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MONOTONICITY BASED SHAPE RECONSTRUCTION IN

ELECTRICAL IMPEDANCE TOMOGRAPHY

BASTIAN HARRACH†AND MARCEL ULLRICH‡

Abstract. Current-voltage measurements in electrical impedance tomography can be partially
ordered with respect to definiteness of the associated self-adjoint Neumann-to-Dirichlet operators
(NtD). With this ordering, a point-wise larger conductivity leads to smaller current-voltage mea-
surements, and smaller conductivities lead to larger measurements.

We present a converse of this simple monotonicity relation and use it to solve the shape recon-
struction (aka inclusion detection) problem in EIT. The outer shape of a region where the conductivity
differs from a known background conductivity can be found by simply comparing the measurements
to that of smaller or larger test regions.

1. Introduction. We consider the shape reconstruction (aka inclusion detec-
tion) problem in electrical impedance tomography (EIT). Let Ω describe an elec-
trically conducting object which contains inclusions in which the conductivity σ(x)
differs from an otherwise known background conductivity. Our aim is to detect these
inclusions from current/voltage-measurements on the boundary ∂Ω.

We assume that Ω ⊂ Rn, n ≥ 2 is a domain with smooth boundary ∂Ω and outer
normal vector ν. For ease of presentation we also assume that Ω is bounded, the
background conductivity is equal to 1 and that we are given measurements on the
complete boundary ∂Ω. Our results easily extend to inhomogeneous (but known)
backgrounds and partial boundary measurements, cf. section 4.3.

With these assumptions, our goal is to determine the inclusions shape, i.e., the set
supp(σ − 1), from knowledge of the Neumann-to-Dirichlet (NtD) operator

Λ(σ) : g 7→ ug
σ|∂Ω,

where ug
σ is the solution of

∇ · σ∇ug
σ = 0 in Ω, σ∂νu

g
σ|∂Ω = g on ∂Ω,

cf. section 2.1 for the precise mathematical setting.

In this work, we show that supp(σ−1) can be reconstructed by so-called monotonicity
tests, which simply compare Λ(σ) (in the sense of quadratic forms) to NtD-operators
Λ(τ) of test conductivities τ . To be more precise, the support of σ − 1 can be re-
constructed under the assumption that supp(σ − 1) ⊂ Ω has connected complement.
Otherwise, what we can reconstruct is essentially the support together with all holes
that have no connection to the boundary ∂Ω.

Moreover, we show that the test NtDs Λ(τ) can be replaced (without losing any in-
formation) by their linear approximations using the Fréchet derivative Λ′(1) of Λ(σ)
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around the background conductivity. Let us stress that the linearized tests still ex-
actly recover the inclusion which is in accordance with the general principle that the
linearized EIT problem still contains the exact shape information, cf. [16].

The term monotonicity tests is used because our test criteria are motivated and partly
follow from the simple and well-known monotonicity relation

σ ≤ τ implies Λ(σ) ≥ Λ(τ). (1.1)

It seems quite natural and intuitive to probe the domain with test inclusions using
the implication (1.1), and this idea has been worked out and numerically tested in the
works of Tamburrino and Rubinacci [47, 46]. The main new part of this work is to
rigorously justify this natural idea by proving a non-trivial converse of the implication
(1.1). Our proofs are based on the theory of localized potentials [6].

For a quick impression of our result let us state it for two frequently considered special
cases (see examples 4.2, 4.4, 4.8 and 4.10). (Note that throughout the paper we use
the relation symbol ”⊂” instead of ”⊆”, if non-equality of the two related sets is
obvious.)

(a) Let σ = 1+χD where D is open, and D ⊂ Ω has a connected complement. Then
for every open ball B ⊆ Ω

B ⊆ D if and only if Λ(1 + χB) ≥ Λ(σ)

if and only if Λ(1) + 1
2Λ

′(1)χB ≥ Λ(σ).

(b) Let σ = 1 + χD+ − 1
2χD− where D+, D− ⊆ Ω are open, D+ ∩ D− = ∅, and

D+ ∪D− ⊂ Ω has a connected complement. Then for every closed C ⊂ Ω with
connected complement

D+ ∪D− ⊆ C if and only if Λ(1 + χC) ≤ Λ(σ) ≤ Λ(1− 1
2χC)

if and only if Λ(1) + Λ′(1)χC ≤ Λ(σ) ≤ Λ(1)− Λ′(1)χC .

(a) is a special case of the definite case in which either all inclusions have a higher
conductivity, or all inclusions have a lower conductivity, than the background. (a)
shows how to test whether a small ball B lies inside the inclusion or not. The inclusion
can thus be obtained as the union of all balls that fulfill the test.

(b) is a special case of the more general indefinite case in which the conductivity
may differ in both directions from the background. Using the result in (b) we can
test whether a large set C contains the inclusions or not. The inclusion can thus be
obtained as the intersection of all these large sets.

Our results show that (under quite general assumptions) monotonicity tests determine
supp(σ − 1) up to holes that have no connection to the boundary ∂Ω.

Non-iterative methods for shape reconstruction problems have been studied inten-
sively in the last 25 years, cf., e.g., the overview of Potthast [43]. In the context of
EIT, the inclusion detection problem was first considered by Friedmann and Isakov
[3, 4]. For the following brief overview, we restrict ourselves to the two most promi-
nent and elaborated methods for detecting inclusions of unknown conductivity from
the full Neumann-to-Dirichlet (or Dirichlet-to-Neumann) operator on all or part of
the boundary: the Factorization Method and the Enclosure Method.
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The Factorization Method (FM) was introduced by Kirsch [33, 34] for inverse scat-
tering problems and extended to impedance tomography by Brühl and Hanke [2, 1].
For its further developments in the context of EIT see [35, 10, 5, 11, 20, 40, 42, 7, 36,
9, 15, 44, 17, 45] and the recent review [14]. The Factorization Method reconstructs
the shape of inclusions (up to holes that have no connection to the boundary), but
two major problems have not been solved so far. First of all, the method relies on a
range test (or infinity test) for which there is no known convergent implementation
(see, however, Lechleiter [39] for a first step in this direction). Second, the method
has only been justified for the definite case (or that the domain can be split into two
a-priori known regions with the definiteness property, cf. Schmitt [44] and the review
[14]).

The Enclosure Method was introduced by Ikehata [25, 26]. Further extensions includ-
ing the use of the Sylvester-Uhlmann complex geometrical optics solutions have been
worked out in [2, 30, 27, 31, 22, 48, 21]. The method yields a stable testing criterion
and it does not require the definiteness assumption (see [22]). However, it does require
the construction of special, strongly oscillating probe functions and only reconstructs
the convex hull of the inclusions (plus some non-convex features depending on the
probe functions).

The herein presented monotonicity tests seem to be a particularly simple and in-
tuitively appealing solution to the long-studied inclusion detection problem. They
characterize the outer shape of the inclusions and not just the convex hull. They
work for the general indefinite case (though the implementation is simpler in the
definite case). Also, they allow a stable implementation (see remark 3.5), and their
linearized versions do not require solving inhomogeneous forward problems.

The paper is organized as follows. Section 2 introduces the mathematical setting and
the concept of inner and outer support. In section 3 we derive the main theoretical
tools for our proofs: monotonicity estimates and localized potentials. Section 4 then
contains our main results: the characterization of inclusion by simple and stable
monotonicity tests.

2. Basic notations and support definitions.

2.1. Basic notations and the mathematical setting. Let Ω ⊂ Rn, n ≥ 2
be a bounded domain with smooth boundary ∂Ω and outer normal vector ν. L∞

+ (Ω)
denotes the subspace of L∞(Ω)-functions with positive essential infima. H1

⋄ (Ω) and
L2
⋄(∂Ω) denote the spaces of H1- and L2-functions with vanishing integral mean on

∂Ω.

The L2
⋄(∂Ω)-inner product is denoted by 〈·, ·〉. For two bounded selfadjoint operators

A,B : L2
⋄(∂Ω) → L2

⋄(∂Ω) we write

A ≥ B

if it holds in the sense of quadratic forms, i.e.,

〈g, (A−B)g〉 ≥ 0, for all g ∈ L2
⋄(∂Ω).

For σ1, σ2 ∈ L∞(Ω) we write σ1 ≥ σ2 if it holds pointwise (a.e.) on Ω.

For σ ∈ L∞
+ (Ω), the Neumann-to-Dirichlet (NtD) operator Λ(σ) is defined by

Λ(σ) : L2
⋄(∂Ω) → L2

⋄(∂Ω), g 7→ ug
σ|∂Ω,
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where ug
σ ∈ H1

⋄ (Ω) is the unique solution of

∇ · σ∇ug
σ = 0 in Ω, σ∂νu

g
σ|∂Ω = g on ∂Ω (2.1)

which is equivalent to

∫

Ω

σ∇ug
σ · ∇v dx =

∫

∂Ω

gv|∂Ω ds for all v ∈ H1
⋄ (Ω). (2.2)

It is well known Λ(σ) is a selfadjoint compact linear operator, and that the associated
bilinear form is given by

〈g,Λ(σ)h〉 =

∫

Ω

σ∇ug
σ · ∇uh

σ dx.

Λ is Fréchet-differentiable, cf., e.g. Lechleiter and Rieder [41] for a recent proof that
uses only the abstract variational formulation (see also [23] for similar results). Given
some direction κ ∈ L∞(Ω) the derivative

Λ′(σ)κ : L2
⋄(∂Ω) → L2

⋄(∂Ω)

is the selfadjoint compact linear operator associated to the bilinear form

〈(Λ′(σ)κ) g, h〉 = −

∫

Ω

κ∇ug
σ · ∇uh

σ dx.

Note that for κ1, κ2 ∈ L∞(Ω) we obviously have that

κ1 ≤ κ2 implies Λ′(σ)κ1 ≥ Λ′(σ)κ2. (2.3)

The terms piecewise continuous and piecewise analytic are understood in the following
sense.

Definition 2.1.

(a) A subset Γ ⊆ ∂O of the boundary of an open set O ⊆ R

n is called a smooth
boundary piece if it is a C∞-surface and O lies on one side of it, i.e., if for each
z ∈ Γ there exists a ball Bǫ(z) and a function γ ∈ C∞(Rn−1,R) such that upon
relabeling and reorienting

Γ = ∂O ∩Bǫ(z) = {x ∈ Bǫ(z) | xn = γ(x1, . . . , xn−1)},

O ∩Bǫ(z) = {x ∈ Bǫ(z) | xn > γ(x1, . . . , xn−1)}.

(b) O is said to have smooth boundary if ∂O is a union of smooth boundary pieces.
O is said to have piecewise smooth boundary if ∂O is a countable union of the
closures of smooth boundary pieces.

(c) A function κ ∈ L∞(Ω) is called piecewise analytic if there exist finitely many
pairwise disjoint subdomains O1, . . . , OM ⊂ Ω with piecewise smooth boundaries,
such that Ω = O1 ∪ . . . ∪OM , and κ|Om

has an extension which is (real-)analytic
in a neighborhood of Om, m = 1, . . . ,M .

(d) A function κ ∈ L∞(Ω) is called piecewise continuous if κ is continuous on an
open set O ⊂ Ω and Ω \O is a set of zero measure.
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2.2. Inner and outer support. We will show that our method reconstructs
supp(σ − 1) (the inclusion) up to holes that cannot be connected to the boundary
∂Ω without crossing the support. For the precise formulation, we will now introduce
the concept of the inner and the outer support of a measurable function. For the
frequently considered case that the inclusion has a connected complement and the
conductivity is piecewise continuous, the inner and the outer support only differ by
the boundary of the support, cf. corollary 2.5. The following has been inspired by the
use of the infinity support of Kusiak and Sylvester [38], cf. also [8, 16].

Definition 2.2. A relatively open set U ⊆ Ω is called connected to ∂Ω if U ∩ Ω is
connected and U ∩ ∂Ω 6= ∅.

Definition 2.3. For a measurable function κ : Ω → R we define:

(a) the support suppκ as the complement (in Ω) of the union of those relatively open
U ⊆ Ω, for which κ|U ≡ 0,

(b) the inner support inn suppκ as the union of those open sets U ⊆ Ω, for which
ess infx∈U |κ(x)| > 0.

(c) the outer support out∂Ω suppκ as the complement (in Ω) of the union of those
relatively open U ⊆ Ω that are connected to ∂Ω and for which κ|U ≡ 0.

The interior of a set M ⊆ Ω is denoted by intM and its closure (with respect to Rn)
by M . If M is measurable we also define

(d) out∂ΩM = out∂Ω suppχM ,

where χM is the characteristic function of M .

Lemma 2.4. For every measurable function κ : Ω → R and every measurable set M
the following properties hold.

(a) suppκ, out∂Ω suppκ, out∂Ω M ⊆ Ω are closed.
(b) inn suppκ ⊆ Ω is open.
(c) inn suppκ ⊆ suppκ ⊆ out∂Ω suppκ.
(d) out∂Ω (suppκ) = out∂Ω suppκ
(e) If suppκ ⊆ Ω and Ω \ suppκ is connected then suppκ = out∂Ω suppκ.
(f) If κ is piecewise continuous then suppκ = inn suppκ.

Proof.

(a) and (b) immediately follow from definition 2.3.
(c) If κ = 0 (a.e.) on a relatively open set U ⊂ Ω, then κ = 0 (a.e.) on the

open set U ∩ inn suppκ. From the definition of the inner support, it follows that
U ∩ inn suppκ = ∅. This shows the first inclusion in (c). The second inclusion is
obvious.

(d) follows from the fact that for every relatively open set U ⊆ Ω we have

κ = 0 (a.e.) on U if and only if U ⊆ Ω \ suppκ

if and only if χsuppκ = 0 (a.e.) on U .

(e) Since suppκ ⊆ Ω implies that Ω \ suppκ contains ∂Ω, (e) immediately follows
from (c) and definition 2.3.

(f) Let κ be continuous on an open set O ⊂ Ω where Ω \ O has zero measure. The
assertion follows from (a) and (c) if we can show that for every x ∈ Ω

x /∈ inn suppκ implies x /∈ suppκ.
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Let x /∈ inn suppκ. Then there exists a relatively open set B ⊂ Ω with x ∈ B and
B ∩ inn suppκ = ∅. Obviously, {ξ ∈ O : κ(ξ) 6= 0} ⊆ inn supp κ, so that κ = 0 on
O ∩ B. Since Ω \ O has zero measure, we have that κ = 0 (a.e.) on B and thus
B ∩ suppκ = ∅ which shows the assertion.

As a consequence of Lemma 2.4(e) and (f) we have

Corollary 2.5. If κ is piecewise continuous, suppκ ⊆ Ω and Ω\suppκ is connected
then

inn suppκ = suppκ = out∂Ω suppκ.

3. Monotonicity and localized potentials.

3.1. A monotonicity principle. Our main theoretical tools are a monotonicity
estimate and the theory of localized potentials. The following estimate goes back to
Ikehata, Kang, Seo, and Sheen [32, 24], cf., also the similar results in Ide et al. [22],
Kirsch [35], and in [15, 16]. For the convenience of the reader we state the estimate
together with a short proof that we copy from [16, lemma 2.1].

Lemma 3.1. Let σ1, σ2 ∈ L∞
+ (Ω) be two conductivities, g ∈ L2

⋄(Ω) be an applied
boundary current and u2 := ug

σ2
∈ H1

⋄ (Ω). Then

∫

Ω

(σ1 − σ2)|∇u2|
2 dx ≥ 〈g, (Λ(σ2)− Λ(σ1)) g〉 ≥

∫

Ω

σ2

σ1
(σ1 − σ2)|∇u2|

2 dx. (3.1)

Proof. Let u1 := ug
σ1

∈ H1
⋄ (Ω). From (2.2) we deduce

∫

Ω

σ1∇u1 · ∇u2 dx = 〈g,Λ(σ2)g〉 =

∫

Ω

σ2∇u2 · ∇u2 dx

and thus
∫

Ω

σ1|∇(u1 − u2)|
2 dx =

∫

Ω

σ1|∇u1|
2 dx− 2

∫

Ω

σ2|∇u2|
2 dx+

∫

Ω

σ1|∇u2|
2 dx

= 〈g,Λ(σ1)g〉 − 〈g,Λ(σ2)g〉+

∫

Ω

(σ1 − σ2)|∇u2|
2 dx.

Since the left hand side is non-negative, the first asserted inequality follows.

Interchanging σ1 and σ2 we obtain

〈g, (Λ(σ2)− Λ(σ1)) g〉

=

∫

Ω

(σ1 − σ2)|∇u1|
2 dx+

∫

Ω

σ2|∇(u2 − u1)|
2 dx

=

∫

Ω

(

σ1|∇u1|
2 + σ2|∇u2|

2 − 2σ2∇u1 · ∇u2

)

dx

=

∫

Ω

σ1

∣

∣

∣

∣

∇u1 −
σ2

σ1
∇u2

∣

∣

∣

∣

2

dx+

∫

Ω

(

σ2 −
σ2

2

σ1

)

|∇u2|
2 dx.
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Since the first integral on the right hand-side is non-negative, the second asserted
inequality follows.

We call lemma 3.1 a monotonicity estimate because of the following corollary.

Corollary 3.2. For two conductivities σ1, σ2 ∈ L∞
+ (Ω)

σ1 ≤ σ2 implies Λ(σ1) ≥ Λ(σ2). (3.2)

Remark 3.3. Corollary 3.2 already yields a simple monotonicity based reconstruction
algorithm. Assume that the conductivity in the investigated object is σ = 1 + χD,
where the measurable set D ⊆ Ω describes the unknown inclusion. Then for all other
measurable sets B ⊆ Ω

B ⊆ D implies Λ(1 + χB) ≥ Λ(σ), (3.3)

so that the set

R :=
⋃

{B ⊆ Ω : B measurable, and Λ(1 + χB) ≥ Λ(σ)}

is an upper bound of D.

A numerical approximation of (this upper bound of) D can be calculated by choosing
a number of small balls B = Bǫ(z) ⊆ Ω (with center z ∈ Ω and radius ǫ > 0)
and marking all balls where the monotonicity test Λ(1 + χB) ≥ Λ(σ) holds true.
Algorithms based on this idea have been worked out and numerically tested in the
works of Tamburrino and Rubinacci [47, 46].

Also, Lemma 3.1 gives an estimate for the Fréchet derivative of Λ that will be the
basis for linearizing our monotonicity tests without losing shape information (cf. [16]
for the origin of this idea).

Corollary 3.4. Let σ ∈ L∞
+ (Ω). Let Λ(1) be the NtD-Operator corresponding to

the background conductivity 1 and Λ′(1) be its Fréchet derivative (see subsection 2.1).
Then

Λ′(1)(1− σ) ≥ Λ(1)− Λ(σ) ≥ Λ′(1)

(

1

σ
(1− σ)

)

.

Of course, in practical EIT applications, it is not possible to measure boundary data
with infinite precision. Moreover, with a limited number of electrodes on the boundary
of an imaging subject (and limited accuracy), we can only obtain a finite-dimensional
approximation to the true NtD. Also, we can only calculate finite-dimensional ap-
proximations of the NtD for test conductivities (and their linearized counterparts).
Hence, let us comment on the stability of monotonicity tests with respect to such
errors.

Remark 3.5. Monotonicity/definiteness tests can be stably implemented in the fol-
lowing sense. Let A ∈ L(H) be a selfadjoint compact operator on a Hilbert space H,
and let (Aδ)δ>0 ⊆ L(H) be a family of compact (e.g. finite dimensional) approxima-
tions with

‖Aδ −A‖L(H) < δ.
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Possibly replacing Aδ by its symmetric part, we can assume that Aδ is selfadjoint.

For α > 0, we define the regularized definiteness test

Rα(A
δ) :=

{

1 if 〈Aδg, g〉 ≥ −α‖g‖2 for all g ∈ H,
0 otherwise,

which is equivalent to checking whether the smallest eigenvalue of Aδ is not below −α.

If A ≥ 0 then 〈Aδg, g〉 ≥ −δ‖g‖2 for all g ∈ H. If A 6≥ 0 then A has a negative
eigenvalue λ < 0 so that 〈Aδg, g〉 ≥ −δ‖g‖2 cannot hold for all g ∈ H for δ < |λ|/2.
Hence,

Rδ(A
δ) =

{

1 if A ≥ 0,
0 if A 6≥ 0 and δ is sufficiently small.

3.2. Localized potentials. We will show that a certain converse of the mono-
tonicity relation (3.2), resp., (3.3) holds true. The main theoretical tool for this result
is to use the theory of localized potentials by one of the authors [6] to control the
energy terms |∇u|2 in the monotonicity estimate in lemma 3.1.

Roughly speaking, [6] shows that there exist electric potentials which have arbitrarily
large energy |∇u|2 in some region and arbitrarily small energy in another region, as
long as the high-energy region can be reached from the boundary without crossing
the low-energy region.

We will make use of the following variant of the result in [6].

Theorem 3.6. Let D1, D2 ⊆ Ω be two measurable sets with

intD1 * out∂ΩD2.

Furthermore let σ ∈ L∞
+ (Ω) be piecewise analytic.

Then there exists (gm)m∈N ⊂ L2
⋄(∂Ω) such that the solutions (um)m∈N ⊂ H1

⋄ (Ω) of

∇ · σ∇um = 0 in Ω, σ∂νum|∂Ω = gm,

fulfill

lim
m→∞

∫

D1

|∇um|2 dx = ∞ and lim
m→∞

∫

D2

|∇um|2 dx = 0.

Proof. The proof is a slight adaptation of the one in [6, Sect. 2.2], see also [13] for the
general approach.

(a) Reformulation as range (non-)inclusion
We define the virtual measurement operators Lj (j = 1, 2) by

Lj : L2(Dj)
n → L2

⋄(∂Ω), F 7→ u|∂Ω,

where u ∈ H1
⋄ (Ω) solves

∫

Ω

σ∇u · ∇w dx =

∫

Dj

F · ∇w dx for all w ∈ H1
⋄ (Ω).
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Note that this implies ∇ · σ∇u = 0 in Ω \ Dj and if Dj ⊆ Ω then it also
implies the homogeneous Neumann boundary condition σ∂νu|∂Ω = 0.
It is easily checked that the dual operators

L′
j : L2

⋄(∂Ω) → L2(Dj)
n, j = 1, 2

are given by L′
jg = ∇v|Dj

where v ∈ H1
⋄ (B) solves

∇ · σ∇v = 0 and σ∂νv|∂Ω = g.

Now the assertion is equivalent to the statement

∄C > 0 : ‖L′
1g‖ ≤ C ‖L′

2g‖ ∀g ∈ L2
⋄(∂Ω)

which is (see e.g. [6, Lemma 2.5]) equivalent to the range (non-)inclusion

R(L1) * R(L2). (3.4)

(b) Proof of the range (non-)inclusion (3.4)
Since intD1 * out∂ΩD2, the set intD1 must intersect one of the sets U in
the definition of the outer support of χD2

. Hence, there exists a set U ⊂
Ω \ out∂ΩD2 with U (relatively) open in Ω, U connected to ∂Ω, and U ∩D1

contains an open ball B. Possibly shrinking the ball we can assume that
B ⊂ Ω and that (U ∩ Ω) \B is connected.
Let LB denote the virtual measurement operator corresponding to the ball
B. Obviously, B ⊆ D1 implies R(LB) ⊆ R(L1), so that it suffices to prove
that

R(LB) * R(L2). (3.5)

To that end let ϕ ∈ R(LB) ∩R(L2). Then there exist uB, u2 ∈ H1
⋄ (Ω) with

uB|∂Ω = ϕ = u2|∂Ω, σ∂νuB|U∩∂Ω = 0 = σ∂νu2|U∩∂Ω, and

∇ · σ∇uB = 0 in Ω \B,

∇ · σ∇u2 = 0 in U.

By unique continuation uB = u2 in U \B. Hence

u :=

{

uB in Ω \B,

u2 in B

defines a function u ∈ H1
⋄ (Ω) with ∇ · σ∇u = 0 in Ω and homogeneous

Neumann boundary data σ∂νu|∂Ω = 0. It follows that ϕ = u|∂Ω = 0 and thus
we have shown that R(LB) ∩R(L2) = {0}.
Finally, using unique continuation again, we obtain that L′

B is injective, so
that R(LB) is dense in L2

⋄(∂Ω). A fortiori, R(LB) 6= {0}, which, together
with R(LB) ∩R(L2) = {0}, proves (3.5) and thus the assertion.

Note that theorem 3.6 also holds for less regular conductivities as long as a unique
continuation property is fulfilled, and that localized potentials can be constructed by
solving regularized operator equations, cf. [6].
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We now show that (regardless of regularity) the properties of the localized potentials
do not depend on the conductivity in the low energy region:

Lemma 3.7. Let D1, D2 ⊆ Ω be two measurable sets. Let σ, τ ∈ L∞
+ (Ω) and uσ

m, uτ
m ∈

H1
⋄ (Ω) denote the corresponing solutions of

∇ · σ∇uσ
m = 0 in Ω, σ∂νu

σ
m|∂Ω = gm,

∇ · τ∇uτ
m = 0 in Ω, τ∂νu

τ
m|∂Ω = gm,

for a sequence of boundary currents (gm)m∈N ⊂ L2
⋄(∂Ω).

If supp(σ − τ) ⊆ D2 then

lim
m→∞

∫

D1

|∇uσ
m|2 dx = ∞ and lim

m→∞

∫

D2

|∇uσ
m|2 dx = 0

holds if and only if

lim
m→∞

∫

D1

|∇uτ
m|2 dx = ∞ and lim

m→∞

∫

D2

|∇uτ
m|2 dx = 0.

Proof. For both conductivities, σ and τ , we define the virtual measurement operators

Lσ
2 , L

τ
2 : L2(D2)

n → L2
⋄(∂Ω),

as in the proof of theorem 3.6. If uσ|∂Ω = Lσ
2F with F ∈ L2(D2) and a solution

uσ ∈ H1
⋄ (Ω) of

∫

Ω

σ∇uσ · ∇w dx =

∫

D2

F · ∇w dx for all w ∈ H1
⋄ (Ω).

then uσ also solves
∫

Ω

τ∇uσ · ∇w dx =

∫

D2

(F + (τ − σ)∇uσ) · ∇w dx for all w ∈ H1
⋄ (Ω).

This shows that R(Lσ
2 ) ⊆ R(Lτ

2). As in the proof of theorem 3.6, this implies that

∃C > 0 :

∫

D2

|∇uσ
m|2dx ≤ C

∫

D2

|∇uτ
m|2 dx for all m ∈ N.

By interchanging σ and τ , we obtain that

lim
m→∞

∫

D2

|∇uσ
m|2 dx = 0 ⇐⇒ lim

m→∞

∫

D2

|∇uτ
m|2 dx = 0.

Using the same argument on D1 ∪D2 it follows that also

lim
m→∞

∫

D1∪D2

|∇uσ
m|2 dx = ∞ ⇐⇒ lim

m→∞

∫

D1∪D2

|∇uτ
m|2 dx = ∞,

so that the assertion follows.

Remark 3.8. Localized potentials can be numerically constructed by solving regu-
larized operator equations (see [6]), and they can be used to probe for an unknown
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inclusion in the spirit of the probe or needle method, cf. e.g. [28, 29]. We briefly
sketch the idea on a simple test example. Assume that the conductivity is σ = 1+χD

and that (gm)m∈N is a sequence such that the solutions (um)m∈N ⊂ H1
⋄ (Ω) of ∆um = 0

and ∂νum|∂Ω = gm fulfill

lim
m→∞

∫

D1

|∇um|2 dx = ∞ and lim
m→∞

∫

D2

|∇um|2 dx = 0.

Then the monotonicity estimate in lemma 3.1 yields that

D ⊆ D2 implies |〈gm, (Λ(1)− Λ(σ))gm〉| → 0,

D1 ⊆ D implies |〈gm, (Λ(1)− Λ(σ))gm〉| → ∞.

Choosing D2 to cover most of Ω and D1 to be, e.g., a small ball inside Ω \D2, one
may thus estimate the shape of D by slowly shrinking D2.

Such an algorithm would however suffer from high computational cost (to construct
a high number of localized potentials) and it is not clear how to check the limit of
〈gm, (Λ(1) − Λ(σ))gm〉 in a numerically stable way. Furthermore, the choice of the
sets D1 and D2 would certainly impose some geometrical restrictions on the shapes of
inclusions that can be recovered.

In the following, we take a different approach. The monotonicity methods derived in
the next section do not require the numerical construction of localized potentials. We
will only require the above abstract existence results for localized potentials in order to
show that simple monotonicity tests recover the true (outer) shape of an inclusion.

4. Monotonicity based shape reconstruction.

4.1. The definite case. We will now show how the shape reconstruction prob-
lem can be solved via simple monotonicity tests. We start with the definite case,
in which the inclusions conductivity is everywhere higher or everywhere lower than
the background. We treat this case separately since it allows a particularly simple
reconstruction strategy. Given a small ball the following theorems show how to check
whether the ball belongs to the inclusion or not. The proofs of the theorems are
postponed until the end of this subsection. The main idea of this subsection has
previously been summarized in the extended conference abstract [18].

Theorem 4.1. Let σ ∈ L∞
+ (Ω) and σ ≥ 1.

For every open ball B := Bǫ(z) and every α > 0,

αχB ≤ σ − 1 implies Λ(1 + αχB) ≥ Λ(σ),

B * out∂Ω supp (σ − 1) implies Λ(1 + αχB) � Λ(σ).

Hence, the set

R :=
⋃

α>0

{B = Bǫ(z) ⊆ Ω : Λ (1 + αχB) ≥ Λ (σ)}

fulfills

inn supp (σ − 1) ⊆ R ⊆ out∂Ω supp (σ − 1).
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Example 4.2. Let σ = 1 + χD where the inclusion D is open, and D ⊂ Ω has a
connected complement. Then for every open ball B ⊆ Ω

B ⊆ D if and only if Λ(1 + χB) ≥ Λ(σ).

Note that implementing the monotonicity tests in theorem 4.1 or example 4.2 would be
computationally expensive since for each ball B (and possibly also for each test level
α) we would have to solve the EIT equation with a new inhomogeneous conductivity
in order to calculate Λ(1+αχB). The following theorem shows that we can replace the
tests by linearized versions, that do not require such inhomogeneous forward solutions.
Since this is a bit counterintuitive, let us stress that the following result is not affected
by the linearization error, no matter how large that may be. The linearized inverse
problem in EIT still contains the exact shape information, cf. [16].

Theorem 4.3. Let σ ∈ L∞
+ (Ω) and σ ≥ 1.

For every open ball B := Bǫ(z) and every α > 0,

αχB ≤
1

σ
(σ − 1) implies Λ(1) + αΛ′(1)χB ≥ Λ(σ),

B * out∂Ω supp (σ − 1) implies Λ(1) + αΛ′(1)χB � Λ(σ).

Hence, the set

R :=
⋃

α>0

{B = Bǫ(z) ⊆ Ω : Λ(1) + αΛ′(1)χB ≥ Λ(σ)}

fulfills

inn supp (σ − 1) ⊆ R ⊆ out∂Ω supp (σ − 1).

Example 4.4. Let σ = 1 + χD where the inclusion D is open, and D ⊂ Ω has a
connected complement. Then for every ball B = Bǫ(z)

B ⊆ D if and only if Λ(1) + 1
2Λ

′(1)χB ≥ Λ(σ).

Proof of theorem 4.1. Let σ ∈ L∞
+ (Ω), σ ≥ 1. Let B = Bǫ(z) and α > 0. Corollary 3.2

yields that

αχB ≤ σ − 1 implies Λ(1 + αχB) ≥ Λ(σ).

It remains to show that

B * out∂Ω supp (σ − 1) implies Λ(1 + αχB) � Λ(σ).

Let B * out∂Ω supp (σ−1). Corollary 3.2 yields that shrinking the ball B only makes
Λ(1 + αχB) larger, so that we can assume w.l.o.g. that

B ⊆ Ω \ out∂Ω supp (σ − 1).
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We have that 1 + αχB is piecewise analytic,

B = intB and out∂Ω supp (σ − 1) = out∂Ω (supp(σ − 1))

(see lemma 2.4(d)). Hence, we can apply theorem 3.6 and obtain a sequence of
currents (gm)m∈N ⊂ L2

⋄(∂Ω) so that the solutions (um)m∈N ⊂ H1
⋄ (Ω) of

∇ · (1 + αχB)∇um = 0 in Ω, (1 + αχB)∂νum|∂Ω = gm,

fulfill

lim
m→∞

∫

B

|∇um|2 dx = ∞ and lim
m→∞

∫

supp(σ−1)

|∇um|2 dx = 0.

From lemma 3.1 it follows that

〈gm, (Λ(1 + αχB)− Λ(σ)) gm〉 ≤

∫

Ω

(σ − 1− αχB)|∇um|2 dx

= −α

∫

B

|∇um|2 dx+

∫

supp(σ−1)

(σ − 1)|∇um|2 dx

→ −∞,

and hence Λ(1 + αχB) � Λ(σ). ✷

Proof of Theorem 4.3. Let σ ∈ L∞
+ (Ω), σ ≥ 1. Let B = Bǫ(z) and α > 0.

For every g ∈ L2
⋄(∂Ω) and solution u ∈ H1

⋄ (Ω) of

∆u = 0 in Ω, ∂νu|∂Ω = g,

we obtain from lemma 3.1

〈g, (Λ(1) + αΛ′(1)χB − Λ(σ)) g〉 ≥

∫

Ω

(

1

σ
(σ − 1)− αχB

)

|∇u|2 dx.

This shows that

αχB ≤
1

σ
(σ − 1) implies Λ(1) + αΛ′(1)χB ≥ Λ(σ).

It remains to show that

B * out∂Ω supp (σ − 1) implies Λ(1) + αΛ′(1)χB � Λ(σ).

To show this let B * out∂Ω supp (σ − 1). The linearized monotonicity relation (2.3)
yields that shrinking the ball B only makes Λ(1) + αΛ′(1)χB larger, so that we can
assume w.l.o.g. that B ⊆ Ω \ out∂Ω supp (σ − 1). Then,

〈g, (Λ(1) + αΛ′(1)χB − Λ(σ)) g〉

≤

∫

Ω

(σ − 1− αχB) |∇u|2 dx = −α

∫

B

|∇u|2 dx+

∫

supp(σ−1)

(σ − 1)|∇u|2 dx,

so that the assertion follows using localized potentials for the background conductivity
1 and the same sets as in theorem 3.6. ✷

Remark 4.5. If σ ∈ L∞
+ (Ω) and σ ≤ 1 then we obtain with the same arguments that

for every open ball B ⊆ Ω and every 0 < α < 1,

αχB ≤ 1− σ implies Λ(1− αχB) ≤ Λ(σ),

B * out∂Ω supp (σ − 1) implies Λ(1− αχB) � Λ(σ),
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and for every open ball B ⊆ Ω and every α > 0

αχB ≤ 1− σ implies Λ(1)− αΛ′(1)χB ≤ Λ(σ),

B * out∂Ω supp (σ − 1) implies Λ(1)− αΛ′(1)χB � Λ(σ).

Remark 4.6. An inspection of the proofs shows that the balls can be replaced by
arbitrary measurable sets B with non-empty interior in theorem 4.3 (and the second
part of remark 4.5). For theorem 4.1 (and the first part of remark 4.5) the sets B must
additionally possess a piecewise smooth boundary (so that 1+ αχB remains piecewise
analytic). We comment on further generalizations in section 4.3.

4.2. The indefinite case. We now consider the general indefinite case where
σ is no longer required to be everywhere larger or everywhere smaller than the back-
ground conductivity 1. Instead of testing whether a small test region is part of the
unknown inclusion, we will now test whether a large test region contains the unknown
inclusions.

The main idea is the following. Consider a large test region C with connected com-
plement. If C overlaps the inclusions then a large enough, resp., small enough test
conductivity on C will make the corresponding test NtD smaller, resp., larger then
the measured NtD. Hence if C overlaps the inclusions then two monotonicity tests
(one with a large and one with a small test level on C) hold true. On the other
hand, if C does not overlap the inclusions then we can connect the non-overlapped
part with the boundary, and construct a localized potential with large energy in the
non-overlapped part and small energy in C. Depending on whether the conductivity
is larger, resp., smaller than the background in the non-overlapped part, this localized
potential shows that one of the monotonicity tests cannot hold true.

However, for this argument we need a local definiteness property. If a conductivity
differs from the background then there must either be a neighborhood of the boundary
where it differs from the background in the positive direction, or a neighborhood
where it differs in the negative direction. Note that even C∞-conductivities might
oscillate infinitely and thus violate this property. This property holds, however, if
the conductivity is either piecewise analytic or if the higher-conductivity and lower-
conductivity parts have some distance from each other, and the inner support does
not deviate too much from the true support (which already holds, e.g., for piecewise
continuous functions, see corollary 2.5).

More precisely, we assume that σ ∈ L∞
+ (Ω) is either piecewise-analytic, or

supp(σ − 1)+ ∩ supp(σ − 1)− = ∅, inn supp (σ − 1) = supp(σ − 1) (4.1)

where (σ − 1)+ := max{σ − 1, 0}, (σ − 1)− := min{σ − 1, 0}.

Theorem 4.7. Let σ ∈ L∞
+ (Ω) either be piecewise-analytic or fufill (4.1).

Then, for every set C ⊆ Ω with C = out∂Ω C and every α > 1

1− 1
α
χC ≤ σ implies Λ(1− 1

α
χC) ≥ Λ(σ),

1 + αχC ≥ σ implies Λ(1 + αχC) ≤ Λ(σ)

and

Λ(1 + αχC) ≤ Λ(σ) ≤ Λ(1− 1
α
χC) implies out∂Ω supp (σ − 1) ⊆ C.



Monotonicity based shape reconstruction in EIT 15

Hence,

R :=
⋂

{C = out∂Ω C ⊆ Ω, ∃α > 1 : Λ(1 + αχC) ≤ Λ(σ) ≤ Λ(1− 1
α
χC)}

fulfills R = out∂Ω supp (σ − 1).

We postpone the proof until the end of this subsection and first give an example and
formulate the linearized version.

Example 4.8. Let σ = 1 + χD+ − 1
2χD− where D+, D− ⊆ Ω are open sets with

D+ ∩D− = ∅, and D+ ∪D− ⊂ Ω has a connected complement.

Then for every closed set C ⊂ Ω with connected complement Ω \ C

D+ ∪D− ⊆ C if and only if Λ(1 + χC) ≤ Λ(σ) ≤ Λ(1− 1
2χC).

Theorem 4.9. Under the assumptions of theorem 4.7 we have that for every set
C ⊆ Ω with C = out∂ΩC and every α > 0

1− αχC ≤ 2− 1
σ

implies Λ(1)− αΛ′(1)χC ≥ Λ(σ),

1 + αχC ≥ σ implies Λ(1) + αΛ′(1)χC ≤ Λ(σ)

and

Λ(1) + αΛ′(1)χC ≤ Λ(σ) ≤ Λ(1)− αΛ′(1)χC implies out∂Ω supp (σ − 1) ⊆ C.

Hence,

R :=
⋂

{C = out∂Ω C ⊆ Ω, ∃α > 0 :

Λ(1) + αΛ′(1)χC ≤ Λ(σ) ≤ Λ(1)− αΛ′(1)χC}

fulfills R = out∂Ω supp (σ − 1).

Example 4.10. Let σ = 1 + χD+ − 1
2χD− where D+, D− ⊆ Ω are open sets with

D+ ∩D− = ∅, and D+ ∪D− ⊂ Ω has a connected complement.

Then for every closed set C ⊂ Ω with connected complement Ω \ C

D+ ∪D− ⊆ C if and only if Λ(1) + Λ′(1)χC ≤ Λ(σ) ≤ Λ(1)− Λ′(1)χC .

Proof of Theorem 4.7. Let α > 1 and C = out∂ΩC ⊆ Ω. Then C is closed and thus
measurable, so that 1− 1

α
χC , 1 + αχC ∈ L∞

+ (Ω).

Corollary 3.2 yields the first two assertions

1− 1
α
χC ≤ σ implies Λ(1− 1

α
χC) ≥ Λ(σ),

1 + αχC ≥ σ implies Λ(1 + αχC) ≤ Λ(σ)

It remains to show that out∂Ω supp (σ − 1) * C implies that either

Λ(1− 1
α
χC) � Λ(σ) or Λ(1 + αχC) � Λ(σ).
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Let out∂Ω supp (σ− 1) * C = out∂ΩC. Then there exists a relatively open set U ⊆ Ω
that is connected to ∂Ω where σ|U 6≡ 1 and C ∩ U = ∅.

We first prove the assertion for the case that σ is piecewise analytic. Using the local
definiteness property derived in corollary A.2) in the appendix, we can choose (note
that Ω \D2 ⊆ U implies C ⊆ D2)

D1, D2 ⊆ Ω, with D1 = intD1 6⊆ out∂Ω D2 = D2, C ⊆ D2,

so that either

(a) σ ≥ 1 on Ω \D2, σ − 1 ∈ L∞
+ (D1), or

(b) σ ≤ 1 on Ω \D2, 1− σ ∈ L∞
+ (D1).

Replacing D1 with D1 \ out∂ΩD2, we can also assume that D1 ∩D2 = ∅.

We then use the localized potentials theorem 3.6 for the homogeneous conductivity
τ = 1 and obtain a sequence (gm)m∈N ⊂ L2

⋄(∂Ω) so that the solutions (uτ
m)m∈N ⊆

H1
⋄ (Ω) of

∇ · τ∇uτ
m = 0 in Ω, τ∂νu

τ
m|∂Ω = gm,

fulfill

lim
m→∞

∫

D1

|∇um|2 dx = ∞ and lim
m→∞

∫

D2

|∇um|2 dx = 0.

Since C ⊆ D2 it follows from lemma 3.7 that the solutions uτ
m for the conductivities

τ = 1− 1
α
χC and τ = 1 + αχC have the same property.

Hence, in case (a), we apply lemma 3.1 with τ = 1 + αχC and obtain (using that
σ ≥ 1 on Ω \ (D1 ∪D2), and that C ⊆ D2)

〈gm, (Λ(1 + αχC)− Λ(σ)) gm〉

≥

∫

Ω

1 + αχC

σ
(σ − (1 + αχC))|∇uτ

m|2 dx

=

∫

Ω\(D1∪D2)

σ − 1

σ
|∇uτ

m|2 dx+

∫

D1

σ − 1

σ
|∇uτ

m|2 dx

+

∫

D2

1 + αχC

σ
(σ − (1 + αχC))|∇uτ

m|2 dx

≥

∫

D1

σ − 1

σ
|∇uτ

m|2 dx+

∫

D2

1 + αχC

σ
(σ − (1 + αχC))|∇uτ

m|2 dx → ∞.

In case (b), we apply lemma 3.1 with τ = 1 − 1
α
χC and obtain (using that σ ≤ 1 on

Ω \ (D1 ∪D2), and that C ⊆ D2)

〈

gm,
(

Λ(1− 1
α
χC)− Λ(σ)

)

gm
〉

≤

∫

Ω

(σ − (1− 1
α
χC))|∇uτ

m|2 dx

=

∫

Ω\(D1∪D2)

(σ − 1)|∇uτ
m|2 dx+

∫

D1

(σ − 1)|∇uτ
m|2 dx

+

∫

D2

(σ − (1− 1
α
χC))|∇uτ

m|2 dx

≤

∫

D1

(σ − 1)|∇uτ
m|2 dx+

∫

D2

(σ − (1− 1
α
χC))|∇uτ

m|2 dx → −∞,
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which proves the assertion for piecewise analytic conductivities.

Now we prove that the assertion also holds for (not necessary piecewise analytic)
conductivities fulfilling (4.1). It suffices to show that also in this case, there exist

D1, D2 ⊆ Ω, with D1 = intD1 6⊆ out∂Ω D2 = D2, C ⊆ D2,

such that either (a) or (b) from above holds.

First note that if supp(σ − 1)+ and supp(σ − 1)− are disjoint compact sets, then

δ := dist
(

supp(σ − 1)+, supp(σ − 1)−
)

> 0.

σ|U 6≡ 1 implies that there exists a point y ∈ U ∩ supp(σ − 1). Let x ∈ ∂Ω∩U . Since
∂Ω is a smooth boundary and U ∩ Ω is open and connected, we can connect x and y
with a continuous path

γ : [0, 1] → U, γ(0) = x, γ(1) = y.

Using that U is relatively open, there exists, for each t ∈ [0, 1], a ball Bt := Bǫ(t)(γ(t))

with radius ǫ(t) < δ/2 and Bt ∩Ω ⊆ U .

By compactness of γ([0, 1]) we can choose a finite number 0 ≤ t1 < . . . < tN ≤ 1, so
that

γ([0, 1]) ⊂ (Bt1 ∪ . . . ∪BtN ) ∩ Ω.

Since γ(1) = y ∈ supp(σ − 1), there exists a smallest index J for which

BtJ ∩ inn supp (σ − 1) = BtJ ∩ supp(σ − 1) 6= ∅

so that there exists an open set D1 ⊆ BtJ with |σ − 1| ∈ L∞
+ (D1).

We define D2 := Ω \ (Bt1 ∪ . . . ∪BtJ ). Then

D1, D2 ⊆ Ω, with D1 = intD1 6⊆ out∂Ω D2 = D2, C ⊆ D2.

Furthermore, since BtJ has diameter less than δ, it can not intersect both supp(σ−1)+

and supp(σ − 1)−, so that either

(a) σ ≥ 1 on Ω \D2, σ − 1 ∈ L∞
+ (D1), or

(b) σ ≤ 1 on Ω \D2, 1− σ ∈ L∞
+ (D1),

which finishes the proof. ✷

Proof of Theorem 4.9.

If 1− αχC ≤ 2− 1
σ
, then αχC ≥ 1

σ
(1− σ), so that (2.3) and corollary 3.4 imply that

Λ(σ) ≤ Λ(1)− Λ′(1)

(

1

σ
(1− σ)

)

≤ Λ(1)− αΛ′(1)χC .

Likewise, if 1 + αχC ≥ σ then (2.3) and corollary 3.4 imply that

Λ(σ) ≥ Λ(1)− Λ′(1)(1− σ) ≥ Λ(1) + αΛ′(1)χC .

This shows the first two assertions.
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Moreover, lemma 3.1 yields that for all α ∈ R

〈(Λ(1) + αΛ′(1)χC − Λ(σ))g, g〉 ≥

∫

Ω

(

1

σ
(σ − 1)− αχC

)

|∇ug|
2 dx

and

〈(Λ(1)− αΛ′(1)χC − Λ(σ))g, g〉 ≤

∫

Ω

(σ − 1 + αχC)|∇ug|
2 dx,

where ug ∈ H1
⋄ (Ω) solves ∆ug = 0 and ∂νug|∂Ω = g. Hence, the third assertion

follows by using localized potentials for the homogeneous conductivity and the same
sets D1, D2 as in theorem 4.7. ✷

4.3. Remarks and extensions. Let us comment on some extensions and gen-
eralizations of our results. Our assumption that the background conductivity is equal
to 1 and that we are given measurements on the complete boundary ∂Ω have been
merely for the ease of presentation. All our results and proofs remain valid if ∂Ω
is replaced by an arbitrarily small open piece S ⊂ ∂Ω and we are given the partial
Neumann-to-Dirichlet operator

Λ(σ) : L2
⋄(S) → L2

⋄(S), g 7→ ug
σ|S ,

where ug
σ ∈ H1

⋄ (Ω) is the unique solution of

∇ · σ∇ug
σ = 0 in Ω, σ∂νu

g
σ|∂Ω =

{

g on S,
0 on ∂Ω \ S.

Also, all the results still hold when the background conductivity 1 is replaced by a
known piecewise analytic function.

Let us also note that our results require piecewise analyticity for only two purposes:
the existence of localized potentials and the local definiteness property. Localized
potentials exist for less regular conductivities, it only requires that the solutions of
the corresponding elliptic EIT equations satisfy a unique continuation property, cf.
[6]. Local definiteness can hold for quite general functions, if additional assumption
are made (e.g., that positive and negative part are separated as in (4.1)). However,
the authors are not aware of any natural function classes beyond piecewise-analytic
functions in which a property in the spirit of theorem A.1 holds without further
assumptions.

Appendix A. Local definiteness of piecewise analytic functions.

In this appendix, we show that piecewise analytic functions have a local definiteness
property. If they do not vanish identically then there is either a neighborhood of the
boundary where they differ from zero in the positive direction, or a neighborhood
where they differ in the negative direction.

The property follows from the arguments used in the proofs of [12, Theorem 4.2] and
[16, Lemma 3.7]. However, some subtle and not entirely trivial topological details
were omitted in [12, 16], which is why we give the proof here in full detail.

Theorem A.1. Let Ω ⊂ Rn, n ≥ 2 be a smoothly bounded domain, and let σ ∈ L∞
+ (Ω)

be piecewise analytic. Let U ⊆ Ω be relatively open and connected to ∂Ω, and let
σ|U 6≡ 0.

Then we can find a subset V ⊆ U with the same properties, on which σ does not
change sign, i.e.
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(a) V ⊆ Ω is relatively open, V is connected to ∂Ω, V ⊆ U ,
(b) σ|V 6≡ 0, and either σ|V ≥ 0 or σ|V ≤ 0.

Obviously, if a piecewise analytic function is not identically zero, we can find a neigh-
borhood where it is bounded away from zero. Hence, choosing D2 := Ω\V , we obtain
the following corollary.

Corollary A.2. Under the assumptions of theorem A.1 we can choose

D1, D2 ⊆ Ω, with D1 = intD1 6⊆ out∂ΩD2 = D2, Ω \D2 ⊆ U,

and either

σ|Ω\D2
≥ 0, σ|D1

∈ L∞
+ (D1), or

σ|Ω\D2
≤ 0, −σ|D1

∈ L∞
+ (D1).

In the following, let Ω ⊂ Rn, n ≥ 2 be a smoothly bounded domain, and σ ∈ L∞
+ (Ω)

be piecewise analytic with respect to

Ω = O1 ∪ . . . ∪OM , ∂Om =
⋃

k∈N

Γk
m

where, w.l.o.g, we assume that every ∂Om consists of infinitely many pieces. Furthe-
more, let U ⊆ Ω be relatively open and connected to ∂Ω.

Lemma A.3. There exists an open ball B ⊆ Rn such that

B ∩ Ω ⊆ U, and B ∩Ω is connected to ∂Ω,

and for one of the Om and one of its smooth boundary pieces Γk
m ⊆ ∂Om,

B ∩ Ω = B ∩Om and B ∩ ∂Ω ⊆ Γk
m.

Proof. Since U is relatively open and U ∩ ∂Ω 6= ∅ , there exists an open ball B with
∅ 6= B ∩ ∂Ω, B ∩Ω ⊆ U , and by shrinking B we can assume that

∅ 6= S := B ∩ ∂Ω ⊆ U.

Ω = O1 ∪ . . . ∪OM implies that

∂Ω ⊆
M
⋃

m=1

∂Om =

M
⋃

m=1

⋃

k∈N

Γk
m and thus S =

⋃

m,k

Γk
m ∩ S.

By Baire’s theorem, one of the countably many closed sets Γk
m ∩ S must have non-

empty interior in S. Hence, for one of the Γk
m, there exists an open ball B with

∅ 6= B ∩ ∂Ω ⊆ Γk
m ∩ U.

Moreover, B ∩ ∂Ω must intersect Γk
m because of the following dimension theoretical

argument, cf., e.g., the classical book of Hurewicz and Wallman [19, Ch. IV, §4].
Ω ∩ B is an open (neither empty nor dense) subset of the (n − 1)-dimensional ball
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B. As a subset of B, the boundary of Ω ∩B is ∂Ω ∩ B, which shows that ∂Ω ∩B is
(n− 1)-dimensional (and not of lesser dimension). Γk

m is a (neither empty nor dense)
open subset of a set that is homeomorphic to Rn−1. Hence, Γk

m is (n−1)-dimensional

and Γk
m \ Γk

m is (n− 2)-dimensional. This shows that B ∩ ∂Ω 6⊆ Γk
m \ Γk

m, so that by
shrinking B we can assume that

∅ 6= B ∩ ∂Ω ⊆ Γk
m ∩ U.

Finally, we can shrink B so that B ∩ Ω = B ∩Om and that B ∩ Ω is connected.

Lemma A.4. Every open ball B ⊆ Rn that intersects a smooth boundary piece Γk
m

contains an open subball B′ ⊆ B intersecting Γk
m, where either

σ|B′∩Om
≥ 0 or σ|B′∩Om

≤ 0.

Proof. We use an argument of Kohn and Vogelius [37]. If σ|B∩Om
≡ 0 then the

assumption is trivial. Otherwise, by analyticity, there must be a smallest k ∈ N, so
that the normal derivative ∂k

ν(z)σ(z) is not identically zero for all z ∈ Γk
m ∩B. Hence

there is a neighbourhood of a point z ∈ Γk
m ∩B on which either σ ≥ 1 or σ ≤ 1.

Now we are ready to prove the local definiteness property.

Proof of theorem A.1. From lemma A.3 we obtain an open ball B ⊆ Rn with

B ∩ Ω ⊆ U, B ∩ Ω is connected to ∂Ω,

and (w.l.o.g.)

B ∩Ω = B ∩O1, B ∩ ∂Ω ⊆ Γ1
1.

If σ is not identically zero on O1 then the assertion follows from lemma A.4.

Otherwise, M > 1, and the set V := B ∩Ω has the following properties:

(i) V is a relatively open subset of Ω that is connected to ∂Ω,
(ii) V fulfills B ∩ Ω ⊆ V ⊆ U ,
(iii) σ|V = 0.

Obviously these properties are closed under union, so that we can choose V to be the
maximal set fulfilling (i)–(iii).

Now we show that

∅ 6= ∂V ∩ U ∩ Ω ⊆
M
⋃

m=1

∂Om. (A.1)

Since V is relatively open in Ω and V ⊆ U it follows that V ∩ Ω is relatively open in
U ∩ Ω. If ∂V has no intersection with U ∩Ω, then V ∩Ω is relatively closed, so that
U ∩ Ω = V ∩ Ω, which contradicts σ|U 6≡ 0. Hence, the ∂V ∩ U ∩ Ω 6= ∅. To show
the second assertion in (A.1), assume that there exists z ∈ ∂V ∩ Ω ∩ U with z ∈ Om

for one Om. Then we can choose an open ball B ⊆ Om ∩ U containing z. Since σ is
analytic on B and B ∩ V has non-empty interior, it follows that σ|B ≡ 0, and hence
V ∪B has the properties (i)–(iii). This contradicts the maximality of V , so that also
the second assertion in (A.1) must hold.
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Because of (A.1) we can choose an open ball B with B ⊆ U ∩ Ω and

∅ 6= S := B ∩ ∂V =
⋃

m,k

Γk
m ∩ S. (A.2)

Using the same arguments as in the proof of lemma A.3 it follows that by shrinking
B we can assume that

∅ 6= B ∩ ∂V ⊆ Γk
m

with a smooth boundary piece Γk
m of one Om.

Since ∂Om ⊆
⋃

m′ 6=m ∂Om′ ∪ ∂Ω, equation (A.2) still holds if we restrict the union to
all m′ ∈ {1, . . . ,M} \ {m}. By repeating the above argument (and possibly shrinking
B again) we obtain m′ 6= m with

∅ 6= B ∩ ∂V ⊆ Γk
m ∩ Γk′

m′

From the definition of smooth boundary pieces it follows that (if we choose B small
enough)

B ⊆ (B ∩Om) ∪B ∩Om′ ,

so that either B ∩ Om or B ∩ Om′ , but not both, intersects V . W.l.o.g, let B ∩ Om

intersect V . Then σ|Om
≡ 0, and using lemma A.4 we can shrink B so that σ|B∩Om′

is either non-negative or non-positive. Hence B ∪ V fulfills the above properties (i)
and (ii) and it is a proper superset of V . Hence, σ cannot identically vanish on B∪V ,
which shows that B ∪ V fulfills the assertion of theorem A.1. ✷
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