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Abstract

In this paper, we study the well-posedness in critical Besov spaces for two-fluid
Euler-Maxwell equations, which is different from the one-fluid case. We need to
deal with the difficulties mainly caused by the nonlinear coupling and cancelation
between two carriers. Precisely, we first obtain the local existence and blow-up
criterion of classical solutions to the Cauchy problem and periodic problem per-
taining to data in Besov spaces with critical regularity. Furthermore, we construct
the global existence of classical solutions with aid of a different energy estimate (in
comparison with the one-fluid case) provided the initial data is small under certain
norms. Finally, we establish the large-time asymptotic behavior of global solutions
near equilibrium in Besov spaces with relatively lower regularity.
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1 Introduction

As an un-magnetized plasma is operated under some high frequency conditions (such as photo-
conductive switches, electro-optics and high-speed computers, etc.), electromagnetic fields are
generated by moving electrons and ions, then the two carriers transport interacts with the propa-
gating magnetic waves. In this case, the transport process is typically governed by Euler-Maxwell
equations, which take the form of Euler equations for the conservation laws of mass density and
current density for carriers, coupled to Maxwell’s equations for self-consistent electromagnetic
fields. By some appropriate re-scaling, the two-fluid compressible Euler-Maxwell equations are
written, in nondimensional form, as (see, e.g., [14])

Ont +V - (niui) =0,

O(ntus) + V- (nrut @ us) + Vpr(ny) = Fne(E + cut X B) — niu /74,

ENOE -~V x B=¢(njuy —n_u_), (1.1)
el B+V x E =0,

NV-E=n_—-ny, V-B=0.

for (t,x) € [0,+00) x Q(Q = RN or TN, N = 2,3). Here the unknowns ny = ny(t,z) >
0,ur = uy(t,x) € Q, respectively, stand for densities and velocities of the electrons (+) and
ions (—). £ = E(t,x) € Q and B = B(t,x) € Q denote the electric field and magnetic field,
respectively. The pressure functions py(-) satisfy the usual y-law: pi(ny) = Ainl, where
Ay > 0 are some physical constants and the adiabatic exponent v > 1. 74 are the (scaled)
constants for the momentum-relaxation timed of electrons and ions, and A > 0 is the Debye
length. ¢ = (eovo)_% > 0 is the speed of light, where ¢y and vy are the vacuum permittivity and
permeability. Setting ¢ = % The parameters 74, A and ¢ arising from nondimensionalization
are independent each other, and they are assumed to be very small compared to the reference
physical size. In this paper, we set these physical constants to be one.

It is not difficult to see below in the text that the Euler-Maxwell equations (L] consist
of a quasi-linear symmetrizable hyperbolic system, the main feature of which is the finite time
blow-up of classical solutions even when the initial data are smooth and small. Hence, the
qualitative study and device simulation of (II]) are far from trivial. The primary objective of
this paper is to establish the global well-posedness for the corresponding Cauchy problem and
periodic problem. For this purpose, (ILI]) is equipped with the following initial data

(’I’Li,’LLi,E,B)(!E,O) = (n:l:Ovu:l:())EOaBO)(:E) (12)
satisfying the compatible conditions
V-Ey=n_g—ngg, V- -Byg=0, x € Q. (1.3)

In the past years, the Euler-Maxwell equations have attached much attention. In one space
dimension, using the Godunov scheme with the fractional step together with the compensated
compactness theory, Chen, Jerome and Wang [4] constructed the existence of a global weak
solution to the initial boundary value problem for arbitrarily large initial data in L*°. Assuming
initial data in Sobolev spaces H*(R?) with higher regularity s > 5/2, a local existence theory
of smooth solutions for the Cauchy problem of Euler-Maxwell equations was established in [10]



by the author’s modification of the classical semigroup-resolvent approach of Kato [11]. Subse-
quently, the global existence and the large time behavior of smooth solutions with small pertur-
bations were obtained by Peng, Wang and Gu [18], Duan [6l [7], Ueda, Wang and Kawashima
[21] 22]. In addition, the asymptotic limits such as the non-relativistic limit (¢ — 0), the quasi-
neutral limit (A — 0) and the combined non-relativistic and quasi-neutral limits (¢ = A — 0)
have been justified by Peng and Wang [15] 16, [17]. The reader is also referred to [25] for combined
diffusive relaxation limits and [19] 20] for WKB asymptotics; and references therein.

Up to now, the study for Euler-Maxwell equations in several dimensions are still far from
well known in the framework of critical spaces. Recently, using the low- and high-frequency
decomposition arguments, we constructed uniform (global) classical solutions (around constant
equilibrium) to the Cauchy problem of one-fluid Euler-Maxwell system in Chemin-Lerner spaces
with critical regularity. Furthermore, based on the Aubin-Lions compactness lemma, it is justi-
fied that the (scaled) classical solutions converge globally in time to the solutions of compressible
Euler-Poisson equations in the process of nonrelativistic limit and to that of drift-diffusion equa-
tions under the relaxation limit or the combined nonrelativistic and relaxation limits, see [23].

In the present paper, we extend those results in [23] to the two-fluid Euler-Maxwell equa-
tions (LI). More precisely, we consider the perturbation near the constant equilibrium state
(1,0,1,0,0, B)(B € Q) which is a particular solution of the system (LI)-(L2), and achieve local
well-posedness for general data and global well-posedness for small data. It should be pointed
out that (L) is different from the one-fluid case and this extension is not trivial. We are faced
with new difficulties arising from the more complicated nonlinear coupling and cancelation be-
tween two carriers. For instance, the expected dissipation rates for the densities of electrons
and ions are absent in whole space R, and we only capture the weaker dissipation ones from
contributions of (Vny,Vn_) and ny —n_. Therefore, in order to close the “a priori” estimates
in critical spaces, new techniques in comparison with [23] are adopted. Indeed, we perform the
homogeneous blocks rather than the inhomogeneous blocks to localize the symmetric system, as
one captures the dissipation rate for velocities. Furthermore, the elementary fact established in
the recent work [24], which indicates the relations between homogeneous Chemin-Lerner spaces
and inhomogeneous Chemin-Lerner spaces, will been used. In addition, different from that in
[23], we modify the nonlinear smooth function arising from the symmetrization a little such that
h(0) = R/(0) = 0, then we take full advantage of the continuity for compositions in space-time
Besov spaces (Chemin-Lerner spaces) which is a natural generalization from Besov spaces to
Chemin-Lerner spaces, to estimate the cancelation of densities between two carriers effectively.
For above details, see Sect. [3, Lemma and Proposition

To state main results more explicitly, we first introduce the functional spaces

Cr(B; () == LF(B;,(2)) N C([0,T]. B}, ()

and
Cr(By,.(Q) == {f € C'([0,T], By .()[o,.f € LF(By,. ()},

where the index T' > 0 will be omitted when T" = 400, the reader is referred to Definition 2.1]
below for Chemin-Lerner spaces.

Throughout this paper, let us denote by s. the critical number 1 + N/2. First of all, we
give the local existence and blow-up criterion of classical solutions to (ILI))-(L2) away from the
vacuum.



Theorem 1.1. Let B € Q be any given constant. Suppose that nio — 1,u+9, Eg and By — B €
B35 () satisfy nyo > 0 and the compatible conditions (1.3). Then there exists a time Ty > 0
such that

(i) Euistence: the system (L1)-(L2) has a unique solution (ny,u+,E,B) € C'([0,Tp] x Q)
with ni. > 0 for all t € [0,Ty] and (n+ —1,ux, E, B — B) € C1,(B37(9)) QC%O(BS’C{I(Q));

(ii) Blow-up criterion: if the mazimal time T*(> Ty) of existence of such a solution is finite,
then

11;11 ;up Hni(t7 ) -1, Ui(t, ’)7 E(t7 ’)7 B(t7 ) - B”Bgcl(ﬂ) =00
—T* ;

if and only if
T*
/ (Vs Vuy , VE, VB)(t, )| = (aydt = oo.
0

Remark 1.1. Recently, Xu and Kawashima [24] have established a general theory on the well-
posedness of generally symmetriable hyperbolic systems in the framework of critical Chemin-
Lerner spaces, which is regarded as the generalization of the classical local existence theory of
Kato and Majda [11], 12]. As a matter of fact, the results are also adapted to the periodic case.
As in Sect. Bl we see that (1)) is transformed into a symmetric hyperbolic system equivalently.
Hence, the general theory can be applied to the Euler-Maxwell equations. It is worth noting that
the blow-up criterion of classical solutions to the Euler-Maxwell equations is obtained firstly in
the present paper.

In small amplitude regime, we establish the following global well-posedness to (ILI))-(L2]) in
critical spaces.

Theorem 1.2. Let B € Q be any given constant. Suppose that (nto — 1,u+g, Eg, By — B) €
B3 () satisfy the compatible conditions (L.3). There exists a positive constant 0y such that if

(0 — 1, uzo, Eo, Bo — B g, () < do,
then the system (I1)-(13) admits a unique global solution (ni,us, E, B) satisfying
(n:bu:l:v E7 B) € Cl([07 OO) X Q)

and
(ny —l,us,B,B—B) e CN(BSfl(Q)) N C~1(B§fl_1(Q)).

Moreover, there are two positive constants pg and Cy such that
(i) when Q = RN, it yields the following

||(’I’L:|: —Lug, E,B— B)HZOC(B;CI(Q))

+N0{H(n+ - n—,uﬂ:)Hﬁ(B;cl(Q)) + H(Vni,E)Hﬁ(B;cl*l(Q)) + ||VB||Z2(BSC1*2(Q))}
< Coll(nxo — 1, uz0, Eo, Bo — B)| g3, (o; (1.4)



(ii) when Q = TN, we further set g = 1, it yields the following

H(n:l: —Lug, E,B— B)HZ‘X’(B?I(Q))

o l0ns = 1) Iz, oy + 1B 22z + 19 B 2o |
< Coll(nxo — 1, uzo0, Eo, Bo — B)| g3, (0 (1.5)

where f denotes the mean value of f(x) over TV, that is,

F=—e [ @)

[TN| Jow
Remark 1.2. Following from approaches in the current paper, the well-posedness results to
the Cauchy problem and periodic problem pertaining to data in the supercritical Besov spaces
By .(Q)(s > sc,p =2, 1 <r < 00) can be also established. Furthermore, the fact that Sobolev
spaces H®(Q2) 1= B3 ,(f2) allows the results to be also true in the usual Sobolev spaces with
s> Se.

Remark 1.3. In the whole space, the energy inequality (I.4]) is not so surprising in comparison
with the one-fluid case as in [23], however, it is indeed different. Due to the nonlinear coupling
and cancelation between two carriers, the dissipation rates of (ny,n_) does not appear in (L.4)
any more, and the dissipation rates from ny —n_ and (Vny,Vn_) are available only. In this
case, to overcome the technical difficulties occurring in the a priori estimates, some useful facts
in Chemin-Lerner spaces are developed. It is worth noting that the dissipation rate of (ny,n_)
itself in the periodic case can be obtained, see the proof of Theorem[I2l Besides, from (L4)-(LH),
we see that there is a “l-regularity-loss” phenomenon for the dissipation rates of electromagnetic
field (E, B).

As a direct consequence of Theorem [[L2] we obtain the large-time asymptotic behavior of
global solutions near the equilibrium state (1,0,1,0,0, B) in some Besov spaces.

Corollary 1.1. Let (ny,uy, E, B) be the global-in-time solution in Theorem [I.2, it holds that
(>0)
Hn-i-(ta ) - n—(ta ')7 U+ (t7 ’)HB;f{s(Q) — 07

HE(t, ')|’B§?17175(Q) — 0, HB(t, ) — B|’B;?17275(Q) — 0,
moreover,

2N
||7’L:|:(7f,') - 1||B;’61*1*5(RN) —0 ( = N _9 N > 2),

Hn:t(tv ) - 1”B§f175(’JI‘N) — 0,
as the time variable t — —+oo.

Remark 1.4. Recalling the Corollary 5.1 in [9], we omit details of the proof of Corollary [[1]
since they are similarly followed by the Gagliardo-Nirenberg-Sobolev inequality (see, e.g., [8])
and interpolation arguments. In addition, from the embedding BQSfl_a — B;fl_l_a(N = 3), we
know that the large-time asymptotic behavior of densities ni in the whole space case is weaker

than that in the periodic case.



Remark 1.5. Following from the similar manners, the corresponding results can be obtained
for non-isentropic two-fluid Euler-Maxwell equations, which include the temperature transport
equations of carriers rather than the assumed pressure-density relations as in (LI]) only. Let
us mention that the dissipation rates of temperatures will behave as that of velocities, that is,
there is no regularity-loss phenomenon for temperatures.

The rest of this paper unfolds as follows. In Sect. [2, we briefly review some useful properties
on Besov spaces. In Sect. B, we establish the local existence and blow-up criterion for the
Euler-Maxwell equations (LI]). Sect. @is devoted to the global existence of classical solutions in
critical spaces. In the last section (Sect. [), we remark a natural generalization on the continuity
of composition functions in Chemin-Lerner spaces.

2 Littlewood-Paley theory and functional spaces

Throughout the paper, f < g denotes f < Cg, where C' > 0 is a generic constant. f = g
means f < g and g < f. Denote by C([0,T], X) (resp., C*([0,7], X)) the space of continuous
(resp., continuously differentiable) functions on [0, 7] with values in a Banach space X. Also,
I(f,g9,h)||x means | f|x + llgllx + ||h|lx, where f,g,h € X. (f,g) denotes the inner product of
two functions f,g in L2(R™N).

In this section, we briefly review the Littlewood-Paley decomposition and some properties
of Besov spaces. The reader is also referred to, e.g., [2, 5] for more details.

Let us start with the Fourier transform. The Fourier transform f of a L!-function f is given
by

Ff= f(a:)e_%x'fda:.
]RN

More generally, the Fourier transform of any f € &', the space of tempered distributions, is
given by
(Ff.9) =(f,Fg)

for any g € S, the Schwartz class.
First, we fix some notation.

So = {(b € S,0°Ff(0) =0,Ya € NV multi—index}.

Its dual is given by
sh=8/P.

where P is the space of polynomials.
We now introduce a dyadic partition of RY. We choose ¢y € S such that ¢q is even,

3 8
suppog = Ag = {f eRV:Z < €] < —}, and ¢g >0 on Aj.
4 3
Set A, = 294, for q € Z. Furthermore, we define

$q(§) = do(279¢)



and define ®, € S by

G
Rl raE

It follows that both F®,({) and ®, are even and satisfy the following properties:
Fd, (&) = FOo(279), supp F,(€) C Ay, Oy(x) =29V 0y(2%2)

and

= 1, if £eRN\ {0},
ZH)"@_{O, if £=0.

q=—00

As a consequence, for any f € S{,, we have
o
Z S, x f=f.
q=—00
To define the homogeneous Besov spaces, we set
Af=0,%f, q=0+1,42,..

Definition 2.1. For s € R and 1 < p,r < oo, the homogeneous Besov spaces ST is defined by

By, = {f € Sh: 1 flsy, < oo,
where

e =4 (Saeal8aflonr)”

SqueZ2q HAquva r=00.

To define the inhomogeneous Besov spaces, we set ¥ € C5°(R™) be even and satisfy

W) =1- qu(s)
q=0

It is clear that for any f € 9’, yields

Usf+Y Qgnf=f.

q=0
We further set
07 ,] S _27
Aqf = U % f7 ] = _17
®,xf, j=0,1,2,..
Definition 2.2. For s € R and 1 < p,r < oo, the inhomogeneous Besov spaces By ,. is defined
by
B;,r ={fe S ||f||Bf,7T < oo},

where

i, = 4 (SEaC18asliny) "

supg> 1 2 Ay flle, 7= co.



Let us point out that the definitions of B;,T and By, does not depend on the choice of the
Littlewood-Paley decomposition. Now, we state some basic properties, which will be used in
subsequent analysis.

Lemma 2.1. (Bernstein inequality) Let k € N and 0 < Ry < Ra. There exists a constant C,
depending only on Ri, Ry and N, such that for all1 <a <b<oo and f € L?,

1

SuppFf C {€ € RN 1 €] < RiA} = sup [|0%F| o < CFPINTAG=8)|| £ 1o
|a|=k
N . —k—1\k fe] k+1y\k
SuppFf C{€ R : RIA < [§] < RoA} = C7" N[ f[ e < ‘S?pklla fllee < CP2N¥|| fl e

As a direct corollary of the above inequality, we have

Remark 2.1. For all multi-index «, it holds that
1
S g < 00 g < Ol i

10 fllB;,. < ClFN oo

p,r T
The second one is the embedding properties in Besov spaces.
Lemma 2.2. Let s € R and 1 < p,r < 00, then
(1) If s >0, then By, = L’ N B:,;

p,m

(2) If 3 < s, then B, — B3 .;

DT

(3) If 1 <r <7 < oo, then By, < Bj - and By, < B} ;;

. .s—N L _N(L
(4) f1<p<p<oo, then BS, < B, "7 » and BS, <> B, 7 7
(5) Bo{P s Co, BN = Co(1 < p < o0);
where Cy is the space of continuous bounded functions which decay at infinity.

On the other hand, we also present the definition of Chemin-Lerner space-time spaces first
introduced by J.-Y. Chemin and N. Lerner [3], which are the refinement of the spaces L%(B;;,T,)

or L§ (B3 ,.).

Definition 2.3. For T' > 0,s € R,1 < r,0 < oo, the homogeneous mized time-space Besov
spaces L%(B;J,) is defined by

L7(By,) = {f € (0. T:5) < I g s, < +o0}-

where

=S =

10z 55 = (D@ 140 f g (1))

q€Z

with the usual convention if r = oco.



Definition 2.4. For T' > 0,s € R,1 < r,0 < oo, the inhomogeneous mized time-space Besov
spaces L%(B;J,) is defined by

Li(By,) = {f € L°O0.T58") : |1 f Iz sy < +o0),

where )

1z ss = (D2 @18 g zn))”

q=—1

with the usual convention if r = oco.

Next we state some basic properties on the inhomogeneous Chemin-Lerner spaces only, since
the similar ones are true in the homogeneous Chemin-Lerner spaces.

The first one is that L (Bj,) may be linked with the classical spaces L§.(B5,) via the
Minkowski’s inequality:

Remark 2.2. It holds that
HfHZ(’T(B;)T,) < ”f”LGT(Bz,T) if r > 0; Hf”Eg(Bgm) > HfHLf)T(B;’T.) if r <6.

Let us also recall the property of continuity for product in Chemin-Lerner spaces ZGT(B;T).

Proposition 2.1. The following inequality holds:
1700z 35 < O gon ez s+ 19030 oy 10 )

whenever s > 0,1 <p < oo,1<60,01,05,03,04 < oo and

1 1 1 1 1

60, 6 05 05
As a direct corollary, one has
£l s ) < O llgon e N9lzon s
whenever s > d/p,% = % + %.

In the next symmetrization, we meet with some composition functions. The following con-
tinuity result for compositions is used to estimate them.

Proposition 2.2. ([1]) Let s > 0, 1 < p,r,0 < oo, F' € VVl[iH’OO(I;R) with F(0) = 0,
T € (0,00] and v € L§(Bs ) N LF(L>®). Then

VEGzg 55y < COH D llceom) T IE Typtorsool F iz 55

In addition, we present some estimates of commutators in homogeneous and inhomogeneous
Chemin-Lerner spaces to bound commutators.



Proposition 2.3. Let 1 <p < oo and 1 < p < oco. Then there exists a generic constant C > 0
depending only on s, N such that

- - N
H[f7 Aq]AgHL%(Ll’) < ch2 qSHVf”prl (B;Hl)Hg”Z?(B;J)’ s=1+ P
IF, Aglgllg oy < Cea2 VNN, - xs llgllzes e € (& 1,4
By ) T \Pp,
where the commutator [-,-] is defined by [f,g) = fg — gf, and the operator A :=div or V. {c;}
denotes a sequence such that ||(cg)|lp <1, § = % + %.

Finally, let us point out that all the properties described in the this section remain true in
the periodic setting, see [5].

3 Local existence and blow-up criterion

It is convenient to obtain the main results, we first reformulate the compressible Euler-Maxwell

system (L.I]). Set

~y—1
qi(tvx) = %{[?i(%v‘rﬂ'g - 1}71 Ui£t7x) = %ui(%,x), (3‘1)
E(t,ZE)ZWE(—,Y,l‘), B(t7$) \_ﬁB(Wv"E)_B
Then the system (ILI) can be reformulated, for classical solution W = (o4, vy, E, B), as
0o+ + vy - ng:-i-( Qi-i-l)v vy =0, . ) )
Ou+ + ( 5 Qj: + 1)VQ:|: +v4 - Vo = :F(%E +vgL X (B + B)) — %Ui,
_ 1 1
8tE~ - fv x B = fU+ + \f[q)(g-i-) +otluy — mu- — 5[®(e-) + o-Ju-, (3.2)
8tB + \/—V X E = O
| V- E= —T[‘I)(Q+) +o+] + \%[‘D(Q—) +o-], V-B=0
with the initial data o
Wli=o = Wy := (040, v+0, Eo, Bo) (3.3)
satisfying the corresponding compatible conditions
| 1
V- By = —7®(e+0) + 0+0] + 75 [®(2-0) + 2-0l; (3.4)
V- -By=0.

Here the nonlinear function ®(-) in ([3.2)) is defined by

1

‘I)(P):(TP+1)” t—p—1

Notice that ®(p) is a smooth function on the domain {p|15= Lo+1 > 0} satisfying ®(0) = &'(0) =
0, which is a little different from that in [23].
For this reformulation, we have

10



Remark 3.1. The variable change is from the open set {(n4,u,,n_,u_, E, B) € (0, +00) x RY x
(0, +00) x RN x RN x RV} to the open set {IW € Rx RV x R x RY x RNV x RV|721 o, +1 > 0}.
It is easy to show that for classical solutions (ni,uy, F, B) away from vacuum, (LI)-(T2) is
equivalent to (3.:2)-(B.3]) with %gi +1>0.

The simpler case of v = 1 can be treated in the similar way by using the reformulation in
terms of the enthalpy variable, see, e.g., [23]. Without loss of generality, we focus on the system

B2)-B.3).
Next, let us write [B.2]) as a symmetric hyperbolic system. Set
WI = (Q—HU-H Q—)U—)Ta WII = (EN',B)T, W = (W17WII)T-

Then (B3.2)) is reduced to

N
AW + > A;(W)dy,W = L(W), (3.5)
7j=1
where
Al(Wp) 0
Aj(Wr) = ( / 11 >7
J 0o Al
~ 0~ —
~(FE+ve x (B+B)) — Jzup
0
Lw) = (LE+v_x (B+B) - Lo
%wr + %[‘I’(QH + o4]ug — %U— - %[q’(g—) + o-Ju-
0
with
- v, | (“’T‘lgjﬂ)ej 0 0
Lot + 1ej vl Iy 0 0
AL (W) = 7 O+ j + :
5 (1) 0 0 vl (“’T_lg_—i—l)ejT ’
0 0 (Lt o- + 1)e; vl Iy
a_( 0 P
§=(or
and
0 0 0 0 0 —L o Lo
p=lo o 2| mol oo o |. |- 0
1 — 1 Nai ) 2 — 1 ) 3 — Vai

Here Iy denotes the unit matrix of order N and e; is the N-dimensional vector where the
Jjth component is one, others are zero. From the explicit structure of the block matrix A;(Wr)

11



above, we see that (3.2]) is a symmetric hyperbolic system on G = {VV|“’T_1 0+ + 1> 0} in the
sense of Friedrichs. Based on the recent work [24] for generally symmetric hyperbolic systems,
we get the local existence and uniqueness of classical solutions W = (o4, vy, F, B), which reads
as follows.

Proposition 3.1. Assume that Wy € B39 satisfying 15 gi0+1 > 0 and (37), then there exists
a time Ty > 0 (depending only on the initial data) such that

(i) Ewvistence: the system (3.2)-(3.3) has a unique solution W € C1([0, To] x RN with 1+ gi—i—
1> 0 for allt € [0,Ty] and W € Cp, (B3y) N Ch (Bs )

(ii) Blow-up criterion: if the mazimal time T*(> Ty) of existence of such a solution is finite,
then

limsup |[W ()| pse, = o0
t—T* ’

if and only if
T*
/ W ()| oot = o0
0

Proof. From [24], it suffices to establish the blow-up criterion. We consider the symmetric system
BE) with L(W) = 0 for simplicity, since it is only responsible for the global well-posedness and
large time behavior of solutions.

Applying the homogeneous operator A, to (3.5), we infer that A, satisfies

N N
DA+ AjWDAD, W = =Y [Ag, Aj(Wr)[ W, (3.6)

J=1 J=1

where the commutator [, ] is defined by [f,g] := fg —gf.
Perform the inter product with A,W on both sides of the equation (3.6]) to get

(AW, A Wt—i—z (WDAW, A W)y,
7j=1
N
= _22<[Aq7Aj(WI)]ij=AqW> + <Aj(WI)xquW7 AqW>- (3.7)
=1

=

By integrating ([3.7) with respect to  over RY, we get

d, . . .

AW T2 S 11Ag, A (WDIWe, (L2186 W | 2 + 145 (W) [l [ Ag W [ 72- (3.8)
Let € > 0 be a small number. Dividing 3:8) by (|4, W2, + €)'/? gives

d /. 1/2
= (I1AW)22 +¢)

1[Ag, A (WDIWe 122 + 145 (W), |20 | AW
a2 (A5 (W) e W g, + 145 (W), e [ VW )

HA (WD), e AWl 2, (3.9)

12



where we used the stationary cases of estimates of commutator in [2](Lemma 2.100, P.112) and
the sequence {c,(t)} satisfying ||cy(¢)|,r < 1, for all ¢ € [0, Tp].
Taking a time integration and passing to the limit € — 0, we arrive at

To
WOllsg, S Wl + [ ITW = IW Ol g5 (3.10)

since we note that the fact W (t,z) € O;(a bounded open convex set in R*V+2) for any (¢, ) €
[0, Tp] x RN, see [24].

On the other hand, we take the L?-inner product on (335) with W. It is not difficult to
obtain

To
WHle S [Wollze + /0 VW () | oe | W (7) | 2 (3.11)
Adding (3.I0) to (BI1), from (1) in Lemma 2.2, we have
To
WOls < Wolags + [ I9W i W (), (3.12)
Gronwall’s inequality implies
To
sup W (Ollng, S [Wolsg exp ([ I9W(0)]ioear). (313)
t€[0,T0) : : 0

Besides, we have the following obvious inequalities

To To
| IO Eldr < [T IW Ol dr ST sup WOl (3.14)
0 0 ’ te[0,To) ’

Hence the blow-up criterion follows ([B.I3]) and (3.I4]) immediately. This completes Proposition
5.1 O

4 Global well-posedness

In this section, we focus on the global existence of classical solutions to ([3.2)-(B.3]). For that
purpose, we first derive a crucial a priori estimate in the whole space, which is comprised in the
following proposition.

Proposition 4.1. There exist some positive constants d1, p1 and Cq such that for any T > 0, if
|’(Qi7vi7E~7B)“E%O(B;?1) S(Sl, (41)
then
[(o+,v+, E, B)”Zi}o(BSfl)
+N1{”(Q+ - Q—an)”E?T(B;cl) + [(Vox, E)”ZQT(BSffl) + HVB”E?T(B;T?)}
< Chll(e+0, v+o, Eo, Bo)l s, - (4.2)
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Actually, the proof of Proposition l.Tlis to capture the dissipation rates from contributions
of (9+,v+, F,B) in turn by using the low- and high-frequency decomposition methods. For
clarity, we divide it into several lemmas.

Lemma 4.1. If W € C~T(B§f1) N C}(Bgcl_l) is a solution of (32)-(33) for any T > 0, then the
following estimate holds:

”W”Z%"(Béﬁ) + NQ”(U-H U—)”ZQT(BScl)

SJ ”VVOHBSC1 + A/ ”W”Ei}o(Bgfl)(”(vQ*‘?VQ—7E)HZ%(B§f1’1) + ”(U‘f"v_)HEQT(BSfl))’ (4’3)

where o 18 a positive constant.

Proof. The proof is divided into three steps.

Step 1. The E%(Bscl) estimates of (vy,v_).

Indeed, applying the homogeneous localization operator A,(q € Z) to ([32)), we infer that

(0 Ajor + Aqdiv‘v+ . . .
= —(vy - V)Agor + [vr, Ayl - Vo — 7 ([Ag, o4 ]divey + o4 Agdivey),
8tAqQ_ + AqdiV'U_

= —(v_ - V)Ago_ + [v_, A - Vo — T ([Ay, o-]divu_ + o_Adive_),
8tAqU+ + AqVQ+ + %Aq’lj_i_ + %AqEA“ + Aqv+ X B

= —(vy - V)Auy + oy, Ag] - Voy = 55 ([Ay, 041V ey + 04 AVoy) — Ag(vg x B),
&;Aqv_ + AqVQ_ + %Aqv_ — %AqE‘ — Aqv_ x B

= —(v_ - V)Agu_ + [v_, Ay - Voo — 4 ([Ay, 0-]Vo- + 0-AgVo_) + Ay(v- x B),

0.8, ~ LAY x B

= s + FAL@(00) + 0)ve] = F5hgu- = FAN(®@(e-) + - )v-,
OA,B + %Aqv x E =0,

\
(4.4)
where the commutator [-, -] is defined by [f,g] = fg — gf.
Then multiplying the first two equations of (4.4]) by Aqg+, Aqg_, the third one by Aqv+, the
fourth one by Aqv_, respectively, and adding the resulting equations together after integrating
them over RV, we get

1d, . 1 . 1 . - . 1 . -~ .
5&“Aq(g+7 Q—=U+=U—)”2L2 + ﬁHAq(U%U—)”% + \/_7<AqE: AqU—|r> - \/_7<AqE7 AQU—>
- Y hw+ Y B, (4.5)
i=+,— i=+,—

where we have used the facts (Aqvi x B) - Aqvi = 0. The energy functions in the right-side of
(3] are defined by

If(t) = §<d1VU+: (1Ago+* + [Agus]?)) + T<AqQ+7VQ+ - Aquy)
_<AQ(U+ X B)quv+>v

14



1 . . . -1 .
I (t) = §<d1VU_, (Ago- >+ |Au_2) + %(Aqg_,Vg_ -Agu_)
+(Ag(v- x B),Agu_),

and
I(t) = ([U+=Aq] 'VQ+7AqQ+> + <[U+=Aq] : VU+7AQU+>
1 . ) . ~1 . .
_7T<[AQ7 Q+]leU+, Aqg-i-> - /YT([Aqa Q+]VQ+7 AQU+>7
L(t) = (-, Ag- Voo, Ago-) +{[v-, Ag] - Vo, Agu-)

-1, : - —1 :
_WT“AII’ o-]divu_, Ago-) — /YT([AID 0 |Vo ,Au_).

On the other hand, multiplying the fifth equation of (4.4]) by AqE and the sixth one by
A,B, and adding the resulting equations together after integrating them over RY implies

1d . - - 1 . .. 1 . ..
gaqu( ,B)[|7. —\/—,—Y<AqE7AqU+>+\/—,—Y<AqEquU—>
= Z I5(t), (4.6)
=t —

=

where we used the vector formula V- (f x §) = (V x f)-§— (V x §) - f and IS (t),I5 (t) are

given by .
I3 (t) = —,Y<Aq[(‘p(0+) + o)), AgE),

I3 (t) = ——=(Ag[(®(0-) + 0-)v-], Ay E).

1
vl
In what follows, we begin to bound these nonlinear terms. Firstly, with the aid of Cauchy-
Schwartz inequality, we have

T
/ I (1)t
0

S ”(VQ+=VU+)HL§F(LOO)<2_qHAqVQ+”L2T(L2)HAqQJrHL%O(LZ)
+2_q\|AqVQ+||L:f’F(L2)HAqU+HL39(L2) + ||AqU+HL§F(L2)HAqUJrHLgs(L?))
+HAg(vy x B)HL?F(B)HAqU+||L2T(L2)a (4.7)

furthermore, multiplying the factor 229%¢ on both sides of [#7) gives
T
e [ |1 o)
0
< 2 . 2 . ~ o .
~ Cq”(Q—H U+)”L§9(B§f1) (va"'HL%(B;ffl) + HV@‘*‘”L%(BS?{U ”U'FHL%(B%)
2 2 DI~ . -~ .
+”U+Hfj%(35ﬁ)> + Cq”U-i- X B”L%(Bgfl)”v""”L%(B;fﬂ’ (4’8)

15



where we used the embedding properties in Lemma and Remark 2.1l Here and below, {c¢,}
denotes some sequence which satisfies ||(¢q)||;p < 1 although each {c¢,} is possibly different in
(A8)). Similarly, we have

T
9%as: / I () dt
0
<

2 . 2 - — .
~ Cq”(g—vv—)HL%?(Bgfl)(HVQ—H %O(B;’clfl) + HVQ—HL%(B;cl 1)||U_||L%(B§?1)
2 2 Bl o
o3 ge)) + callo-  Blzg e o~z e (4.9)
Secondly, we turn to estimate the commutators occurring in 123E (t). Indeed, we arrive at
T
22qu/ |17 (t)|dt
0
S 2qsc<||[“+,Aq] ) vQ+||L2T(L2) + ||[Q+aAq]diVUJr||L§(L2)>2q(sc_1)||AqVQ+||L§F(L2)
1205 (04, Ag] - Voillzz o) + o AdVos iz )27 [Agoslizz 12y (410)

Taking advantage of the estimates of commutator in Proposition 2.3l we obtain

) T
e [ ol

S (s lzgegige IV 04 Iz g + les e gage IV Iz ge ) ) IV 24 g g
46 (o e g 190 Uz gy + e Izge g1 924 g gy ) 1o U g
S 62\\(@+,v+)\\z%o<35¢1)
< (V012 (gsery + 1V g gy o+ Iz gy + 1012 g )- (411)
Similarly,

T
e [y olar
< Cg|’(9—7v—)HZ%o(B;cl)
2 o s 2 .
< (V0= sgety + 1V 0=z g o=z gsgey + 0= e ) (412)

Thirdly, the composition functions If (t) can be estimated as

) T
e [ o

S BBz sz, (190000 g gy + ooy age)
.
S 1Bz gy (12 @Dz 535) + Newlzg o o I3 o
'
S Bl g IV 0+ Iz (g 10+ g 35 (4.13)
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where we used the corresponding homogeneous cases of Propositions 2.1H2.2] Similarly,
2 4 2| £
qSc - < ~ .. ~ - ~ .
2 /0 ’13 (t)]dt < cq”E”Li}O(Bgfl)HVQ—HL?F(Bgfl’l)HU—”LQT(Bgfl)’ (4.14)

Together with the equalities (£35)-(4.0) and inequalities (4.8)-(4.9), ([A.I1)-(4I4]), we conclude

that there exists a constant ji2 > 0 such that
22| A W (1)|[72 + 5279 || (Aqus, qU—)||L2(L2)
< 2205 || A, Wo||%, + the right sides of {(@) ~ (@), @) — (m)} (4.15)
Then it follows from the classical Young’s inequality(v/fg < (f +9)/2, f,g > 0) that
QQSCHAqW”Lg?(m) + 1227 || (Aquy, AqU—)”L%(m)
S 2 AWolliz + oy IW g i (IVelzg ooy + Il gy )- - (410)
Hence, summing up (AI6]) on ¢ € Z gives immediately

”W”E%(B;fl) + /12”(7)4-7 U_)HZ%(BSfl)

S ”VVOHB;1 + A/ ”W”E%(gg‘i) (H(VQ%VQ—)HE%(B%*) + H(U—l—av—)”f%(]g’;;ﬁ))- (4.17)

Step 2. The L2(L?) estimates of (v4,v_).
It follows from (B.2]) and usual energy methods, we can get the equalities

1d 1 1 - 1 -

ailler 0 v vl lwn v+ (B vn) — (B
= Y on v Vo) + T o v Voo) — (Vur,ud) - (Voo 0?)

—(vy X B,vg) + (v_ x B,v_), (4.18)

and
1 - 1 -
S B, B - B+ (B
- \%d(@(m) +ou)u). B) = = ((@e-) +0-)o-1. B). (4.19)

Combine (4.I8)) and (4.19) to get

2
a 2 ., 4 2
VI3 + =l vl

AN

(s 0 )l (losllz I Vosllze + o2 Vo2 )
H(Vor, Voo, Bl (s 122 + o-|22)

+(®(01), 04, ®(0-), 0z ([0l g2 + [0 g2 )1 Bl 2. (4.20)
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By integrating (£.20]) with respect to t € [0, T], we obtain

_1.1
W g2y + (297 2) 2 l(vs, v-) 22 22y
S [Wollze +4/li(es- 0= Vou, Vo, B, ®(04), B(0-)) 1 (1)

% (10704, Vo lzz ) + I 0s, 0=, B) 1z 1) )

S IWolle + \los v Bl g

% (I(Vers Vo llz way + I vz ey + 1Bl gery ). (421)

Step 3. The E%(BSCI) estimates of (vy,v_).
Recently, Xu and Kawashima [24] obtained an elementary fact that indicates the connection

between the homogeneous Chemin-Lerner’s spaces and inhomogeneous Chemin-Lerner’s spaces.
Precisely, it reads as follows: let s > 0,1 < 0,p,r < +00. When 6 > r, it holds that

LE(LP) N LYy(By,) = Ly(By,) (4.22)

for any T' > 0. Notice this fact and (1) in Lemma 2.2] the inequality (£3]) directly follows from
@I7) and @2I) with po = min(jis, (277%)3). 0

Lemma 4.2. If W € 5T(B§f1) N CN%(BSCI_I) is a solution of (3.2)-(33) for any T > 0, then the
following estimate holds:

o+ — Q—”Z?F(B;cl) + (Vo VQ—)”Z?T(B;TU
< (Mool g + 0, vs0)lm5e) + e 00l e
(0 v Bz (g (10T 0 = 0 gty + 100l e ) (4:23)
Proof. The proof is divided into two claims for clarity.

Claim 1. Under the assumptions of Lemma 2] it holds that

1(Ve+, Vo)lzz mget) + o+ — e-llzz (g

SJ (H(Q:I:avzl:)Hf,%O(BSS) + ”(Qzl:Oavzl:O)HB;fl) + ”(U+7U—)HE%(B§5)

+H(Q:|:7 U4, B)“E%O(Bgfl) <”(VQ:I:7 O+ — Q—)Hf,%(g;cl*l) + ”(U-H U—)HE%(B;cl))' (4’24)
To do this, the first four equations of ([3:2)) can be rewritten as
droy + divoy = fif (4.25)

Oro— +divu_ = f; (4.26)
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1 1
atU+ + VQ+ + — E f2+ (427)

AT
1 1
dv_+Vo_+—v_— —E=f; 4.28
( Ve ¥ 2 (4.28)
where
fif = —vy - Voy — Goidivey,

fi =—-v_-Vo_— WT_lg_divv_,
f5 = —vp-Voy =520, Voy —vy x (B+ B),
fo =—v_-Vu_ -1 Vo_+v_x(B+B).
Applying the inhomogeneous operator Ay(qg > —1) to [@27) and multiplying the resulting
equality by A,V implies

d
dt

= _;<Aqq>(9+)a AqQ—|—> + ;(Aqq)(g—% AqQ—|—> + <Aqf2+a Aqv9+>

1 . .
_\/_7<Aqv+a AgVoy) + HAquVU+H%2 —(Agf1", Agdivoy), (4.29)

1
—(Aqui, AgVor) + A Vou 72 + = HAq@+H%2 = 2 (Age Agos)

where we used the last equation of (8:2)) and (£.25)).
In a similar way as above, we have

d
dt

_ —;<Aq<1><g_>, Ago_) + %<Aq¢><@+>, Ago )+ (Agfs AV )

1
_\/_,7<AQU—7 AgVo-) + HAqdiVU—H%2 —(Agf1, Agdive_). (4.30)

1 1
<A U—aA Vo- >+ ”Aqu—H%Z + ;HAqg_Hsz - ;(Aq9+aAqQ—>

Furthermore, we add (4.29)) to (430) to get
d 1

E“Aqvﬁ-a AgVoy) + (Agu-, AgVo_)) + [[(AgVos, Aqu—)H%Z + ;HAqQA— - AqQ—H%Z

= v s 18- + AR, Age- — Aer) +Bfi AT

_ 1 1
+<Aqf2 7Aqv9—> + ;(AqCP(Q—)a AqQ+ - AqQ—> - _<Aqv+, Aqu—i->

Ve
1
—— (A, AV o ) — (AT Aydivey) — (A fr, Agdivo_). (4.31)
7
From Young’s inequality, there exists a constant us > 0 such that

d
T ((Bqu, AVor) + (Mg, A Vo)) + i3([(AgVer, AgVeo )72 + Aot — Ago-]72)

< I(Agdives, Agdive ) |22 + [(Agoy, Agu) |22 + [ 8g(@(01) — (00))]2
(180 f e + 180 fF 132 ) + (180T 132 + 1807 12 )- (4.32)
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By integrating (@32) with respect to ¢ € [0, 7], and multiplying the factor 22¢(*¢=1) on both
sides of the resulting inequality, we obtain

121D ([(BVor, 8V o)z ) + 1890+ = Ago-lli32)

S Cq(H(Q:I:aU:I:)HZ%O(L2) + H(Qio,UiO)HB;fl)
e (102 0) I3 ) + 1900) = Bo-)lIz3 gy
+ + — -
U Nz gy + W5 gty I Ipmey + Mo Dy ) (439
Now we estimate nonlinear terms in the right-side of (£33)) in turn. Firstly,

<

Hfl—i_”PT(BSffl) o4 - VQ—I—HZ%(B;clfl) + “Q+diVU+|’f2T(B;fI*1)

N ”U-l—”Z%O(Bg‘a)”VQ—I—HZ%(B%*)+”Q+HZ§9(35‘3)”Hv-i-HZ%(B;’cl)v (4.34)

where we used Proposition 2.1l and Remark 21l Similarly, we have

1 Mgy 0 IV g ey + o Nzl Izg gy (435)
Hf;HZQT(B;,cfl) S vt VU-‘:—HZ%(B;’%*) + ||Q+VQ+||Z%(B§’61*1) + [lve x (B+ B)HZ%(BSffl)
S ||U+||E?F°(B§f1)||v+||f2T(B§fl) + ||‘Q+||E%°(B§::1)||V‘Q+||E%(B§::171)
+(1 + HB”E%"(B;%))HU"‘HE%(B;fl); (4.36)
ol ey S lo-lzgmg o=z ) + o=z i) IV e-lIzs ge)
Bz g 0- Nz a5 (4.37)

To estimate the continuity of compositions ® (o) — ®(p_), we need the further estimates
rather than that in Proposition Indeed, the Proposition [5.1] in Appendix [B] will be used,
which is a natural generalization about the corresponding stationary case in [2]. In addition,
we recall that ®(p) is a smooth function on the domain {p|ﬂYT_1 p+ 1> 0} satisfying ®'(0) = 0.
Hence, take s = s, — 1,0 =2,0; =04 =2,00 =03 =oco,p=2,r =1 in (L50) to get

H(I)(Q—i—) - (I)(Q—)”f%(ggcl*l)
~ HQ-‘r - Q—HLZT(LOO)(HQ-ﬁ-”fg?(Bgffl) + HQ—HE%O(B%*))

+”Q+ - Q—|’Z2T(B;f1*1)(|’Q+|’L§9(L°°) + ”Q—HL%"(LC’O))

S HQ—%— - Q—HZ?F(B;’Cfl)(”Q—i—|’f%0(35‘f1) + Hg_HE%"(BSfl))’ (4.38)

Combining (433)-(Z.38]), we are led to the estimate

ga(se=1) <H(AqVQ+7 AgVo)llz 2 + 1Aq0+ — AqQ—HLZT(LZ))

< ez vz rey + Mezo, o)) + eall W vz s

teqll(exs v, B)l e e (Vs 00 = 0) 73 (ge ) + W0l g e ) (4:39)
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Summing up ([£39) on ¢ > —1, the inequality ([#.24]) is followed easily.
Next, we give the reason that o4 — o_ € L%(B;ﬁ).

Claim 2. 1f 04 — o € LA(B3 "), (Voy,Vo-) € L3(B5 "), then
0+ —0- € Z2T(B§,C1)
and
oy — Q_HZQT(BS,CH S ([(Vo, VQ—)HE%(B;’Tl) + o+ — Q—Hsz(B;Cfl))‘ (4.40)
Indeed, by virtue of the triangle inequality, one has
IV(e+ = 0-)lzz g1y SN (Vew, Vo)l (o), (4.41)

which implies V(p4+ —0_) € E%(Bicl_l), furthermore, it follows from the fact ([@.22]) that V(o4 —
0-) € E?F(Bgcl_ ). According to Bernstein’s inequality (Lemma 2.I)), we obtain

_ ~ < — ~ < _ ~
llos Q_||L2T(B§,c1) S V(e Q_)HLQT(B;,cfl) S V(e Q_)HLzT(B;,cfl)' (4.42)
On the other hand, thanks to the embeddings
LH(Bsi") = Ly(Bsy") — Ly(Bsy ') — Ly (L?),
we deduce that
los = o-llzaun) S low = o-llzs gz (4.43)

Then from the basic fact ([@.22]), the inequality ([4.40) is achieved by ([4.42]) and ([@.43]) directly.
Finally, ([4.23)) follows from (4.24]) and (4.40), which completes the proof of Lemma O

Lemma 4.3. If W € C~T(B§f1) N C}(Bgfl_l) is a solution of (3.2)-(33) for any T > 0, then the
following estimate holds:

1BMlz3 31y

< ||(Ui,E)||Z&.9(B§ﬁ) + II(UﬂJ,Eo)||B;f1 + {||(U+7U—)||Z2T(B§fl)

IV Bl 55+ es = 0 Mg ogg) + N v Ble o
X (H(Vé)—h VQ—)HZ%(Bgffl) + H(U—i—a U—)”PT(B;%) + |’EHZ%(B¥1*1)) }7 (4’44)
Proof. In fact, from ([4.27) and ([4.28]), we have

Dulvs —v_) + (Vos — Vo) + %E g - %m . (4.45)
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Applying the inhomogeneous localization operator A, to ([f.45), multiplying the resulting in-
equality by A, E and integrating it over RV gives

2
Gl =) AgB) + — 8Bl = Y (), (4.46)
where
Ji(t): = (Ag(vy — U_),AqatE>
- \%IIAq(m — o)+ \%<Aq(v+ C0l), AV X B))
+\%(Aq(v+ —v-), Aq[P(0+4)v4 + 0404 ])
Byl ) Ayfle o+ ov )
and
B(t): = —%mqm ). A B) — (Ay(Vor — Vou), A, E)

HAG(fs = f5), AE).

Through the straight but a little tedious calculations, with the aid of Propositions 2.IH2.2] we
can obtain

T
92a(sc=) / 1 (1) dt
< Cg”(v-h )HLz (B 1 +CgH(U—hU—)HEZT(B;fl)”VXB”Z%(BSS*?)
00 Mzt 06 v g e (1.47)
and

T
Pa(se=1) / L (8)]dt
0
S Cg<||(U+,U—)||z2T(B;§;1) + H(Q—i— - Q—)||Z2T(B;f1)) ||E~1||Z2T(B;f1*1) + CgH(Q:I:aU:I:aB)||Z%0(B§f1*1)
% (1 er, Vo) lzg pgery + 1we vz o)) BN g (1.45)

Then, combining with (4.40)-(4.48]), we arrive at
a8 B,

< cg<|](v+,v )HLOO(B% + |’(U+07U—07E0)|’2B;f1)> + Cg”(UJmU—)H%zT(B;ffl)
210450z (g IV % Bllga (mge) + €2 (10023 (g
+[ (o4 — Q_)HZ%(BSﬁ)) ”ENHEQT(B;Cfl) + CgH(Q+7 Q_)“E%O(B§f1)|’(v+’ U_)H%%(Bgﬁ)

+e2l(ox, v, Bz e (IV eIz (mgety + Ivellzs (oge) I BNz gery: (4:49)
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Then employing Young’s inequality and summing up the resulting inequality on ¢ > —1 con-
cludes the inequality (Z21]). O

Lemma 4.4. If W ¢ CNT(BSfI) ﬂ(i’v:lp(BSfl_l) is a solution of (3.2)-(33) for any T > 0 and, then
the following estimate holds:

IVBIIzz (52
S B Bl e,y + 1 (Bos Bo)llsge, + {H(v+,v_)|!z2T(B;3>

HEITy g+ yleslze gy (100 0)zg o) +1VBllzg g ) - (450)

Proof. Indeed, multiplying both sides of the fifth equation of [B.2)) by —A,(V x B), taking
integrations in z € RY and using integration by parts and replacing 0iAyB from the fourth
equation of ([B.2]), we arrive at

d - - 1 -
——(A E),A,B) + —|A B)|)?
dt< (VX E),A;B) + ﬁH (VX B)||72

- %\\Aqw x B2, — \%<Aqv+,Aq<v < B)) + %mqv_,Aq(v < B))
—%mq[@mm T orvs] — AgB(o_ ) + ov_], AV x B)), (4.51)

where we used the vector formula V- (f x §) = (V x f)-§—(V x §) - f.
With the help of Cauchy-Schwartz inequality, we obtain

d - - 1 .

—a<Aq(V x B),A¢B) + ﬁHAq(V X B)H%Z
L
ﬁ

+

1
\/,7
(124(@ (01 o)1z + 18 (0104 122 ) 184(V % B)l 12

1A (v, ) 2]12g(V % B)|[ 2

IN

18(V x E)[IZ2 +

1
V7

= (184(@(0-)v- )z + 18g(0-v-)llz2 ) 184(Y X B)l|zz. (4.52)

1
Vi
Note that the regularity of E in Lemma A4, we multiply @52) by the factor 22¢(5=2) after
integrating (£.52]) with respect to ¢ € [0, 7] to get

2q(sc—2 B2
92q(s )HAqVB||L2T(L2)
< 2 il D[~ X [ o 3 .
~ Cq(HEHL%O(BSffl)HBHL%O(B;%*?) + ||EO||B§61 1||Bo||B§?1 2)
21712 o Al
S { 1B, (gsery + 10023 g IV Bll g e
+”(Q+7Q—)”E%(Bgcl)u(v-hU—)”Z%(B;cl)”VBHZ%(B;??))}a (4.53)

where we notice the incompressible property of B and the elementary relation ||V f]|;2 ~ |V -
Flliz +1IV < fll e
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Furthermore, we apply Young’s inequality to (£53]) and obtain
Q(Sc_2) D
2 18V B2 (12

S Cq(H(EaB)HE%o(B;a) + ||(E07B0)||B§f1) + Cq{5||vé||f,T(B§f1*2) + ||(U+’U_)HZ2T(B§,C1)
HIBlz3 gy + Mo Mz (agey (0 0z (30 + IV Bl o2 ) (459

where we take ¢ < 1/2.
Finally, after summing up (£26) on ¢ > —1, the desired inequality (£50) is followed. O

With the help of Lemmas[A.THL.4] the inequality (£.2]) in Proposition 4.1l follows, since we may
introduce some positive constants to eliminate the terms HWHZM(BSC ) (Voy, Voi)lie (B
T 2,1 TV=2,1

|(vg, v)| HE%(B%) and HEHZQT(B%A), HVBHZQT(B;Tz) arising in the right-hand sides of (4.3)),([@.23),
(#44]) and (450). See [23] for similar details, here, we omit them for brevity.

Having the Proposition B.1] and Proposition 4.1l Theorem (Global well-posedness) can
be achieved by the standard boot-strap argument as in [I3]. We give the outline of proof.

Proof of Theorem [L.2.
If the initial data satisfy ||(o0,v+0, Eo, Bo)|| B < %1, by Proposition BI], then we can de-

termine a time T} > 0(7y < Tp) such that the local solutions of [B.2)-(3.3]) exist in 5T1 (B37)
satisfying ||(o+,v4, E, B)

< §1. Therefore from Proposition 1] the solutions sat-

isfy the a priori estimate ||(o+,v+,E, B)HZ%O (B3) < Cl”(Q:I:OaU:I:OaEbyBO)HB;Cl < %1, pro-
1 s s

vided ||(Qio,Ui0,E0,Bo)||B§cl < 2%1. So by Proposition B3] again, the system (B.2))-(B.3]) for

t > Ty with the initial data (0+,v+, E,B)(T}) has a unique solution (0+,v+, E, B) satisfy-

ing [|(0+,v+, £, B)||55 (B2) < 4y, furthermore, ||(o+, v+, E, B) < 6;. Then by
) 2,1

(T1,2Ty

175 (53

”Ea%l (B34)

Proposition 1] we have ||(Qi,vi,E~,B)||zg% (B2) < C’1||(Qi0,vi0,E~0,BO)HBSCI < %1. Thus we
1 ’ s
can continuous the same process for 0 <t < nTy,n = 3,4, - -, and finally get a global solution

(Qi,vi,E,B) satisfies
H(g:l:avzl:a E7 B)”EOO(BS:31)

+N1{||(Q+ - 9—7Ui)”f2(B§f1) + ||(v9+aVQ—’EN‘)HEz(B;cl*l) + ||VB||E2(B§f1*2)}

- )
< Cill(ex0, v+0, Eo, Bo)llpy, < 51 (4.55)

The choice of 47 is sufficient to ensure that 77_1 o+ +1 > 0. Taking §y = min(%l, 2%1), then

it follows from Remark B.I] and the embedding properties (Lemma 2.2]) that (ni,uy, F,B) €
C1([0,00) x RY) is a unique classical solution of (LI)-(L2) in the whole space.

For the periodic case, it suffice to prove the inequality (L5]). Recall that the definition of
mean value f in Theorem [[.2, we set fieg = 1. Using the density equations in (I.1]), we see that
ni4 are conservative quantities for all time ¢ > 0, so 4 (t) = 1. From Poincare inequality (see,
e.g., [8]), we have

Ins = Uiz r2mny) S IVtlliz ey S 1Vl gser gy (4.56)
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On the other hand, the Bernstein inequality (Lemma 2.T]) implies

e = Uz 330, )y S IVPlz2557 o)) (4.57)
Apply the basic fact ([d.22]) again and get

Hn:l: - 1||E2(B§f1('H‘N)) S an:l:Hf;(B;’cl*l(TN))- (4'58)

Hence, (L3) follows from (4.58]) and (L4]) readily. This completes Theorem eventually. [J

5 Appendix

In the last section, we present a remark on the continuity for compositions in Chemin-Lerner
spaces. The corresponding stationary cases have been shown in [2] (see Corollary 2.66, P.97 and
Corollary 2.91, P.105). Precisely, we have

Proposition 5.1. Let s >0, 1 < p,r,0,01,05,03,0, < oo, F" € W/l[jlﬂ’oo(l; R) with F'(0) =0
and T € (0,00]. Then

I£(f) — F(Q)Hf,%(ggm)
S (U fllzse ey + |’9HL;9(L°°))[SH1”F”HW[sm,oo <Hf - QHL? (L)

x o lg +&(F = 9llges gy y + 1 = 9lzos s, S lg + &(F = 9)ll o5 (Loo)>, (5.1)

where
1 1 1 1 1

60 9 6 05
Proof. Following from their suggestions in [2], we give the natural generalization. Note that the
classical equality

1
PN = Flo) = (f =) | Flo+n(f—g)dr, (52)
it follows from Proposition 2.1 and that
IP) = F@l g s

ST [ R v

76
Ly (Bg,r)

H| [ ot st -

oo = 921 (53)

where

| [ Ft s~ g

=6
L (Bg,r)
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/
S sup ||F (g+ﬁ(f_g))”f‘;2(85m)

Kk€(0,1]
< _ 7o [s]4+1 o _
S s (0 llg+ w0 = ) HIE ltassellg + (6 = gz s )
S (1+HfHL%O(Loo)+HQHL%O(LOO))[S}—i_lHF”HW[S]Jrl,oo Sl[lopl]Hg_‘_ﬁ(f_g)HZ?(B; )7 (54)
~€(0, o
and
1
F'(g+ &(f — 9))dr
| [ o nts—anas] s, ,
< F' -
< Ri‘[tl?u” (9 + £ = 9Dl o5 1oy
< " oo — : .
S P s o+ 50 = )l (5.5
Therefore, (5.1)) follows from (5.3]), (54) and (5.5 readily. O

Similarly, let us also mention the case in homogeneous Chemin-Lerner spaces.

Proposition 5.2. Let s >0, 1 < p,r,0,01,05,03,0, < oo, F" € VVI[S]H’OO(I; R) with F'(0) =0

oc

and T € (0,00]. Besides, let s < N/p or s = N/p and r = 1. Then
1#(F) = F(9llze (s )
S (U fllzse ey + |’9HL;9(L°°))[SH1”F”HW[sm,oo (Hf - QHL? (L)

x sup lg +&(F = 9lges 3y y+ 1 = 9llzoa s, S lg + &(F = 9)ll o5 (Loo)>, (5.6)

where
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