (2I − GN ) (p̃i, λp̃i−1) .

Therefore, the recursions (3.3) and (3.11), together with (3.9) and Corollary 6, imply
that

Ω̃i = Ωi, 1 ≤ i ≤ N,

Γ̃i = Γi, 1 ≤ i ≤ N − 1,

p̃i = pi, 0 ≤ i ≤ N − 1.

It follows that

(6.1)
p̃N Γ̃N = λIkp̃N−1 − p̃N−1Ω̃N − p̃N−2Γ̃

T
N−1

= λIkpN−1 − pN−1ΩN − pN−2Γ
T
N−1 = pNΓN .

Hence,

Γ̃N = (2I − GN ) (p̃N , λp̃N−1) = 2I (p̃N , λp̃N−1)− GN (p̃N , λp̃N−1)

= 2
(
ΓN Γ̃−1

N

)T
I (pN , λpN−1) = 2

(
ΓN Γ̃−1

N

)T
ΓN ,

where GN (p̃N , λp̃N−1) = 0, because in view of Theorem 2, we have

p̃TN (θ(N)
r )u(N)

r =
(
ΓN Γ̃−1

N

)T
pTN (θ(N)

r )u(N)
r = 0, 1 ≤ r ≤ kN.

We conclude that Γ̃T
N Γ̃N = 2ΓT

NΓN . Recall that the matrices ΓN and Γ̃N are assumed
to be invertible, and are chosen to have positive diagonal entries. Therefore,

(6.2) Γ̃N =
√
2ΓN ,

because the symmetric positive definite matrix 2ΓT
NΓN has a unique Cholesky factor-

ization CTC with an upper-triangular factor C, whose diagonal is strictly positive.
We turn to the entry Ω̃N+1. It follows from (6.2) that ΓN Γ̃−1

N =
(
1/

√
2
)
Ik, which,

in view of (6.1), implies that p̃N =
(
1/

√
2
)
pN . Therefore,

Ω̃N+1 = (2I − GN ) (p̃N , λp̃N ) = I (pN , λpN ) = ΩN+1.

In conclusion, the matrix J̃N+1 associated with the (N +1)-block anti-Gauss rule
can be obtained from the matrix JN+1 associated with the (N + 1)-block Gauss rule
by multiplying ΓN by

√
2.
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6.2. The nonsymmetric problem W T f(A)V . We show how the matrix
J̃N+1 given by (3.25) and associated with the nonsymmetric (N+1)-block anti-Gauss
rule defined by (3.23) can be determined, with almost no work, from the matrix JN+1,
given by (3.20) with N replaced by N + 1, associated with the (N + 1)-block non-
symmetric Gauss rule (3.21) with N replaced by N + 1. The following discussion is
analogous to that of the previous subsection.

We obtain from (3.17) and (3.24) that the coefficients Ωi, Γi, and Δi associated
with nonsymmetric block Gauss rules and the coefficients Ω̃i, Γ̃i, and Δ̃i of nonsym-
metric block anti-Gauss rules are given by

Ωi = I(qi−1, λpi−1), Ω̃i = (2I − GN ) (q̃i−1, λp̃i−1),

Γi = I(qi, λpi−1), Γ̃i = (2I − GN ) (q̃i, λp̃i−1),

ΔT
i = I(qi−1, λpi), Δ̃T

i = (2I − GN ) (q̃i−1, λp̃i),

where I and GN are defined by (3.27) and (3.28), respectively. Hence, the recursions
(3.17) and (3.24), together with (3.23) and Corollary 8, yield

Ω̃i = Ωi, 1 ≤ i ≤ N,

Γ̃i = Γi, Δ̃i = Δi, 1 ≤ i ≤ N − 1,

p̃i = pi, q̃i = qi, 0 ≤ i ≤ N − 1,

from which we conclude that

(6.3)

p̃N Γ̃N = λp̃N−1 − p̃N−1Ω̃N − p̃N−2Δ̃
T
N−1

= λpN−1 − pN−1ΩN − pN−2Δ
T
N−1 = pNΓN ,

q̃N Δ̃N = λq̃N−1 − q̃N−1Ω̃
T
N − q̃N−2Γ̃

T
N−1

= λqN−1 − qN−1Ω
T
N − qN−2Γ

T
N−1 = qNΔN .

Thus,

Γ̃N = (2I − GN ) (q̃N , λp̃N−1) = 2I (q̃N , λp̃N−1)− GN (q̃N , λp̃N−1)

= 2
(
ΔN Δ̃−1

N

)T
I (qN , λpN−1) = 2

(
ΔN Δ̃−1

N

)T
ΓN ,

where we have used that GN (q̃N , λp̃N−1) = 0. This follows from the fact that

q̃TN (θ(N)
r )u(N)

r =
(
ΔN Δ̃−1

N

)T
qTN (θ(N)

r )u(N)
r = 0, 1 ≤ r ≤ kN,

which is a consequence of Theorem 4. Therefore, Δ̃T
N Γ̃N = 2ΔT

NΓN . There is some
freedom in choosing the blocks Γ̃N and Δ̃N . We will choose

(6.4) Γ̃N =
√
2ΓN , Δ̃N =

√
2ΔN .

To show that Ω̃N+1 = ΩN+1, we first observe that in view of (6.4) we have

ΓN Γ̃−1
N = ΔN Δ̃−1

N = (1/
√
2)Ik,

which by (6.3) implies that p̃N =
(
1/

√
2
)
pN and q̃N =

(
1/

√
2
)
qN . Therefore,

Ω̃N+1 = (2I − GN ) (q̃N , λp̃N ) = I (qN , λpN ) = ΩN+1.

Thus, similarly as in subsection 6.1, the matrix J̃N+1 given by (3.25) can be
obtained from the matrix JN+1 associated with the nonsymmetric (N + 1)-block
Gauss rule by multiplying the last off-diagonal blocks ΓN and ΔN by

√
2.
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7. Bounds by standard Gauss-type rules. This section provides a few more
details about the technique advocated by Golub and Meurant [28, 29] for computing
bounds for expressions of the form

(7.1) If = wT f(A)v

when the matrix A ∈ R
m×m is symmetric andw,v ∈ R

m. We pay particular attention
to the function f(A) = exp(A), which we will use in computed examples of the
following section.

Let the function f be analytic in the convex hull [λmin, λmax] of the spectrum
of A and have derivatives f (j), j = 1, 2, . . . , of constant sign there. Let v = w.
If f (2n) ≥ 0 on [λmin, λmax], then the remainder formula for the n-point (standard)
Gauss quadrature rule Gn shows that Gnf ≤ If ; see, e.g., [5, 14, 28, 29] for details. If,
in addition, f (2n+2) ≥ 0 on [λmin, λmax], then one can show that, generically, Gnf <
Gn+1f ; see, e.g., [38] for this result and related ones for Gauss–Radau quadrature rules.
Turning to the latter type of rules, let a ≤ λmin and assume that f is analytic in the
interval [a, λmax]. Moreover, let f (2n+1) ≤ 0 on this interval. Then the remainder
formula for the (n+ 1)-point Gauss–Radau rule Rn+1,a with a fixed node at a shows
that Rn+1,af ≥ If . Thus, the Gauss and Gauss–Radau approximations bracket If .
Similarly, let b ≥ λmax and assume that f is analytic in the interval [λmin, b]. If
f (2n+1) ≥ 0 on [λmin, b], then the (n+1)-point Gauss–Radau rule Rn+1,b with a fixed
node at b satisfiesRn+1,bf ≥ If . Hence, when the derivatives of f are of constant sign
on the interval [a, b], suitable combinations of Gauss and Gauss–Radau rules bound
the value of the desired integral. Similar results hold for Gauss–Lobatto quadrature
rules; we refer to [28, 29, 38] for proofs.

We turn to the case whenw �= v. Bounds for the quantity (7.1) can be derived, for
example, by first computing bounds for (w+v)T f(A)(w+v) and (w−v)T f(A)(w−v),
and then using the relation

wT f(A)v =
1

4

(
(w + v)T f(A)(w + v)− (w − v)T f(A)(w − v)

)
.

This approach is suggested in [28, 29]. In the context of network analysis, one is often
interested in computing the f -subgraph centrality (2.3) for important nodes, i.e., for
nodes for which this quantity is large, and in determining the f -communicability for
these nodes; see section 2. If bounds for the f -subgraph centralities for the nodes i
and j already are available, then it is convenient to use these bounds to determine
bounds for the f -communicability between these nodes. For example, if

L1 ≤ 1√
2
(ei + ej)

T f(A)
1√
2
(ei + ej) ≤ U1,

L2 ≤ eTi f(A)ei ≤ U2,

L3 ≤ eTj f(A)ej ≤ U3,

then upper and lower bounds for eTi f(A)ej are given by U1 − L2/2 − L3/2 and
L1 − U2/2− U3/2, respectively. Since the bounds Li and Ui for i = 2, 3 are assumed
to already be available, this approach only requires the additional computation of the
bounds L1 and U1.

The main advantage of the approach described above is that it yields bounds for
(7.1). However, the computational effort required may be much larger than when
block methods are used. Suppose that bounds are desired for each element of the
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leading k × k submatrix of f(A), i.e., of If = WT f(A)W with W = [e1, . . . , ek].
Using the approach of this section requires k(k+1)/2 partial Lanczos decompositions
with w = ei for 1 ≤ i ≤ k and w = (ei + ej)/

√
2 for 1 ≤ i < j ≤ k. Approximations

of these bounds can be computed by the block methods described in section 3.1. They
require the evaluation of a single partial block Lanczos decomposition with block-size
k. If the Lanczos method with block-size one requires about the same number of
steps as the block Lanczos method with block-size k, then the count of matrix-vector
products scales with k for the block method, while it scales with k2 when the block-
size is one. Here we count the product of the matrix A with a block-vector with k
columns as k matrix-vector products.

As pointed out in subsection 4.2, when we apply the nonsymmetric Lanczos
method with a sparse initial vector, such as the axis vector ei, to a nonsymmet-
ric adjacency matrix associated with a directed graph, breakdown commonly takes
place. Let c = [1, . . . , 1]T and let ci = c − ei. The nonsymmetric block Lanczos
method with initial orthonormal block [ei, ci/‖ci‖] applied to a nonsymmetric adja-
cency matrix rarely breaks down. Therefore, block Lanczos methods are essential for
the investigation of directed graphs.

8. Numerical examples. We illustrate in this section the application of block
Gauss and anti-Gauss quadrature rules to the estimation of certain functions of sym-
metric or nonsymmetric adjacency matrices. All computations were carried out with
MATLAB version 8.1 (R2013a) 64-bit for Linux, in double precision arithmetic, on
an Intel Core i7-860 computer with 8 GB RAM. The following numerical examples
illustrate the performance of block Gauss and block anti-Gauss quadrature rules when
applied to integrate the exponential function. The matrices for most examples are
adjacency matrices for undirected or directed networks that arise in real-world appli-
cations and are publicly available.

We will approximate If by

(8.1) FN := AN+1f =
1

2
(GNf +HN+1f) ;

cf. (3.10). Seeking to determine each entry of If with an approximate relative tol-
erance τ , we terminate the symmetric and nonsymmetric block Lanczos methods at
iteration N , where N is the smallest integer such that

(8.2) TN :=
1

2

‖GNf −HN+1f‖max

‖FN‖max
< τ,

with ‖B‖max := max1≤i,j≤k |Bij |, and then accept (8.1) as our approximation of If .
In all experiments of this section, we let τ = 10−3.

Assume that

min{[GNf ]ij , [HN+1f ]ij} ≤ [If ]ij ≤ max{[GNf ]ij , [HN+1f ]ij}.
Then

|[FN − If ]ij | =
∣∣∣∣∣
[
1

2
GNf − 1

2
If
]
ij

+

[
1

2
HN+1f − 1

2
If
]
ij

∣∣∣∣∣
≤ 1

2
|[GNf − If ]ij |+ 1

2
|[HN+1f − If ]ij |

=
1

2
|[GNf −HN+1f ]ij |.
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Therefore, if [GNf ]ij and [HN+1f ]ij bracket [If ]ij for all 1 ≤ i, j ≤ k, then (8.2)
implies that

(8.3) GN :=
‖FN − If‖max

‖FN‖max
< τ,

i.e., FN approximates If elementwise with a relative error bounded by about τ .

Computations with the function f(A) = exp(A) may give rise to overflow when
the adjacency matrix A is large. This can be avoided by spectrum shift in the fol-
lowing way. First, consider the case of a symmetric block tridiagonal matrix JN .
When evaluating (3.7), the shift μ is chosen to be the largest eigenvalue of JN , and
we evaluate the exponential of the shifted matrix JN − μIkN using the spectral fac-
torization of JN . The factor exp(μ) does not have to be computed. The computation
of (3.13) is carried out similarly. For the nonsymmetric matrix JN defined by (3.20),
we choose the maximal real part of the eigenvalues as shift μ and use the MATLAB
function expm to evaluate the exponential of the shifted matrix JN − μIkN in (3.22).
We proceed similarly when evaluating (3.26). Spectrum shift is also applied in the
evaluation of standard Gauss-type rules described in section 7.

We have not experienced breakdown in any of the reported computations. How-
ever, breakdowns have been observed in some examples when the block size is larger
than 5.

8.1. Applications to undirected graphs. We present some examples that
show the performance of block Gauss and anti-Gauss quadrature rules associated
with the symmetric block Lanczos method. This method is applied to seven real-world
undirected unweighted networks, some of which have been investigated numerically
in [25]. The networks have the following properties:

Email (1133 nodes, 10902 edges) is a representation of e-mail interchanges between
members of the University Rovira i Virgili (Tarragona), described in [32].
The data set is available at Alex Arena’s web page [1].

Autobahn (1168 nodes, 2486 edges) describes the German highway system network.
The nodes are German locations and the edges are highways connecting them.
It is available at [9].

Yeast (2114 nodes, 4480 edges) describes the protein interaction network for yeast.
Each edge represents an interaction between two proteins [35, 46]. The data
set was originally included in the Notre Dame Networks Database, and it is
now available at [4].

Power (4941 nodes, 13188 edges) is an undirected unweighted representation of the
topology of the western states power grid of the United States, compiled by
Watts and Strogatz [49]. The original data set was made available at the web
site of Watts at Columbia University, and now can be found at [43].

Internet (22963 nodes, 96872 edges) is a symmetrized snapshot of the structure of
the Internet at the level of autonomous systems, reconstructed from BGP
(Border Gateway Protocol) tables posted by the University of Oregon Route
Views Project. This snapshot was created by Mark Newman from data for
July 22, 2006 [43].

Collaboration (40421 nodes, 351304 edges) is the collaboration network of scientists
who submitted preprints to the condensed matter archive at www.arxiv.org
[42] between January 1, 1995, and March 31, 2005. The original network is
weighted, here we consider an unweighted version [43].
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Facebook (63731 nodes, 1545686 edges) is the largest example we consider. It de-
scribes all the user-to-user links (friendships) of the Facebook New Orleans
network. It was studied in [48], and the data set is available at [40].

We are interested in computing the f -subgraph centrality of k specified nodes, as
well as the f -communicability between each pair of nodes, for a total of k(k+1)/2 nu-
merical quantities. We may assume that the nodes of interest are the nodes 1 through
k. We, therefore, seek to approximate If = WT f(A)W with W := [e1, . . . , ek].

To investigate whether for each N the entries [GNf ]ij and [HN+1f ]ij bracket the
quantity [If ]ij , we applied block Gauss and anti-Gauss rules to compute the centrality
and communicability for five nodes of the first four networks. These networks are small
enough to allow the evaluation of the matrix exponential by the MATLAB function
expm. Since we cannot assume that the values returned by expm are exact, we checked
that they are almost bounded by the computed quantities, i.e., whether

(8.4) L −√
εM < [expm(A)]ij < U +

√
εM , i, j = 1, . . . , 5,

where L = min{[GNf ]ij , [HN+1f ]ij}, U = max{[GNf ]ij , [HN+1f ]ij}, and εM 
 2.2 ·
10−16. These inequalities were satisfied for the first four networks, i.e., for all networks
for which we could verify them.

Table 8.1 shows the execution time for the block Gauss and anti-Gauss quadrature
rules, the scalar Gauss/Gauss–Radau quadrature rules described in section 7, and
the expm function. We apply the quadrature rules to compute approximations of
If = WT exp(A)W with W = [e1, e2, e3, e4, e5] and terminate the Lanczos and
block Lanczos methods as soon as TN < 10−3. The last networks of Table 8.1 are
too large to allow the evaluation of the function expm. It can be seen that Lanczos
methods can be applied to rather large networks, and that the block Lanczos method
with block-size 5 is faster than the standard Lanczos method with block-size 1.

Table 8.2 displays the number of matrix-vector product (MVP) evaluations and
the error GN defined by (8.3) for both the scalar and the block case. The number
of MVPs equals the number of steps of the Lanczos method when the block-size is
one, and equals the product of the number of Lanczos steps and the block-size when
the latter is larger than one. When evaluating GN , we consider the value returned by
expm to be exact. The error is only reported for the smallest networks and shows the
termination criterion always to give approximations with the desired accuracy. Since
the last three networks are too large to allow the evaluation of expm, we cannot report
the errors for them.

To better illustrate the effect of the block-size on the execution time, we let
the number of columns k of W increase. For each k we approximate the entries of
WT f(A)W both by the symmetric block Lanczos method with block-size k and by

Table 8.1

Execution time, in seconds, for computing centralities of and communicabilities between five
nodes of undirected networks.

Matrix Nodes Edges expm Block-size 1 Block-size 5
Email 1133 10902 1.2e+01 1.3e-01 3.4e-02

Autobahn 1168 2486 8.2e-01 3.1e-01 2.9e-02
Yeast 2114 4480 1.0e+01 9.6e-02 3.3e-02
Power 4941 13188 2.1e+01 1.3e-01 2.7e-02
Internet 22963 96872 – 6.9e-01 1.2e-01
Collab. 40421 351384 – 1.6e+00 3.5e-01

Facebook 63731 1634180 – 4.5e+00 6.0e-01
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Table 8.2

Number of MVP evaluations and size of the error GN (8.3) for both block-sizes 1 and 5.

Block-size 1 Block-size 5
Matrix Nodes Edges MVP GN MVP Steps GN

Email 1133 10902 75 2.2e-05 40 8 2.8e-06
Autobahn 1168 2486 36 1.8e-05 25 5 6.3e-07
Yeast 2114 4480 35 8.1e-05 35 7 2.6e-06
Power 4941 13188 45 5.9e-06 30 6 4.7e-07
Internet 22963 96872 95 – 35 7 –
Collab. 40421 351384 100 – 50 10 –

Facebook 63731 1634180 102 – 50 10 –
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Fig. 8.1. Execution times for symmetric Lanczos methods with block-size 1 (top graph) and for
block-size k (bottom graph) as a function of k when determining approximations of the entries of
WT f(A)W . The right panel shows the ratio between the timings.

k(k+1)/2 applications of the standard Lanczos method with block-size one. The left
panel of Figure 8.1 shows execution times, and the right panel the ratio between the
execution times for block-sizes 1 and k. The speed-up of the block method is roughly
linear as a function of the block-size.

A reason for the speed-up shown in Figure 8.1 is that both centralities and com-
municabilities were requested. We next investigate whether block methods are com-
petitive when only centralities are desired. Figure 8.2 depicts execution times for this
situation. The figure is analogous to Figure 8.1 and shows that for the computer
used in our experiments, block-size 16 yields a speed-up of a little less than a factor
of 2. Thus, also in the situation when only subgraph centralities are needed, the
block method is competitive. In particular, it may be attractive to apply block Lanc-
zos methods in the hybrid scheme for identifying the k nodes of a network with the
largest subgraph centrality proposed in [25]. This scheme first computes a low-rank
approximation of the adjacency matrix to determine a short list of candidate nodes.
Then Gauss quadrature is applied to rank the nodes in this list. The use of block
Lanczos methods is likely to speed up the latter computations.

8.2. Application to directed graphs. This subsection presents computa-
tions that illustrate the performance of block Gauss and anti-Gauss quadrature
rules associated with the nonsymmetric block Lanczos algorithm. We applied these
quadrature rules to eight directed unweighted networks coming from the following
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Fig. 8.2. Execution times for block-size 1 (top graph) and block-size k (bottom graph) as a
function of k when computing the subgraph centralities of k nodes. The right panel shows the ratio
between the timings.

real-world applications:
Airlines (235 nodes, 2101 edges) is a representation of air traffic, available at [27].

The nodes are airports and the directed edges are flights between them.
Celegans (306 nodes, 2345 edges) is the metabolic network of Caenorhabditis elegans

[17], a small nematode (roundworm). The data set is available at [1].
Air500 (500 nodes, 24009 edges) is the network of flight connections for the top 500

airports, based on total passenger volume, worldwide [9]. The existence of
flight connections between airports is based on flights within one year from
July 1, 2007, to June 30, 2008 [39].

Twitter (3556 nodes, 188712 edges) is part of the Twitter network [27]. The nodes
are users and the directed edges are mentions and retweets between them.

T2 (9801 nodes, 87025 edges) describes a mesh for a nonlinear diffusion problem,
taken from the University of Florida Sparse Matrix Collection [47].

Wikipedia (49728 nodes, 941425 edges) is the structure of Italian Wikipedia. In this
graph the nodes are plain articles and the links represent references to other
articles. It can be downloaded from [41].

Poisson (85623 nodes, 2374949 edges) is a sparse matrix describing a problem in
computational fluid dynamics from the University of Florida Sparse Matrix
Collection [47].

Vfem (93476 nodes, 1434636 edges) is a vector finite element complex matrix from a
problem in electromagnetics [47]. When computing with this matrix, transpo-
sition is replaced by transposition and complex conjugation. Inner products
also require complex conjugation.

Thus, all matrices except for T2, Poisson, and Vfem are adjacency matrices. When
applying the nonsymmetric block Lanczos algorithm to an arbitrary dense matrix
breakdown rarely occurs. However, when A is a general large and sparse nonsymmetric
adjacency matrix and the initial vectors are axis vectors ei, and, therefore, very sparse,
chances of breakdown are high. For instance, if the matrix A only has a few nonzero
entries in each row and column, even though the matrices S1 and R1 in (4.4) are likely
to be of full rank, they almost surely will satisfy ST

1 R1 = Ok, resulting in serious
breakdown at the first step. The reason for this difficulty is that independent high-
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dimensional vectors with only a few nonzero entries are likely to be orthogonal. We
remark that this problem does not occur with the symmetric block Lanczos method,
because this method requires only the matrix R1 to be of full rank. The probability
of breakdown during the first steps of the nonsymmetric Lanczos method decreases
when introducing an additional dense starting vector. This is shown by Bai, Day, and
Ye [2]; see below for illustrations.

Suppose that we would like to compute all communicabilities between nodes 1
through k − 1 and their centralities for a total of (k − 1)2 numerical quantities. If
we try to approximate If = WT f(A)V with W = V = [e1, . . . , ek−1] using the
nonsymmetric block Lanczos method with block-size k − 1, then breakdown is likely
to occur at an early stage of the computations. To reduce the likelihood of breakdown,
we append the vector c with all entries one to W and V . Thus, we use W = V =
[e1, . . . , ek−1, c]. Then the computations also provide bounds for the starting and
ending conveniences of the first k−1 nodes provided that an expansion of the integrand
in terms of biorthogonal polynomials converges sufficiently rapidly; see the comment
at the end of subsection 6.2. The desired f -communicabilities are the entries of the
leading principal (k − 1) × (k − 1) submatrix of the k × k matrix If = WT f(A)V .
We remark that the block Lanczos method is applied to an orthonormalization of the
columns in V and W ; see below.

Now assume that we would like to compute certain f -communicabilities with a
small absolute error τ . Using the quantities TN , FN , and GN in (8.2)–(8.3), a natural
stopping criterion is provided by TN < τ . We show the performance of block Gauss
and anti-Gauss quadrature rules when determining approximations of the entries of
If = WT exp(A)V with W = V = [e1, . . . , e5, c] and τ = 10−3.

The initial blocks have to satisfy V TW = Ik. To accomplish this, in principle, we
could orthogonalize the columns of the matrix W defined above by a QR factorization,
but this would not necessarily change its sparsity pattern and, therefore, would likely
lead to breakdown of the nonsymmetric block Lanczos method. In fact, when A and
W are sparse, either one of matrices R1 and S1 in (4.4), or both, may be singular.
For this reason, we redefine the blocks W and V with the aid of the singular value
decomposition of the k × k block WTV . If WTV = UΣZT , then the matrices

W1 = WUΣ−1/2, V1 = V ZΣ−1/2

satisfy WT
1 V1 = Ik and have dense columns. The sought quantities can be determined

from

WT f(A)V = UΣ1/2(WT
1 f(A)V1)Σ

1/2ZT .

To begin with, we repeated the first experiment of section 8.1. Let the matrix
W be defined as described above. We computed approximations of [WT f(A)W ]ij by
pairs of N -block Gauss and (N + 1)-block anti-Gauss rules, which were computed
with the nonsymmetric block Lanczos method, and compared the 36 entries of the
resulting matrices to the output of expm. This test was performed on the first four
networks, whose size allows the application of expm. The inequalities (8.4) held in
all but a small number of cases: One of the inequalities was violated for 5 (out of
36) entries for the Celegans network and 14 of the entries for the Twitter network.
The required accuracy was attained for all examples, that is, the error GN (8.3) was
smaller than the stopping tolerance τ for all networks.

Table 8.3 shows the execution times (in seconds) of the MATLAB function expm

and the nonsymmetric block Lanczos method. The table also reports the number
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of matrix-vector product evaluations, the number of block Lanczos steps, and the
quantity (8.3). Very few block Lanczos steps are needed to determine the desired
quantities with required accuracy. For the larger networks, we are unable to evaluate
the function expm and, therefore, the error GN .

Table 8.3

Execution times (in seconds) of expm and the nonsymmetric block Lanczos method. The table
also shows the number of matrix-vector product evaluations, the number of block Lanczos steps, and
the quantity (8.3).

expm Block Lanczos method
Matrix Nodes Edges time Time MVP Steps GN

Airlines 235 2101 2.4e-01 5.7e-02 66 6 2.8e-08
Celegans 306 2345 1.6e-01 1.7e-02 66 6 8.5e-05
Air500 500 24009 9.8e-02 3.0e-02 66 6 3.1e-08
Twitter 3656 188712 4.4e+02 7.6e-02 90 8 4.1e-13

T2 9801 87025 – 7.4e-02 42 4 –
Wikipedia 49728 941425 – 7.8e-01 90 8 –
Poisson 85623 2374949 – 6.3e-01 30 3 –
Vfem 93476 1434636 – 6.6e-01 18 2 –

9. Conclusion. We derived block anti-Gauss quadrature rules and showed how
they can be computed by the symmetric or nonsymmetric block Lanczos methods.
Application of these rules to the determination of upper and lower bounds, or esti-
mates thereof, for the entries of expressions of the form (1.1) and (1.2) were described.
Computed examples that apply quadrature rules to network analysis were presented.
We approximated quantities defined by Estrada and collaborators, as well as a few new
ones proposed in this paper. The numerical examples illustrate that block methods
can be cheaper to apply than a sequence of standard Gauss-type rules (for block-size
one), and much cheaper than the evaluation of the matrix exponential.
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