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ON NEW SUM-PRODUCT TYPE ESTIMATES

MISHA RUDNEV

Abstract. New lower bounds involving sum, difference, product, and ratio sets
for A ⊂ C are given.

1. Introduction

Erdős and Szemerédi ([3]) conjectured that if A is a set of integers, then

|A+A|+ |A · A| ≫ |A|2−o(1),

where

A+A = {a1 + a2 : a1,2 ∈ A}
is called the sum set of A, the product A · A, difference A − A, and ratio A : A
sets being similarly defined. (In the latter case one should not divide by zero.)
The notations ≪, ≫, ≈ are being used throughout to suppress absolute constants
in inequalities, the symbol o(1) in exponents absorbs logarithmic factors in the
asymptotic parameter |A|, the cardinality of A.

Variations of the Erdős-Szemerédi question consider the set A living in other rings
or fields, as well as replacing, e.g., the sum set with the difference set A − A. The
conjecture is far from being settled, and therefore partial current “word records” on
it vary with such variations of the input.

The best result for reals, for instance, is due to Solymosi ([14]), claiming

(1) |A+A|+ |A · A| ≫ |A|1+ 1

3
−o(1),

and would include the endpoint exponent 4
3 if A ·A were replaced by A : A.

However, the construction is specific for reals, and does not appear either to
extend easily to the case A ⊂ C, or to allow for replacing the sum set A + A with
the difference set A−A. So, if A ∈ C or if A+A for reals gets replaced by A−A,
the best known result comes from an older paper of Solymosi ([13]), claiming

(2) |A±A|+ |A · A| ≫ |A|1+ 3

11
−o(1),

also without the o(1) term if A ·A gets replaced by A : A.
It may be worth mentioning that the result (2) is based on the – rather sophis-

ticated – Szemerédi-Trotter theorem, while (1) is not, using just elementary order
properties of positive reals, expressed in the fact that if a

b
< c

d
, then a+c

b+d
falls in

between. This note is almost entirely based on the Szemerédi-Trotter theorem and
succeeds in slightly improving on (2), yet not enough to beat (1).
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Theorem 1. For any A ⊂ C, with two or more elements one has

(3)

|A−A|+ |A : A| ≫ |A|1+ 9

31
−o(1),

|A+A|+ |A : A| ≫ |A|1+ 15

53
−o(1),

|A−A|+ |A ·A| ≫ |A|1+ 11

39
−o(1),

|A+A|+ |A ·A| ≫ |A|1+ 19

69
−o(1).

2. Lemmata

The main tool behind the above estimates is the Szemerédi-Trotter incidence
theorem. For a set P of points and a set of L straight lines in a plane let

I(P,L) = {(p, l) ∈ P × L : p ∈ l}
be the set of incidences.

Theorem 2 (Szemerédi and Trotter [16]). The maximum number of incidences in
R
2 is bounded as follows:

(4) |I(P,L)| ≪ (|P ||L|) 2

3 + |P |+ |L|.
In particular, if Pt (or Lt) denote the sets of points (or lines) incident to at least
t ≥ 1 lines (or points) of L (or P ), then

(5)
|Pt| ≪

|L|2
t3

+
|L|
t
,

|Lt| ≪
|P |2
t3

+
|P |
t
.

Let us note that the linear in |P |, |L| terms in the estimates (4, 5) are essentially
trivial and usually of no interest in the sense of being dominated by the non-linear
ones, whenever these estimates are being used. This is also the case in this paper.

The Szemerédi-Trotter theorem is also true in the plane over C. This was proved
by Tóth ([17]). Recently there has been a new proof by Solymosi and Tao ([15])
which had to sacrifice the endpoint in the exponent for the sake of elegance of the
method.

One can easily develop a weighted version of the Szemerédi-Trotter theorem, see
Iosevich et al. ([5]). Suppose each line l ∈ L has been assigned a weight m(l) ≥ 1.
The number of weighted incidences im(P,L) is obtained by summing over the set
I(P,L), with each pair (p, l) being counted m(l) times. Suppose, the total weight
of all lines is W and the maximum weight per line is m̄. It is argued in [5] that
the worst possible case for the weighted incidence estimate is the uniform one, when
there are W

m̄
lines of equal weight m̄, hence the following theorem.

Theorem 3. The maximum number of weighted incidences between a point set P
and a set of lines with the total weight W and maximum weight per line m̄ is

(6) im(P,L) ≪ m̄
1

3 (|P |W )
2

3 + m̄|P |+W.
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This paper uses in its core the same geometric construction as Solymosi ([13]) did,
which yielded the exponent 14

11 , with some more detailed analysis of the incidences
involved by dealing with the weighted case. Yet the improvements over (2) are due to
combining this construction with a recent purely additive-combinatorial observation
by Shkredov and Schoen ([9], Lemma 3.1) which allowed for a series of the latest
state-of-the art improvements in incremental progress towards a number of open
questions in field combinatorics in [9], [12], [10].

The above-mentioned additive-combinatorial observation is the content of the fol-
lowing Lemma 1, quoting which requires some notation used in the sequel. Through-
out the rest of this section A,B denote any sets in an Abelian group. The following
energy notations E, when applied in a field will bifurcate into E and E∗, respectively,
relative to the addition and multiplication operations.

For any d ∈ A−A, set

(7) Ad = {a ∈ A : a+ d ∈ A}.
Denote

E(A,B) = |{(a1, a2, b1, b2) ∈ A×A×B ×B : a1 − a2 = b1 − b2}|,
referred to as the “additive energy” of A,B. By the Cauchy-Schwarz inequality,
rearranging the terms in the above definition of E(A,B), one has

(8) E(A,B)|A ±B| ≥ |A|2|B|2.
Indeed, if d is an element of A−B or s is an element of A+B, and n(d), n(s) are
the number of realisations of d and s, respectively as a difference or sum of a pair
of elements from A×B, (8) follows from the fact that

(9) E(A,B) =
∑

d∈A−B

n2(d) =
∑

s∈A+B

n2(s).

Also, E(A,A) = E(A) is referred to as the “energy of A”. In this case note that
according to the notation (7), n(d) = |Ad|.

Moreover, the following inequality will be useful. If

(10) D+ =

{

d ∈ A−A : n(d) ≥ 1

2

|A|2
|A+A|

}

,

then “the energy supported onD+”, namely the left-hand side of the next inequality,
satisfies

(11)
∑

d∈D+

n2(d) ≫ |A|4
|A+A| .

Indeed, by (8) with A = B, the energy supported on the complement of D+ is
trivially bounded from above by the right-hand side of (11).

Also useful will be the “cubic energy” of A, which is

(12) E3(A) = |{(a1, . . . , a6) ∈ A× . . .×A : a1 − a2 = a3 − a4 = a5 − a6}|.
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This definition implies that ([10], Lemma 2)

(13) E3(A) =
∑

d∈A−A

E(A,Ad).

To see this, fix any d = a1 − a2 in (12) and observe that if one is to count every
representation d = a3−a4 as many times as a3, a4 ∈ Ad for some d, this will happen
exactly n(d) times, for different d = a5 − a3 = a6 − a4 in (12).

The following statement is the content of Corollary 3 in [10], with trivial varia-
tions.

Lemma 1. One has the following identities, for any D′ ∈ A−A:

(14)

∑

d∈D′

|Ad||A±Ad| ≥
|A|2

(

∑

d∈D′ |Ad|
3

2

)2

E3(A)
,

∑

d∈D′

|Ad|2|A±Ad| ≥
|A|2

(
∑

d∈D′ |Ad|2
)2

E3(A)
.

Proof. To verify the first inequality of (16) observe that by the Cauchy-Schwarz
inequality, for each d:

√

|Ad||A±Ad|
√

E(A,Ad) ≥ |A||Ad|
3

2 .

Summing over d ∈ D′ and applying once again the Cauchy-Schwartz inequality to
the left-hand side yields

√

∑

d∈D′

|Ad||A±Ad|
√

∑

d∈D′

E(A,Ad) ≥ |A|
∑

d∈D′

|Ad|
3

2 .

squaring both sides and using (13) does the job. Verifying the second inequality in
(14) requires merely a straightforward modification of the above. �

The identities (14) suggest that the cubic energy estimate from above can be quite
useful, since A− Ad ⊆ (A− A) ∩ (A− A− d), as well as A+Ad ⊂ (A+A) ∩ (A+
A+ d). The latter observation, which [10] credits to Katz and Koester ([6]), allows
for the following interpretation of (14), producing lower bounds for E(A,A − A)
and E(A,A + A). Indeed, the left-hand side in (1) itself is a lower bound for both
E(A,A±A). However, in order to be able to express it in terms of the sum set, via
(9), one needs to deal with the sum of |Ad|2 in the right-hand side, rather than of

|Ad|
3

2 .
In the first formula of (14) assume that D′ is a popular subset of A−A, namely

(15) D′ =

{

d ∈ A−A : |Ad| ≥
1

2

|A|2
|A−A|

}

.
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Then
∑

d∈D′

|Ad|
3

2 ≫
( |A|2
|A−A|

)

1

2 ∑

d∈D′

|Ad| ≫
( |A|2
|A−A|

)

1

2

|A|2.

In the second formula of (14) replace D′ with D+, defined by (10). Then

(16)

E(A,A −A) ≥ |A|8
|A−A|E3(A)

,

E(A,A +A) ≥ |A|10
|A+A|2E3(A)maxd∈D+ |Ad|

.

2.1. Some applications of Lemma 1. The estimates (16) enabled Schoen and
Shkredov ([10]) to achieve progress on the sum set of a convex set problem. If
A = f([1, . . . , N ]), where f is a strictly convex real-valued function, then |A −
A| ≫ |A| 53−o(1), with a slightly worse estimate |A + A| ≫ |A| 149 −o(1) for the sum-
set. The reason for the two estimates being different is that dealing with the sum
set necessitated bootstrapping the earlier established exponent 3

2 , which had been
obtained over the past ten years or so in various guises, with or without using the
Szemerédi-Trotter theorem. (See e.g. [2], [4], [5]. The conjectured exponent in the
convex set sum set problem is 2− o(1).)

Li ([7]) – see also his recent work with Roche-Newton ([8]) – has adapted the
approach of [10] to the sum-product problem, using a specific convex function, the
exponential. This was also observed in another paper of Schoen and Shkredov
([11], Corollary 25). The result was the exponent 14

11 − o(1). A closer look at this
adaptation – see the Appendix in this paper – reveals that the exponential function
has as much do with it as basically replacing a with exp(log a) in a variant of the
old sum-product construction by Elekes ([1]): applying the Schoen-Shkredov trick,
expressed in (14) to the estimate (41) in the Appendix would improve the Elekes
exponent 5

4 to 14
11 − o(1).

The same exponent 14
11 −o(1) had been coincidentally obtained in Solymosi’s work

[14], as stated in (2) above.
This note uses the construction of [14] and combines it with an estimate of the

type (14), thereby getting an improvement (3) over (2). The estimates involving
the sum set end up being worse, because they require bootstrapping the estimates
which themselves would yield the exponent 14

11 −o(1) only. It will also use the Elekes
construction in order to channel the estimates involving the ratio set into ones using
the product set. These will have to bootstrap the Elekes exponent 5

4 , thus making
the estimates involving the product set still worse.

3. Proof of Theorem 1

The condition |A| ≥ 2 is tantamount to assuming that 0 6∈ A. Consider a point
set A×A in the coordinate plane.

The multiplicative energy E∗(A) of A is defined as the number of solutions of the
following equation

E∗(A) = |{(a1, . . . a4) ∈ A× . . . ×A : a1/a2 = a3/a4}|.
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By the Cauchy-Schwarz inequality

(17) E∗(A) ≥ max

( |A|4
|A ·A| ,

|A|4
|A : A|

)

.

Geometrically, E∗(A) is the number of ordered pairs of points of A×A in the plane
on straight lines through the origin, whose slopes r are members of the ratio set
A : A. Hence, elements of A : A can be identified with lines through the origin
supporting points of A×A.

The proof will deal with an in some sense “popular” subset L of these lines, P
denoting a subset of A× A supported on the lines in L. There will be two cases to
consider.

Ratio set case. In order to establish the first two estimates of (3) the notation L
will stand for the set of popular lines through the origin, namely those supporting at
least 1

2 |A|2|A : A| points of A×A. The subset of A×A supported on these lines L

will be denoted as P . One has |P | ≫ |A|2, as well as |A| ≤ |L| ≤ |A : A|. Let us also
use the notation N for the maximum number of points per line, clearly N ≤ |A|. It
follows from (17) that if n(l) denotes the number of elements of P supported on a
line l ∈ L,

(18)
∑

l∈L

n2(l) ≫ |A|4
|A : A| .

Product set case. In order to establish the last two estimates of (3), the same
notations P,L will apply to slightly differently defined sets, as well as the quantity
N , as follows. The set P will be a “popular multiplicative energy” subset of A×A,
constructed by the standard dyadic pigeonholing procedure by popularity, in terms
of supporting points of A × A, of all lines through the origin. The elements of P
are those points in A×A which lie on a set L of straight lines passing through the
origin, supporting between N/2 and N points each, and such that

(19) |L|N2 ≫ |A|4
|A ·A| log |A| .

Such sets L,P always exist, by the pigeonhole principle and (17).
Important in the product set case will be the following bounds on N .

Lemma 2. There exists L,N satisfying (19) and such that

(20)
1

2

|A|2
|A ·A| ≤ N ≪ |A±A|2|A · A|

|A|3 .

The lower bound in (20) follows right away from (17) and a popularity argument.
The upper bound comes from a variant of the Elekes construction ([1]) apropos of
sum-products. A variant of Lemma 2 can be found in the above-mentioned works
[8], [11]. A short proof is given in the Appendix.

In both the ratio and product set cases, it can be assumed that |L| ≫ N . It is

clear in the ratio set case, where N ≤ |A| and thus, by (18), |L| ≫ |A|3

|A:A| ≥ |A|.
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In the product set cases |P | ≈ |L|N . Assume that N ≫ |L|. Since N satisfies (20)
and LN2 is bounded from below by (19), it follows that

|A±A|6|A ·A|4 ≫ |A|13
log |A| ,

which is far better than the last two claims in (3).

Beginning now the proof proper, in either of the two cases above consider the sum
set of P with some other set Q in the plane, with |Q| ≥ |P |. (In the sequel Q = ±P
or P ±P ). To obtain the vector sums, one translates the lines from L to each point
of Q, getting thereby some set L of lines with |L| ≤ |L||Q|.

The Szemerédi-Trotter theorem, namely (4), enables one to estimate |L| from
below:

|L||Q| ≪ |L| 23 |Q| 23 .
(It is easy to see that the fact that since |L| ≤ |Q| ≤ |L| ≤ |L||Q|, trivial terms in
this application of (4) can be ignored.) Thus

(21) |L| ≫ |L| 32 |Q| 12 .
Let us call the number of points of Q on a particular line l ∈ L, the weight m(l)
of l. The total weight W of all lines in the collection L is by construction equal to
|L||Q|.

The lines in L have been given weights, because the same line l ∈ L can contribute
to the same vector sum in P +Q at most max(N,m(l)) times. Hence, let us lower
the weights of lines, which are “too heavy”: whenever m(l) ≥ N , redefine it as N .

Therefore, for the total weight W and the mean weight m̄ per line, from (21) one
has

(22) W ≤ |L||Q|, m̄ =
W

|L| ≪
√

|Q|
|L| .

The Szemerédi-Trotter theorem, namely (5), tells one that the weight distribution
over L obeys the inverse cube law. I.e., for t ≤ N , one has

(23) |Lt| = |{l ∈ L : m(l) ≥ t}| ≪ |Q|2
t3

+
|Q|
t

≪ |Q|2
t3

,

as since N ≪
√

|Q|, the trivial term |Q|
t

gets dominated by the first term.
Now, let us look at the set P(L) of all pair-wise intersections of lines from L, and

for an intersection point p ∈ P(L) of some k ≥ 2 lines l1, . . . , lk look at the sum of
the weights of the lines that intersect there:

m(p) =

k
∑

i=1

m(lk).

For any point set P ⊆ P(L), the number of weighted incidences between P and L
is the sum over all pairs (p, l) ∈ I(P,L), counting each pair (p, l) with the weight
m(p).
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The inverse cube weight distribution over the set of lines L enables one to use
the Szemerédi-Trotter theorem rather efficiently for counting weighted incidences,
similar to how it was done in the paper of Iosevich et al. (See [5], Lemma 6).

Lemma 3. Suppose, |Q| ≥ |P |, and the weights of lines in L have been capped by
N . For x ∈ P +Q, let n(x) be the number of realisations of x as a sum. Then for
t : N ≪ t ≤ |P |,

(24) |{x ∈ P +Q : n(x) ≥ t}| ≪ |L| 32 |Q| 52
t3

,

Proof. The condition |Q| ≥ |P | ≫ N2 (which holds in both the ratio and product
set cases) ensures that (23) is valid, since for all l ∈ L, m(l) ≤ N . Observe that for
any point set P, the number of weighted incidences of L with P can be bounded
from above using dyadic decomposition of L by weight in excess of m̄, via

(25) I ≪ im(P,Lm̄) +

log2 N−log2 m̄
∑

j=1

(2jm̄)|I(P,L2j m̄)|,

where Lm̄ denotes the set of lines from L whose weight is at most m̄, L2jm̄ denotes
the dyadic group of lines whose weights are approximately 2jm̄, and the notation
im has been introduced in the context of Theorem 3.

One uses the Szemerédi-Trotter theorem to estimate each number of incidences
|I(P,L2jm̄)|, for j > 0 involved and its weighted version for the first term. The
condition (23) ensures that the weighted Szemerédi-Trotter estimate (6) for the first
term in (25) dominates as follows. For j ≥ 1, one has

(26) |I(P,L2jm̄)| ≪ (|P||L2jm̄|) 2

3 + |P| + |L2jm̄|.
For the case j = 0, Theorem 3 is used.

(27) im(P,Lm̄) ≪ m̄
1

3 (|P|W )
2

3 + m̄|P|+W.

Together with the rest of the bounds for each |L2jm̄| coming from (23) this yields

(28) I ≪ m̄
1

3 (|P|W )
2

3 +N |P| +W.

(See (31) below where the bounds in (26) for the terms for j > 1 are spelled out
explicitly.)

Observe now that for x ∈ P + Q ⊆ P(L), with n(x) denoting the number of
realisations of a sum set element x, one always has n(x) ≤ m(x), where m(x) is the
weight of x as a member of P(L).

Applying (28) to the point set

(29) Pt = {x ∈ P +Q : n(x) ≥ t},
with the lower bound t|Pt| for I, one sees that for t ≫ N the term N |P| in the
right-hand side of (28) cannot possibly dominate the remaining terms. Hence for
t ≫ N one has

(30) |Pt| ≪
|L| 32 |Q| 52

t3
+

|L||Q|
t

,
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and has to be slightly more careful with the trivial term |L||Q|
t

in the bound (30) and
refine it, so that it becomes absorbed into the first term to get (24). This is clearly

the case for t ≤ 4
√

|L||Q|3, but not yet for higher t.
Let us now address the issue of large t. The lines in L come in |L| possible

directions, and therefore no more than |L| lines can be incident to a single point.
Hence, lines from a dyadic group L2jm̄ do not contribute to sets Pt, whenever t ≫
|L| · (2jm̄). This means that one needs, with (23) in view, only a “tail” estimate for
the right-hand side of (25), with t ≈ |L|(2jm̄):

(31) t|Pt| ≪
log2 N−log2 m̄

∑

i=j

(2im̄)|I(Pt,L2im̄)| ≪ |Q| 43 |Pt|
2

3

2jm̄
+N |Pt|+

|Q|2
(2jm̄)2

.

It follows that, since N ≪ t ≤ |P |,

|Pt| ≪
|L| 32 |Q| 52
23jt3

+
|Q|2

(2jm̄)2t
≪ |L| 32 |Q| 52

t3
+

|Q|2|L|2
t3

.

Since |Q| ≥ |P | ≥ |L|, the first term in the last estimate dominates the second term,
thus proving (24). �

Let us now apply the estimate (24) with Q = ±P ; of these two the case Q = −P
will serve to estimate E3(P ).

The assumptions of Lemma 3 are satisfied, and therefore

(32) E3(P ) =
∑

x∈P−P

n3(x) ≪ N2|P |2 + |L| 32 |P | 52
2 log2 |A|
∑

j=1

23j

23j
≪ |L| 32 |P | 52 log |A|,

since in both the ratio and product set cases N2 ≪
√

|P ||L|3.
Using this, the first formula in (16), with A replaced by P , yields:

(33) E(P,P − P ) ≫ |P | 112
|L| 32 |P − P | log |A|

.

To get a similar estimate for the sum set P + P , let us use the second formula
in (16), with A replaced by P and D = P − P . To estimate the quantity t =
maxd∈D+ |Pd| it suffices to observe that part of the energy E(P ) supported on D+

is bounded from below by (11), where A gets replaced by P , and from above, by
Lemma 3, as

O

(

N |P |2 + |L| 32 |P | 52
t

)

.

It follows that unless |P + P | ≫ |P |2

N
, which is much better than (3), one has

(34) max
d∈D+

|Pd| ≪
|L| 32 |P + P |

|P | 32
.



10 MISHA RUDNEV

Then, using the second estimate in (16) and (32), one gets

(35) E(P,P + P ) ≫ |P |9
|L|3|P + P |3 log |A| .

On the other hand, one can use Lemma 3 with Q = P ± P and estimate the
quantity E(P,P ± P ) from above. Then for any t ≫ N :

(36) E(P,P ± P ) ≪ |P ||P ± P |t+ |L| 32 |P ± P | 52
t

,

and choosing

t =
|P ± P | 34 |L| 34

√

|P |
≫ N,

to match the two terms in (36) yields

(37) E(P,P ± P ) ≪
√

|P ||P ± P | 74 |L| 34 .

Combining this with (33) results in

(38) |P − P | 114 |L| 94 ≫ |P |5
log |A| .

To obtain the first estimate of (3) it suffices to note that one has (with what the
notations P,L stand for in the ratio set case) |P | ≫ |A|2, |L| ≤ |A : A|, plus
|P − P | ≤ |A−A|2.

To prove the second estimate in (3) the estimates (37) and (35) get put together.
It follows that

(39) |P + P | 194 |L| 154 ≫ |P | 344
log |A| .

Using |L| ≤ |A : A|, |P | ≫ |A|2 and |P +P | ≤ |A+A|2 results in the second estimate
in (3).

In the product set case, where |P | = |L|N , the estimates (38, 39) become

(40)

|A−A| 112 ≫ (|L|N2)
11

4√
N log |A|

,

|A+A| 192 ≫ (|L|N2)
19

4

N log |A| .

Lemma 2 now supplies a non-trivial upper bound on N . Substituting the bounds
from (19) and (20) into (40) then yields the last two estimates of (3) and completes
the proof of Theorem 1. �



ON NEW SUM-PRODUCT TYPE ESTIMATES 11

3.1. Appendix. Proof of Lemma 2. The lower bound of (20) is merely the
multiplicative version of the popularity argument behind (10), resulting in (11).
Indeed, the multiplicative energy of A supported on those lines through the origin,

which correspond to ratios r ∈ A : A, whose number of realisations n(r) ≥ 1
2

|A|2

|A·A| ,

is ≫ |A|4

|A·A| .

On the other hand, it was proven in [8], [11] that the multiplicative energy coming
from the lines through the origin, supporting at least N points of A×A (that from

the set of all ratios r ∈ A : A such that n(r) ≥ N), is O
(

|A±A|2|A|
N

)

. This, together

with (19) settles the upper bound in (20) and proves Lemma 2.

For completeness sake, a simple version of the proof of the upper bound in (20) for
N is given below. This bound was derived in [8], [11] via the Szemereéd-Trotter type
estimates for convex functions, using a particular example of a convex function, the
exponential. Let us show that the bound in question, in fact, represents a variant of
the well known construction of Elekes ([1]) apropos of sum-products, which gave the
exponent 5

4 implicit in the bounds (20). The notation in the forthcoming argument
is somewhat independent from the rest of the paper.

Consider a set A, not containing zero and a set of lines L = {y = d+x
a

}, where d
is an element of the difference set A − A (or the sum set A + A, the modification
required being trivial) and a ∈ A. Clearly there are |A − A||A| lines. Therefore,
the number of points in a set Pt, where at least t ≤ |A| lines intersect is, by (5),
bounded as

|Pt| ≪
|A−A|2|A|2

t3
.

Given a point (x, y) ∈ Pt, one has an intersections of at least t lines of L there,

namely y = di+x
ai

for at least t different pairs (di, ai). For each di take some fixed

representation di = ui − vi, let a ∈ A be a variable. Clearly di + x = (ui − a) + (a−
vi + x) = d′i + x′. I.e., Pt is such that if it contains one point (x, y), then it contains
at least |A| distinct points with the same ordinate.

Conversely, if Rt is the subset of ratios from A : A which have at least t reali-
sations, it is clearly a subset of the set of ordinates of the points from Pt. Indeed,

if r =
a′
1

a1
= . . . =

a′
k

ak
, then it equals to the ordinate of a horizontal family of in-

tersection points of at least k lines, identified by the pairs (di = a′i − a, ai), these
intersection points having the abscissae x = a.

It follows that

(41) |Rt| ≪
|A−A|2|A|

t3
,

and hence the multiplicative energy supported on Rt is O

( |A−A|2|A|
t

)

. Compar-

ing this with the lower bound in terms of |A|4

|A·A| gives the upper bound in (20), where

t has been replaced by N . �
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Basel, 1983) 213–218.
[4] M.Z. Garaev. On an additive representation associated with the L

1-norm of an exponential sum.

Rocky Mountain J. Math. 37 (2007), no. 5, 1551-1556.
[5] A. Iosevich, S. Konyagin, M. Rudnev, V Ten. Combinatorial complexity of convex sequences.

Discrete Comput. Geom. 35 (2006), no. 1, 143-158.
[6] N.H. Katz, P. Koester. On additive doubling and energy. SIAM J. Discrete Math., 24(4) (2010),

1684-1693.
[7] L. Li. On a theorem of Schoen and Shkredov on sumsets of convex sets. Preprint arXiv

math:11108.4382 (2011), 6pp.
[8] L. Li, O. Roche-Newton. Convexity and a sum-product type estimate. Preprint 2011, 9pp.
[9] T. Schoen, I. Shkredov. On a question of Cochrane and Pinner concerning multiplicative sub-

groups. Preprint arXiv math: 1008.0723 (2010), 10pp.
[10] T. Schoen, I. Shkredov. On sumsets of convex sets. Preprint arXiv math:1105.3542 (2011), 6pp.
[11] T. Schoen, I. Shkredov. Higher moments of convolutions. Preprint arXiv math:1110.2986 (2011),

36pp.
[12] I. Shkredov, I. Vyugin. On additive shifts of multiplicative subgroups. Preprint arXiv math:

1102.1172 (2011), 18pp.
[13] J. Solymosi. On the number of sums and products Bull. London Math. Soc. 37 (2005), no. 4,

491-494.
[14] J. Solymosi. Bounding multiplicative energy by the sumset. Adv. Math. 222 (2009), no. 2,

402-408.
[15] J. Solymosi, T. Tao. An incidence theorem in higher dimensions. Preprint arXiv math:

1103.2926 (2011), 24pp.
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[17] C. D. Tóth. The Szemerédi-Trotter Theorem in the Complex Plane. Preprint arXiv

math/0305283 (2003), 23pp.

Misha Rudnev, Department of Mathematics, University of Bristol, Bristol BS8

1TW, United Kingdom

E-mail address: m.rudnev@bristol.ac.uk

http://arxiv.org/abs/math/0305283

	1. Introduction
	2. Lemmata
	2.1. Some applications of Lemma 1

	3. Proof of Theorem 1
	3.1. Appendix. Proof of Lemma 2

	4. Acknowledgement
	References

